mfd: bcm590xx: Use devm_mfd_add_devices() for mfd_device registration
[linux/fpc-iii.git] / drivers / cpufreq / intel_pstate.c
blob4b644526fd5977943761d5430e1967d26997567d
1 /*
2 * intel_pstate.c: Native P state management for Intel processors
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
13 #include <linux/kernel.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/module.h>
16 #include <linux/ktime.h>
17 #include <linux/hrtimer.h>
18 #include <linux/tick.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/list.h>
22 #include <linux/cpu.h>
23 #include <linux/cpufreq.h>
24 #include <linux/sysfs.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/debugfs.h>
28 #include <linux/acpi.h>
29 #include <linux/vmalloc.h>
30 #include <trace/events/power.h>
32 #include <asm/div64.h>
33 #include <asm/msr.h>
34 #include <asm/cpu_device_id.h>
35 #include <asm/cpufeature.h>
37 #define ATOM_RATIOS 0x66a
38 #define ATOM_VIDS 0x66b
39 #define ATOM_TURBO_RATIOS 0x66c
40 #define ATOM_TURBO_VIDS 0x66d
42 #define FRAC_BITS 8
43 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
44 #define fp_toint(X) ((X) >> FRAC_BITS)
46 static inline int32_t mul_fp(int32_t x, int32_t y)
48 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
51 static inline int32_t div_fp(s64 x, s64 y)
53 return div64_s64((int64_t)x << FRAC_BITS, y);
56 static inline int ceiling_fp(int32_t x)
58 int mask, ret;
60 ret = fp_toint(x);
61 mask = (1 << FRAC_BITS) - 1;
62 if (x & mask)
63 ret += 1;
64 return ret;
67 struct sample {
68 int32_t core_pct_busy;
69 int32_t busy_scaled;
70 u64 aperf;
71 u64 mperf;
72 u64 tsc;
73 int freq;
74 u64 time;
77 struct pstate_data {
78 int current_pstate;
79 int min_pstate;
80 int max_pstate;
81 int max_pstate_physical;
82 int scaling;
83 int turbo_pstate;
86 struct vid_data {
87 int min;
88 int max;
89 int turbo;
90 int32_t ratio;
93 struct _pid {
94 int setpoint;
95 int32_t integral;
96 int32_t p_gain;
97 int32_t i_gain;
98 int32_t d_gain;
99 int deadband;
100 int32_t last_err;
103 struct cpudata {
104 int cpu;
106 struct update_util_data update_util;
108 struct pstate_data pstate;
109 struct vid_data vid;
110 struct _pid pid;
112 u64 last_sample_time;
113 u64 prev_aperf;
114 u64 prev_mperf;
115 u64 prev_tsc;
116 u64 prev_cummulative_iowait;
117 struct sample sample;
120 static struct cpudata **all_cpu_data;
121 struct pstate_adjust_policy {
122 int sample_rate_ms;
123 s64 sample_rate_ns;
124 int deadband;
125 int setpoint;
126 int p_gain_pct;
127 int d_gain_pct;
128 int i_gain_pct;
131 struct pstate_funcs {
132 int (*get_max)(void);
133 int (*get_max_physical)(void);
134 int (*get_min)(void);
135 int (*get_turbo)(void);
136 int (*get_scaling)(void);
137 u64 (*get_val)(struct cpudata*, int pstate);
138 void (*get_vid)(struct cpudata *);
139 int32_t (*get_target_pstate)(struct cpudata *);
142 struct cpu_defaults {
143 struct pstate_adjust_policy pid_policy;
144 struct pstate_funcs funcs;
147 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
148 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
150 static struct pstate_adjust_policy pid_params;
151 static struct pstate_funcs pstate_funcs;
152 static int hwp_active;
154 struct perf_limits {
155 int no_turbo;
156 int turbo_disabled;
157 int max_perf_pct;
158 int min_perf_pct;
159 int32_t max_perf;
160 int32_t min_perf;
161 int max_policy_pct;
162 int max_sysfs_pct;
163 int min_policy_pct;
164 int min_sysfs_pct;
167 static struct perf_limits performance_limits = {
168 .no_turbo = 0,
169 .turbo_disabled = 0,
170 .max_perf_pct = 100,
171 .max_perf = int_tofp(1),
172 .min_perf_pct = 100,
173 .min_perf = int_tofp(1),
174 .max_policy_pct = 100,
175 .max_sysfs_pct = 100,
176 .min_policy_pct = 0,
177 .min_sysfs_pct = 0,
180 static struct perf_limits powersave_limits = {
181 .no_turbo = 0,
182 .turbo_disabled = 0,
183 .max_perf_pct = 100,
184 .max_perf = int_tofp(1),
185 .min_perf_pct = 0,
186 .min_perf = 0,
187 .max_policy_pct = 100,
188 .max_sysfs_pct = 100,
189 .min_policy_pct = 0,
190 .min_sysfs_pct = 0,
193 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
194 static struct perf_limits *limits = &performance_limits;
195 #else
196 static struct perf_limits *limits = &powersave_limits;
197 #endif
199 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
200 int deadband, int integral) {
201 pid->setpoint = int_tofp(setpoint);
202 pid->deadband = int_tofp(deadband);
203 pid->integral = int_tofp(integral);
204 pid->last_err = int_tofp(setpoint) - int_tofp(busy);
207 static inline void pid_p_gain_set(struct _pid *pid, int percent)
209 pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
212 static inline void pid_i_gain_set(struct _pid *pid, int percent)
214 pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
217 static inline void pid_d_gain_set(struct _pid *pid, int percent)
219 pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
222 static signed int pid_calc(struct _pid *pid, int32_t busy)
224 signed int result;
225 int32_t pterm, dterm, fp_error;
226 int32_t integral_limit;
228 fp_error = pid->setpoint - busy;
230 if (abs(fp_error) <= pid->deadband)
231 return 0;
233 pterm = mul_fp(pid->p_gain, fp_error);
235 pid->integral += fp_error;
238 * We limit the integral here so that it will never
239 * get higher than 30. This prevents it from becoming
240 * too large an input over long periods of time and allows
241 * it to get factored out sooner.
243 * The value of 30 was chosen through experimentation.
245 integral_limit = int_tofp(30);
246 if (pid->integral > integral_limit)
247 pid->integral = integral_limit;
248 if (pid->integral < -integral_limit)
249 pid->integral = -integral_limit;
251 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
252 pid->last_err = fp_error;
254 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
255 result = result + (1 << (FRAC_BITS-1));
256 return (signed int)fp_toint(result);
259 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
261 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
262 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
263 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
265 pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
268 static inline void intel_pstate_reset_all_pid(void)
270 unsigned int cpu;
272 for_each_online_cpu(cpu) {
273 if (all_cpu_data[cpu])
274 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
278 static inline void update_turbo_state(void)
280 u64 misc_en;
281 struct cpudata *cpu;
283 cpu = all_cpu_data[0];
284 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
285 limits->turbo_disabled =
286 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
287 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
290 static void intel_pstate_hwp_set(const struct cpumask *cpumask)
292 int min, hw_min, max, hw_max, cpu, range, adj_range;
293 u64 value, cap;
295 rdmsrl(MSR_HWP_CAPABILITIES, cap);
296 hw_min = HWP_LOWEST_PERF(cap);
297 hw_max = HWP_HIGHEST_PERF(cap);
298 range = hw_max - hw_min;
300 for_each_cpu(cpu, cpumask) {
301 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
302 adj_range = limits->min_perf_pct * range / 100;
303 min = hw_min + adj_range;
304 value &= ~HWP_MIN_PERF(~0L);
305 value |= HWP_MIN_PERF(min);
307 adj_range = limits->max_perf_pct * range / 100;
308 max = hw_min + adj_range;
309 if (limits->no_turbo) {
310 hw_max = HWP_GUARANTEED_PERF(cap);
311 if (hw_max < max)
312 max = hw_max;
315 value &= ~HWP_MAX_PERF(~0L);
316 value |= HWP_MAX_PERF(max);
317 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
321 static void intel_pstate_hwp_set_online_cpus(void)
323 get_online_cpus();
324 intel_pstate_hwp_set(cpu_online_mask);
325 put_online_cpus();
328 /************************** debugfs begin ************************/
329 static int pid_param_set(void *data, u64 val)
331 *(u32 *)data = val;
332 intel_pstate_reset_all_pid();
333 return 0;
336 static int pid_param_get(void *data, u64 *val)
338 *val = *(u32 *)data;
339 return 0;
341 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
343 struct pid_param {
344 char *name;
345 void *value;
348 static struct pid_param pid_files[] = {
349 {"sample_rate_ms", &pid_params.sample_rate_ms},
350 {"d_gain_pct", &pid_params.d_gain_pct},
351 {"i_gain_pct", &pid_params.i_gain_pct},
352 {"deadband", &pid_params.deadband},
353 {"setpoint", &pid_params.setpoint},
354 {"p_gain_pct", &pid_params.p_gain_pct},
355 {NULL, NULL}
358 static void __init intel_pstate_debug_expose_params(void)
360 struct dentry *debugfs_parent;
361 int i = 0;
363 if (hwp_active)
364 return;
365 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
366 if (IS_ERR_OR_NULL(debugfs_parent))
367 return;
368 while (pid_files[i].name) {
369 debugfs_create_file(pid_files[i].name, 0660,
370 debugfs_parent, pid_files[i].value,
371 &fops_pid_param);
372 i++;
376 /************************** debugfs end ************************/
378 /************************** sysfs begin ************************/
379 #define show_one(file_name, object) \
380 static ssize_t show_##file_name \
381 (struct kobject *kobj, struct attribute *attr, char *buf) \
383 return sprintf(buf, "%u\n", limits->object); \
386 static ssize_t show_turbo_pct(struct kobject *kobj,
387 struct attribute *attr, char *buf)
389 struct cpudata *cpu;
390 int total, no_turbo, turbo_pct;
391 uint32_t turbo_fp;
393 cpu = all_cpu_data[0];
395 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
396 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
397 turbo_fp = div_fp(int_tofp(no_turbo), int_tofp(total));
398 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
399 return sprintf(buf, "%u\n", turbo_pct);
402 static ssize_t show_num_pstates(struct kobject *kobj,
403 struct attribute *attr, char *buf)
405 struct cpudata *cpu;
406 int total;
408 cpu = all_cpu_data[0];
409 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
410 return sprintf(buf, "%u\n", total);
413 static ssize_t show_no_turbo(struct kobject *kobj,
414 struct attribute *attr, char *buf)
416 ssize_t ret;
418 update_turbo_state();
419 if (limits->turbo_disabled)
420 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
421 else
422 ret = sprintf(buf, "%u\n", limits->no_turbo);
424 return ret;
427 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
428 const char *buf, size_t count)
430 unsigned int input;
431 int ret;
433 ret = sscanf(buf, "%u", &input);
434 if (ret != 1)
435 return -EINVAL;
437 update_turbo_state();
438 if (limits->turbo_disabled) {
439 pr_warn("intel_pstate: Turbo disabled by BIOS or unavailable on processor\n");
440 return -EPERM;
443 limits->no_turbo = clamp_t(int, input, 0, 1);
445 if (hwp_active)
446 intel_pstate_hwp_set_online_cpus();
448 return count;
451 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
452 const char *buf, size_t count)
454 unsigned int input;
455 int ret;
457 ret = sscanf(buf, "%u", &input);
458 if (ret != 1)
459 return -EINVAL;
461 limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
462 limits->max_perf_pct = min(limits->max_policy_pct,
463 limits->max_sysfs_pct);
464 limits->max_perf_pct = max(limits->min_policy_pct,
465 limits->max_perf_pct);
466 limits->max_perf_pct = max(limits->min_perf_pct,
467 limits->max_perf_pct);
468 limits->max_perf = div_fp(int_tofp(limits->max_perf_pct),
469 int_tofp(100));
471 if (hwp_active)
472 intel_pstate_hwp_set_online_cpus();
473 return count;
476 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
477 const char *buf, size_t count)
479 unsigned int input;
480 int ret;
482 ret = sscanf(buf, "%u", &input);
483 if (ret != 1)
484 return -EINVAL;
486 limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
487 limits->min_perf_pct = max(limits->min_policy_pct,
488 limits->min_sysfs_pct);
489 limits->min_perf_pct = min(limits->max_policy_pct,
490 limits->min_perf_pct);
491 limits->min_perf_pct = min(limits->max_perf_pct,
492 limits->min_perf_pct);
493 limits->min_perf = div_fp(int_tofp(limits->min_perf_pct),
494 int_tofp(100));
496 if (hwp_active)
497 intel_pstate_hwp_set_online_cpus();
498 return count;
501 show_one(max_perf_pct, max_perf_pct);
502 show_one(min_perf_pct, min_perf_pct);
504 define_one_global_rw(no_turbo);
505 define_one_global_rw(max_perf_pct);
506 define_one_global_rw(min_perf_pct);
507 define_one_global_ro(turbo_pct);
508 define_one_global_ro(num_pstates);
510 static struct attribute *intel_pstate_attributes[] = {
511 &no_turbo.attr,
512 &max_perf_pct.attr,
513 &min_perf_pct.attr,
514 &turbo_pct.attr,
515 &num_pstates.attr,
516 NULL
519 static struct attribute_group intel_pstate_attr_group = {
520 .attrs = intel_pstate_attributes,
523 static void __init intel_pstate_sysfs_expose_params(void)
525 struct kobject *intel_pstate_kobject;
526 int rc;
528 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
529 &cpu_subsys.dev_root->kobj);
530 BUG_ON(!intel_pstate_kobject);
531 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
532 BUG_ON(rc);
534 /************************** sysfs end ************************/
536 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
538 /* First disable HWP notification interrupt as we don't process them */
539 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
541 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
544 static int atom_get_min_pstate(void)
546 u64 value;
548 rdmsrl(ATOM_RATIOS, value);
549 return (value >> 8) & 0x7F;
552 static int atom_get_max_pstate(void)
554 u64 value;
556 rdmsrl(ATOM_RATIOS, value);
557 return (value >> 16) & 0x7F;
560 static int atom_get_turbo_pstate(void)
562 u64 value;
564 rdmsrl(ATOM_TURBO_RATIOS, value);
565 return value & 0x7F;
568 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
570 u64 val;
571 int32_t vid_fp;
572 u32 vid;
574 val = (u64)pstate << 8;
575 if (limits->no_turbo && !limits->turbo_disabled)
576 val |= (u64)1 << 32;
578 vid_fp = cpudata->vid.min + mul_fp(
579 int_tofp(pstate - cpudata->pstate.min_pstate),
580 cpudata->vid.ratio);
582 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
583 vid = ceiling_fp(vid_fp);
585 if (pstate > cpudata->pstate.max_pstate)
586 vid = cpudata->vid.turbo;
588 return val | vid;
591 static int silvermont_get_scaling(void)
593 u64 value;
594 int i;
595 /* Defined in Table 35-6 from SDM (Sept 2015) */
596 static int silvermont_freq_table[] = {
597 83300, 100000, 133300, 116700, 80000};
599 rdmsrl(MSR_FSB_FREQ, value);
600 i = value & 0x7;
601 WARN_ON(i > 4);
603 return silvermont_freq_table[i];
606 static int airmont_get_scaling(void)
608 u64 value;
609 int i;
610 /* Defined in Table 35-10 from SDM (Sept 2015) */
611 static int airmont_freq_table[] = {
612 83300, 100000, 133300, 116700, 80000,
613 93300, 90000, 88900, 87500};
615 rdmsrl(MSR_FSB_FREQ, value);
616 i = value & 0xF;
617 WARN_ON(i > 8);
619 return airmont_freq_table[i];
622 static void atom_get_vid(struct cpudata *cpudata)
624 u64 value;
626 rdmsrl(ATOM_VIDS, value);
627 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
628 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
629 cpudata->vid.ratio = div_fp(
630 cpudata->vid.max - cpudata->vid.min,
631 int_tofp(cpudata->pstate.max_pstate -
632 cpudata->pstate.min_pstate));
634 rdmsrl(ATOM_TURBO_VIDS, value);
635 cpudata->vid.turbo = value & 0x7f;
638 static int core_get_min_pstate(void)
640 u64 value;
642 rdmsrl(MSR_PLATFORM_INFO, value);
643 return (value >> 40) & 0xFF;
646 static int core_get_max_pstate_physical(void)
648 u64 value;
650 rdmsrl(MSR_PLATFORM_INFO, value);
651 return (value >> 8) & 0xFF;
654 static int core_get_max_pstate(void)
656 u64 tar;
657 u64 plat_info;
658 int max_pstate;
659 int err;
661 rdmsrl(MSR_PLATFORM_INFO, plat_info);
662 max_pstate = (plat_info >> 8) & 0xFF;
664 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
665 if (!err) {
666 /* Do some sanity checking for safety */
667 if (plat_info & 0x600000000) {
668 u64 tdp_ctrl;
669 u64 tdp_ratio;
670 int tdp_msr;
672 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
673 if (err)
674 goto skip_tar;
676 tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl;
677 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
678 if (err)
679 goto skip_tar;
681 if (tdp_ratio - 1 == tar) {
682 max_pstate = tar;
683 pr_debug("max_pstate=TAC %x\n", max_pstate);
684 } else {
685 goto skip_tar;
690 skip_tar:
691 return max_pstate;
694 static int core_get_turbo_pstate(void)
696 u64 value;
697 int nont, ret;
699 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
700 nont = core_get_max_pstate();
701 ret = (value) & 255;
702 if (ret <= nont)
703 ret = nont;
704 return ret;
707 static inline int core_get_scaling(void)
709 return 100000;
712 static u64 core_get_val(struct cpudata *cpudata, int pstate)
714 u64 val;
716 val = (u64)pstate << 8;
717 if (limits->no_turbo && !limits->turbo_disabled)
718 val |= (u64)1 << 32;
720 return val;
723 static int knl_get_turbo_pstate(void)
725 u64 value;
726 int nont, ret;
728 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
729 nont = core_get_max_pstate();
730 ret = (((value) >> 8) & 0xFF);
731 if (ret <= nont)
732 ret = nont;
733 return ret;
736 static struct cpu_defaults core_params = {
737 .pid_policy = {
738 .sample_rate_ms = 10,
739 .deadband = 0,
740 .setpoint = 97,
741 .p_gain_pct = 20,
742 .d_gain_pct = 0,
743 .i_gain_pct = 0,
745 .funcs = {
746 .get_max = core_get_max_pstate,
747 .get_max_physical = core_get_max_pstate_physical,
748 .get_min = core_get_min_pstate,
749 .get_turbo = core_get_turbo_pstate,
750 .get_scaling = core_get_scaling,
751 .get_val = core_get_val,
752 .get_target_pstate = get_target_pstate_use_performance,
756 static struct cpu_defaults silvermont_params = {
757 .pid_policy = {
758 .sample_rate_ms = 10,
759 .deadband = 0,
760 .setpoint = 60,
761 .p_gain_pct = 14,
762 .d_gain_pct = 0,
763 .i_gain_pct = 4,
765 .funcs = {
766 .get_max = atom_get_max_pstate,
767 .get_max_physical = atom_get_max_pstate,
768 .get_min = atom_get_min_pstate,
769 .get_turbo = atom_get_turbo_pstate,
770 .get_val = atom_get_val,
771 .get_scaling = silvermont_get_scaling,
772 .get_vid = atom_get_vid,
773 .get_target_pstate = get_target_pstate_use_cpu_load,
777 static struct cpu_defaults airmont_params = {
778 .pid_policy = {
779 .sample_rate_ms = 10,
780 .deadband = 0,
781 .setpoint = 60,
782 .p_gain_pct = 14,
783 .d_gain_pct = 0,
784 .i_gain_pct = 4,
786 .funcs = {
787 .get_max = atom_get_max_pstate,
788 .get_max_physical = atom_get_max_pstate,
789 .get_min = atom_get_min_pstate,
790 .get_turbo = atom_get_turbo_pstate,
791 .get_val = atom_get_val,
792 .get_scaling = airmont_get_scaling,
793 .get_vid = atom_get_vid,
794 .get_target_pstate = get_target_pstate_use_cpu_load,
798 static struct cpu_defaults knl_params = {
799 .pid_policy = {
800 .sample_rate_ms = 10,
801 .deadband = 0,
802 .setpoint = 97,
803 .p_gain_pct = 20,
804 .d_gain_pct = 0,
805 .i_gain_pct = 0,
807 .funcs = {
808 .get_max = core_get_max_pstate,
809 .get_max_physical = core_get_max_pstate_physical,
810 .get_min = core_get_min_pstate,
811 .get_turbo = knl_get_turbo_pstate,
812 .get_scaling = core_get_scaling,
813 .get_val = core_get_val,
814 .get_target_pstate = get_target_pstate_use_performance,
818 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
820 int max_perf = cpu->pstate.turbo_pstate;
821 int max_perf_adj;
822 int min_perf;
824 if (limits->no_turbo || limits->turbo_disabled)
825 max_perf = cpu->pstate.max_pstate;
828 * performance can be limited by user through sysfs, by cpufreq
829 * policy, or by cpu specific default values determined through
830 * experimentation.
832 max_perf_adj = fp_toint(max_perf * limits->max_perf);
833 *max = clamp_t(int, max_perf_adj,
834 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
836 min_perf = fp_toint(max_perf * limits->min_perf);
837 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
840 static inline void intel_pstate_record_pstate(struct cpudata *cpu, int pstate)
842 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
843 cpu->pstate.current_pstate = pstate;
846 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
848 int pstate = cpu->pstate.min_pstate;
850 intel_pstate_record_pstate(cpu, pstate);
852 * Generally, there is no guarantee that this code will always run on
853 * the CPU being updated, so force the register update to run on the
854 * right CPU.
856 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
857 pstate_funcs.get_val(cpu, pstate));
860 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
862 cpu->pstate.min_pstate = pstate_funcs.get_min();
863 cpu->pstate.max_pstate = pstate_funcs.get_max();
864 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
865 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
866 cpu->pstate.scaling = pstate_funcs.get_scaling();
868 if (pstate_funcs.get_vid)
869 pstate_funcs.get_vid(cpu);
871 intel_pstate_set_min_pstate(cpu);
874 static inline void intel_pstate_calc_busy(struct cpudata *cpu)
876 struct sample *sample = &cpu->sample;
877 int64_t core_pct;
879 core_pct = int_tofp(sample->aperf) * int_tofp(100);
880 core_pct = div64_u64(core_pct, int_tofp(sample->mperf));
882 sample->core_pct_busy = (int32_t)core_pct;
885 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
887 u64 aperf, mperf;
888 unsigned long flags;
889 u64 tsc;
891 local_irq_save(flags);
892 rdmsrl(MSR_IA32_APERF, aperf);
893 rdmsrl(MSR_IA32_MPERF, mperf);
894 tsc = rdtsc();
895 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
896 local_irq_restore(flags);
897 return false;
899 local_irq_restore(flags);
901 cpu->last_sample_time = cpu->sample.time;
902 cpu->sample.time = time;
903 cpu->sample.aperf = aperf;
904 cpu->sample.mperf = mperf;
905 cpu->sample.tsc = tsc;
906 cpu->sample.aperf -= cpu->prev_aperf;
907 cpu->sample.mperf -= cpu->prev_mperf;
908 cpu->sample.tsc -= cpu->prev_tsc;
910 cpu->prev_aperf = aperf;
911 cpu->prev_mperf = mperf;
912 cpu->prev_tsc = tsc;
913 return true;
916 static inline int32_t get_avg_frequency(struct cpudata *cpu)
918 return div64_u64(cpu->pstate.max_pstate_physical * cpu->sample.aperf *
919 cpu->pstate.scaling, cpu->sample.mperf);
922 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
924 struct sample *sample = &cpu->sample;
925 u64 cummulative_iowait, delta_iowait_us;
926 u64 delta_iowait_mperf;
927 u64 mperf, now;
928 int32_t cpu_load;
930 cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now);
933 * Convert iowait time into number of IO cycles spent at max_freq.
934 * IO is considered as busy only for the cpu_load algorithm. For
935 * performance this is not needed since we always try to reach the
936 * maximum P-State, so we are already boosting the IOs.
938 delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait;
939 delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling *
940 cpu->pstate.max_pstate, MSEC_PER_SEC);
942 mperf = cpu->sample.mperf + delta_iowait_mperf;
943 cpu->prev_cummulative_iowait = cummulative_iowait;
946 * The load can be estimated as the ratio of the mperf counter
947 * running at a constant frequency during active periods
948 * (C0) and the time stamp counter running at the same frequency
949 * also during C-states.
951 cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc);
952 cpu->sample.busy_scaled = cpu_load;
954 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, cpu_load);
957 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
959 int32_t core_busy, max_pstate, current_pstate, sample_ratio;
960 u64 duration_ns;
962 intel_pstate_calc_busy(cpu);
965 * core_busy is the ratio of actual performance to max
966 * max_pstate is the max non turbo pstate available
967 * current_pstate was the pstate that was requested during
968 * the last sample period.
970 * We normalize core_busy, which was our actual percent
971 * performance to what we requested during the last sample
972 * period. The result will be a percentage of busy at a
973 * specified pstate.
975 core_busy = cpu->sample.core_pct_busy;
976 max_pstate = int_tofp(cpu->pstate.max_pstate_physical);
977 current_pstate = int_tofp(cpu->pstate.current_pstate);
978 core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
981 * Since our utilization update callback will not run unless we are
982 * in C0, check if the actual elapsed time is significantly greater (3x)
983 * than our sample interval. If it is, then we were idle for a long
984 * enough period of time to adjust our busyness.
986 duration_ns = cpu->sample.time - cpu->last_sample_time;
987 if ((s64)duration_ns > pid_params.sample_rate_ns * 3
988 && cpu->last_sample_time > 0) {
989 sample_ratio = div_fp(int_tofp(pid_params.sample_rate_ns),
990 int_tofp(duration_ns));
991 core_busy = mul_fp(core_busy, sample_ratio);
994 cpu->sample.busy_scaled = core_busy;
995 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, core_busy);
998 static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1000 int max_perf, min_perf;
1002 update_turbo_state();
1004 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1005 pstate = clamp_t(int, pstate, min_perf, max_perf);
1006 if (pstate == cpu->pstate.current_pstate)
1007 return;
1009 intel_pstate_record_pstate(cpu, pstate);
1010 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1013 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1015 int from, target_pstate;
1016 struct sample *sample;
1018 from = cpu->pstate.current_pstate;
1020 target_pstate = pstate_funcs.get_target_pstate(cpu);
1022 intel_pstate_update_pstate(cpu, target_pstate);
1024 sample = &cpu->sample;
1025 trace_pstate_sample(fp_toint(sample->core_pct_busy),
1026 fp_toint(sample->busy_scaled),
1027 from,
1028 cpu->pstate.current_pstate,
1029 sample->mperf,
1030 sample->aperf,
1031 sample->tsc,
1032 get_avg_frequency(cpu));
1035 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1036 unsigned long util, unsigned long max)
1038 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1039 u64 delta_ns = time - cpu->sample.time;
1041 if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1042 bool sample_taken = intel_pstate_sample(cpu, time);
1044 if (sample_taken && !hwp_active)
1045 intel_pstate_adjust_busy_pstate(cpu);
1049 #define ICPU(model, policy) \
1050 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1051 (unsigned long)&policy }
1053 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1054 ICPU(0x2a, core_params),
1055 ICPU(0x2d, core_params),
1056 ICPU(0x37, silvermont_params),
1057 ICPU(0x3a, core_params),
1058 ICPU(0x3c, core_params),
1059 ICPU(0x3d, core_params),
1060 ICPU(0x3e, core_params),
1061 ICPU(0x3f, core_params),
1062 ICPU(0x45, core_params),
1063 ICPU(0x46, core_params),
1064 ICPU(0x47, core_params),
1065 ICPU(0x4c, airmont_params),
1066 ICPU(0x4e, core_params),
1067 ICPU(0x4f, core_params),
1068 ICPU(0x5e, core_params),
1069 ICPU(0x56, core_params),
1070 ICPU(0x57, knl_params),
1073 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1075 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
1076 ICPU(0x56, core_params),
1080 static int intel_pstate_init_cpu(unsigned int cpunum)
1082 struct cpudata *cpu;
1084 if (!all_cpu_data[cpunum])
1085 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
1086 GFP_KERNEL);
1087 if (!all_cpu_data[cpunum])
1088 return -ENOMEM;
1090 cpu = all_cpu_data[cpunum];
1092 cpu->cpu = cpunum;
1094 if (hwp_active) {
1095 intel_pstate_hwp_enable(cpu);
1096 pid_params.sample_rate_ms = 50;
1097 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1100 intel_pstate_get_cpu_pstates(cpu);
1102 intel_pstate_busy_pid_reset(cpu);
1103 intel_pstate_sample(cpu, 0);
1105 cpu->update_util.func = intel_pstate_update_util;
1106 cpufreq_set_update_util_data(cpunum, &cpu->update_util);
1108 pr_debug("intel_pstate: controlling: cpu %d\n", cpunum);
1110 return 0;
1113 static unsigned int intel_pstate_get(unsigned int cpu_num)
1115 struct sample *sample;
1116 struct cpudata *cpu;
1118 cpu = all_cpu_data[cpu_num];
1119 if (!cpu)
1120 return 0;
1121 sample = &cpu->sample;
1122 return get_avg_frequency(cpu);
1125 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1127 if (!policy->cpuinfo.max_freq)
1128 return -ENODEV;
1130 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE &&
1131 policy->max >= policy->cpuinfo.max_freq) {
1132 pr_debug("intel_pstate: set performance\n");
1133 limits = &performance_limits;
1134 if (hwp_active)
1135 intel_pstate_hwp_set(policy->cpus);
1136 return 0;
1139 pr_debug("intel_pstate: set powersave\n");
1140 limits = &powersave_limits;
1141 limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
1142 limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
1143 limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1144 policy->cpuinfo.max_freq);
1145 limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1147 /* Normalize user input to [min_policy_pct, max_policy_pct] */
1148 limits->min_perf_pct = max(limits->min_policy_pct,
1149 limits->min_sysfs_pct);
1150 limits->min_perf_pct = min(limits->max_policy_pct,
1151 limits->min_perf_pct);
1152 limits->max_perf_pct = min(limits->max_policy_pct,
1153 limits->max_sysfs_pct);
1154 limits->max_perf_pct = max(limits->min_policy_pct,
1155 limits->max_perf_pct);
1156 limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1158 /* Make sure min_perf_pct <= max_perf_pct */
1159 limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1161 limits->min_perf = div_fp(int_tofp(limits->min_perf_pct),
1162 int_tofp(100));
1163 limits->max_perf = div_fp(int_tofp(limits->max_perf_pct),
1164 int_tofp(100));
1166 if (hwp_active)
1167 intel_pstate_hwp_set(policy->cpus);
1169 return 0;
1172 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1174 cpufreq_verify_within_cpu_limits(policy);
1176 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1177 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1178 return -EINVAL;
1180 return 0;
1183 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1185 int cpu_num = policy->cpu;
1186 struct cpudata *cpu = all_cpu_data[cpu_num];
1188 pr_debug("intel_pstate: CPU %d exiting\n", cpu_num);
1190 cpufreq_set_update_util_data(cpu_num, NULL);
1191 synchronize_sched();
1193 if (hwp_active)
1194 return;
1196 intel_pstate_set_min_pstate(cpu);
1199 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1201 struct cpudata *cpu;
1202 int rc;
1204 rc = intel_pstate_init_cpu(policy->cpu);
1205 if (rc)
1206 return rc;
1208 cpu = all_cpu_data[policy->cpu];
1210 if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1211 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1212 else
1213 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1215 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1216 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1218 /* cpuinfo and default policy values */
1219 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1220 policy->cpuinfo.max_freq =
1221 cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1222 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1223 cpumask_set_cpu(policy->cpu, policy->cpus);
1225 return 0;
1228 static struct cpufreq_driver intel_pstate_driver = {
1229 .flags = CPUFREQ_CONST_LOOPS,
1230 .verify = intel_pstate_verify_policy,
1231 .setpolicy = intel_pstate_set_policy,
1232 .get = intel_pstate_get,
1233 .init = intel_pstate_cpu_init,
1234 .stop_cpu = intel_pstate_stop_cpu,
1235 .name = "intel_pstate",
1238 static int __initdata no_load;
1239 static int __initdata no_hwp;
1240 static int __initdata hwp_only;
1241 static unsigned int force_load;
1243 static int intel_pstate_msrs_not_valid(void)
1245 if (!pstate_funcs.get_max() ||
1246 !pstate_funcs.get_min() ||
1247 !pstate_funcs.get_turbo())
1248 return -ENODEV;
1250 return 0;
1253 static void copy_pid_params(struct pstate_adjust_policy *policy)
1255 pid_params.sample_rate_ms = policy->sample_rate_ms;
1256 pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
1257 pid_params.p_gain_pct = policy->p_gain_pct;
1258 pid_params.i_gain_pct = policy->i_gain_pct;
1259 pid_params.d_gain_pct = policy->d_gain_pct;
1260 pid_params.deadband = policy->deadband;
1261 pid_params.setpoint = policy->setpoint;
1264 static void copy_cpu_funcs(struct pstate_funcs *funcs)
1266 pstate_funcs.get_max = funcs->get_max;
1267 pstate_funcs.get_max_physical = funcs->get_max_physical;
1268 pstate_funcs.get_min = funcs->get_min;
1269 pstate_funcs.get_turbo = funcs->get_turbo;
1270 pstate_funcs.get_scaling = funcs->get_scaling;
1271 pstate_funcs.get_val = funcs->get_val;
1272 pstate_funcs.get_vid = funcs->get_vid;
1273 pstate_funcs.get_target_pstate = funcs->get_target_pstate;
1277 #if IS_ENABLED(CONFIG_ACPI)
1278 #include <acpi/processor.h>
1280 static bool intel_pstate_no_acpi_pss(void)
1282 int i;
1284 for_each_possible_cpu(i) {
1285 acpi_status status;
1286 union acpi_object *pss;
1287 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1288 struct acpi_processor *pr = per_cpu(processors, i);
1290 if (!pr)
1291 continue;
1293 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1294 if (ACPI_FAILURE(status))
1295 continue;
1297 pss = buffer.pointer;
1298 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1299 kfree(pss);
1300 return false;
1303 kfree(pss);
1306 return true;
1309 static bool intel_pstate_has_acpi_ppc(void)
1311 int i;
1313 for_each_possible_cpu(i) {
1314 struct acpi_processor *pr = per_cpu(processors, i);
1316 if (!pr)
1317 continue;
1318 if (acpi_has_method(pr->handle, "_PPC"))
1319 return true;
1321 return false;
1324 enum {
1325 PSS,
1326 PPC,
1329 struct hw_vendor_info {
1330 u16 valid;
1331 char oem_id[ACPI_OEM_ID_SIZE];
1332 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1333 int oem_pwr_table;
1336 /* Hardware vendor-specific info that has its own power management modes */
1337 static struct hw_vendor_info vendor_info[] = {
1338 {1, "HP ", "ProLiant", PSS},
1339 {1, "ORACLE", "X4-2 ", PPC},
1340 {1, "ORACLE", "X4-2L ", PPC},
1341 {1, "ORACLE", "X4-2B ", PPC},
1342 {1, "ORACLE", "X3-2 ", PPC},
1343 {1, "ORACLE", "X3-2L ", PPC},
1344 {1, "ORACLE", "X3-2B ", PPC},
1345 {1, "ORACLE", "X4470M2 ", PPC},
1346 {1, "ORACLE", "X4270M3 ", PPC},
1347 {1, "ORACLE", "X4270M2 ", PPC},
1348 {1, "ORACLE", "X4170M2 ", PPC},
1349 {1, "ORACLE", "X4170 M3", PPC},
1350 {1, "ORACLE", "X4275 M3", PPC},
1351 {1, "ORACLE", "X6-2 ", PPC},
1352 {1, "ORACLE", "Sudbury ", PPC},
1353 {0, "", ""},
1356 static bool intel_pstate_platform_pwr_mgmt_exists(void)
1358 struct acpi_table_header hdr;
1359 struct hw_vendor_info *v_info;
1360 const struct x86_cpu_id *id;
1361 u64 misc_pwr;
1363 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1364 if (id) {
1365 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1366 if ( misc_pwr & (1 << 8))
1367 return true;
1370 if (acpi_disabled ||
1371 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1372 return false;
1374 for (v_info = vendor_info; v_info->valid; v_info++) {
1375 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1376 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1377 ACPI_OEM_TABLE_ID_SIZE))
1378 switch (v_info->oem_pwr_table) {
1379 case PSS:
1380 return intel_pstate_no_acpi_pss();
1381 case PPC:
1382 return intel_pstate_has_acpi_ppc() &&
1383 (!force_load);
1387 return false;
1389 #else /* CONFIG_ACPI not enabled */
1390 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1391 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1392 #endif /* CONFIG_ACPI */
1394 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
1395 { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
1399 static int __init intel_pstate_init(void)
1401 int cpu, rc = 0;
1402 const struct x86_cpu_id *id;
1403 struct cpu_defaults *cpu_def;
1405 if (no_load)
1406 return -ENODEV;
1408 if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
1409 copy_cpu_funcs(&core_params.funcs);
1410 hwp_active++;
1411 goto hwp_cpu_matched;
1414 id = x86_match_cpu(intel_pstate_cpu_ids);
1415 if (!id)
1416 return -ENODEV;
1418 cpu_def = (struct cpu_defaults *)id->driver_data;
1420 copy_pid_params(&cpu_def->pid_policy);
1421 copy_cpu_funcs(&cpu_def->funcs);
1423 if (intel_pstate_msrs_not_valid())
1424 return -ENODEV;
1426 hwp_cpu_matched:
1428 * The Intel pstate driver will be ignored if the platform
1429 * firmware has its own power management modes.
1431 if (intel_pstate_platform_pwr_mgmt_exists())
1432 return -ENODEV;
1434 pr_info("Intel P-state driver initializing.\n");
1436 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1437 if (!all_cpu_data)
1438 return -ENOMEM;
1440 if (!hwp_active && hwp_only)
1441 goto out;
1443 rc = cpufreq_register_driver(&intel_pstate_driver);
1444 if (rc)
1445 goto out;
1447 intel_pstate_debug_expose_params();
1448 intel_pstate_sysfs_expose_params();
1450 if (hwp_active)
1451 pr_info("intel_pstate: HWP enabled\n");
1453 return rc;
1454 out:
1455 get_online_cpus();
1456 for_each_online_cpu(cpu) {
1457 if (all_cpu_data[cpu]) {
1458 cpufreq_set_update_util_data(cpu, NULL);
1459 synchronize_sched();
1460 kfree(all_cpu_data[cpu]);
1464 put_online_cpus();
1465 vfree(all_cpu_data);
1466 return -ENODEV;
1468 device_initcall(intel_pstate_init);
1470 static int __init intel_pstate_setup(char *str)
1472 if (!str)
1473 return -EINVAL;
1475 if (!strcmp(str, "disable"))
1476 no_load = 1;
1477 if (!strcmp(str, "no_hwp")) {
1478 pr_info("intel_pstate: HWP disabled\n");
1479 no_hwp = 1;
1481 if (!strcmp(str, "force"))
1482 force_load = 1;
1483 if (!strcmp(str, "hwp_only"))
1484 hwp_only = 1;
1485 return 0;
1487 early_param("intel_pstate", intel_pstate_setup);
1489 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1490 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1491 MODULE_LICENSE("GPL");