2 * Marvell 88SE64xx/88SE94xx main function
4 * Copyright 2007 Red Hat, Inc.
5 * Copyright 2008 Marvell. <kewei@marvell.com>
6 * Copyright 2009-2011 Marvell. <yuxiangl@marvell.com>
8 * This file is licensed under GPLv2.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; version 2 of the
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
28 static int mvs_find_tag(struct mvs_info
*mvi
, struct sas_task
*task
, u32
*tag
)
30 if (task
->lldd_task
) {
31 struct mvs_slot_info
*slot
;
32 slot
= task
->lldd_task
;
33 *tag
= slot
->slot_tag
;
39 void mvs_tag_clear(struct mvs_info
*mvi
, u32 tag
)
41 void *bitmap
= mvi
->tags
;
42 clear_bit(tag
, bitmap
);
45 void mvs_tag_free(struct mvs_info
*mvi
, u32 tag
)
47 mvs_tag_clear(mvi
, tag
);
50 void mvs_tag_set(struct mvs_info
*mvi
, unsigned int tag
)
52 void *bitmap
= mvi
->tags
;
56 inline int mvs_tag_alloc(struct mvs_info
*mvi
, u32
*tag_out
)
58 unsigned int index
, tag
;
59 void *bitmap
= mvi
->tags
;
61 index
= find_first_zero_bit(bitmap
, mvi
->tags_num
);
63 if (tag
>= mvi
->tags_num
)
64 return -SAS_QUEUE_FULL
;
65 mvs_tag_set(mvi
, tag
);
70 void mvs_tag_init(struct mvs_info
*mvi
)
73 for (i
= 0; i
< mvi
->tags_num
; ++i
)
74 mvs_tag_clear(mvi
, i
);
77 struct mvs_info
*mvs_find_dev_mvi(struct domain_device
*dev
)
79 unsigned long i
= 0, j
= 0, hi
= 0;
80 struct sas_ha_struct
*sha
= dev
->port
->ha
;
81 struct mvs_info
*mvi
= NULL
;
82 struct asd_sas_phy
*phy
;
84 while (sha
->sas_port
[i
]) {
85 if (sha
->sas_port
[i
] == dev
->port
) {
86 phy
= container_of(sha
->sas_port
[i
]->phy_list
.next
,
87 struct asd_sas_phy
, port_phy_el
);
89 while (sha
->sas_phy
[j
]) {
90 if (sha
->sas_phy
[j
] == phy
)
98 hi
= j
/((struct mvs_prv_info
*)sha
->lldd_ha
)->n_phy
;
99 mvi
= ((struct mvs_prv_info
*)sha
->lldd_ha
)->mvi
[hi
];
105 int mvs_find_dev_phyno(struct domain_device
*dev
, int *phyno
)
107 unsigned long i
= 0, j
= 0, n
= 0, num
= 0;
108 struct mvs_device
*mvi_dev
= (struct mvs_device
*)dev
->lldd_dev
;
109 struct mvs_info
*mvi
= mvi_dev
->mvi_info
;
110 struct sas_ha_struct
*sha
= dev
->port
->ha
;
112 while (sha
->sas_port
[i
]) {
113 if (sha
->sas_port
[i
] == dev
->port
) {
114 struct asd_sas_phy
*phy
;
115 list_for_each_entry(phy
,
116 &sha
->sas_port
[i
]->phy_list
, port_phy_el
) {
118 while (sha
->sas_phy
[j
]) {
119 if (sha
->sas_phy
[j
] == phy
)
123 phyno
[n
] = (j
>= mvi
->chip
->n_phy
) ?
124 (j
- mvi
->chip
->n_phy
) : j
;
135 struct mvs_device
*mvs_find_dev_by_reg_set(struct mvs_info
*mvi
,
139 for (dev_no
= 0; dev_no
< MVS_MAX_DEVICES
; dev_no
++) {
140 if (mvi
->devices
[dev_no
].taskfileset
== MVS_ID_NOT_MAPPED
)
143 if (mvi
->devices
[dev_no
].taskfileset
== reg_set
)
144 return &mvi
->devices
[dev_no
];
149 static inline void mvs_free_reg_set(struct mvs_info
*mvi
,
150 struct mvs_device
*dev
)
153 mv_printk("device has been free.\n");
156 if (dev
->taskfileset
== MVS_ID_NOT_MAPPED
)
158 MVS_CHIP_DISP
->free_reg_set(mvi
, &dev
->taskfileset
);
161 static inline u8
mvs_assign_reg_set(struct mvs_info
*mvi
,
162 struct mvs_device
*dev
)
164 if (dev
->taskfileset
!= MVS_ID_NOT_MAPPED
)
166 return MVS_CHIP_DISP
->assign_reg_set(mvi
, &dev
->taskfileset
);
169 void mvs_phys_reset(struct mvs_info
*mvi
, u32 phy_mask
, int hard
)
172 for_each_phy(phy_mask
, phy_mask
, no
) {
175 MVS_CHIP_DISP
->phy_reset(mvi
, no
, hard
);
179 int mvs_phy_control(struct asd_sas_phy
*sas_phy
, enum phy_func func
,
182 int rc
= 0, phy_id
= sas_phy
->id
;
184 struct sas_ha_struct
*sha
= sas_phy
->ha
;
185 struct mvs_info
*mvi
= NULL
;
187 while (sha
->sas_phy
[i
]) {
188 if (sha
->sas_phy
[i
] == sas_phy
)
192 hi
= i
/((struct mvs_prv_info
*)sha
->lldd_ha
)->n_phy
;
193 mvi
= ((struct mvs_prv_info
*)sha
->lldd_ha
)->mvi
[hi
];
196 case PHY_FUNC_SET_LINK_RATE
:
197 MVS_CHIP_DISP
->phy_set_link_rate(mvi
, phy_id
, funcdata
);
200 case PHY_FUNC_HARD_RESET
:
201 tmp
= MVS_CHIP_DISP
->read_phy_ctl(mvi
, phy_id
);
202 if (tmp
& PHY_RST_HARD
)
204 MVS_CHIP_DISP
->phy_reset(mvi
, phy_id
, MVS_HARD_RESET
);
207 case PHY_FUNC_LINK_RESET
:
208 MVS_CHIP_DISP
->phy_enable(mvi
, phy_id
);
209 MVS_CHIP_DISP
->phy_reset(mvi
, phy_id
, MVS_SOFT_RESET
);
212 case PHY_FUNC_DISABLE
:
213 MVS_CHIP_DISP
->phy_disable(mvi
, phy_id
);
215 case PHY_FUNC_RELEASE_SPINUP_HOLD
:
223 void mvs_set_sas_addr(struct mvs_info
*mvi
, int port_id
, u32 off_lo
,
224 u32 off_hi
, u64 sas_addr
)
226 u32 lo
= (u32
)sas_addr
;
227 u32 hi
= (u32
)(sas_addr
>>32);
229 MVS_CHIP_DISP
->write_port_cfg_addr(mvi
, port_id
, off_lo
);
230 MVS_CHIP_DISP
->write_port_cfg_data(mvi
, port_id
, lo
);
231 MVS_CHIP_DISP
->write_port_cfg_addr(mvi
, port_id
, off_hi
);
232 MVS_CHIP_DISP
->write_port_cfg_data(mvi
, port_id
, hi
);
235 static void mvs_bytes_dmaed(struct mvs_info
*mvi
, int i
)
237 struct mvs_phy
*phy
= &mvi
->phy
[i
];
238 struct asd_sas_phy
*sas_phy
= &phy
->sas_phy
;
239 struct sas_ha_struct
*sas_ha
;
240 if (!phy
->phy_attached
)
243 if (!(phy
->att_dev_info
& PORT_DEV_TRGT_MASK
)
244 && phy
->phy_type
& PORT_TYPE_SAS
) {
249 sas_ha
->notify_phy_event(sas_phy
, PHYE_OOB_DONE
);
252 struct sas_phy
*sphy
= sas_phy
->phy
;
254 sphy
->negotiated_linkrate
= sas_phy
->linkrate
;
255 sphy
->minimum_linkrate
= phy
->minimum_linkrate
;
256 sphy
->minimum_linkrate_hw
= SAS_LINK_RATE_1_5_GBPS
;
257 sphy
->maximum_linkrate
= phy
->maximum_linkrate
;
258 sphy
->maximum_linkrate_hw
= MVS_CHIP_DISP
->phy_max_link_rate();
261 if (phy
->phy_type
& PORT_TYPE_SAS
) {
262 struct sas_identify_frame
*id
;
264 id
= (struct sas_identify_frame
*)phy
->frame_rcvd
;
265 id
->dev_type
= phy
->identify
.device_type
;
266 id
->initiator_bits
= SAS_PROTOCOL_ALL
;
267 id
->target_bits
= phy
->identify
.target_port_protocols
;
269 /* direct attached SAS device */
270 if (phy
->att_dev_info
& PORT_SSP_TRGT_MASK
) {
271 MVS_CHIP_DISP
->write_port_cfg_addr(mvi
, i
, PHYR_PHY_STAT
);
272 MVS_CHIP_DISP
->write_port_cfg_data(mvi
, i
, 0x00);
274 } else if (phy
->phy_type
& PORT_TYPE_SATA
) {
277 mv_dprintk("phy %d byte dmaded.\n", i
+ mvi
->id
* mvi
->chip
->n_phy
);
279 sas_phy
->frame_rcvd_size
= phy
->frame_rcvd_size
;
281 mvi
->sas
->notify_port_event(sas_phy
,
285 void mvs_scan_start(struct Scsi_Host
*shost
)
288 unsigned short core_nr
;
289 struct mvs_info
*mvi
;
290 struct sas_ha_struct
*sha
= SHOST_TO_SAS_HA(shost
);
291 struct mvs_prv_info
*mvs_prv
= sha
->lldd_ha
;
293 core_nr
= ((struct mvs_prv_info
*)sha
->lldd_ha
)->n_host
;
295 for (j
= 0; j
< core_nr
; j
++) {
296 mvi
= ((struct mvs_prv_info
*)sha
->lldd_ha
)->mvi
[j
];
297 for (i
= 0; i
< mvi
->chip
->n_phy
; ++i
)
298 mvs_bytes_dmaed(mvi
, i
);
300 mvs_prv
->scan_finished
= 1;
303 int mvs_scan_finished(struct Scsi_Host
*shost
, unsigned long time
)
305 struct sas_ha_struct
*sha
= SHOST_TO_SAS_HA(shost
);
306 struct mvs_prv_info
*mvs_prv
= sha
->lldd_ha
;
308 if (mvs_prv
->scan_finished
== 0)
315 static int mvs_task_prep_smp(struct mvs_info
*mvi
,
316 struct mvs_task_exec_info
*tei
)
319 struct sas_ha_struct
*sha
= mvi
->sas
;
320 struct sas_task
*task
= tei
->task
;
321 struct mvs_cmd_hdr
*hdr
= tei
->hdr
;
322 struct domain_device
*dev
= task
->dev
;
323 struct asd_sas_port
*sas_port
= dev
->port
;
324 struct sas_phy
*sphy
= dev
->phy
;
325 struct asd_sas_phy
*sas_phy
= sha
->sas_phy
[sphy
->number
];
326 struct scatterlist
*sg_req
, *sg_resp
;
327 u32 req_len
, resp_len
, tag
= tei
->tag
;
330 dma_addr_t buf_tmp_dma
;
332 struct mvs_slot_info
*slot
= &mvi
->slot_info
[tag
];
333 u32 flags
= (tei
->n_elem
<< MCH_PRD_LEN_SHIFT
);
336 * DMA-map SMP request, response buffers
338 sg_req
= &task
->smp_task
.smp_req
;
339 elem
= dma_map_sg(mvi
->dev
, sg_req
, 1, PCI_DMA_TODEVICE
);
342 req_len
= sg_dma_len(sg_req
);
344 sg_resp
= &task
->smp_task
.smp_resp
;
345 elem
= dma_map_sg(mvi
->dev
, sg_resp
, 1, PCI_DMA_FROMDEVICE
);
350 resp_len
= SB_RFB_MAX
;
352 /* must be in dwords */
353 if ((req_len
& 0x3) || (resp_len
& 0x3)) {
359 * arrange MVS_SLOT_BUF_SZ-sized DMA buffer according to our needs
362 /* region 1: command table area (MVS_SSP_CMD_SZ bytes) ***** */
364 buf_tmp_dma
= slot
->buf_dma
;
366 hdr
->cmd_tbl
= cpu_to_le64(sg_dma_address(sg_req
));
368 /* region 2: open address frame area (MVS_OAF_SZ bytes) ********* */
370 hdr
->open_frame
= cpu_to_le64(buf_tmp_dma
);
372 buf_tmp
+= MVS_OAF_SZ
;
373 buf_tmp_dma
+= MVS_OAF_SZ
;
375 /* region 3: PRD table *********************************** */
378 hdr
->prd_tbl
= cpu_to_le64(buf_tmp_dma
);
382 i
= MVS_CHIP_DISP
->prd_size() * tei
->n_elem
;
386 /* region 4: status buffer (larger the PRD, smaller this buf) ****** */
387 slot
->response
= buf_tmp
;
388 hdr
->status_buf
= cpu_to_le64(buf_tmp_dma
);
389 if (mvi
->flags
& MVF_FLAG_SOC
)
390 hdr
->reserved
[0] = 0;
393 * Fill in TX ring and command slot header
395 slot
->tx
= mvi
->tx_prod
;
396 mvi
->tx
[mvi
->tx_prod
] = cpu_to_le32((TXQ_CMD_SMP
<< TXQ_CMD_SHIFT
) |
398 (MVS_PHY_ID
<< TXQ_PHY_SHIFT
));
401 hdr
->lens
= cpu_to_le32(((resp_len
/ 4) << 16) | ((req_len
- 4) / 4));
402 hdr
->tags
= cpu_to_le32(tag
);
405 /* generate open address frame hdr (first 12 bytes) */
406 /* initiator, SMP, ftype 1h */
407 buf_oaf
[0] = (1 << 7) | (PROTOCOL_SMP
<< 4) | 0x01;
408 buf_oaf
[1] = min(sas_port
->linkrate
, dev
->linkrate
) & 0xf;
409 *(u16
*)(buf_oaf
+ 2) = 0xFFFF; /* SAS SPEC */
410 memcpy(buf_oaf
+ 4, dev
->sas_addr
, SAS_ADDR_SIZE
);
412 /* fill in PRD (scatter/gather) table, if any */
413 MVS_CHIP_DISP
->make_prd(task
->scatter
, tei
->n_elem
, buf_prd
);
418 dma_unmap_sg(mvi
->dev
, &tei
->task
->smp_task
.smp_resp
, 1,
421 dma_unmap_sg(mvi
->dev
, &tei
->task
->smp_task
.smp_req
, 1,
426 static u32
mvs_get_ncq_tag(struct sas_task
*task
, u32
*tag
)
428 struct ata_queued_cmd
*qc
= task
->uldd_task
;
431 if (qc
->tf
.command
== ATA_CMD_FPDMA_WRITE
||
432 qc
->tf
.command
== ATA_CMD_FPDMA_READ
||
433 qc
->tf
.command
== ATA_CMD_FPDMA_RECV
||
434 qc
->tf
.command
== ATA_CMD_FPDMA_SEND
||
435 qc
->tf
.command
== ATA_CMD_NCQ_NON_DATA
) {
444 static int mvs_task_prep_ata(struct mvs_info
*mvi
,
445 struct mvs_task_exec_info
*tei
)
447 struct sas_task
*task
= tei
->task
;
448 struct domain_device
*dev
= task
->dev
;
449 struct mvs_device
*mvi_dev
= dev
->lldd_dev
;
450 struct mvs_cmd_hdr
*hdr
= tei
->hdr
;
451 struct asd_sas_port
*sas_port
= dev
->port
;
452 struct mvs_slot_info
*slot
;
454 u32 tag
= tei
->tag
, hdr_tag
;
457 u8
*buf_cmd
, *buf_oaf
;
458 dma_addr_t buf_tmp_dma
;
459 u32 i
, req_len
, resp_len
;
460 const u32 max_resp_len
= SB_RFB_MAX
;
462 if (mvs_assign_reg_set(mvi
, mvi_dev
) == MVS_ID_NOT_MAPPED
) {
463 mv_dprintk("Have not enough regiset for dev %d.\n",
467 slot
= &mvi
->slot_info
[tag
];
468 slot
->tx
= mvi
->tx_prod
;
469 del_q
= TXQ_MODE_I
| tag
|
470 (TXQ_CMD_STP
<< TXQ_CMD_SHIFT
) |
471 ((sas_port
->phy_mask
& TXQ_PHY_MASK
) << TXQ_PHY_SHIFT
) |
472 (mvi_dev
->taskfileset
<< TXQ_SRS_SHIFT
);
473 mvi
->tx
[mvi
->tx_prod
] = cpu_to_le32(del_q
);
475 if (task
->data_dir
== DMA_FROM_DEVICE
)
476 flags
= (MVS_CHIP_DISP
->prd_count() << MCH_PRD_LEN_SHIFT
);
478 flags
= (tei
->n_elem
<< MCH_PRD_LEN_SHIFT
);
480 if (task
->ata_task
.use_ncq
)
482 if (dev
->sata_dev
.class == ATA_DEV_ATAPI
) {
483 if (task
->ata_task
.fis
.command
!= ATA_CMD_ID_ATAPI
)
487 hdr
->flags
= cpu_to_le32(flags
);
489 if (task
->ata_task
.use_ncq
&& mvs_get_ncq_tag(task
, &hdr_tag
))
490 task
->ata_task
.fis
.sector_count
|= (u8
) (hdr_tag
<< 3);
494 hdr
->tags
= cpu_to_le32(hdr_tag
);
496 hdr
->data_len
= cpu_to_le32(task
->total_xfer_len
);
499 * arrange MVS_SLOT_BUF_SZ-sized DMA buffer according to our needs
502 /* region 1: command table area (MVS_ATA_CMD_SZ bytes) ************** */
503 buf_cmd
= buf_tmp
= slot
->buf
;
504 buf_tmp_dma
= slot
->buf_dma
;
506 hdr
->cmd_tbl
= cpu_to_le64(buf_tmp_dma
);
508 buf_tmp
+= MVS_ATA_CMD_SZ
;
509 buf_tmp_dma
+= MVS_ATA_CMD_SZ
;
511 /* region 2: open address frame area (MVS_OAF_SZ bytes) ********* */
512 /* used for STP. unused for SATA? */
514 hdr
->open_frame
= cpu_to_le64(buf_tmp_dma
);
516 buf_tmp
+= MVS_OAF_SZ
;
517 buf_tmp_dma
+= MVS_OAF_SZ
;
519 /* region 3: PRD table ********************************************* */
523 hdr
->prd_tbl
= cpu_to_le64(buf_tmp_dma
);
526 i
= MVS_CHIP_DISP
->prd_size() * MVS_CHIP_DISP
->prd_count();
531 /* region 4: status buffer (larger the PRD, smaller this buf) ****** */
532 slot
->response
= buf_tmp
;
533 hdr
->status_buf
= cpu_to_le64(buf_tmp_dma
);
534 if (mvi
->flags
& MVF_FLAG_SOC
)
535 hdr
->reserved
[0] = 0;
537 req_len
= sizeof(struct host_to_dev_fis
);
538 resp_len
= MVS_SLOT_BUF_SZ
- MVS_ATA_CMD_SZ
-
539 sizeof(struct mvs_err_info
) - i
;
541 /* request, response lengths */
542 resp_len
= min(resp_len
, max_resp_len
);
543 hdr
->lens
= cpu_to_le32(((resp_len
/ 4) << 16) | (req_len
/ 4));
545 if (likely(!task
->ata_task
.device_control_reg_update
))
546 task
->ata_task
.fis
.flags
|= 0x80; /* C=1: update ATA cmd reg */
547 /* fill in command FIS and ATAPI CDB */
548 memcpy(buf_cmd
, &task
->ata_task
.fis
, sizeof(struct host_to_dev_fis
));
549 if (dev
->sata_dev
.class == ATA_DEV_ATAPI
)
550 memcpy(buf_cmd
+ STP_ATAPI_CMD
,
551 task
->ata_task
.atapi_packet
, 16);
553 /* generate open address frame hdr (first 12 bytes) */
554 /* initiator, STP, ftype 1h */
555 buf_oaf
[0] = (1 << 7) | (PROTOCOL_STP
<< 4) | 0x1;
556 buf_oaf
[1] = min(sas_port
->linkrate
, dev
->linkrate
) & 0xf;
557 *(u16
*)(buf_oaf
+ 2) = cpu_to_be16(mvi_dev
->device_id
+ 1);
558 memcpy(buf_oaf
+ 4, dev
->sas_addr
, SAS_ADDR_SIZE
);
560 /* fill in PRD (scatter/gather) table, if any */
561 MVS_CHIP_DISP
->make_prd(task
->scatter
, tei
->n_elem
, buf_prd
);
563 if (task
->data_dir
== DMA_FROM_DEVICE
)
564 MVS_CHIP_DISP
->dma_fix(mvi
, sas_port
->phy_mask
,
565 TRASH_BUCKET_SIZE
, tei
->n_elem
, buf_prd
);
570 static int mvs_task_prep_ssp(struct mvs_info
*mvi
,
571 struct mvs_task_exec_info
*tei
, int is_tmf
,
572 struct mvs_tmf_task
*tmf
)
574 struct sas_task
*task
= tei
->task
;
575 struct mvs_cmd_hdr
*hdr
= tei
->hdr
;
576 struct mvs_port
*port
= tei
->port
;
577 struct domain_device
*dev
= task
->dev
;
578 struct mvs_device
*mvi_dev
= dev
->lldd_dev
;
579 struct asd_sas_port
*sas_port
= dev
->port
;
580 struct mvs_slot_info
*slot
;
582 struct ssp_frame_hdr
*ssp_hdr
;
584 u8
*buf_cmd
, *buf_oaf
, fburst
= 0;
585 dma_addr_t buf_tmp_dma
;
587 u32 resp_len
, req_len
, i
, tag
= tei
->tag
;
588 const u32 max_resp_len
= SB_RFB_MAX
;
591 slot
= &mvi
->slot_info
[tag
];
593 phy_mask
= ((port
->wide_port_phymap
) ? port
->wide_port_phymap
:
594 sas_port
->phy_mask
) & TXQ_PHY_MASK
;
596 slot
->tx
= mvi
->tx_prod
;
597 mvi
->tx
[mvi
->tx_prod
] = cpu_to_le32(TXQ_MODE_I
| tag
|
598 (TXQ_CMD_SSP
<< TXQ_CMD_SHIFT
) |
599 (phy_mask
<< TXQ_PHY_SHIFT
));
602 if (task
->ssp_task
.enable_first_burst
) {
607 flags
|= (MCH_SSP_FR_TASK
<< MCH_SSP_FR_TYPE_SHIFT
);
609 flags
|= (MCH_SSP_FR_CMD
<< MCH_SSP_FR_TYPE_SHIFT
);
611 hdr
->flags
= cpu_to_le32(flags
| (tei
->n_elem
<< MCH_PRD_LEN_SHIFT
));
612 hdr
->tags
= cpu_to_le32(tag
);
613 hdr
->data_len
= cpu_to_le32(task
->total_xfer_len
);
616 * arrange MVS_SLOT_BUF_SZ-sized DMA buffer according to our needs
619 /* region 1: command table area (MVS_SSP_CMD_SZ bytes) ************** */
620 buf_cmd
= buf_tmp
= slot
->buf
;
621 buf_tmp_dma
= slot
->buf_dma
;
623 hdr
->cmd_tbl
= cpu_to_le64(buf_tmp_dma
);
625 buf_tmp
+= MVS_SSP_CMD_SZ
;
626 buf_tmp_dma
+= MVS_SSP_CMD_SZ
;
628 /* region 2: open address frame area (MVS_OAF_SZ bytes) ********* */
630 hdr
->open_frame
= cpu_to_le64(buf_tmp_dma
);
632 buf_tmp
+= MVS_OAF_SZ
;
633 buf_tmp_dma
+= MVS_OAF_SZ
;
635 /* region 3: PRD table ********************************************* */
638 hdr
->prd_tbl
= cpu_to_le64(buf_tmp_dma
);
642 i
= MVS_CHIP_DISP
->prd_size() * tei
->n_elem
;
646 /* region 4: status buffer (larger the PRD, smaller this buf) ****** */
647 slot
->response
= buf_tmp
;
648 hdr
->status_buf
= cpu_to_le64(buf_tmp_dma
);
649 if (mvi
->flags
& MVF_FLAG_SOC
)
650 hdr
->reserved
[0] = 0;
652 resp_len
= MVS_SLOT_BUF_SZ
- MVS_SSP_CMD_SZ
- MVS_OAF_SZ
-
653 sizeof(struct mvs_err_info
) - i
;
654 resp_len
= min(resp_len
, max_resp_len
);
656 req_len
= sizeof(struct ssp_frame_hdr
) + 28;
658 /* request, response lengths */
659 hdr
->lens
= cpu_to_le32(((resp_len
/ 4) << 16) | (req_len
/ 4));
661 /* generate open address frame hdr (first 12 bytes) */
662 /* initiator, SSP, ftype 1h */
663 buf_oaf
[0] = (1 << 7) | (PROTOCOL_SSP
<< 4) | 0x1;
664 buf_oaf
[1] = min(sas_port
->linkrate
, dev
->linkrate
) & 0xf;
665 *(u16
*)(buf_oaf
+ 2) = cpu_to_be16(mvi_dev
->device_id
+ 1);
666 memcpy(buf_oaf
+ 4, dev
->sas_addr
, SAS_ADDR_SIZE
);
668 /* fill in SSP frame header (Command Table.SSP frame header) */
669 ssp_hdr
= (struct ssp_frame_hdr
*)buf_cmd
;
672 ssp_hdr
->frame_type
= SSP_TASK
;
674 ssp_hdr
->frame_type
= SSP_COMMAND
;
676 memcpy(ssp_hdr
->hashed_dest_addr
, dev
->hashed_sas_addr
,
677 HASHED_SAS_ADDR_SIZE
);
678 memcpy(ssp_hdr
->hashed_src_addr
,
679 dev
->hashed_sas_addr
, HASHED_SAS_ADDR_SIZE
);
680 ssp_hdr
->tag
= cpu_to_be16(tag
);
682 /* fill in IU for TASK and Command Frame */
683 buf_cmd
+= sizeof(*ssp_hdr
);
684 memcpy(buf_cmd
, &task
->ssp_task
.LUN
, 8);
686 if (ssp_hdr
->frame_type
!= SSP_TASK
) {
687 buf_cmd
[9] = fburst
| task
->ssp_task
.task_attr
|
688 (task
->ssp_task
.task_prio
<< 3);
689 memcpy(buf_cmd
+ 12, task
->ssp_task
.cmd
->cmnd
,
690 task
->ssp_task
.cmd
->cmd_len
);
692 buf_cmd
[10] = tmf
->tmf
;
697 (tmf
->tag_of_task_to_be_managed
>> 8) & 0xff;
699 tmf
->tag_of_task_to_be_managed
& 0xff;
705 /* fill in PRD (scatter/gather) table, if any */
706 MVS_CHIP_DISP
->make_prd(task
->scatter
, tei
->n_elem
, buf_prd
);
710 #define DEV_IS_GONE(mvi_dev) ((!mvi_dev || (mvi_dev->dev_type == SAS_PHY_UNUSED)))
711 static int mvs_task_prep(struct sas_task
*task
, struct mvs_info
*mvi
, int is_tmf
,
712 struct mvs_tmf_task
*tmf
, int *pass
)
714 struct domain_device
*dev
= task
->dev
;
715 struct mvs_device
*mvi_dev
= dev
->lldd_dev
;
716 struct mvs_task_exec_info tei
;
717 struct mvs_slot_info
*slot
;
718 u32 tag
= 0xdeadbeef, n_elem
= 0;
722 struct task_status_struct
*tsm
= &task
->task_status
;
724 tsm
->resp
= SAS_TASK_UNDELIVERED
;
725 tsm
->stat
= SAS_PHY_DOWN
;
727 * libsas will use dev->port, should
728 * not call task_done for sata
730 if (dev
->dev_type
!= SAS_SATA_DEV
)
731 task
->task_done(task
);
735 if (DEV_IS_GONE(mvi_dev
)) {
737 mv_dprintk("device %d not ready.\n",
740 mv_dprintk("device %016llx not ready.\n",
741 SAS_ADDR(dev
->sas_addr
));
746 tei
.port
= dev
->port
->lldd_port
;
747 if (tei
.port
&& !tei
.port
->port_attached
&& !tmf
) {
748 if (sas_protocol_ata(task
->task_proto
)) {
749 struct task_status_struct
*ts
= &task
->task_status
;
750 mv_dprintk("SATA/STP port %d does not attach"
751 "device.\n", dev
->port
->id
);
752 ts
->resp
= SAS_TASK_COMPLETE
;
753 ts
->stat
= SAS_PHY_DOWN
;
755 task
->task_done(task
);
758 struct task_status_struct
*ts
= &task
->task_status
;
759 mv_dprintk("SAS port %d does not attach"
760 "device.\n", dev
->port
->id
);
761 ts
->resp
= SAS_TASK_UNDELIVERED
;
762 ts
->stat
= SAS_PHY_DOWN
;
763 task
->task_done(task
);
768 if (!sas_protocol_ata(task
->task_proto
)) {
769 if (task
->num_scatter
) {
770 n_elem
= dma_map_sg(mvi
->dev
,
780 n_elem
= task
->num_scatter
;
783 rc
= mvs_tag_alloc(mvi
, &tag
);
787 slot
= &mvi
->slot_info
[tag
];
789 task
->lldd_task
= NULL
;
790 slot
->n_elem
= n_elem
;
791 slot
->slot_tag
= tag
;
793 slot
->buf
= pci_pool_alloc(mvi
->dma_pool
, GFP_ATOMIC
, &slot
->buf_dma
);
796 memset(slot
->buf
, 0, MVS_SLOT_BUF_SZ
);
799 tei
.hdr
= &mvi
->slot
[tag
];
802 switch (task
->task_proto
) {
803 case SAS_PROTOCOL_SMP
:
804 rc
= mvs_task_prep_smp(mvi
, &tei
);
806 case SAS_PROTOCOL_SSP
:
807 rc
= mvs_task_prep_ssp(mvi
, &tei
, is_tmf
, tmf
);
809 case SAS_PROTOCOL_SATA
:
810 case SAS_PROTOCOL_STP
:
811 case SAS_PROTOCOL_SATA
| SAS_PROTOCOL_STP
:
812 rc
= mvs_task_prep_ata(mvi
, &tei
);
815 dev_printk(KERN_ERR
, mvi
->dev
,
816 "unknown sas_task proto: 0x%x\n",
823 mv_dprintk("rc is %x\n", rc
);
824 goto err_out_slot_buf
;
827 slot
->port
= tei
.port
;
828 task
->lldd_task
= slot
;
829 list_add_tail(&slot
->entry
, &tei
.port
->list
);
830 spin_lock(&task
->task_state_lock
);
831 task
->task_state_flags
|= SAS_TASK_AT_INITIATOR
;
832 spin_unlock(&task
->task_state_lock
);
834 mvi_dev
->running_req
++;
836 mvi
->tx_prod
= (mvi
->tx_prod
+ 1) & (MVS_CHIP_SLOT_SZ
- 1);
841 pci_pool_free(mvi
->dma_pool
, slot
->buf
, slot
->buf_dma
);
843 mvs_tag_free(mvi
, tag
);
846 dev_printk(KERN_ERR
, mvi
->dev
, "mvsas prep failed[%d]!\n", rc
);
847 if (!sas_protocol_ata(task
->task_proto
))
849 dma_unmap_sg(mvi
->dev
, task
->scatter
, n_elem
,
855 static int mvs_task_exec(struct sas_task
*task
, gfp_t gfp_flags
,
856 struct completion
*completion
, int is_tmf
,
857 struct mvs_tmf_task
*tmf
)
859 struct mvs_info
*mvi
= NULL
;
862 unsigned long flags
= 0;
864 mvi
= ((struct mvs_device
*)task
->dev
->lldd_dev
)->mvi_info
;
866 spin_lock_irqsave(&mvi
->lock
, flags
);
867 rc
= mvs_task_prep(task
, mvi
, is_tmf
, tmf
, &pass
);
869 dev_printk(KERN_ERR
, mvi
->dev
, "mvsas exec failed[%d]!\n", rc
);
872 MVS_CHIP_DISP
->start_delivery(mvi
, (mvi
->tx_prod
- 1) &
873 (MVS_CHIP_SLOT_SZ
- 1));
874 spin_unlock_irqrestore(&mvi
->lock
, flags
);
879 int mvs_queue_command(struct sas_task
*task
, gfp_t gfp_flags
)
881 return mvs_task_exec(task
, gfp_flags
, NULL
, 0, NULL
);
884 static void mvs_slot_free(struct mvs_info
*mvi
, u32 rx_desc
)
886 u32 slot_idx
= rx_desc
& RXQ_SLOT_MASK
;
887 mvs_tag_clear(mvi
, slot_idx
);
890 static void mvs_slot_task_free(struct mvs_info
*mvi
, struct sas_task
*task
,
891 struct mvs_slot_info
*slot
, u32 slot_idx
)
897 if (!sas_protocol_ata(task
->task_proto
))
899 dma_unmap_sg(mvi
->dev
, task
->scatter
,
900 slot
->n_elem
, task
->data_dir
);
902 switch (task
->task_proto
) {
903 case SAS_PROTOCOL_SMP
:
904 dma_unmap_sg(mvi
->dev
, &task
->smp_task
.smp_resp
, 1,
906 dma_unmap_sg(mvi
->dev
, &task
->smp_task
.smp_req
, 1,
910 case SAS_PROTOCOL_SATA
:
911 case SAS_PROTOCOL_STP
:
912 case SAS_PROTOCOL_SSP
:
919 pci_pool_free(mvi
->dma_pool
, slot
->buf
, slot
->buf_dma
);
922 list_del_init(&slot
->entry
);
923 task
->lldd_task
= NULL
;
926 slot
->slot_tag
= 0xFFFFFFFF;
927 mvs_slot_free(mvi
, slot_idx
);
930 static void mvs_update_wideport(struct mvs_info
*mvi
, int phy_no
)
932 struct mvs_phy
*phy
= &mvi
->phy
[phy_no
];
933 struct mvs_port
*port
= phy
->port
;
936 for_each_phy(port
->wide_port_phymap
, j
, no
) {
938 MVS_CHIP_DISP
->write_port_cfg_addr(mvi
, no
,
940 MVS_CHIP_DISP
->write_port_cfg_data(mvi
, no
,
941 port
->wide_port_phymap
);
943 MVS_CHIP_DISP
->write_port_cfg_addr(mvi
, no
,
945 MVS_CHIP_DISP
->write_port_cfg_data(mvi
, no
,
951 static u32
mvs_is_phy_ready(struct mvs_info
*mvi
, int i
)
954 struct mvs_phy
*phy
= &mvi
->phy
[i
];
955 struct mvs_port
*port
= phy
->port
;
957 tmp
= MVS_CHIP_DISP
->read_phy_ctl(mvi
, i
);
958 if ((tmp
& PHY_READY_MASK
) && !(phy
->irq_status
& PHYEV_POOF
)) {
960 phy
->phy_attached
= 1;
965 if (phy
->phy_type
& PORT_TYPE_SAS
) {
966 port
->wide_port_phymap
&= ~(1U << i
);
967 if (!port
->wide_port_phymap
)
968 port
->port_attached
= 0;
969 mvs_update_wideport(mvi
, i
);
970 } else if (phy
->phy_type
& PORT_TYPE_SATA
)
971 port
->port_attached
= 0;
973 phy
->phy_attached
= 0;
974 phy
->phy_type
&= ~(PORT_TYPE_SAS
| PORT_TYPE_SATA
);
979 static void *mvs_get_d2h_reg(struct mvs_info
*mvi
, int i
, void *buf
)
981 u32
*s
= (u32
*) buf
;
986 MVS_CHIP_DISP
->write_port_cfg_addr(mvi
, i
, PHYR_SATA_SIG3
);
987 s
[3] = cpu_to_le32(MVS_CHIP_DISP
->read_port_cfg_data(mvi
, i
));
989 MVS_CHIP_DISP
->write_port_cfg_addr(mvi
, i
, PHYR_SATA_SIG2
);
990 s
[2] = cpu_to_le32(MVS_CHIP_DISP
->read_port_cfg_data(mvi
, i
));
992 MVS_CHIP_DISP
->write_port_cfg_addr(mvi
, i
, PHYR_SATA_SIG1
);
993 s
[1] = cpu_to_le32(MVS_CHIP_DISP
->read_port_cfg_data(mvi
, i
));
995 MVS_CHIP_DISP
->write_port_cfg_addr(mvi
, i
, PHYR_SATA_SIG0
);
996 s
[0] = cpu_to_le32(MVS_CHIP_DISP
->read_port_cfg_data(mvi
, i
));
998 if (((s
[1] & 0x00FFFFFF) == 0x00EB1401) && (*(u8
*)&s
[3] == 0x01))
999 s
[1] = 0x00EB1401 | (*((u8
*)&s
[1] + 3) & 0x10);
1004 static u32
mvs_is_sig_fis_received(u32 irq_status
)
1006 return irq_status
& PHYEV_SIG_FIS
;
1009 static void mvs_sig_remove_timer(struct mvs_phy
*phy
)
1011 if (phy
->timer
.function
)
1012 del_timer(&phy
->timer
);
1013 phy
->timer
.function
= NULL
;
1016 void mvs_update_phyinfo(struct mvs_info
*mvi
, int i
, int get_st
)
1018 struct mvs_phy
*phy
= &mvi
->phy
[i
];
1019 struct sas_identify_frame
*id
;
1021 id
= (struct sas_identify_frame
*)phy
->frame_rcvd
;
1024 phy
->irq_status
= MVS_CHIP_DISP
->read_port_irq_stat(mvi
, i
);
1025 phy
->phy_status
= mvs_is_phy_ready(mvi
, i
);
1028 if (phy
->phy_status
) {
1030 struct asd_sas_phy
*sas_phy
= &mvi
->phy
[i
].sas_phy
;
1032 oob_done
= MVS_CHIP_DISP
->oob_done(mvi
, i
);
1034 MVS_CHIP_DISP
->fix_phy_info(mvi
, i
, id
);
1035 if (phy
->phy_type
& PORT_TYPE_SATA
) {
1036 phy
->identify
.target_port_protocols
= SAS_PROTOCOL_STP
;
1037 if (mvs_is_sig_fis_received(phy
->irq_status
)) {
1038 mvs_sig_remove_timer(phy
);
1039 phy
->phy_attached
= 1;
1040 phy
->att_dev_sas_addr
=
1041 i
+ mvi
->id
* mvi
->chip
->n_phy
;
1043 sas_phy
->oob_mode
= SATA_OOB_MODE
;
1044 phy
->frame_rcvd_size
=
1045 sizeof(struct dev_to_host_fis
);
1046 mvs_get_d2h_reg(mvi
, i
, id
);
1049 dev_printk(KERN_DEBUG
, mvi
->dev
,
1050 "Phy%d : No sig fis\n", i
);
1051 tmp
= MVS_CHIP_DISP
->read_port_irq_mask(mvi
, i
);
1052 MVS_CHIP_DISP
->write_port_irq_mask(mvi
, i
,
1053 tmp
| PHYEV_SIG_FIS
);
1054 phy
->phy_attached
= 0;
1055 phy
->phy_type
&= ~PORT_TYPE_SATA
;
1058 } else if (phy
->phy_type
& PORT_TYPE_SAS
1059 || phy
->att_dev_info
& PORT_SSP_INIT_MASK
) {
1060 phy
->phy_attached
= 1;
1061 phy
->identify
.device_type
=
1062 phy
->att_dev_info
& PORT_DEV_TYPE_MASK
;
1064 if (phy
->identify
.device_type
== SAS_END_DEVICE
)
1065 phy
->identify
.target_port_protocols
=
1067 else if (phy
->identify
.device_type
!= SAS_PHY_UNUSED
)
1068 phy
->identify
.target_port_protocols
=
1071 sas_phy
->oob_mode
= SAS_OOB_MODE
;
1072 phy
->frame_rcvd_size
=
1073 sizeof(struct sas_identify_frame
);
1075 memcpy(sas_phy
->attached_sas_addr
,
1076 &phy
->att_dev_sas_addr
, SAS_ADDR_SIZE
);
1078 if (MVS_CHIP_DISP
->phy_work_around
)
1079 MVS_CHIP_DISP
->phy_work_around(mvi
, i
);
1081 mv_dprintk("phy %d attach dev info is %x\n",
1082 i
+ mvi
->id
* mvi
->chip
->n_phy
, phy
->att_dev_info
);
1083 mv_dprintk("phy %d attach sas addr is %llx\n",
1084 i
+ mvi
->id
* mvi
->chip
->n_phy
, phy
->att_dev_sas_addr
);
1087 MVS_CHIP_DISP
->write_port_irq_stat(mvi
, i
, phy
->irq_status
);
1090 static void mvs_port_notify_formed(struct asd_sas_phy
*sas_phy
, int lock
)
1092 struct sas_ha_struct
*sas_ha
= sas_phy
->ha
;
1093 struct mvs_info
*mvi
= NULL
; int i
= 0, hi
;
1094 struct mvs_phy
*phy
= sas_phy
->lldd_phy
;
1095 struct asd_sas_port
*sas_port
= sas_phy
->port
;
1096 struct mvs_port
*port
;
1097 unsigned long flags
= 0;
1101 while (sas_ha
->sas_phy
[i
]) {
1102 if (sas_ha
->sas_phy
[i
] == sas_phy
)
1106 hi
= i
/((struct mvs_prv_info
*)sas_ha
->lldd_ha
)->n_phy
;
1107 mvi
= ((struct mvs_prv_info
*)sas_ha
->lldd_ha
)->mvi
[hi
];
1108 if (i
>= mvi
->chip
->n_phy
)
1109 port
= &mvi
->port
[i
- mvi
->chip
->n_phy
];
1111 port
= &mvi
->port
[i
];
1113 spin_lock_irqsave(&mvi
->lock
, flags
);
1114 port
->port_attached
= 1;
1116 sas_port
->lldd_port
= port
;
1117 if (phy
->phy_type
& PORT_TYPE_SAS
) {
1118 port
->wide_port_phymap
= sas_port
->phy_mask
;
1119 mv_printk("set wide port phy map %x\n", sas_port
->phy_mask
);
1120 mvs_update_wideport(mvi
, sas_phy
->id
);
1122 /* direct attached SAS device */
1123 if (phy
->att_dev_info
& PORT_SSP_TRGT_MASK
) {
1124 MVS_CHIP_DISP
->write_port_cfg_addr(mvi
, i
, PHYR_PHY_STAT
);
1125 MVS_CHIP_DISP
->write_port_cfg_data(mvi
, i
, 0x04);
1129 spin_unlock_irqrestore(&mvi
->lock
, flags
);
1132 static void mvs_port_notify_deformed(struct asd_sas_phy
*sas_phy
, int lock
)
1134 struct domain_device
*dev
;
1135 struct mvs_phy
*phy
= sas_phy
->lldd_phy
;
1136 struct mvs_info
*mvi
= phy
->mvi
;
1137 struct asd_sas_port
*port
= sas_phy
->port
;
1140 while (phy
!= &mvi
->phy
[phy_no
]) {
1142 if (phy_no
>= MVS_MAX_PHYS
)
1145 list_for_each_entry(dev
, &port
->dev_list
, dev_list_node
)
1146 mvs_do_release_task(phy
->mvi
, phy_no
, dev
);
1151 void mvs_port_formed(struct asd_sas_phy
*sas_phy
)
1153 mvs_port_notify_formed(sas_phy
, 1);
1156 void mvs_port_deformed(struct asd_sas_phy
*sas_phy
)
1158 mvs_port_notify_deformed(sas_phy
, 1);
1161 struct mvs_device
*mvs_alloc_dev(struct mvs_info
*mvi
)
1164 for (dev
= 0; dev
< MVS_MAX_DEVICES
; dev
++) {
1165 if (mvi
->devices
[dev
].dev_type
== SAS_PHY_UNUSED
) {
1166 mvi
->devices
[dev
].device_id
= dev
;
1167 return &mvi
->devices
[dev
];
1171 if (dev
== MVS_MAX_DEVICES
)
1172 mv_printk("max support %d devices, ignore ..\n",
1178 void mvs_free_dev(struct mvs_device
*mvi_dev
)
1180 u32 id
= mvi_dev
->device_id
;
1181 memset(mvi_dev
, 0, sizeof(*mvi_dev
));
1182 mvi_dev
->device_id
= id
;
1183 mvi_dev
->dev_type
= SAS_PHY_UNUSED
;
1184 mvi_dev
->dev_status
= MVS_DEV_NORMAL
;
1185 mvi_dev
->taskfileset
= MVS_ID_NOT_MAPPED
;
1188 int mvs_dev_found_notify(struct domain_device
*dev
, int lock
)
1190 unsigned long flags
= 0;
1192 struct mvs_info
*mvi
= NULL
;
1193 struct domain_device
*parent_dev
= dev
->parent
;
1194 struct mvs_device
*mvi_device
;
1196 mvi
= mvs_find_dev_mvi(dev
);
1199 spin_lock_irqsave(&mvi
->lock
, flags
);
1201 mvi_device
= mvs_alloc_dev(mvi
);
1206 dev
->lldd_dev
= mvi_device
;
1207 mvi_device
->dev_status
= MVS_DEV_NORMAL
;
1208 mvi_device
->dev_type
= dev
->dev_type
;
1209 mvi_device
->mvi_info
= mvi
;
1210 mvi_device
->sas_device
= dev
;
1211 if (parent_dev
&& DEV_IS_EXPANDER(parent_dev
->dev_type
)) {
1213 u8 phy_num
= parent_dev
->ex_dev
.num_phys
;
1215 for (phy_id
= 0; phy_id
< phy_num
; phy_id
++) {
1216 phy
= &parent_dev
->ex_dev
.ex_phy
[phy_id
];
1217 if (SAS_ADDR(phy
->attached_sas_addr
) ==
1218 SAS_ADDR(dev
->sas_addr
)) {
1219 mvi_device
->attached_phy
= phy_id
;
1224 if (phy_id
== phy_num
) {
1225 mv_printk("Error: no attached dev:%016llx"
1227 SAS_ADDR(dev
->sas_addr
),
1228 SAS_ADDR(parent_dev
->sas_addr
));
1235 spin_unlock_irqrestore(&mvi
->lock
, flags
);
1239 int mvs_dev_found(struct domain_device
*dev
)
1241 return mvs_dev_found_notify(dev
, 1);
1244 void mvs_dev_gone_notify(struct domain_device
*dev
)
1246 unsigned long flags
= 0;
1247 struct mvs_device
*mvi_dev
= dev
->lldd_dev
;
1248 struct mvs_info
*mvi
;
1251 mv_dprintk("found dev has gone.\n");
1255 mvi
= mvi_dev
->mvi_info
;
1257 spin_lock_irqsave(&mvi
->lock
, flags
);
1259 mv_dprintk("found dev[%d:%x] is gone.\n",
1260 mvi_dev
->device_id
, mvi_dev
->dev_type
);
1261 mvs_release_task(mvi
, dev
);
1262 mvs_free_reg_set(mvi
, mvi_dev
);
1263 mvs_free_dev(mvi_dev
);
1265 dev
->lldd_dev
= NULL
;
1266 mvi_dev
->sas_device
= NULL
;
1268 spin_unlock_irqrestore(&mvi
->lock
, flags
);
1272 void mvs_dev_gone(struct domain_device
*dev
)
1274 mvs_dev_gone_notify(dev
);
1277 static void mvs_task_done(struct sas_task
*task
)
1279 if (!del_timer(&task
->slow_task
->timer
))
1281 complete(&task
->slow_task
->completion
);
1284 static void mvs_tmf_timedout(unsigned long data
)
1286 struct sas_task
*task
= (struct sas_task
*)data
;
1288 task
->task_state_flags
|= SAS_TASK_STATE_ABORTED
;
1289 complete(&task
->slow_task
->completion
);
1292 #define MVS_TASK_TIMEOUT 20
1293 static int mvs_exec_internal_tmf_task(struct domain_device
*dev
,
1294 void *parameter
, u32 para_len
, struct mvs_tmf_task
*tmf
)
1297 struct sas_task
*task
= NULL
;
1299 for (retry
= 0; retry
< 3; retry
++) {
1300 task
= sas_alloc_slow_task(GFP_KERNEL
);
1305 task
->task_proto
= dev
->tproto
;
1307 memcpy(&task
->ssp_task
, parameter
, para_len
);
1308 task
->task_done
= mvs_task_done
;
1310 task
->slow_task
->timer
.data
= (unsigned long) task
;
1311 task
->slow_task
->timer
.function
= mvs_tmf_timedout
;
1312 task
->slow_task
->timer
.expires
= jiffies
+ MVS_TASK_TIMEOUT
*HZ
;
1313 add_timer(&task
->slow_task
->timer
);
1315 res
= mvs_task_exec(task
, GFP_KERNEL
, NULL
, 1, tmf
);
1318 del_timer(&task
->slow_task
->timer
);
1319 mv_printk("executing internal task failed:%d\n", res
);
1323 wait_for_completion(&task
->slow_task
->completion
);
1324 res
= TMF_RESP_FUNC_FAILED
;
1325 /* Even TMF timed out, return direct. */
1326 if ((task
->task_state_flags
& SAS_TASK_STATE_ABORTED
)) {
1327 if (!(task
->task_state_flags
& SAS_TASK_STATE_DONE
)) {
1328 mv_printk("TMF task[%x] timeout.\n", tmf
->tmf
);
1333 if (task
->task_status
.resp
== SAS_TASK_COMPLETE
&&
1334 task
->task_status
.stat
== SAM_STAT_GOOD
) {
1335 res
= TMF_RESP_FUNC_COMPLETE
;
1339 if (task
->task_status
.resp
== SAS_TASK_COMPLETE
&&
1340 task
->task_status
.stat
== SAS_DATA_UNDERRUN
) {
1341 /* no error, but return the number of bytes of
1343 res
= task
->task_status
.residual
;
1347 if (task
->task_status
.resp
== SAS_TASK_COMPLETE
&&
1348 task
->task_status
.stat
== SAS_DATA_OVERRUN
) {
1349 mv_dprintk("blocked task error.\n");
1353 mv_dprintk(" task to dev %016llx response: 0x%x "
1355 SAS_ADDR(dev
->sas_addr
),
1356 task
->task_status
.resp
,
1357 task
->task_status
.stat
);
1358 sas_free_task(task
);
1364 BUG_ON(retry
== 3 && task
!= NULL
);
1365 sas_free_task(task
);
1369 static int mvs_debug_issue_ssp_tmf(struct domain_device
*dev
,
1370 u8
*lun
, struct mvs_tmf_task
*tmf
)
1372 struct sas_ssp_task ssp_task
;
1373 if (!(dev
->tproto
& SAS_PROTOCOL_SSP
))
1374 return TMF_RESP_FUNC_ESUPP
;
1376 memcpy(ssp_task
.LUN
, lun
, 8);
1378 return mvs_exec_internal_tmf_task(dev
, &ssp_task
,
1379 sizeof(ssp_task
), tmf
);
1383 /* Standard mandates link reset for ATA (type 0)
1384 and hard reset for SSP (type 1) , only for RECOVERY */
1385 static int mvs_debug_I_T_nexus_reset(struct domain_device
*dev
)
1388 struct sas_phy
*phy
= sas_get_local_phy(dev
);
1389 int reset_type
= (dev
->dev_type
== SAS_SATA_DEV
||
1390 (dev
->tproto
& SAS_PROTOCOL_STP
)) ? 0 : 1;
1391 rc
= sas_phy_reset(phy
, reset_type
);
1392 sas_put_local_phy(phy
);
1397 /* mandatory SAM-3 */
1398 int mvs_lu_reset(struct domain_device
*dev
, u8
*lun
)
1400 unsigned long flags
;
1401 int rc
= TMF_RESP_FUNC_FAILED
;
1402 struct mvs_tmf_task tmf_task
;
1403 struct mvs_device
* mvi_dev
= dev
->lldd_dev
;
1404 struct mvs_info
*mvi
= mvi_dev
->mvi_info
;
1406 tmf_task
.tmf
= TMF_LU_RESET
;
1407 mvi_dev
->dev_status
= MVS_DEV_EH
;
1408 rc
= mvs_debug_issue_ssp_tmf(dev
, lun
, &tmf_task
);
1409 if (rc
== TMF_RESP_FUNC_COMPLETE
) {
1410 spin_lock_irqsave(&mvi
->lock
, flags
);
1411 mvs_release_task(mvi
, dev
);
1412 spin_unlock_irqrestore(&mvi
->lock
, flags
);
1414 /* If failed, fall-through I_T_Nexus reset */
1415 mv_printk("%s for device[%x]:rc= %d\n", __func__
,
1416 mvi_dev
->device_id
, rc
);
1420 int mvs_I_T_nexus_reset(struct domain_device
*dev
)
1422 unsigned long flags
;
1423 int rc
= TMF_RESP_FUNC_FAILED
;
1424 struct mvs_device
* mvi_dev
= (struct mvs_device
*)dev
->lldd_dev
;
1425 struct mvs_info
*mvi
= mvi_dev
->mvi_info
;
1427 if (mvi_dev
->dev_status
!= MVS_DEV_EH
)
1428 return TMF_RESP_FUNC_COMPLETE
;
1430 mvi_dev
->dev_status
= MVS_DEV_NORMAL
;
1431 rc
= mvs_debug_I_T_nexus_reset(dev
);
1432 mv_printk("%s for device[%x]:rc= %d\n",
1433 __func__
, mvi_dev
->device_id
, rc
);
1435 spin_lock_irqsave(&mvi
->lock
, flags
);
1436 mvs_release_task(mvi
, dev
);
1437 spin_unlock_irqrestore(&mvi
->lock
, flags
);
1441 /* optional SAM-3 */
1442 int mvs_query_task(struct sas_task
*task
)
1445 struct scsi_lun lun
;
1446 struct mvs_tmf_task tmf_task
;
1447 int rc
= TMF_RESP_FUNC_FAILED
;
1449 if (task
->lldd_task
&& task
->task_proto
& SAS_PROTOCOL_SSP
) {
1450 struct scsi_cmnd
* cmnd
= (struct scsi_cmnd
*)task
->uldd_task
;
1451 struct domain_device
*dev
= task
->dev
;
1452 struct mvs_device
*mvi_dev
= (struct mvs_device
*)dev
->lldd_dev
;
1453 struct mvs_info
*mvi
= mvi_dev
->mvi_info
;
1455 int_to_scsilun(cmnd
->device
->lun
, &lun
);
1456 rc
= mvs_find_tag(mvi
, task
, &tag
);
1458 rc
= TMF_RESP_FUNC_FAILED
;
1462 tmf_task
.tmf
= TMF_QUERY_TASK
;
1463 tmf_task
.tag_of_task_to_be_managed
= cpu_to_le16(tag
);
1465 rc
= mvs_debug_issue_ssp_tmf(dev
, lun
.scsi_lun
, &tmf_task
);
1467 /* The task is still in Lun, release it then */
1468 case TMF_RESP_FUNC_SUCC
:
1469 /* The task is not in Lun or failed, reset the phy */
1470 case TMF_RESP_FUNC_FAILED
:
1471 case TMF_RESP_FUNC_COMPLETE
:
1475 mv_printk("%s:rc= %d\n", __func__
, rc
);
1479 /* mandatory SAM-3, still need free task/slot info */
1480 int mvs_abort_task(struct sas_task
*task
)
1482 struct scsi_lun lun
;
1483 struct mvs_tmf_task tmf_task
;
1484 struct domain_device
*dev
= task
->dev
;
1485 struct mvs_device
*mvi_dev
= (struct mvs_device
*)dev
->lldd_dev
;
1486 struct mvs_info
*mvi
;
1487 int rc
= TMF_RESP_FUNC_FAILED
;
1488 unsigned long flags
;
1492 mv_printk("Device has removed\n");
1493 return TMF_RESP_FUNC_FAILED
;
1496 mvi
= mvi_dev
->mvi_info
;
1498 spin_lock_irqsave(&task
->task_state_lock
, flags
);
1499 if (task
->task_state_flags
& SAS_TASK_STATE_DONE
) {
1500 spin_unlock_irqrestore(&task
->task_state_lock
, flags
);
1501 rc
= TMF_RESP_FUNC_COMPLETE
;
1504 spin_unlock_irqrestore(&task
->task_state_lock
, flags
);
1505 mvi_dev
->dev_status
= MVS_DEV_EH
;
1506 if (task
->lldd_task
&& task
->task_proto
& SAS_PROTOCOL_SSP
) {
1507 struct scsi_cmnd
* cmnd
= (struct scsi_cmnd
*)task
->uldd_task
;
1509 int_to_scsilun(cmnd
->device
->lun
, &lun
);
1510 rc
= mvs_find_tag(mvi
, task
, &tag
);
1512 mv_printk("No such tag in %s\n", __func__
);
1513 rc
= TMF_RESP_FUNC_FAILED
;
1517 tmf_task
.tmf
= TMF_ABORT_TASK
;
1518 tmf_task
.tag_of_task_to_be_managed
= cpu_to_le16(tag
);
1520 rc
= mvs_debug_issue_ssp_tmf(dev
, lun
.scsi_lun
, &tmf_task
);
1522 /* if successful, clear the task and callback forwards.*/
1523 if (rc
== TMF_RESP_FUNC_COMPLETE
) {
1525 struct mvs_slot_info
*slot
;
1527 if (task
->lldd_task
) {
1528 slot
= task
->lldd_task
;
1529 slot_no
= (u32
) (slot
- mvi
->slot_info
);
1530 spin_lock_irqsave(&mvi
->lock
, flags
);
1531 mvs_slot_complete(mvi
, slot_no
, 1);
1532 spin_unlock_irqrestore(&mvi
->lock
, flags
);
1536 } else if (task
->task_proto
& SAS_PROTOCOL_SATA
||
1537 task
->task_proto
& SAS_PROTOCOL_STP
) {
1538 if (SAS_SATA_DEV
== dev
->dev_type
) {
1539 struct mvs_slot_info
*slot
= task
->lldd_task
;
1540 u32 slot_idx
= (u32
)(slot
- mvi
->slot_info
);
1541 mv_dprintk("mvs_abort_task() mvi=%p task=%p "
1542 "slot=%p slot_idx=x%x\n",
1543 mvi
, task
, slot
, slot_idx
);
1544 task
->task_state_flags
|= SAS_TASK_STATE_ABORTED
;
1545 mvs_slot_task_free(mvi
, task
, slot
, slot_idx
);
1546 rc
= TMF_RESP_FUNC_COMPLETE
;
1552 if (rc
!= TMF_RESP_FUNC_COMPLETE
)
1553 mv_printk("%s:rc= %d\n", __func__
, rc
);
1557 int mvs_abort_task_set(struct domain_device
*dev
, u8
*lun
)
1559 int rc
= TMF_RESP_FUNC_FAILED
;
1560 struct mvs_tmf_task tmf_task
;
1562 tmf_task
.tmf
= TMF_ABORT_TASK_SET
;
1563 rc
= mvs_debug_issue_ssp_tmf(dev
, lun
, &tmf_task
);
1568 int mvs_clear_aca(struct domain_device
*dev
, u8
*lun
)
1570 int rc
= TMF_RESP_FUNC_FAILED
;
1571 struct mvs_tmf_task tmf_task
;
1573 tmf_task
.tmf
= TMF_CLEAR_ACA
;
1574 rc
= mvs_debug_issue_ssp_tmf(dev
, lun
, &tmf_task
);
1579 int mvs_clear_task_set(struct domain_device
*dev
, u8
*lun
)
1581 int rc
= TMF_RESP_FUNC_FAILED
;
1582 struct mvs_tmf_task tmf_task
;
1584 tmf_task
.tmf
= TMF_CLEAR_TASK_SET
;
1585 rc
= mvs_debug_issue_ssp_tmf(dev
, lun
, &tmf_task
);
1590 static int mvs_sata_done(struct mvs_info
*mvi
, struct sas_task
*task
,
1591 u32 slot_idx
, int err
)
1593 struct mvs_device
*mvi_dev
= task
->dev
->lldd_dev
;
1594 struct task_status_struct
*tstat
= &task
->task_status
;
1595 struct ata_task_resp
*resp
= (struct ata_task_resp
*)tstat
->buf
;
1596 int stat
= SAM_STAT_GOOD
;
1599 resp
->frame_len
= sizeof(struct dev_to_host_fis
);
1600 memcpy(&resp
->ending_fis
[0],
1601 SATA_RECEIVED_D2H_FIS(mvi_dev
->taskfileset
),
1602 sizeof(struct dev_to_host_fis
));
1603 tstat
->buf_valid_size
= sizeof(*resp
);
1604 if (unlikely(err
)) {
1605 if (unlikely(err
& CMD_ISS_STPD
))
1606 stat
= SAS_OPEN_REJECT
;
1608 stat
= SAS_PROTO_RESPONSE
;
1614 void mvs_set_sense(u8
*buffer
, int len
, int d_sense
,
1615 int key
, int asc
, int ascq
)
1617 memset(buffer
, 0, len
);
1620 /* Descriptor format */
1622 mv_printk("Length %d of sense buffer too small to "
1623 "fit sense %x:%x:%x", len
, key
, asc
, ascq
);
1626 buffer
[0] = 0x72; /* Response Code */
1628 buffer
[1] = key
; /* Sense Key */
1630 buffer
[2] = asc
; /* ASC */
1632 buffer
[3] = ascq
; /* ASCQ */
1635 mv_printk("Length %d of sense buffer too small to "
1636 "fit sense %x:%x:%x", len
, key
, asc
, ascq
);
1639 buffer
[0] = 0x70; /* Response Code */
1641 buffer
[2] = key
; /* Sense Key */
1643 buffer
[7] = 0x0a; /* Additional Sense Length */
1645 buffer
[12] = asc
; /* ASC */
1647 buffer
[13] = ascq
; /* ASCQ */
1653 void mvs_fill_ssp_resp_iu(struct ssp_response_iu
*iu
,
1654 u8 key
, u8 asc
, u8 asc_q
)
1657 iu
->response_data_len
= 0;
1658 iu
->sense_data_len
= 17;
1660 mvs_set_sense(iu
->sense_data
, 17, 0,
1664 static int mvs_slot_err(struct mvs_info
*mvi
, struct sas_task
*task
,
1667 struct mvs_slot_info
*slot
= &mvi
->slot_info
[slot_idx
];
1669 u32 err_dw0
= le32_to_cpu(*(u32
*)slot
->response
);
1670 u32 err_dw1
= le32_to_cpu(*((u32
*)slot
->response
+ 1));
1672 enum mvs_port_type type
= PORT_TYPE_SAS
;
1674 if (err_dw0
& CMD_ISS_STPD
)
1675 MVS_CHIP_DISP
->issue_stop(mvi
, type
, tfs
);
1677 MVS_CHIP_DISP
->command_active(mvi
, slot_idx
);
1679 stat
= SAM_STAT_CHECK_CONDITION
;
1680 switch (task
->task_proto
) {
1681 case SAS_PROTOCOL_SSP
:
1683 stat
= SAS_ABORTED_TASK
;
1684 if ((err_dw0
& NO_DEST
) || err_dw1
& bit(31)) {
1685 struct ssp_response_iu
*iu
= slot
->response
+
1686 sizeof(struct mvs_err_info
);
1687 mvs_fill_ssp_resp_iu(iu
, NOT_READY
, 0x04, 01);
1688 sas_ssp_task_response(mvi
->dev
, task
, iu
);
1689 stat
= SAM_STAT_CHECK_CONDITION
;
1691 if (err_dw1
& bit(31))
1692 mv_printk("reuse same slot, retry command.\n");
1695 case SAS_PROTOCOL_SMP
:
1696 stat
= SAM_STAT_CHECK_CONDITION
;
1699 case SAS_PROTOCOL_SATA
:
1700 case SAS_PROTOCOL_STP
:
1701 case SAS_PROTOCOL_SATA
| SAS_PROTOCOL_STP
:
1703 task
->ata_task
.use_ncq
= 0;
1704 stat
= SAS_PROTO_RESPONSE
;
1705 mvs_sata_done(mvi
, task
, slot_idx
, err_dw0
);
1715 int mvs_slot_complete(struct mvs_info
*mvi
, u32 rx_desc
, u32 flags
)
1717 u32 slot_idx
= rx_desc
& RXQ_SLOT_MASK
;
1718 struct mvs_slot_info
*slot
= &mvi
->slot_info
[slot_idx
];
1719 struct sas_task
*task
= slot
->task
;
1720 struct mvs_device
*mvi_dev
= NULL
;
1721 struct task_status_struct
*tstat
;
1722 struct domain_device
*dev
;
1726 enum exec_status sts
;
1728 if (unlikely(!task
|| !task
->lldd_task
|| !task
->dev
))
1731 tstat
= &task
->task_status
;
1733 mvi_dev
= dev
->lldd_dev
;
1735 spin_lock(&task
->task_state_lock
);
1736 task
->task_state_flags
&=
1737 ~(SAS_TASK_STATE_PENDING
| SAS_TASK_AT_INITIATOR
);
1738 task
->task_state_flags
|= SAS_TASK_STATE_DONE
;
1740 aborted
= task
->task_state_flags
& SAS_TASK_STATE_ABORTED
;
1741 spin_unlock(&task
->task_state_lock
);
1743 memset(tstat
, 0, sizeof(*tstat
));
1744 tstat
->resp
= SAS_TASK_COMPLETE
;
1746 if (unlikely(aborted
)) {
1747 tstat
->stat
= SAS_ABORTED_TASK
;
1748 if (mvi_dev
&& mvi_dev
->running_req
)
1749 mvi_dev
->running_req
--;
1750 if (sas_protocol_ata(task
->task_proto
))
1751 mvs_free_reg_set(mvi
, mvi_dev
);
1753 mvs_slot_task_free(mvi
, task
, slot
, slot_idx
);
1757 /* when no device attaching, go ahead and complete by error handling*/
1758 if (unlikely(!mvi_dev
|| flags
)) {
1760 mv_dprintk("port has not device.\n");
1761 tstat
->stat
= SAS_PHY_DOWN
;
1766 * error info record present; slot->response is 32 bit aligned but may
1767 * not be 64 bit aligned, so check for zero in two 32 bit reads
1769 if (unlikely((rx_desc
& RXQ_ERR
)
1770 && (*((u32
*)slot
->response
)
1771 || *(((u32
*)slot
->response
) + 1)))) {
1772 mv_dprintk("port %d slot %d rx_desc %X has error info"
1773 "%016llX.\n", slot
->port
->sas_port
.id
, slot_idx
,
1774 rx_desc
, get_unaligned_le64(slot
->response
));
1775 tstat
->stat
= mvs_slot_err(mvi
, task
, slot_idx
);
1776 tstat
->resp
= SAS_TASK_COMPLETE
;
1780 switch (task
->task_proto
) {
1781 case SAS_PROTOCOL_SSP
:
1782 /* hw says status == 0, datapres == 0 */
1783 if (rx_desc
& RXQ_GOOD
) {
1784 tstat
->stat
= SAM_STAT_GOOD
;
1785 tstat
->resp
= SAS_TASK_COMPLETE
;
1787 /* response frame present */
1788 else if (rx_desc
& RXQ_RSP
) {
1789 struct ssp_response_iu
*iu
= slot
->response
+
1790 sizeof(struct mvs_err_info
);
1791 sas_ssp_task_response(mvi
->dev
, task
, iu
);
1793 tstat
->stat
= SAM_STAT_CHECK_CONDITION
;
1796 case SAS_PROTOCOL_SMP
: {
1797 struct scatterlist
*sg_resp
= &task
->smp_task
.smp_resp
;
1798 tstat
->stat
= SAM_STAT_GOOD
;
1799 to
= kmap_atomic(sg_page(sg_resp
));
1800 memcpy(to
+ sg_resp
->offset
,
1801 slot
->response
+ sizeof(struct mvs_err_info
),
1802 sg_dma_len(sg_resp
));
1807 case SAS_PROTOCOL_SATA
:
1808 case SAS_PROTOCOL_STP
:
1809 case SAS_PROTOCOL_SATA
| SAS_PROTOCOL_STP
: {
1810 tstat
->stat
= mvs_sata_done(mvi
, task
, slot_idx
, 0);
1815 tstat
->stat
= SAM_STAT_CHECK_CONDITION
;
1818 if (!slot
->port
->port_attached
) {
1819 mv_dprintk("port %d has removed.\n", slot
->port
->sas_port
.id
);
1820 tstat
->stat
= SAS_PHY_DOWN
;
1825 if (mvi_dev
&& mvi_dev
->running_req
) {
1826 mvi_dev
->running_req
--;
1827 if (sas_protocol_ata(task
->task_proto
) && !mvi_dev
->running_req
)
1828 mvs_free_reg_set(mvi
, mvi_dev
);
1830 mvs_slot_task_free(mvi
, task
, slot
, slot_idx
);
1833 spin_unlock(&mvi
->lock
);
1834 if (task
->task_done
)
1835 task
->task_done(task
);
1837 spin_lock(&mvi
->lock
);
1842 void mvs_do_release_task(struct mvs_info
*mvi
,
1843 int phy_no
, struct domain_device
*dev
)
1846 struct mvs_phy
*phy
;
1847 struct mvs_port
*port
;
1848 struct mvs_slot_info
*slot
, *slot2
;
1850 phy
= &mvi
->phy
[phy_no
];
1854 /* clean cmpl queue in case request is already finished */
1855 mvs_int_rx(mvi
, false);
1859 list_for_each_entry_safe(slot
, slot2
, &port
->list
, entry
) {
1860 struct sas_task
*task
;
1861 slot_idx
= (u32
) (slot
- mvi
->slot_info
);
1864 if (dev
&& task
->dev
!= dev
)
1867 mv_printk("Release slot [%x] tag[%x], task [%p]:\n",
1868 slot_idx
, slot
->slot_tag
, task
);
1869 MVS_CHIP_DISP
->command_active(mvi
, slot_idx
);
1871 mvs_slot_complete(mvi
, slot_idx
, 1);
1875 void mvs_release_task(struct mvs_info
*mvi
,
1876 struct domain_device
*dev
)
1878 int i
, phyno
[WIDE_PORT_MAX_PHY
], num
;
1879 num
= mvs_find_dev_phyno(dev
, phyno
);
1880 for (i
= 0; i
< num
; i
++)
1881 mvs_do_release_task(mvi
, phyno
[i
], dev
);
1884 static void mvs_phy_disconnected(struct mvs_phy
*phy
)
1886 phy
->phy_attached
= 0;
1887 phy
->att_dev_info
= 0;
1888 phy
->att_dev_sas_addr
= 0;
1891 static void mvs_work_queue(struct work_struct
*work
)
1893 struct delayed_work
*dw
= container_of(work
, struct delayed_work
, work
);
1894 struct mvs_wq
*mwq
= container_of(dw
, struct mvs_wq
, work_q
);
1895 struct mvs_info
*mvi
= mwq
->mvi
;
1896 unsigned long flags
;
1897 u32 phy_no
= (unsigned long) mwq
->data
;
1898 struct sas_ha_struct
*sas_ha
= mvi
->sas
;
1899 struct mvs_phy
*phy
= &mvi
->phy
[phy_no
];
1900 struct asd_sas_phy
*sas_phy
= &phy
->sas_phy
;
1902 spin_lock_irqsave(&mvi
->lock
, flags
);
1903 if (mwq
->handler
& PHY_PLUG_EVENT
) {
1905 if (phy
->phy_event
& PHY_PLUG_OUT
) {
1907 struct sas_identify_frame
*id
;
1908 id
= (struct sas_identify_frame
*)phy
->frame_rcvd
;
1909 tmp
= MVS_CHIP_DISP
->read_phy_ctl(mvi
, phy_no
);
1910 phy
->phy_event
&= ~PHY_PLUG_OUT
;
1911 if (!(tmp
& PHY_READY_MASK
)) {
1912 sas_phy_disconnected(sas_phy
);
1913 mvs_phy_disconnected(phy
);
1914 sas_ha
->notify_phy_event(sas_phy
,
1915 PHYE_LOSS_OF_SIGNAL
);
1916 mv_dprintk("phy%d Removed Device\n", phy_no
);
1918 MVS_CHIP_DISP
->detect_porttype(mvi
, phy_no
);
1919 mvs_update_phyinfo(mvi
, phy_no
, 1);
1920 mvs_bytes_dmaed(mvi
, phy_no
);
1921 mvs_port_notify_formed(sas_phy
, 0);
1922 mv_dprintk("phy%d Attached Device\n", phy_no
);
1925 } else if (mwq
->handler
& EXP_BRCT_CHG
) {
1926 phy
->phy_event
&= ~EXP_BRCT_CHG
;
1927 sas_ha
->notify_port_event(sas_phy
,
1928 PORTE_BROADCAST_RCVD
);
1929 mv_dprintk("phy%d Got Broadcast Change\n", phy_no
);
1931 list_del(&mwq
->entry
);
1932 spin_unlock_irqrestore(&mvi
->lock
, flags
);
1936 static int mvs_handle_event(struct mvs_info
*mvi
, void *data
, int handler
)
1941 mwq
= kmalloc(sizeof(struct mvs_wq
), GFP_ATOMIC
);
1945 mwq
->handler
= handler
;
1946 MV_INIT_DELAYED_WORK(&mwq
->work_q
, mvs_work_queue
, mwq
);
1947 list_add_tail(&mwq
->entry
, &mvi
->wq_list
);
1948 schedule_delayed_work(&mwq
->work_q
, HZ
* 2);
1955 static void mvs_sig_time_out(unsigned long tphy
)
1957 struct mvs_phy
*phy
= (struct mvs_phy
*)tphy
;
1958 struct mvs_info
*mvi
= phy
->mvi
;
1961 for (phy_no
= 0; phy_no
< mvi
->chip
->n_phy
; phy_no
++) {
1962 if (&mvi
->phy
[phy_no
] == phy
) {
1963 mv_dprintk("Get signature time out, reset phy %d\n",
1964 phy_no
+mvi
->id
*mvi
->chip
->n_phy
);
1965 MVS_CHIP_DISP
->phy_reset(mvi
, phy_no
, MVS_HARD_RESET
);
1970 void mvs_int_port(struct mvs_info
*mvi
, int phy_no
, u32 events
)
1973 struct mvs_phy
*phy
= &mvi
->phy
[phy_no
];
1975 phy
->irq_status
= MVS_CHIP_DISP
->read_port_irq_stat(mvi
, phy_no
);
1976 MVS_CHIP_DISP
->write_port_irq_stat(mvi
, phy_no
, phy
->irq_status
);
1977 mv_dprintk("phy %d ctrl sts=0x%08X.\n", phy_no
+mvi
->id
*mvi
->chip
->n_phy
,
1978 MVS_CHIP_DISP
->read_phy_ctl(mvi
, phy_no
));
1979 mv_dprintk("phy %d irq sts = 0x%08X\n", phy_no
+mvi
->id
*mvi
->chip
->n_phy
,
1983 * events is port event now ,
1984 * we need check the interrupt status which belongs to per port.
1987 if (phy
->irq_status
& PHYEV_DCDR_ERR
) {
1988 mv_dprintk("phy %d STP decoding error.\n",
1989 phy_no
+ mvi
->id
*mvi
->chip
->n_phy
);
1992 if (phy
->irq_status
& PHYEV_POOF
) {
1994 if (!(phy
->phy_event
& PHY_PLUG_OUT
)) {
1995 int dev_sata
= phy
->phy_type
& PORT_TYPE_SATA
;
1997 mvs_do_release_task(mvi
, phy_no
, NULL
);
1998 phy
->phy_event
|= PHY_PLUG_OUT
;
1999 MVS_CHIP_DISP
->clear_srs_irq(mvi
, 0, 1);
2000 mvs_handle_event(mvi
,
2001 (void *)(unsigned long)phy_no
,
2003 ready
= mvs_is_phy_ready(mvi
, phy_no
);
2004 if (ready
|| dev_sata
) {
2005 if (MVS_CHIP_DISP
->stp_reset
)
2006 MVS_CHIP_DISP
->stp_reset(mvi
,
2009 MVS_CHIP_DISP
->phy_reset(mvi
,
2010 phy_no
, MVS_SOFT_RESET
);
2016 if (phy
->irq_status
& PHYEV_COMWAKE
) {
2017 tmp
= MVS_CHIP_DISP
->read_port_irq_mask(mvi
, phy_no
);
2018 MVS_CHIP_DISP
->write_port_irq_mask(mvi
, phy_no
,
2019 tmp
| PHYEV_SIG_FIS
);
2020 if (phy
->timer
.function
== NULL
) {
2021 phy
->timer
.data
= (unsigned long)phy
;
2022 phy
->timer
.function
= mvs_sig_time_out
;
2023 phy
->timer
.expires
= jiffies
+ 5*HZ
;
2024 add_timer(&phy
->timer
);
2027 if (phy
->irq_status
& (PHYEV_SIG_FIS
| PHYEV_ID_DONE
)) {
2028 phy
->phy_status
= mvs_is_phy_ready(mvi
, phy_no
);
2029 mv_dprintk("notify plug in on phy[%d]\n", phy_no
);
2030 if (phy
->phy_status
) {
2032 MVS_CHIP_DISP
->detect_porttype(mvi
, phy_no
);
2033 if (phy
->phy_type
& PORT_TYPE_SATA
) {
2034 tmp
= MVS_CHIP_DISP
->read_port_irq_mask(
2036 tmp
&= ~PHYEV_SIG_FIS
;
2037 MVS_CHIP_DISP
->write_port_irq_mask(mvi
,
2040 mvs_update_phyinfo(mvi
, phy_no
, 0);
2041 if (phy
->phy_type
& PORT_TYPE_SAS
) {
2042 MVS_CHIP_DISP
->phy_reset(mvi
, phy_no
, MVS_PHY_TUNE
);
2046 mvs_bytes_dmaed(mvi
, phy_no
);
2047 /* whether driver is going to handle hot plug */
2048 if (phy
->phy_event
& PHY_PLUG_OUT
) {
2049 mvs_port_notify_formed(&phy
->sas_phy
, 0);
2050 phy
->phy_event
&= ~PHY_PLUG_OUT
;
2053 mv_dprintk("plugin interrupt but phy%d is gone\n",
2054 phy_no
+ mvi
->id
*mvi
->chip
->n_phy
);
2056 } else if (phy
->irq_status
& PHYEV_BROAD_CH
) {
2057 mv_dprintk("phy %d broadcast change.\n",
2058 phy_no
+ mvi
->id
*mvi
->chip
->n_phy
);
2059 mvs_handle_event(mvi
, (void *)(unsigned long)phy_no
,
2064 int mvs_int_rx(struct mvs_info
*mvi
, bool self_clear
)
2066 u32 rx_prod_idx
, rx_desc
;
2069 /* the first dword in the RX ring is special: it contains
2070 * a mirror of the hardware's RX producer index, so that
2071 * we don't have to stall the CPU reading that register.
2072 * The actual RX ring is offset by one dword, due to this.
2074 rx_prod_idx
= mvi
->rx_cons
;
2075 mvi
->rx_cons
= le32_to_cpu(mvi
->rx
[0]);
2076 if (mvi
->rx_cons
== 0xfff) /* h/w hasn't touched RX ring yet */
2079 /* The CMPL_Q may come late, read from register and try again
2080 * note: if coalescing is enabled,
2081 * it will need to read from register every time for sure
2083 if (unlikely(mvi
->rx_cons
== rx_prod_idx
))
2084 mvi
->rx_cons
= MVS_CHIP_DISP
->rx_update(mvi
) & RX_RING_SZ_MASK
;
2086 if (mvi
->rx_cons
== rx_prod_idx
)
2089 while (mvi
->rx_cons
!= rx_prod_idx
) {
2090 /* increment our internal RX consumer pointer */
2091 rx_prod_idx
= (rx_prod_idx
+ 1) & (MVS_RX_RING_SZ
- 1);
2092 rx_desc
= le32_to_cpu(mvi
->rx
[rx_prod_idx
+ 1]);
2094 if (likely(rx_desc
& RXQ_DONE
))
2095 mvs_slot_complete(mvi
, rx_desc
, 0);
2096 if (rx_desc
& RXQ_ATTN
) {
2098 } else if (rx_desc
& RXQ_ERR
) {
2099 if (!(rx_desc
& RXQ_DONE
))
2100 mvs_slot_complete(mvi
, rx_desc
, 0);
2101 } else if (rx_desc
& RXQ_SLOT_RESET
) {
2102 mvs_slot_free(mvi
, rx_desc
);
2106 if (attn
&& self_clear
)
2107 MVS_CHIP_DISP
->int_full(mvi
);
2111 int mvs_gpio_write(struct sas_ha_struct
*sha
, u8 reg_type
, u8 reg_index
,
2112 u8 reg_count
, u8
*write_data
)
2114 struct mvs_prv_info
*mvs_prv
= sha
->lldd_ha
;
2115 struct mvs_info
*mvi
= mvs_prv
->mvi
[0];
2117 if (MVS_CHIP_DISP
->gpio_write
) {
2118 return MVS_CHIP_DISP
->gpio_write(mvs_prv
, reg_type
,
2119 reg_index
, reg_count
, write_data
);