Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[linux/fpc-iii.git] / net / rxrpc / recvmsg.c
blobcc21e8db25b0b730bbe66dbee6d358177df9ae09
1 /* RxRPC recvmsg() implementation
3 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 #include <linux/net.h>
15 #include <linux/skbuff.h>
16 #include <linux/export.h>
17 #include <linux/sched/signal.h>
19 #include <net/sock.h>
20 #include <net/af_rxrpc.h>
21 #include "ar-internal.h"
24 * Post a call for attention by the socket or kernel service. Further
25 * notifications are suppressed by putting recvmsg_link on a dummy queue.
27 void rxrpc_notify_socket(struct rxrpc_call *call)
29 struct rxrpc_sock *rx;
30 struct sock *sk;
32 _enter("%d", call->debug_id);
34 if (!list_empty(&call->recvmsg_link))
35 return;
37 rcu_read_lock();
39 rx = rcu_dereference(call->socket);
40 sk = &rx->sk;
41 if (rx && sk->sk_state < RXRPC_CLOSE) {
42 if (call->notify_rx) {
43 spin_lock_bh(&call->notify_lock);
44 call->notify_rx(sk, call, call->user_call_ID);
45 spin_unlock_bh(&call->notify_lock);
46 } else {
47 write_lock_bh(&rx->recvmsg_lock);
48 if (list_empty(&call->recvmsg_link)) {
49 rxrpc_get_call(call, rxrpc_call_got);
50 list_add_tail(&call->recvmsg_link, &rx->recvmsg_q);
52 write_unlock_bh(&rx->recvmsg_lock);
54 if (!sock_flag(sk, SOCK_DEAD)) {
55 _debug("call %ps", sk->sk_data_ready);
56 sk->sk_data_ready(sk);
61 rcu_read_unlock();
62 _leave("");
66 * Pass a call terminating message to userspace.
68 static int rxrpc_recvmsg_term(struct rxrpc_call *call, struct msghdr *msg)
70 u32 tmp = 0;
71 int ret;
73 switch (call->completion) {
74 case RXRPC_CALL_SUCCEEDED:
75 ret = 0;
76 if (rxrpc_is_service_call(call))
77 ret = put_cmsg(msg, SOL_RXRPC, RXRPC_ACK, 0, &tmp);
78 break;
79 case RXRPC_CALL_REMOTELY_ABORTED:
80 tmp = call->abort_code;
81 ret = put_cmsg(msg, SOL_RXRPC, RXRPC_ABORT, 4, &tmp);
82 break;
83 case RXRPC_CALL_LOCALLY_ABORTED:
84 tmp = call->abort_code;
85 ret = put_cmsg(msg, SOL_RXRPC, RXRPC_ABORT, 4, &tmp);
86 break;
87 case RXRPC_CALL_NETWORK_ERROR:
88 tmp = -call->error;
89 ret = put_cmsg(msg, SOL_RXRPC, RXRPC_NET_ERROR, 4, &tmp);
90 break;
91 case RXRPC_CALL_LOCAL_ERROR:
92 tmp = -call->error;
93 ret = put_cmsg(msg, SOL_RXRPC, RXRPC_LOCAL_ERROR, 4, &tmp);
94 break;
95 default:
96 pr_err("Invalid terminal call state %u\n", call->state);
97 BUG();
98 break;
101 trace_rxrpc_recvmsg(call, rxrpc_recvmsg_terminal, call->rx_hard_ack,
102 call->rx_pkt_offset, call->rx_pkt_len, ret);
103 return ret;
107 * Pass back notification of a new call. The call is added to the
108 * to-be-accepted list. This means that the next call to be accepted might not
109 * be the last call seen awaiting acceptance, but unless we leave this on the
110 * front of the queue and block all other messages until someone gives us a
111 * user_ID for it, there's not a lot we can do.
113 static int rxrpc_recvmsg_new_call(struct rxrpc_sock *rx,
114 struct rxrpc_call *call,
115 struct msghdr *msg, int flags)
117 int tmp = 0, ret;
119 ret = put_cmsg(msg, SOL_RXRPC, RXRPC_NEW_CALL, 0, &tmp);
121 if (ret == 0 && !(flags & MSG_PEEK)) {
122 _debug("to be accepted");
123 write_lock_bh(&rx->recvmsg_lock);
124 list_del_init(&call->recvmsg_link);
125 write_unlock_bh(&rx->recvmsg_lock);
127 rxrpc_get_call(call, rxrpc_call_got);
128 write_lock(&rx->call_lock);
129 list_add_tail(&call->accept_link, &rx->to_be_accepted);
130 write_unlock(&rx->call_lock);
133 trace_rxrpc_recvmsg(call, rxrpc_recvmsg_to_be_accepted, 1, 0, 0, ret);
134 return ret;
138 * End the packet reception phase.
140 static void rxrpc_end_rx_phase(struct rxrpc_call *call, rxrpc_serial_t serial)
142 _enter("%d,%s", call->debug_id, rxrpc_call_states[call->state]);
144 trace_rxrpc_receive(call, rxrpc_receive_end, 0, call->rx_top);
145 ASSERTCMP(call->rx_hard_ack, ==, call->rx_top);
147 #if 0 // TODO: May want to transmit final ACK under some circumstances anyway
148 if (call->state == RXRPC_CALL_CLIENT_RECV_REPLY) {
149 rxrpc_propose_ACK(call, RXRPC_ACK_IDLE, 0, serial, true, false,
150 rxrpc_propose_ack_terminal_ack);
151 rxrpc_send_ack_packet(call, false, NULL);
153 #endif
155 write_lock_bh(&call->state_lock);
157 switch (call->state) {
158 case RXRPC_CALL_CLIENT_RECV_REPLY:
159 __rxrpc_call_completed(call);
160 write_unlock_bh(&call->state_lock);
161 break;
163 case RXRPC_CALL_SERVER_RECV_REQUEST:
164 call->tx_phase = true;
165 call->state = RXRPC_CALL_SERVER_ACK_REQUEST;
166 call->expect_req_by = jiffies + MAX_JIFFY_OFFSET;
167 write_unlock_bh(&call->state_lock);
168 rxrpc_propose_ACK(call, RXRPC_ACK_DELAY, 0, serial, false, true,
169 rxrpc_propose_ack_processing_op);
170 break;
171 default:
172 write_unlock_bh(&call->state_lock);
173 break;
178 * Discard a packet we've used up and advance the Rx window by one.
180 static void rxrpc_rotate_rx_window(struct rxrpc_call *call)
182 struct rxrpc_skb_priv *sp;
183 struct sk_buff *skb;
184 rxrpc_serial_t serial;
185 rxrpc_seq_t hard_ack, top;
186 u8 flags;
187 int ix;
189 _enter("%d", call->debug_id);
191 hard_ack = call->rx_hard_ack;
192 top = smp_load_acquire(&call->rx_top);
193 ASSERT(before(hard_ack, top));
195 hard_ack++;
196 ix = hard_ack & RXRPC_RXTX_BUFF_MASK;
197 skb = call->rxtx_buffer[ix];
198 rxrpc_see_skb(skb, rxrpc_skb_rx_rotated);
199 sp = rxrpc_skb(skb);
200 flags = sp->hdr.flags;
201 serial = sp->hdr.serial;
202 if (call->rxtx_annotations[ix] & RXRPC_RX_ANNO_JUMBO)
203 serial += (call->rxtx_annotations[ix] & RXRPC_RX_ANNO_JUMBO) - 1;
205 call->rxtx_buffer[ix] = NULL;
206 call->rxtx_annotations[ix] = 0;
207 /* Barrier against rxrpc_input_data(). */
208 smp_store_release(&call->rx_hard_ack, hard_ack);
210 rxrpc_free_skb(skb, rxrpc_skb_rx_freed);
212 _debug("%u,%u,%02x", hard_ack, top, flags);
213 trace_rxrpc_receive(call, rxrpc_receive_rotate, serial, hard_ack);
214 if (flags & RXRPC_LAST_PACKET) {
215 rxrpc_end_rx_phase(call, serial);
216 } else {
217 /* Check to see if there's an ACK that needs sending. */
218 if (after_eq(hard_ack, call->ackr_consumed + 2) ||
219 after_eq(top, call->ackr_seen + 2) ||
220 (hard_ack == top && after(hard_ack, call->ackr_consumed)))
221 rxrpc_propose_ACK(call, RXRPC_ACK_DELAY, 0, serial,
222 true, true,
223 rxrpc_propose_ack_rotate_rx);
224 if (call->ackr_reason && call->ackr_reason != RXRPC_ACK_DELAY)
225 rxrpc_send_ack_packet(call, false, NULL);
230 * Decrypt and verify a (sub)packet. The packet's length may be changed due to
231 * padding, but if this is the case, the packet length will be resident in the
232 * socket buffer. Note that we can't modify the master skb info as the skb may
233 * be the home to multiple subpackets.
235 static int rxrpc_verify_packet(struct rxrpc_call *call, struct sk_buff *skb,
236 u8 annotation,
237 unsigned int offset, unsigned int len)
239 struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
240 rxrpc_seq_t seq = sp->hdr.seq;
241 u16 cksum = sp->hdr.cksum;
243 _enter("");
245 /* For all but the head jumbo subpacket, the security checksum is in a
246 * jumbo header immediately prior to the data.
248 if ((annotation & RXRPC_RX_ANNO_JUMBO) > 1) {
249 __be16 tmp;
250 if (skb_copy_bits(skb, offset - 2, &tmp, 2) < 0)
251 BUG();
252 cksum = ntohs(tmp);
253 seq += (annotation & RXRPC_RX_ANNO_JUMBO) - 1;
256 return call->conn->security->verify_packet(call, skb, offset, len,
257 seq, cksum);
261 * Locate the data within a packet. This is complicated by:
263 * (1) An skb may contain a jumbo packet - so we have to find the appropriate
264 * subpacket.
266 * (2) The (sub)packets may be encrypted and, if so, the encrypted portion
267 * contains an extra header which includes the true length of the data,
268 * excluding any encrypted padding.
270 static int rxrpc_locate_data(struct rxrpc_call *call, struct sk_buff *skb,
271 u8 *_annotation,
272 unsigned int *_offset, unsigned int *_len)
274 unsigned int offset = sizeof(struct rxrpc_wire_header);
275 unsigned int len = *_len;
276 int ret;
277 u8 annotation = *_annotation;
279 /* Locate the subpacket */
280 len = skb->len - offset;
281 if ((annotation & RXRPC_RX_ANNO_JUMBO) > 0) {
282 offset += (((annotation & RXRPC_RX_ANNO_JUMBO) - 1) *
283 RXRPC_JUMBO_SUBPKTLEN);
284 len = (annotation & RXRPC_RX_ANNO_JLAST) ?
285 skb->len - offset : RXRPC_JUMBO_SUBPKTLEN;
288 if (!(annotation & RXRPC_RX_ANNO_VERIFIED)) {
289 ret = rxrpc_verify_packet(call, skb, annotation, offset, len);
290 if (ret < 0)
291 return ret;
292 *_annotation |= RXRPC_RX_ANNO_VERIFIED;
295 *_offset = offset;
296 *_len = len;
297 call->conn->security->locate_data(call, skb, _offset, _len);
298 return 0;
302 * Deliver messages to a call. This keeps processing packets until the buffer
303 * is filled and we find either more DATA (returns 0) or the end of the DATA
304 * (returns 1). If more packets are required, it returns -EAGAIN.
306 static int rxrpc_recvmsg_data(struct socket *sock, struct rxrpc_call *call,
307 struct msghdr *msg, struct iov_iter *iter,
308 size_t len, int flags, size_t *_offset)
310 struct rxrpc_skb_priv *sp;
311 struct sk_buff *skb;
312 rxrpc_seq_t hard_ack, top, seq;
313 size_t remain;
314 bool last;
315 unsigned int rx_pkt_offset, rx_pkt_len;
316 int ix, copy, ret = -EAGAIN, ret2;
318 rx_pkt_offset = call->rx_pkt_offset;
319 rx_pkt_len = call->rx_pkt_len;
321 if (call->state >= RXRPC_CALL_SERVER_ACK_REQUEST) {
322 seq = call->rx_hard_ack;
323 ret = 1;
324 goto done;
327 /* Barriers against rxrpc_input_data(). */
328 hard_ack = call->rx_hard_ack;
329 seq = hard_ack + 1;
330 while (top = smp_load_acquire(&call->rx_top),
331 before_eq(seq, top)
333 ix = seq & RXRPC_RXTX_BUFF_MASK;
334 skb = call->rxtx_buffer[ix];
335 if (!skb) {
336 trace_rxrpc_recvmsg(call, rxrpc_recvmsg_hole, seq,
337 rx_pkt_offset, rx_pkt_len, 0);
338 break;
340 smp_rmb();
341 rxrpc_see_skb(skb, rxrpc_skb_rx_seen);
342 sp = rxrpc_skb(skb);
344 if (!(flags & MSG_PEEK))
345 trace_rxrpc_receive(call, rxrpc_receive_front,
346 sp->hdr.serial, seq);
348 if (msg)
349 sock_recv_timestamp(msg, sock->sk, skb);
351 if (rx_pkt_offset == 0) {
352 ret2 = rxrpc_locate_data(call, skb,
353 &call->rxtx_annotations[ix],
354 &rx_pkt_offset, &rx_pkt_len);
355 trace_rxrpc_recvmsg(call, rxrpc_recvmsg_next, seq,
356 rx_pkt_offset, rx_pkt_len, ret2);
357 if (ret2 < 0) {
358 ret = ret2;
359 goto out;
361 } else {
362 trace_rxrpc_recvmsg(call, rxrpc_recvmsg_cont, seq,
363 rx_pkt_offset, rx_pkt_len, 0);
366 /* We have to handle short, empty and used-up DATA packets. */
367 remain = len - *_offset;
368 copy = rx_pkt_len;
369 if (copy > remain)
370 copy = remain;
371 if (copy > 0) {
372 ret2 = skb_copy_datagram_iter(skb, rx_pkt_offset, iter,
373 copy);
374 if (ret2 < 0) {
375 ret = ret2;
376 goto out;
379 /* handle piecemeal consumption of data packets */
380 rx_pkt_offset += copy;
381 rx_pkt_len -= copy;
382 *_offset += copy;
385 if (rx_pkt_len > 0) {
386 trace_rxrpc_recvmsg(call, rxrpc_recvmsg_full, seq,
387 rx_pkt_offset, rx_pkt_len, 0);
388 ASSERTCMP(*_offset, ==, len);
389 ret = 0;
390 break;
393 /* The whole packet has been transferred. */
394 last = sp->hdr.flags & RXRPC_LAST_PACKET;
395 if (!(flags & MSG_PEEK))
396 rxrpc_rotate_rx_window(call);
397 rx_pkt_offset = 0;
398 rx_pkt_len = 0;
400 if (last) {
401 ASSERTCMP(seq, ==, READ_ONCE(call->rx_top));
402 ret = 1;
403 goto out;
406 seq++;
409 out:
410 if (!(flags & MSG_PEEK)) {
411 call->rx_pkt_offset = rx_pkt_offset;
412 call->rx_pkt_len = rx_pkt_len;
414 done:
415 trace_rxrpc_recvmsg(call, rxrpc_recvmsg_data_return, seq,
416 rx_pkt_offset, rx_pkt_len, ret);
417 return ret;
421 * Receive a message from an RxRPC socket
422 * - we need to be careful about two or more threads calling recvmsg
423 * simultaneously
425 int rxrpc_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
426 int flags)
428 struct rxrpc_call *call;
429 struct rxrpc_sock *rx = rxrpc_sk(sock->sk);
430 struct list_head *l;
431 size_t copied = 0;
432 long timeo;
433 int ret;
435 DEFINE_WAIT(wait);
437 trace_rxrpc_recvmsg(NULL, rxrpc_recvmsg_enter, 0, 0, 0, 0);
439 if (flags & (MSG_OOB | MSG_TRUNC))
440 return -EOPNOTSUPP;
442 timeo = sock_rcvtimeo(&rx->sk, flags & MSG_DONTWAIT);
444 try_again:
445 lock_sock(&rx->sk);
447 /* Return immediately if a client socket has no outstanding calls */
448 if (RB_EMPTY_ROOT(&rx->calls) &&
449 list_empty(&rx->recvmsg_q) &&
450 rx->sk.sk_state != RXRPC_SERVER_LISTENING) {
451 release_sock(&rx->sk);
452 return -ENODATA;
455 if (list_empty(&rx->recvmsg_q)) {
456 ret = -EWOULDBLOCK;
457 if (timeo == 0) {
458 call = NULL;
459 goto error_no_call;
462 release_sock(&rx->sk);
464 /* Wait for something to happen */
465 prepare_to_wait_exclusive(sk_sleep(&rx->sk), &wait,
466 TASK_INTERRUPTIBLE);
467 ret = sock_error(&rx->sk);
468 if (ret)
469 goto wait_error;
471 if (list_empty(&rx->recvmsg_q)) {
472 if (signal_pending(current))
473 goto wait_interrupted;
474 trace_rxrpc_recvmsg(NULL, rxrpc_recvmsg_wait,
475 0, 0, 0, 0);
476 timeo = schedule_timeout(timeo);
478 finish_wait(sk_sleep(&rx->sk), &wait);
479 goto try_again;
482 /* Find the next call and dequeue it if we're not just peeking. If we
483 * do dequeue it, that comes with a ref that we will need to release.
485 write_lock_bh(&rx->recvmsg_lock);
486 l = rx->recvmsg_q.next;
487 call = list_entry(l, struct rxrpc_call, recvmsg_link);
488 if (!(flags & MSG_PEEK))
489 list_del_init(&call->recvmsg_link);
490 else
491 rxrpc_get_call(call, rxrpc_call_got);
492 write_unlock_bh(&rx->recvmsg_lock);
494 trace_rxrpc_recvmsg(call, rxrpc_recvmsg_dequeue, 0, 0, 0, 0);
496 /* We're going to drop the socket lock, so we need to lock the call
497 * against interference by sendmsg.
499 if (!mutex_trylock(&call->user_mutex)) {
500 ret = -EWOULDBLOCK;
501 if (flags & MSG_DONTWAIT)
502 goto error_requeue_call;
503 ret = -ERESTARTSYS;
504 if (mutex_lock_interruptible(&call->user_mutex) < 0)
505 goto error_requeue_call;
508 release_sock(&rx->sk);
510 if (test_bit(RXRPC_CALL_RELEASED, &call->flags))
511 BUG();
513 if (test_bit(RXRPC_CALL_HAS_USERID, &call->flags)) {
514 if (flags & MSG_CMSG_COMPAT) {
515 unsigned int id32 = call->user_call_ID;
517 ret = put_cmsg(msg, SOL_RXRPC, RXRPC_USER_CALL_ID,
518 sizeof(unsigned int), &id32);
519 } else {
520 ret = put_cmsg(msg, SOL_RXRPC, RXRPC_USER_CALL_ID,
521 sizeof(unsigned long),
522 &call->user_call_ID);
524 if (ret < 0)
525 goto error_unlock_call;
528 if (msg->msg_name) {
529 struct sockaddr_rxrpc *srx = msg->msg_name;
530 size_t len = sizeof(call->peer->srx);
532 memcpy(msg->msg_name, &call->peer->srx, len);
533 srx->srx_service = call->service_id;
534 msg->msg_namelen = len;
537 switch (READ_ONCE(call->state)) {
538 case RXRPC_CALL_SERVER_ACCEPTING:
539 ret = rxrpc_recvmsg_new_call(rx, call, msg, flags);
540 break;
541 case RXRPC_CALL_CLIENT_RECV_REPLY:
542 case RXRPC_CALL_SERVER_RECV_REQUEST:
543 case RXRPC_CALL_SERVER_ACK_REQUEST:
544 ret = rxrpc_recvmsg_data(sock, call, msg, &msg->msg_iter, len,
545 flags, &copied);
546 if (ret == -EAGAIN)
547 ret = 0;
549 if (after(call->rx_top, call->rx_hard_ack) &&
550 call->rxtx_buffer[(call->rx_hard_ack + 1) & RXRPC_RXTX_BUFF_MASK])
551 rxrpc_notify_socket(call);
552 break;
553 default:
554 ret = 0;
555 break;
558 if (ret < 0)
559 goto error_unlock_call;
561 if (call->state == RXRPC_CALL_COMPLETE) {
562 ret = rxrpc_recvmsg_term(call, msg);
563 if (ret < 0)
564 goto error_unlock_call;
565 if (!(flags & MSG_PEEK))
566 rxrpc_release_call(rx, call);
567 msg->msg_flags |= MSG_EOR;
568 ret = 1;
571 if (ret == 0)
572 msg->msg_flags |= MSG_MORE;
573 else
574 msg->msg_flags &= ~MSG_MORE;
575 ret = copied;
577 error_unlock_call:
578 mutex_unlock(&call->user_mutex);
579 rxrpc_put_call(call, rxrpc_call_put);
580 trace_rxrpc_recvmsg(call, rxrpc_recvmsg_return, 0, 0, 0, ret);
581 return ret;
583 error_requeue_call:
584 if (!(flags & MSG_PEEK)) {
585 write_lock_bh(&rx->recvmsg_lock);
586 list_add(&call->recvmsg_link, &rx->recvmsg_q);
587 write_unlock_bh(&rx->recvmsg_lock);
588 trace_rxrpc_recvmsg(call, rxrpc_recvmsg_requeue, 0, 0, 0, 0);
589 } else {
590 rxrpc_put_call(call, rxrpc_call_put);
592 error_no_call:
593 release_sock(&rx->sk);
594 trace_rxrpc_recvmsg(call, rxrpc_recvmsg_return, 0, 0, 0, ret);
595 return ret;
597 wait_interrupted:
598 ret = sock_intr_errno(timeo);
599 wait_error:
600 finish_wait(sk_sleep(&rx->sk), &wait);
601 call = NULL;
602 goto error_no_call;
606 * rxrpc_kernel_recv_data - Allow a kernel service to receive data/info
607 * @sock: The socket that the call exists on
608 * @call: The call to send data through
609 * @buf: The buffer to receive into
610 * @size: The size of the buffer, including data already read
611 * @_offset: The running offset into the buffer.
612 * @want_more: True if more data is expected to be read
613 * @_abort: Where the abort code is stored if -ECONNABORTED is returned
614 * @_service: Where to store the actual service ID (may be upgraded)
616 * Allow a kernel service to receive data and pick up information about the
617 * state of a call. Returns 0 if got what was asked for and there's more
618 * available, 1 if we got what was asked for and we're at the end of the data
619 * and -EAGAIN if we need more data.
621 * Note that we may return -EAGAIN to drain empty packets at the end of the
622 * data, even if we've already copied over the requested data.
624 * This function adds the amount it transfers to *_offset, so this should be
625 * precleared as appropriate. Note that the amount remaining in the buffer is
626 * taken to be size - *_offset.
628 * *_abort should also be initialised to 0.
630 int rxrpc_kernel_recv_data(struct socket *sock, struct rxrpc_call *call,
631 void *buf, size_t size, size_t *_offset,
632 bool want_more, u32 *_abort, u16 *_service)
634 struct iov_iter iter;
635 struct kvec iov;
636 int ret;
638 _enter("{%d,%s},%zu/%zu,%d",
639 call->debug_id, rxrpc_call_states[call->state],
640 *_offset, size, want_more);
642 ASSERTCMP(*_offset, <=, size);
643 ASSERTCMP(call->state, !=, RXRPC_CALL_SERVER_ACCEPTING);
645 iov.iov_base = buf + *_offset;
646 iov.iov_len = size - *_offset;
647 iov_iter_kvec(&iter, ITER_KVEC | READ, &iov, 1, size - *_offset);
649 mutex_lock(&call->user_mutex);
651 switch (READ_ONCE(call->state)) {
652 case RXRPC_CALL_CLIENT_RECV_REPLY:
653 case RXRPC_CALL_SERVER_RECV_REQUEST:
654 case RXRPC_CALL_SERVER_ACK_REQUEST:
655 ret = rxrpc_recvmsg_data(sock, call, NULL, &iter, size, 0,
656 _offset);
657 if (ret < 0)
658 goto out;
660 /* We can only reach here with a partially full buffer if we
661 * have reached the end of the data. We must otherwise have a
662 * full buffer or have been given -EAGAIN.
664 if (ret == 1) {
665 if (*_offset < size)
666 goto short_data;
667 if (!want_more)
668 goto read_phase_complete;
669 ret = 0;
670 goto out;
673 if (!want_more)
674 goto excess_data;
675 goto out;
677 case RXRPC_CALL_COMPLETE:
678 goto call_complete;
680 default:
681 ret = -EINPROGRESS;
682 goto out;
685 read_phase_complete:
686 ret = 1;
687 out:
688 if (_service)
689 *_service = call->service_id;
690 mutex_unlock(&call->user_mutex);
691 _leave(" = %d [%zu,%d]", ret, *_offset, *_abort);
692 return ret;
694 short_data:
695 trace_rxrpc_rx_eproto(call, 0, tracepoint_string("short_data"));
696 ret = -EBADMSG;
697 goto out;
698 excess_data:
699 trace_rxrpc_rx_eproto(call, 0, tracepoint_string("excess_data"));
700 ret = -EMSGSIZE;
701 goto out;
702 call_complete:
703 *_abort = call->abort_code;
704 ret = call->error;
705 if (call->completion == RXRPC_CALL_SUCCEEDED) {
706 ret = 1;
707 if (size > 0)
708 ret = -ECONNRESET;
710 goto out;
712 EXPORT_SYMBOL(rxrpc_kernel_recv_data);