ovl: factor out ovl_get_index_fh() helper
[linux/fpc-iii.git] / arch / s390 / kernel / smp.c
blobb8c1a85bcf2de75eccba0b5b86eb2870bd4b71b6
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SMP related functions
5 * Copyright IBM Corp. 1999, 2012
6 * Author(s): Denis Joseph Barrow,
7 * Martin Schwidefsky <schwidefsky@de.ibm.com>,
8 * Heiko Carstens <heiko.carstens@de.ibm.com>,
10 * based on other smp stuff by
11 * (c) 1995 Alan Cox, CymruNET Ltd <alan@cymru.net>
12 * (c) 1998 Ingo Molnar
14 * The code outside of smp.c uses logical cpu numbers, only smp.c does
15 * the translation of logical to physical cpu ids. All new code that
16 * operates on physical cpu numbers needs to go into smp.c.
19 #define KMSG_COMPONENT "cpu"
20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
22 #include <linux/workqueue.h>
23 #include <linux/bootmem.h>
24 #include <linux/export.h>
25 #include <linux/init.h>
26 #include <linux/mm.h>
27 #include <linux/err.h>
28 #include <linux/spinlock.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/kmemleak.h>
31 #include <linux/delay.h>
32 #include <linux/interrupt.h>
33 #include <linux/irqflags.h>
34 #include <linux/cpu.h>
35 #include <linux/slab.h>
36 #include <linux/sched/hotplug.h>
37 #include <linux/sched/task_stack.h>
38 #include <linux/crash_dump.h>
39 #include <linux/memblock.h>
40 #include <linux/kprobes.h>
41 #include <asm/asm-offsets.h>
42 #include <asm/diag.h>
43 #include <asm/switch_to.h>
44 #include <asm/facility.h>
45 #include <asm/ipl.h>
46 #include <asm/setup.h>
47 #include <asm/irq.h>
48 #include <asm/tlbflush.h>
49 #include <asm/vtimer.h>
50 #include <asm/lowcore.h>
51 #include <asm/sclp.h>
52 #include <asm/vdso.h>
53 #include <asm/debug.h>
54 #include <asm/os_info.h>
55 #include <asm/sigp.h>
56 #include <asm/idle.h>
57 #include <asm/nmi.h>
58 #include <asm/topology.h>
59 #include "entry.h"
61 enum {
62 ec_schedule = 0,
63 ec_call_function_single,
64 ec_stop_cpu,
67 enum {
68 CPU_STATE_STANDBY,
69 CPU_STATE_CONFIGURED,
72 static DEFINE_PER_CPU(struct cpu *, cpu_device);
74 struct pcpu {
75 struct lowcore *lowcore; /* lowcore page(s) for the cpu */
76 unsigned long ec_mask; /* bit mask for ec_xxx functions */
77 unsigned long ec_clk; /* sigp timestamp for ec_xxx */
78 signed char state; /* physical cpu state */
79 signed char polarization; /* physical polarization */
80 u16 address; /* physical cpu address */
83 static u8 boot_core_type;
84 static struct pcpu pcpu_devices[NR_CPUS];
86 unsigned int smp_cpu_mt_shift;
87 EXPORT_SYMBOL(smp_cpu_mt_shift);
89 unsigned int smp_cpu_mtid;
90 EXPORT_SYMBOL(smp_cpu_mtid);
92 #ifdef CONFIG_CRASH_DUMP
93 __vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
94 #endif
96 static unsigned int smp_max_threads __initdata = -1U;
98 static int __init early_nosmt(char *s)
100 smp_max_threads = 1;
101 return 0;
103 early_param("nosmt", early_nosmt);
105 static int __init early_smt(char *s)
107 get_option(&s, &smp_max_threads);
108 return 0;
110 early_param("smt", early_smt);
113 * The smp_cpu_state_mutex must be held when changing the state or polarization
114 * member of a pcpu data structure within the pcpu_devices arreay.
116 DEFINE_MUTEX(smp_cpu_state_mutex);
119 * Signal processor helper functions.
121 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
123 int cc;
125 while (1) {
126 cc = __pcpu_sigp(addr, order, parm, NULL);
127 if (cc != SIGP_CC_BUSY)
128 return cc;
129 cpu_relax();
133 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
135 int cc, retry;
137 for (retry = 0; ; retry++) {
138 cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
139 if (cc != SIGP_CC_BUSY)
140 break;
141 if (retry >= 3)
142 udelay(10);
144 return cc;
147 static inline int pcpu_stopped(struct pcpu *pcpu)
149 u32 uninitialized_var(status);
151 if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
152 0, &status) != SIGP_CC_STATUS_STORED)
153 return 0;
154 return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
157 static inline int pcpu_running(struct pcpu *pcpu)
159 if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
160 0, NULL) != SIGP_CC_STATUS_STORED)
161 return 1;
162 /* Status stored condition code is equivalent to cpu not running. */
163 return 0;
167 * Find struct pcpu by cpu address.
169 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
171 int cpu;
173 for_each_cpu(cpu, mask)
174 if (pcpu_devices[cpu].address == address)
175 return pcpu_devices + cpu;
176 return NULL;
179 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
181 int order;
183 if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
184 return;
185 order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
186 pcpu->ec_clk = get_tod_clock_fast();
187 pcpu_sigp_retry(pcpu, order, 0);
190 #define ASYNC_FRAME_OFFSET (ASYNC_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
191 #define PANIC_FRAME_OFFSET (PAGE_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
193 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
195 unsigned long async_stack, panic_stack;
196 struct lowcore *lc;
198 if (pcpu != &pcpu_devices[0]) {
199 pcpu->lowcore = (struct lowcore *)
200 __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
201 async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
202 panic_stack = __get_free_page(GFP_KERNEL);
203 if (!pcpu->lowcore || !panic_stack || !async_stack)
204 goto out;
205 } else {
206 async_stack = pcpu->lowcore->async_stack - ASYNC_FRAME_OFFSET;
207 panic_stack = pcpu->lowcore->panic_stack - PANIC_FRAME_OFFSET;
209 lc = pcpu->lowcore;
210 memcpy(lc, &S390_lowcore, 512);
211 memset((char *) lc + 512, 0, sizeof(*lc) - 512);
212 lc->async_stack = async_stack + ASYNC_FRAME_OFFSET;
213 lc->panic_stack = panic_stack + PANIC_FRAME_OFFSET;
214 lc->cpu_nr = cpu;
215 lc->spinlock_lockval = arch_spin_lockval(cpu);
216 lc->spinlock_index = 0;
217 if (nmi_alloc_per_cpu(lc))
218 goto out;
219 if (vdso_alloc_per_cpu(lc))
220 goto out_mcesa;
221 lowcore_ptr[cpu] = lc;
222 pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
223 return 0;
225 out_mcesa:
226 nmi_free_per_cpu(lc);
227 out:
228 if (pcpu != &pcpu_devices[0]) {
229 free_page(panic_stack);
230 free_pages(async_stack, ASYNC_ORDER);
231 free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
233 return -ENOMEM;
236 #ifdef CONFIG_HOTPLUG_CPU
238 static void pcpu_free_lowcore(struct pcpu *pcpu)
240 pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
241 lowcore_ptr[pcpu - pcpu_devices] = NULL;
242 vdso_free_per_cpu(pcpu->lowcore);
243 nmi_free_per_cpu(pcpu->lowcore);
244 if (pcpu == &pcpu_devices[0])
245 return;
246 free_page(pcpu->lowcore->panic_stack-PANIC_FRAME_OFFSET);
247 free_pages(pcpu->lowcore->async_stack-ASYNC_FRAME_OFFSET, ASYNC_ORDER);
248 free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
251 #endif /* CONFIG_HOTPLUG_CPU */
253 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
255 struct lowcore *lc = pcpu->lowcore;
257 cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
258 cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
259 lc->cpu_nr = cpu;
260 lc->spinlock_lockval = arch_spin_lockval(cpu);
261 lc->spinlock_index = 0;
262 lc->percpu_offset = __per_cpu_offset[cpu];
263 lc->kernel_asce = S390_lowcore.kernel_asce;
264 lc->machine_flags = S390_lowcore.machine_flags;
265 lc->user_timer = lc->system_timer = lc->steal_timer = 0;
266 __ctl_store(lc->cregs_save_area, 0, 15);
267 save_access_regs((unsigned int *) lc->access_regs_save_area);
268 memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
269 MAX_FACILITY_BIT/8);
270 arch_spin_lock_setup(cpu);
273 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
275 struct lowcore *lc = pcpu->lowcore;
277 lc->kernel_stack = (unsigned long) task_stack_page(tsk)
278 + THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
279 lc->current_task = (unsigned long) tsk;
280 lc->lpp = LPP_MAGIC;
281 lc->current_pid = tsk->pid;
282 lc->user_timer = tsk->thread.user_timer;
283 lc->guest_timer = tsk->thread.guest_timer;
284 lc->system_timer = tsk->thread.system_timer;
285 lc->hardirq_timer = tsk->thread.hardirq_timer;
286 lc->softirq_timer = tsk->thread.softirq_timer;
287 lc->steal_timer = 0;
290 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
292 struct lowcore *lc = pcpu->lowcore;
294 lc->restart_stack = lc->kernel_stack;
295 lc->restart_fn = (unsigned long) func;
296 lc->restart_data = (unsigned long) data;
297 lc->restart_source = -1UL;
298 pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
302 * Call function via PSW restart on pcpu and stop the current cpu.
304 static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *),
305 void *data, unsigned long stack)
307 struct lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
308 unsigned long source_cpu = stap();
310 __load_psw_mask(PSW_KERNEL_BITS);
311 if (pcpu->address == source_cpu)
312 func(data); /* should not return */
313 /* Stop target cpu (if func returns this stops the current cpu). */
314 pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
315 /* Restart func on the target cpu and stop the current cpu. */
316 mem_assign_absolute(lc->restart_stack, stack);
317 mem_assign_absolute(lc->restart_fn, (unsigned long) func);
318 mem_assign_absolute(lc->restart_data, (unsigned long) data);
319 mem_assign_absolute(lc->restart_source, source_cpu);
320 asm volatile(
321 "0: sigp 0,%0,%2 # sigp restart to target cpu\n"
322 " brc 2,0b # busy, try again\n"
323 "1: sigp 0,%1,%3 # sigp stop to current cpu\n"
324 " brc 2,1b # busy, try again\n"
325 : : "d" (pcpu->address), "d" (source_cpu),
326 "K" (SIGP_RESTART), "K" (SIGP_STOP)
327 : "0", "1", "cc");
328 for (;;) ;
332 * Enable additional logical cpus for multi-threading.
334 static int pcpu_set_smt(unsigned int mtid)
336 int cc;
338 if (smp_cpu_mtid == mtid)
339 return 0;
340 cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
341 if (cc == 0) {
342 smp_cpu_mtid = mtid;
343 smp_cpu_mt_shift = 0;
344 while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
345 smp_cpu_mt_shift++;
346 pcpu_devices[0].address = stap();
348 return cc;
352 * Call function on an online CPU.
354 void smp_call_online_cpu(void (*func)(void *), void *data)
356 struct pcpu *pcpu;
358 /* Use the current cpu if it is online. */
359 pcpu = pcpu_find_address(cpu_online_mask, stap());
360 if (!pcpu)
361 /* Use the first online cpu. */
362 pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
363 pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
367 * Call function on the ipl CPU.
369 void smp_call_ipl_cpu(void (*func)(void *), void *data)
371 pcpu_delegate(&pcpu_devices[0], func, data,
372 pcpu_devices->lowcore->panic_stack -
373 PANIC_FRAME_OFFSET + PAGE_SIZE);
376 int smp_find_processor_id(u16 address)
378 int cpu;
380 for_each_present_cpu(cpu)
381 if (pcpu_devices[cpu].address == address)
382 return cpu;
383 return -1;
386 bool arch_vcpu_is_preempted(int cpu)
388 if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
389 return false;
390 if (pcpu_running(pcpu_devices + cpu))
391 return false;
392 return true;
394 EXPORT_SYMBOL(arch_vcpu_is_preempted);
396 void smp_yield_cpu(int cpu)
398 if (MACHINE_HAS_DIAG9C) {
399 diag_stat_inc_norecursion(DIAG_STAT_X09C);
400 asm volatile("diag %0,0,0x9c"
401 : : "d" (pcpu_devices[cpu].address));
402 } else if (MACHINE_HAS_DIAG44) {
403 diag_stat_inc_norecursion(DIAG_STAT_X044);
404 asm volatile("diag 0,0,0x44");
409 * Send cpus emergency shutdown signal. This gives the cpus the
410 * opportunity to complete outstanding interrupts.
412 void notrace smp_emergency_stop(void)
414 cpumask_t cpumask;
415 u64 end;
416 int cpu;
418 cpumask_copy(&cpumask, cpu_online_mask);
419 cpumask_clear_cpu(smp_processor_id(), &cpumask);
421 end = get_tod_clock() + (1000000UL << 12);
422 for_each_cpu(cpu, &cpumask) {
423 struct pcpu *pcpu = pcpu_devices + cpu;
424 set_bit(ec_stop_cpu, &pcpu->ec_mask);
425 while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
426 0, NULL) == SIGP_CC_BUSY &&
427 get_tod_clock() < end)
428 cpu_relax();
430 while (get_tod_clock() < end) {
431 for_each_cpu(cpu, &cpumask)
432 if (pcpu_stopped(pcpu_devices + cpu))
433 cpumask_clear_cpu(cpu, &cpumask);
434 if (cpumask_empty(&cpumask))
435 break;
436 cpu_relax();
439 NOKPROBE_SYMBOL(smp_emergency_stop);
442 * Stop all cpus but the current one.
444 void smp_send_stop(void)
446 int cpu;
448 /* Disable all interrupts/machine checks */
449 __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
450 trace_hardirqs_off();
452 debug_set_critical();
454 if (oops_in_progress)
455 smp_emergency_stop();
457 /* stop all processors */
458 for_each_online_cpu(cpu) {
459 if (cpu == smp_processor_id())
460 continue;
461 pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0);
462 while (!pcpu_stopped(pcpu_devices + cpu))
463 cpu_relax();
468 * This is the main routine where commands issued by other
469 * cpus are handled.
471 static void smp_handle_ext_call(void)
473 unsigned long bits;
475 /* handle bit signal external calls */
476 bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
477 if (test_bit(ec_stop_cpu, &bits))
478 smp_stop_cpu();
479 if (test_bit(ec_schedule, &bits))
480 scheduler_ipi();
481 if (test_bit(ec_call_function_single, &bits))
482 generic_smp_call_function_single_interrupt();
485 static void do_ext_call_interrupt(struct ext_code ext_code,
486 unsigned int param32, unsigned long param64)
488 inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
489 smp_handle_ext_call();
492 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
494 int cpu;
496 for_each_cpu(cpu, mask)
497 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
500 void arch_send_call_function_single_ipi(int cpu)
502 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
506 * this function sends a 'reschedule' IPI to another CPU.
507 * it goes straight through and wastes no time serializing
508 * anything. Worst case is that we lose a reschedule ...
510 void smp_send_reschedule(int cpu)
512 pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
516 * parameter area for the set/clear control bit callbacks
518 struct ec_creg_mask_parms {
519 unsigned long orval;
520 unsigned long andval;
521 int cr;
525 * callback for setting/clearing control bits
527 static void smp_ctl_bit_callback(void *info)
529 struct ec_creg_mask_parms *pp = info;
530 unsigned long cregs[16];
532 __ctl_store(cregs, 0, 15);
533 cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
534 __ctl_load(cregs, 0, 15);
538 * Set a bit in a control register of all cpus
540 void smp_ctl_set_bit(int cr, int bit)
542 struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
544 on_each_cpu(smp_ctl_bit_callback, &parms, 1);
546 EXPORT_SYMBOL(smp_ctl_set_bit);
549 * Clear a bit in a control register of all cpus
551 void smp_ctl_clear_bit(int cr, int bit)
553 struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
555 on_each_cpu(smp_ctl_bit_callback, &parms, 1);
557 EXPORT_SYMBOL(smp_ctl_clear_bit);
559 #ifdef CONFIG_CRASH_DUMP
561 int smp_store_status(int cpu)
563 struct pcpu *pcpu = pcpu_devices + cpu;
564 unsigned long pa;
566 pa = __pa(&pcpu->lowcore->floating_pt_save_area);
567 if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
568 pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
569 return -EIO;
570 if (!MACHINE_HAS_VX && !MACHINE_HAS_GS)
571 return 0;
572 pa = __pa(pcpu->lowcore->mcesad & MCESA_ORIGIN_MASK);
573 if (MACHINE_HAS_GS)
574 pa |= pcpu->lowcore->mcesad & MCESA_LC_MASK;
575 if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
576 pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
577 return -EIO;
578 return 0;
582 * Collect CPU state of the previous, crashed system.
583 * There are four cases:
584 * 1) standard zfcp dump
585 * condition: OLDMEM_BASE == NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
586 * The state for all CPUs except the boot CPU needs to be collected
587 * with sigp stop-and-store-status. The boot CPU state is located in
588 * the absolute lowcore of the memory stored in the HSA. The zcore code
589 * will copy the boot CPU state from the HSA.
590 * 2) stand-alone kdump for SCSI (zfcp dump with swapped memory)
591 * condition: OLDMEM_BASE != NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
592 * The state for all CPUs except the boot CPU needs to be collected
593 * with sigp stop-and-store-status. The firmware or the boot-loader
594 * stored the registers of the boot CPU in the absolute lowcore in the
595 * memory of the old system.
596 * 3) kdump and the old kernel did not store the CPU state,
597 * or stand-alone kdump for DASD
598 * condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
599 * The state for all CPUs except the boot CPU needs to be collected
600 * with sigp stop-and-store-status. The kexec code or the boot-loader
601 * stored the registers of the boot CPU in the memory of the old system.
602 * 4) kdump and the old kernel stored the CPU state
603 * condition: OLDMEM_BASE != NULL && is_kdump_kernel()
604 * This case does not exist for s390 anymore, setup_arch explicitly
605 * deactivates the elfcorehdr= kernel parameter
607 static __init void smp_save_cpu_vxrs(struct save_area *sa, u16 addr,
608 bool is_boot_cpu, unsigned long page)
610 __vector128 *vxrs = (__vector128 *) page;
612 if (is_boot_cpu)
613 vxrs = boot_cpu_vector_save_area;
614 else
615 __pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, page);
616 save_area_add_vxrs(sa, vxrs);
619 static __init void smp_save_cpu_regs(struct save_area *sa, u16 addr,
620 bool is_boot_cpu, unsigned long page)
622 void *regs = (void *) page;
624 if (is_boot_cpu)
625 copy_oldmem_kernel(regs, (void *) __LC_FPREGS_SAVE_AREA, 512);
626 else
627 __pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, page);
628 save_area_add_regs(sa, regs);
631 void __init smp_save_dump_cpus(void)
633 int addr, boot_cpu_addr, max_cpu_addr;
634 struct save_area *sa;
635 unsigned long page;
636 bool is_boot_cpu;
638 if (!(OLDMEM_BASE || ipl_info.type == IPL_TYPE_FCP_DUMP))
639 /* No previous system present, normal boot. */
640 return;
641 /* Allocate a page as dumping area for the store status sigps */
642 page = memblock_alloc_base(PAGE_SIZE, PAGE_SIZE, 1UL << 31);
643 /* Set multi-threading state to the previous system. */
644 pcpu_set_smt(sclp.mtid_prev);
645 boot_cpu_addr = stap();
646 max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
647 for (addr = 0; addr <= max_cpu_addr; addr++) {
648 if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
649 SIGP_CC_NOT_OPERATIONAL)
650 continue;
651 is_boot_cpu = (addr == boot_cpu_addr);
652 /* Allocate save area */
653 sa = save_area_alloc(is_boot_cpu);
654 if (!sa)
655 panic("could not allocate memory for save area\n");
656 if (MACHINE_HAS_VX)
657 /* Get the vector registers */
658 smp_save_cpu_vxrs(sa, addr, is_boot_cpu, page);
660 * For a zfcp dump OLDMEM_BASE == NULL and the registers
661 * of the boot CPU are stored in the HSA. To retrieve
662 * these registers an SCLP request is required which is
663 * done by drivers/s390/char/zcore.c:init_cpu_info()
665 if (!is_boot_cpu || OLDMEM_BASE)
666 /* Get the CPU registers */
667 smp_save_cpu_regs(sa, addr, is_boot_cpu, page);
669 memblock_free(page, PAGE_SIZE);
670 diag308_reset();
671 pcpu_set_smt(0);
673 #endif /* CONFIG_CRASH_DUMP */
675 void smp_cpu_set_polarization(int cpu, int val)
677 pcpu_devices[cpu].polarization = val;
680 int smp_cpu_get_polarization(int cpu)
682 return pcpu_devices[cpu].polarization;
685 static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
687 static int use_sigp_detection;
688 int address;
690 if (use_sigp_detection || sclp_get_core_info(info, early)) {
691 use_sigp_detection = 1;
692 for (address = 0;
693 address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
694 address += (1U << smp_cpu_mt_shift)) {
695 if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
696 SIGP_CC_NOT_OPERATIONAL)
697 continue;
698 info->core[info->configured].core_id =
699 address >> smp_cpu_mt_shift;
700 info->configured++;
702 info->combined = info->configured;
706 static int smp_add_present_cpu(int cpu);
708 static int __smp_rescan_cpus(struct sclp_core_info *info, int sysfs_add)
710 struct pcpu *pcpu;
711 cpumask_t avail;
712 int cpu, nr, i, j;
713 u16 address;
715 nr = 0;
716 cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
717 cpu = cpumask_first(&avail);
718 for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) {
719 if (sclp.has_core_type && info->core[i].type != boot_core_type)
720 continue;
721 address = info->core[i].core_id << smp_cpu_mt_shift;
722 for (j = 0; j <= smp_cpu_mtid; j++) {
723 if (pcpu_find_address(cpu_present_mask, address + j))
724 continue;
725 pcpu = pcpu_devices + cpu;
726 pcpu->address = address + j;
727 pcpu->state =
728 (cpu >= info->configured*(smp_cpu_mtid + 1)) ?
729 CPU_STATE_STANDBY : CPU_STATE_CONFIGURED;
730 smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
731 set_cpu_present(cpu, true);
732 if (sysfs_add && smp_add_present_cpu(cpu) != 0)
733 set_cpu_present(cpu, false);
734 else
735 nr++;
736 cpu = cpumask_next(cpu, &avail);
737 if (cpu >= nr_cpu_ids)
738 break;
741 return nr;
744 void __init smp_detect_cpus(void)
746 unsigned int cpu, mtid, c_cpus, s_cpus;
747 struct sclp_core_info *info;
748 u16 address;
750 /* Get CPU information */
751 info = memblock_virt_alloc(sizeof(*info), 8);
752 smp_get_core_info(info, 1);
753 /* Find boot CPU type */
754 if (sclp.has_core_type) {
755 address = stap();
756 for (cpu = 0; cpu < info->combined; cpu++)
757 if (info->core[cpu].core_id == address) {
758 /* The boot cpu dictates the cpu type. */
759 boot_core_type = info->core[cpu].type;
760 break;
762 if (cpu >= info->combined)
763 panic("Could not find boot CPU type");
766 /* Set multi-threading state for the current system */
767 mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
768 mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
769 pcpu_set_smt(mtid);
771 /* Print number of CPUs */
772 c_cpus = s_cpus = 0;
773 for (cpu = 0; cpu < info->combined; cpu++) {
774 if (sclp.has_core_type &&
775 info->core[cpu].type != boot_core_type)
776 continue;
777 if (cpu < info->configured)
778 c_cpus += smp_cpu_mtid + 1;
779 else
780 s_cpus += smp_cpu_mtid + 1;
782 pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
784 /* Add CPUs present at boot */
785 get_online_cpus();
786 __smp_rescan_cpus(info, 0);
787 put_online_cpus();
788 memblock_free_early((unsigned long)info, sizeof(*info));
792 * Activate a secondary processor.
794 static void smp_start_secondary(void *cpuvoid)
796 int cpu = smp_processor_id();
798 S390_lowcore.last_update_clock = get_tod_clock();
799 S390_lowcore.restart_stack = (unsigned long) restart_stack;
800 S390_lowcore.restart_fn = (unsigned long) do_restart;
801 S390_lowcore.restart_data = 0;
802 S390_lowcore.restart_source = -1UL;
803 restore_access_regs(S390_lowcore.access_regs_save_area);
804 __ctl_load(S390_lowcore.cregs_save_area, 0, 15);
805 __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
806 cpu_init();
807 preempt_disable();
808 init_cpu_timer();
809 vtime_init();
810 pfault_init();
811 notify_cpu_starting(cpu);
812 if (topology_cpu_dedicated(cpu))
813 set_cpu_flag(CIF_DEDICATED_CPU);
814 else
815 clear_cpu_flag(CIF_DEDICATED_CPU);
816 set_cpu_online(cpu, true);
817 inc_irq_stat(CPU_RST);
818 local_irq_enable();
819 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
822 /* Upping and downing of CPUs */
823 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
825 struct pcpu *pcpu;
826 int base, i, rc;
828 pcpu = pcpu_devices + cpu;
829 if (pcpu->state != CPU_STATE_CONFIGURED)
830 return -EIO;
831 base = smp_get_base_cpu(cpu);
832 for (i = 0; i <= smp_cpu_mtid; i++) {
833 if (base + i < nr_cpu_ids)
834 if (cpu_online(base + i))
835 break;
838 * If this is the first CPU of the core to get online
839 * do an initial CPU reset.
841 if (i > smp_cpu_mtid &&
842 pcpu_sigp_retry(pcpu_devices + base, SIGP_INITIAL_CPU_RESET, 0) !=
843 SIGP_CC_ORDER_CODE_ACCEPTED)
844 return -EIO;
846 rc = pcpu_alloc_lowcore(pcpu, cpu);
847 if (rc)
848 return rc;
849 pcpu_prepare_secondary(pcpu, cpu);
850 pcpu_attach_task(pcpu, tidle);
851 pcpu_start_fn(pcpu, smp_start_secondary, NULL);
852 /* Wait until cpu puts itself in the online & active maps */
853 while (!cpu_online(cpu))
854 cpu_relax();
855 return 0;
858 static unsigned int setup_possible_cpus __initdata;
860 static int __init _setup_possible_cpus(char *s)
862 get_option(&s, &setup_possible_cpus);
863 return 0;
865 early_param("possible_cpus", _setup_possible_cpus);
867 #ifdef CONFIG_HOTPLUG_CPU
869 int __cpu_disable(void)
871 unsigned long cregs[16];
873 /* Handle possible pending IPIs */
874 smp_handle_ext_call();
875 set_cpu_online(smp_processor_id(), false);
876 /* Disable pseudo page faults on this cpu. */
877 pfault_fini();
878 /* Disable interrupt sources via control register. */
879 __ctl_store(cregs, 0, 15);
880 cregs[0] &= ~0x0000ee70UL; /* disable all external interrupts */
881 cregs[6] &= ~0xff000000UL; /* disable all I/O interrupts */
882 cregs[14] &= ~0x1f000000UL; /* disable most machine checks */
883 __ctl_load(cregs, 0, 15);
884 clear_cpu_flag(CIF_NOHZ_DELAY);
885 return 0;
888 void __cpu_die(unsigned int cpu)
890 struct pcpu *pcpu;
892 /* Wait until target cpu is down */
893 pcpu = pcpu_devices + cpu;
894 while (!pcpu_stopped(pcpu))
895 cpu_relax();
896 pcpu_free_lowcore(pcpu);
897 cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
898 cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
901 void __noreturn cpu_die(void)
903 idle_task_exit();
904 pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
905 for (;;) ;
908 #endif /* CONFIG_HOTPLUG_CPU */
910 void __init smp_fill_possible_mask(void)
912 unsigned int possible, sclp_max, cpu;
914 sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
915 sclp_max = min(smp_max_threads, sclp_max);
916 sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
917 possible = setup_possible_cpus ?: nr_cpu_ids;
918 possible = min(possible, sclp_max);
919 for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
920 set_cpu_possible(cpu, true);
923 void __init smp_prepare_cpus(unsigned int max_cpus)
925 /* request the 0x1201 emergency signal external interrupt */
926 if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
927 panic("Couldn't request external interrupt 0x1201");
928 /* request the 0x1202 external call external interrupt */
929 if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
930 panic("Couldn't request external interrupt 0x1202");
933 void __init smp_prepare_boot_cpu(void)
935 struct pcpu *pcpu = pcpu_devices;
937 WARN_ON(!cpu_present(0) || !cpu_online(0));
938 pcpu->state = CPU_STATE_CONFIGURED;
939 pcpu->lowcore = (struct lowcore *)(unsigned long) store_prefix();
940 S390_lowcore.percpu_offset = __per_cpu_offset[0];
941 smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
944 void __init smp_cpus_done(unsigned int max_cpus)
948 void __init smp_setup_processor_id(void)
950 pcpu_devices[0].address = stap();
951 S390_lowcore.cpu_nr = 0;
952 S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
953 S390_lowcore.spinlock_index = 0;
957 * the frequency of the profiling timer can be changed
958 * by writing a multiplier value into /proc/profile.
960 * usually you want to run this on all CPUs ;)
962 int setup_profiling_timer(unsigned int multiplier)
964 return 0;
967 #ifdef CONFIG_HOTPLUG_CPU
968 static ssize_t cpu_configure_show(struct device *dev,
969 struct device_attribute *attr, char *buf)
971 ssize_t count;
973 mutex_lock(&smp_cpu_state_mutex);
974 count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
975 mutex_unlock(&smp_cpu_state_mutex);
976 return count;
979 static ssize_t cpu_configure_store(struct device *dev,
980 struct device_attribute *attr,
981 const char *buf, size_t count)
983 struct pcpu *pcpu;
984 int cpu, val, rc, i;
985 char delim;
987 if (sscanf(buf, "%d %c", &val, &delim) != 1)
988 return -EINVAL;
989 if (val != 0 && val != 1)
990 return -EINVAL;
991 get_online_cpus();
992 mutex_lock(&smp_cpu_state_mutex);
993 rc = -EBUSY;
994 /* disallow configuration changes of online cpus and cpu 0 */
995 cpu = dev->id;
996 cpu = smp_get_base_cpu(cpu);
997 if (cpu == 0)
998 goto out;
999 for (i = 0; i <= smp_cpu_mtid; i++)
1000 if (cpu_online(cpu + i))
1001 goto out;
1002 pcpu = pcpu_devices + cpu;
1003 rc = 0;
1004 switch (val) {
1005 case 0:
1006 if (pcpu->state != CPU_STATE_CONFIGURED)
1007 break;
1008 rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1009 if (rc)
1010 break;
1011 for (i = 0; i <= smp_cpu_mtid; i++) {
1012 if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1013 continue;
1014 pcpu[i].state = CPU_STATE_STANDBY;
1015 smp_cpu_set_polarization(cpu + i,
1016 POLARIZATION_UNKNOWN);
1018 topology_expect_change();
1019 break;
1020 case 1:
1021 if (pcpu->state != CPU_STATE_STANDBY)
1022 break;
1023 rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1024 if (rc)
1025 break;
1026 for (i = 0; i <= smp_cpu_mtid; i++) {
1027 if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1028 continue;
1029 pcpu[i].state = CPU_STATE_CONFIGURED;
1030 smp_cpu_set_polarization(cpu + i,
1031 POLARIZATION_UNKNOWN);
1033 topology_expect_change();
1034 break;
1035 default:
1036 break;
1038 out:
1039 mutex_unlock(&smp_cpu_state_mutex);
1040 put_online_cpus();
1041 return rc ? rc : count;
1043 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1044 #endif /* CONFIG_HOTPLUG_CPU */
1046 static ssize_t show_cpu_address(struct device *dev,
1047 struct device_attribute *attr, char *buf)
1049 return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1051 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1053 static struct attribute *cpu_common_attrs[] = {
1054 #ifdef CONFIG_HOTPLUG_CPU
1055 &dev_attr_configure.attr,
1056 #endif
1057 &dev_attr_address.attr,
1058 NULL,
1061 static struct attribute_group cpu_common_attr_group = {
1062 .attrs = cpu_common_attrs,
1065 static struct attribute *cpu_online_attrs[] = {
1066 &dev_attr_idle_count.attr,
1067 &dev_attr_idle_time_us.attr,
1068 NULL,
1071 static struct attribute_group cpu_online_attr_group = {
1072 .attrs = cpu_online_attrs,
1075 static int smp_cpu_online(unsigned int cpu)
1077 struct device *s = &per_cpu(cpu_device, cpu)->dev;
1079 return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1081 static int smp_cpu_pre_down(unsigned int cpu)
1083 struct device *s = &per_cpu(cpu_device, cpu)->dev;
1085 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1086 return 0;
1089 static int smp_add_present_cpu(int cpu)
1091 struct device *s;
1092 struct cpu *c;
1093 int rc;
1095 c = kzalloc(sizeof(*c), GFP_KERNEL);
1096 if (!c)
1097 return -ENOMEM;
1098 per_cpu(cpu_device, cpu) = c;
1099 s = &c->dev;
1100 c->hotpluggable = 1;
1101 rc = register_cpu(c, cpu);
1102 if (rc)
1103 goto out;
1104 rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1105 if (rc)
1106 goto out_cpu;
1107 rc = topology_cpu_init(c);
1108 if (rc)
1109 goto out_topology;
1110 return 0;
1112 out_topology:
1113 sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1114 out_cpu:
1115 #ifdef CONFIG_HOTPLUG_CPU
1116 unregister_cpu(c);
1117 #endif
1118 out:
1119 return rc;
1122 #ifdef CONFIG_HOTPLUG_CPU
1124 int __ref smp_rescan_cpus(void)
1126 struct sclp_core_info *info;
1127 int nr;
1129 info = kzalloc(sizeof(*info), GFP_KERNEL);
1130 if (!info)
1131 return -ENOMEM;
1132 smp_get_core_info(info, 0);
1133 get_online_cpus();
1134 mutex_lock(&smp_cpu_state_mutex);
1135 nr = __smp_rescan_cpus(info, 1);
1136 mutex_unlock(&smp_cpu_state_mutex);
1137 put_online_cpus();
1138 kfree(info);
1139 if (nr)
1140 topology_schedule_update();
1141 return 0;
1144 static ssize_t __ref rescan_store(struct device *dev,
1145 struct device_attribute *attr,
1146 const char *buf,
1147 size_t count)
1149 int rc;
1151 rc = smp_rescan_cpus();
1152 return rc ? rc : count;
1154 static DEVICE_ATTR(rescan, 0200, NULL, rescan_store);
1155 #endif /* CONFIG_HOTPLUG_CPU */
1157 static int __init s390_smp_init(void)
1159 int cpu, rc = 0;
1161 #ifdef CONFIG_HOTPLUG_CPU
1162 rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1163 if (rc)
1164 return rc;
1165 #endif
1166 for_each_present_cpu(cpu) {
1167 rc = smp_add_present_cpu(cpu);
1168 if (rc)
1169 goto out;
1172 rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1173 smp_cpu_online, smp_cpu_pre_down);
1174 rc = rc <= 0 ? rc : 0;
1175 out:
1176 return rc;
1178 subsys_initcall(s390_smp_init);