1 /******************************************************************************
3 Copyright(c) 2003 - 2005 Intel Corporation. All rights reserved.
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of version 2 of the GNU General Public License as
7 published by the Free Software Foundation.
9 This program is distributed in the hope that it will be useful, but WITHOUT
10 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 You should have received a copy of the GNU General Public License along with
15 this program; if not, write to the Free Software Foundation, Inc., 59
16 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 The full GNU General Public License is included in this distribution in the
22 James P. Ketrenos <ipw2100-admin@linux.intel.com>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 ******************************************************************************/
26 #include <linux/compiler.h>
27 #include <linux/errno.h>
28 #include <linux/if_arp.h>
29 #include <linux/in6.h>
32 #include <linux/kernel.h>
33 #include <linux/module.h>
34 #include <linux/netdevice.h>
35 #include <linux/proc_fs.h>
36 #include <linux/skbuff.h>
37 #include <linux/slab.h>
38 #include <linux/tcp.h>
39 #include <linux/types.h>
40 #include <linux/wireless.h>
41 #include <linux/etherdevice.h>
42 #include <asm/uaccess.h>
44 #include <net/ieee80211.h>
50 ,-------------------------------------------------------------------.
51 Bytes | 2 | 2 | 6 | 6 | 6 | 2 | 0..2312 | 4 |
52 |------|------|---------|---------|---------|------|---------|------|
53 Desc. | ctrl | dura | DA/RA | TA | SA | Sequ | Frame | fcs |
54 | | tion | (BSSID) | | | ence | data | |
55 `--------------------------------------------------| |------'
56 Total: 28 non-data bytes `----.----'
58 .- 'Frame data' expands, if WEP enabled, to <----------'
61 ,-----------------------.
62 Bytes | 4 | 0-2296 | 4 |
63 |-----|-----------|-----|
64 Desc. | IV | Encrypted | ICV |
69 .- 'Encrypted Packet' expands to
72 ,---------------------------------------------------.
73 Bytes | 1 | 1 | 1 | 3 | 2 | 0-2304 |
74 |------|------|---------|----------|------|---------|
75 Desc. | SNAP | SNAP | Control |Eth Tunnel| Type | IP |
76 | DSAP | SSAP | | | | Packet |
77 | 0xAA | 0xAA |0x03 (UI)|0x00-00-F8| | |
78 `----------------------------------------------------
79 Total: 8 non-data bytes
81 802.3 Ethernet Data Frame
83 ,-----------------------------------------.
84 Bytes | 6 | 6 | 2 | Variable | 4 |
85 |-------|-------|------|-----------|------|
86 Desc. | Dest. | Source| Type | IP Packet | fcs |
88 `-----------------------------------------'
89 Total: 18 non-data bytes
91 In the event that fragmentation is required, the incoming payload is split into
92 N parts of size ieee->fts. The first fragment contains the SNAP header and the
93 remaining packets are just data.
95 If encryption is enabled, each fragment payload size is reduced by enough space
96 to add the prefix and postfix (IV and ICV totalling 8 bytes in the case of WEP)
97 So if you have 1500 bytes of payload with ieee->fts set to 500 without
98 encryption it will take 3 frames. With WEP it will take 4 frames as the
99 payload of each frame is reduced to 492 bytes.
105 * | ETHERNET HEADER ,-<-- PAYLOAD
106 * | | 14 bytes from skb->data
107 * | 2 bytes for Type --> ,T. | (sizeof ethhdr)
109 * |,-Dest.--. ,--Src.---. | | |
110 * | 6 bytes| | 6 bytes | | | |
113 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
116 * | | | | `T' <---- 2 bytes for Type
118 * | | '---SNAP--' <-------- 6 bytes for SNAP
120 * `-IV--' <-------------------- 4 bytes for IV (WEP)
126 static u8 P802_1H_OUI
[P80211_OUI_LEN
] = { 0x00, 0x00, 0xf8 };
127 static u8 RFC1042_OUI
[P80211_OUI_LEN
] = { 0x00, 0x00, 0x00 };
129 static int ieee80211_copy_snap(u8
* data
, u16 h_proto
)
131 struct ieee80211_snap_hdr
*snap
;
134 snap
= (struct ieee80211_snap_hdr
*)data
;
139 if (h_proto
== 0x8137 || h_proto
== 0x80f3)
143 snap
->oui
[0] = oui
[0];
144 snap
->oui
[1] = oui
[1];
145 snap
->oui
[2] = oui
[2];
147 h_proto
= htons(h_proto
);
148 memcpy(data
+ SNAP_SIZE
, &h_proto
, sizeof(u16
));
150 return SNAP_SIZE
+ sizeof(u16
);
153 static int ieee80211_encrypt_fragment(struct ieee80211_device
*ieee
,
154 struct sk_buff
*frag
, int hdr_len
)
156 struct ieee80211_crypt_data
*crypt
= ieee
->crypt
[ieee
->tx_keyidx
];
162 /* To encrypt, frame format is:
163 * IV (4 bytes), clear payload (including SNAP), ICV (4 bytes) */
164 atomic_inc(&crypt
->refcnt
);
166 if (crypt
->ops
&& crypt
->ops
->encrypt_mpdu
)
167 res
= crypt
->ops
->encrypt_mpdu(frag
, hdr_len
, crypt
->priv
);
169 atomic_dec(&crypt
->refcnt
);
171 printk(KERN_INFO
"%s: Encryption failed: len=%d.\n",
172 ieee
->dev
->name
, frag
->len
);
173 ieee
->ieee_stats
.tx_discards
++;
180 void ieee80211_txb_free(struct ieee80211_txb
*txb
)
185 for (i
= 0; i
< txb
->nr_frags
; i
++)
186 if (txb
->fragments
[i
])
187 dev_kfree_skb_any(txb
->fragments
[i
]);
191 static struct ieee80211_txb
*ieee80211_alloc_txb(int nr_frags
, int txb_size
,
192 int headroom
, gfp_t gfp_mask
)
194 struct ieee80211_txb
*txb
;
196 txb
= kmalloc(sizeof(struct ieee80211_txb
) + (sizeof(u8
*) * nr_frags
),
201 memset(txb
, 0, sizeof(struct ieee80211_txb
));
202 txb
->nr_frags
= nr_frags
;
203 txb
->frag_size
= txb_size
;
205 for (i
= 0; i
< nr_frags
; i
++) {
206 txb
->fragments
[i
] = __dev_alloc_skb(txb_size
+ headroom
,
208 if (unlikely(!txb
->fragments
[i
])) {
212 skb_reserve(txb
->fragments
[i
], headroom
);
214 if (unlikely(i
!= nr_frags
)) {
216 dev_kfree_skb_any(txb
->fragments
[i
--]);
223 static int ieee80211_classify(struct sk_buff
*skb
)
228 eth
= (struct ethhdr
*)skb
->data
;
229 if (eth
->h_proto
!= htons(ETH_P_IP
))
233 switch (ip
->tos
& 0xfc) {
253 /* Incoming skb is converted to a txb which consists of
254 * a block of 802.11 fragment packets (stored as skbs) */
255 int ieee80211_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
257 struct ieee80211_device
*ieee
= netdev_priv(dev
);
258 struct ieee80211_txb
*txb
= NULL
;
259 struct ieee80211_hdr_3addrqos
*frag_hdr
;
260 int i
, bytes_per_frag
, nr_frags
, bytes_last_frag
, frag_size
,
263 struct net_device_stats
*stats
= &ieee
->stats
;
264 int ether_type
, encrypt
, host_encrypt
, host_encrypt_msdu
, host_build_iv
;
265 int bytes
, fc
, hdr_len
;
266 struct sk_buff
*skb_frag
;
267 struct ieee80211_hdr_3addrqos header
= {/* Ensure zero initialized */
272 u8 dest
[ETH_ALEN
], src
[ETH_ALEN
];
273 struct ieee80211_crypt_data
*crypt
;
274 int priority
= skb
->priority
;
277 if (ieee
->is_queue_full
&& (*ieee
->is_queue_full
) (dev
, priority
))
278 return NETDEV_TX_BUSY
;
280 spin_lock_irqsave(&ieee
->lock
, flags
);
282 /* If there is no driver handler to take the TXB, dont' bother
284 if (!ieee
->hard_start_xmit
) {
285 printk(KERN_WARNING
"%s: No xmit handler.\n", ieee
->dev
->name
);
289 if (unlikely(skb
->len
< SNAP_SIZE
+ sizeof(u16
))) {
290 printk(KERN_WARNING
"%s: skb too small (%d).\n",
291 ieee
->dev
->name
, skb
->len
);
295 ether_type
= ntohs(((struct ethhdr
*)skb
->data
)->h_proto
);
297 crypt
= ieee
->crypt
[ieee
->tx_keyidx
];
299 encrypt
= !(ether_type
== ETH_P_PAE
&& ieee
->ieee802_1x
) &&
302 host_encrypt
= ieee
->host_encrypt
&& encrypt
&& crypt
;
303 host_encrypt_msdu
= ieee
->host_encrypt_msdu
&& encrypt
&& crypt
;
304 host_build_iv
= ieee
->host_build_iv
&& encrypt
&& crypt
;
306 if (!encrypt
&& ieee
->ieee802_1x
&&
307 ieee
->drop_unencrypted
&& ether_type
!= ETH_P_PAE
) {
312 /* Save source and destination addresses */
313 skb_copy_from_linear_data(skb
, dest
, ETH_ALEN
);
314 skb_copy_from_linear_data_offset(skb
, ETH_ALEN
, src
, ETH_ALEN
);
316 if (host_encrypt
|| host_build_iv
)
317 fc
= IEEE80211_FTYPE_DATA
| IEEE80211_STYPE_DATA
|
318 IEEE80211_FCTL_PROTECTED
;
320 fc
= IEEE80211_FTYPE_DATA
| IEEE80211_STYPE_DATA
;
322 if (ieee
->iw_mode
== IW_MODE_INFRA
) {
323 fc
|= IEEE80211_FCTL_TODS
;
324 /* To DS: Addr1 = BSSID, Addr2 = SA, Addr3 = DA */
325 memcpy(header
.addr1
, ieee
->bssid
, ETH_ALEN
);
326 memcpy(header
.addr2
, src
, ETH_ALEN
);
327 memcpy(header
.addr3
, dest
, ETH_ALEN
);
328 } else if (ieee
->iw_mode
== IW_MODE_ADHOC
) {
329 /* not From/To DS: Addr1 = DA, Addr2 = SA, Addr3 = BSSID */
330 memcpy(header
.addr1
, dest
, ETH_ALEN
);
331 memcpy(header
.addr2
, src
, ETH_ALEN
);
332 memcpy(header
.addr3
, ieee
->bssid
, ETH_ALEN
);
334 hdr_len
= IEEE80211_3ADDR_LEN
;
336 if (ieee
->is_qos_active
&& ieee
->is_qos_active(dev
, skb
)) {
337 fc
|= IEEE80211_STYPE_QOS_DATA
;
340 skb
->priority
= ieee80211_classify(skb
);
341 header
.qos_ctl
|= cpu_to_le16(skb
->priority
& IEEE80211_QCTL_TID
);
343 header
.frame_ctl
= cpu_to_le16(fc
);
345 /* Advance the SKB to the start of the payload */
346 skb_pull(skb
, sizeof(struct ethhdr
));
348 /* Determine total amount of storage required for TXB packets */
349 bytes
= skb
->len
+ SNAP_SIZE
+ sizeof(u16
);
351 /* Encrypt msdu first on the whole data packet. */
352 if ((host_encrypt
|| host_encrypt_msdu
) &&
353 crypt
&& crypt
->ops
&& crypt
->ops
->encrypt_msdu
) {
355 int len
= bytes
+ hdr_len
+ crypt
->ops
->extra_msdu_prefix_len
+
356 crypt
->ops
->extra_msdu_postfix_len
;
357 struct sk_buff
*skb_new
= dev_alloc_skb(len
);
359 if (unlikely(!skb_new
))
362 skb_reserve(skb_new
, crypt
->ops
->extra_msdu_prefix_len
);
363 memcpy(skb_put(skb_new
, hdr_len
), &header
, hdr_len
);
365 ieee80211_copy_snap(skb_put(skb_new
, SNAP_SIZE
+ sizeof(u16
)),
367 skb_copy_from_linear_data(skb
, skb_put(skb_new
, skb
->len
), skb
->len
);
368 res
= crypt
->ops
->encrypt_msdu(skb_new
, hdr_len
, crypt
->priv
);
370 IEEE80211_ERROR("msdu encryption failed\n");
371 dev_kfree_skb_any(skb_new
);
374 dev_kfree_skb_any(skb
);
376 bytes
+= crypt
->ops
->extra_msdu_prefix_len
+
377 crypt
->ops
->extra_msdu_postfix_len
;
378 skb_pull(skb
, hdr_len
);
381 if (host_encrypt
|| ieee
->host_open_frag
) {
382 /* Determine fragmentation size based on destination (multicast
383 * and broadcast are not fragmented) */
384 if (is_multicast_ether_addr(dest
) ||
385 is_broadcast_ether_addr(dest
))
386 frag_size
= MAX_FRAG_THRESHOLD
;
388 frag_size
= ieee
->fts
;
390 /* Determine amount of payload per fragment. Regardless of if
391 * this stack is providing the full 802.11 header, one will
392 * eventually be affixed to this fragment -- so we must account
393 * for it when determining the amount of payload space. */
394 bytes_per_frag
= frag_size
- hdr_len
;
396 (CFG_IEEE80211_COMPUTE_FCS
| CFG_IEEE80211_RESERVE_FCS
))
397 bytes_per_frag
-= IEEE80211_FCS_LEN
;
399 /* Each fragment may need to have room for encryptiong
402 bytes_per_frag
-= crypt
->ops
->extra_mpdu_prefix_len
+
403 crypt
->ops
->extra_mpdu_postfix_len
;
405 /* Number of fragments is the total
406 * bytes_per_frag / payload_per_fragment */
407 nr_frags
= bytes
/ bytes_per_frag
;
408 bytes_last_frag
= bytes
% bytes_per_frag
;
412 bytes_last_frag
= bytes_per_frag
;
415 bytes_per_frag
= bytes_last_frag
= bytes
;
416 frag_size
= bytes
+ hdr_len
;
419 rts_required
= (frag_size
> ieee
->rts
420 && ieee
->config
& CFG_IEEE80211_RTS
);
424 /* When we allocate the TXB we allocate enough space for the reserve
425 * and full fragment bytes (bytes_per_frag doesn't include prefix,
426 * postfix, header, FCS, etc.) */
427 txb
= ieee80211_alloc_txb(nr_frags
, frag_size
,
428 ieee
->tx_headroom
, GFP_ATOMIC
);
429 if (unlikely(!txb
)) {
430 printk(KERN_WARNING
"%s: Could not allocate TXB\n",
434 txb
->encrypted
= encrypt
;
436 txb
->payload_size
= frag_size
* (nr_frags
- 1) +
439 txb
->payload_size
= bytes
;
442 skb_frag
= txb
->fragments
[0];
444 (struct ieee80211_hdr_3addrqos
*)skb_put(skb_frag
, hdr_len
);
447 * Set header frame_ctl to the RTS.
450 cpu_to_le16(IEEE80211_FTYPE_CTL
| IEEE80211_STYPE_RTS
);
451 memcpy(frag_hdr
, &header
, hdr_len
);
454 * Restore header frame_ctl to the original data setting.
456 header
.frame_ctl
= cpu_to_le16(fc
);
459 (CFG_IEEE80211_COMPUTE_FCS
| CFG_IEEE80211_RESERVE_FCS
))
460 skb_put(skb_frag
, 4);
462 txb
->rts_included
= 1;
467 for (; i
< nr_frags
; i
++) {
468 skb_frag
= txb
->fragments
[i
];
470 if (host_encrypt
|| host_build_iv
)
471 skb_reserve(skb_frag
,
472 crypt
->ops
->extra_mpdu_prefix_len
);
475 (struct ieee80211_hdr_3addrqos
*)skb_put(skb_frag
, hdr_len
);
476 memcpy(frag_hdr
, &header
, hdr_len
);
478 /* If this is not the last fragment, then add the MOREFRAGS
479 * bit to the frame control */
480 if (i
!= nr_frags
- 1) {
481 frag_hdr
->frame_ctl
=
482 cpu_to_le16(fc
| IEEE80211_FCTL_MOREFRAGS
);
483 bytes
= bytes_per_frag
;
485 /* The last fragment takes the remaining length */
486 bytes
= bytes_last_frag
;
489 if (i
== 0 && !snapped
) {
490 ieee80211_copy_snap(skb_put
491 (skb_frag
, SNAP_SIZE
+ sizeof(u16
)),
493 bytes
-= SNAP_SIZE
+ sizeof(u16
);
496 skb_copy_from_linear_data(skb
, skb_put(skb_frag
, bytes
), bytes
);
498 /* Advance the SKB... */
499 skb_pull(skb
, bytes
);
501 /* Encryption routine will move the header forward in order
502 * to insert the IV between the header and the payload */
504 ieee80211_encrypt_fragment(ieee
, skb_frag
, hdr_len
);
505 else if (host_build_iv
) {
506 atomic_inc(&crypt
->refcnt
);
507 if (crypt
->ops
->build_iv
)
508 crypt
->ops
->build_iv(skb_frag
, hdr_len
,
509 ieee
->sec
.keys
[ieee
->sec
.active_key
],
510 ieee
->sec
.key_sizes
[ieee
->sec
.active_key
],
512 atomic_dec(&crypt
->refcnt
);
516 (CFG_IEEE80211_COMPUTE_FCS
| CFG_IEEE80211_RESERVE_FCS
))
517 skb_put(skb_frag
, 4);
521 spin_unlock_irqrestore(&ieee
->lock
, flags
);
523 dev_kfree_skb_any(skb
);
526 int ret
= (*ieee
->hard_start_xmit
) (txb
, dev
, priority
);
529 stats
->tx_bytes
+= txb
->payload_size
;
533 ieee80211_txb_free(txb
);
539 spin_unlock_irqrestore(&ieee
->lock
, flags
);
540 netif_stop_queue(dev
);
545 /* Incoming 802.11 strucure is converted to a TXB
546 * a block of 802.11 fragment packets (stored as skbs) */
547 int ieee80211_tx_frame(struct ieee80211_device
*ieee
,
548 struct ieee80211_hdr
*frame
, int hdr_len
, int total_len
,
551 struct ieee80211_txb
*txb
= NULL
;
553 struct net_device_stats
*stats
= &ieee
->stats
;
554 struct sk_buff
*skb_frag
;
556 int fraglen
= total_len
;
557 int headroom
= ieee
->tx_headroom
;
558 struct ieee80211_crypt_data
*crypt
= ieee
->crypt
[ieee
->tx_keyidx
];
560 spin_lock_irqsave(&ieee
->lock
, flags
);
562 if (encrypt_mpdu
&& (!ieee
->sec
.encrypt
|| !crypt
))
565 /* If there is no driver handler to take the TXB, dont' bother
567 if (!ieee
->hard_start_xmit
) {
568 printk(KERN_WARNING
"%s: No xmit handler.\n", ieee
->dev
->name
);
572 if (unlikely(total_len
< 24)) {
573 printk(KERN_WARNING
"%s: skb too small (%d).\n",
574 ieee
->dev
->name
, total_len
);
579 frame
->frame_ctl
|= cpu_to_le16(IEEE80211_FCTL_PROTECTED
);
580 fraglen
+= crypt
->ops
->extra_mpdu_prefix_len
+
581 crypt
->ops
->extra_mpdu_postfix_len
;
582 headroom
+= crypt
->ops
->extra_mpdu_prefix_len
;
585 /* When we allocate the TXB we allocate enough space for the reserve
586 * and full fragment bytes (bytes_per_frag doesn't include prefix,
587 * postfix, header, FCS, etc.) */
588 txb
= ieee80211_alloc_txb(1, fraglen
, headroom
, GFP_ATOMIC
);
589 if (unlikely(!txb
)) {
590 printk(KERN_WARNING
"%s: Could not allocate TXB\n",
595 txb
->payload_size
= fraglen
;
597 skb_frag
= txb
->fragments
[0];
599 memcpy(skb_put(skb_frag
, total_len
), frame
, total_len
);
602 (CFG_IEEE80211_COMPUTE_FCS
| CFG_IEEE80211_RESERVE_FCS
))
603 skb_put(skb_frag
, 4);
605 /* To avoid overcomplicating things, we do the corner-case frame
606 * encryption in software. The only real situation where encryption is
607 * needed here is during software-based shared key authentication. */
609 ieee80211_encrypt_fragment(ieee
, skb_frag
, hdr_len
);
612 spin_unlock_irqrestore(&ieee
->lock
, flags
);
615 if ((*ieee
->hard_start_xmit
) (txb
, ieee
->dev
, priority
) == 0) {
617 stats
->tx_bytes
+= txb
->payload_size
;
620 ieee80211_txb_free(txb
);
625 spin_unlock_irqrestore(&ieee
->lock
, flags
);
630 EXPORT_SYMBOL(ieee80211_tx_frame
);
631 EXPORT_SYMBOL(ieee80211_txb_free
);