vfs: avoid non-forwarding large load after small store in path lookup
[linux/fpc-iii.git] / fs / namei.c
blob2be5120b81b3c06512c032fd4f20ed4a0c57cc36
1 /*
2 * linux/fs/namei.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * Some corrections by tytso.
9 */
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
40 #include "internal.h"
41 #include "mount.h"
43 /* [Feb-1997 T. Schoebel-Theuer]
44 * Fundamental changes in the pathname lookup mechanisms (namei)
45 * were necessary because of omirr. The reason is that omirr needs
46 * to know the _real_ pathname, not the user-supplied one, in case
47 * of symlinks (and also when transname replacements occur).
49 * The new code replaces the old recursive symlink resolution with
50 * an iterative one (in case of non-nested symlink chains). It does
51 * this with calls to <fs>_follow_link().
52 * As a side effect, dir_namei(), _namei() and follow_link() are now
53 * replaced with a single function lookup_dentry() that can handle all
54 * the special cases of the former code.
56 * With the new dcache, the pathname is stored at each inode, at least as
57 * long as the refcount of the inode is positive. As a side effect, the
58 * size of the dcache depends on the inode cache and thus is dynamic.
60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61 * resolution to correspond with current state of the code.
63 * Note that the symlink resolution is not *completely* iterative.
64 * There is still a significant amount of tail- and mid- recursion in
65 * the algorithm. Also, note that <fs>_readlink() is not used in
66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67 * may return different results than <fs>_follow_link(). Many virtual
68 * filesystems (including /proc) exhibit this behavior.
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73 * and the name already exists in form of a symlink, try to create the new
74 * name indicated by the symlink. The old code always complained that the
75 * name already exists, due to not following the symlink even if its target
76 * is nonexistent. The new semantics affects also mknod() and link() when
77 * the name is a symlink pointing to a non-existent name.
79 * I don't know which semantics is the right one, since I have no access
80 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82 * "old" one. Personally, I think the new semantics is much more logical.
83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84 * file does succeed in both HP-UX and SunOs, but not in Solaris
85 * and in the old Linux semantics.
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89 * semantics. See the comments in "open_namei" and "do_link" below.
91 * [10-Sep-98 Alan Modra] Another symlink change.
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95 * inside the path - always follow.
96 * in the last component in creation/removal/renaming - never follow.
97 * if LOOKUP_FOLLOW passed - follow.
98 * if the pathname has trailing slashes - follow.
99 * otherwise - don't follow.
100 * (applied in that order).
102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104 * During the 2.4 we need to fix the userland stuff depending on it -
105 * hopefully we will be able to get rid of that wart in 2.5. So far only
106 * XEmacs seems to be relying on it...
109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
111 * any extra contention...
114 /* In order to reduce some races, while at the same time doing additional
115 * checking and hopefully speeding things up, we copy filenames to the
116 * kernel data space before using them..
118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119 * PATH_MAX includes the nul terminator --RR.
121 void final_putname(struct filename *name)
123 if (name->separate) {
124 __putname(name->name);
125 kfree(name);
126 } else {
127 __putname(name);
131 #define EMBEDDED_NAME_MAX (PATH_MAX - sizeof(struct filename))
133 static struct filename *
134 getname_flags(const char __user *filename, int flags, int *empty)
136 struct filename *result, *err;
137 int len;
138 long max;
139 char *kname;
141 result = audit_reusename(filename);
142 if (result)
143 return result;
145 result = __getname();
146 if (unlikely(!result))
147 return ERR_PTR(-ENOMEM);
150 * First, try to embed the struct filename inside the names_cache
151 * allocation
153 kname = (char *)result + sizeof(*result);
154 result->name = kname;
155 result->separate = false;
156 max = EMBEDDED_NAME_MAX;
158 recopy:
159 len = strncpy_from_user(kname, filename, max);
160 if (unlikely(len < 0)) {
161 err = ERR_PTR(len);
162 goto error;
166 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
167 * separate struct filename so we can dedicate the entire
168 * names_cache allocation for the pathname, and re-do the copy from
169 * userland.
171 if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) {
172 kname = (char *)result;
174 result = kzalloc(sizeof(*result), GFP_KERNEL);
175 if (!result) {
176 err = ERR_PTR(-ENOMEM);
177 result = (struct filename *)kname;
178 goto error;
180 result->name = kname;
181 result->separate = true;
182 max = PATH_MAX;
183 goto recopy;
186 /* The empty path is special. */
187 if (unlikely(!len)) {
188 if (empty)
189 *empty = 1;
190 err = ERR_PTR(-ENOENT);
191 if (!(flags & LOOKUP_EMPTY))
192 goto error;
195 err = ERR_PTR(-ENAMETOOLONG);
196 if (unlikely(len >= PATH_MAX))
197 goto error;
199 result->uptr = filename;
200 result->aname = NULL;
201 audit_getname(result);
202 return result;
204 error:
205 final_putname(result);
206 return err;
209 struct filename *
210 getname(const char __user * filename)
212 return getname_flags(filename, 0, NULL);
216 * The "getname_kernel()" interface doesn't do pathnames longer
217 * than EMBEDDED_NAME_MAX. Deal with it - you're a kernel user.
219 struct filename *
220 getname_kernel(const char * filename)
222 struct filename *result;
223 char *kname;
224 int len;
226 len = strlen(filename);
227 if (len >= EMBEDDED_NAME_MAX)
228 return ERR_PTR(-ENAMETOOLONG);
230 result = __getname();
231 if (unlikely(!result))
232 return ERR_PTR(-ENOMEM);
234 kname = (char *)result + sizeof(*result);
235 result->name = kname;
236 result->uptr = NULL;
237 result->aname = NULL;
238 result->separate = false;
240 strlcpy(kname, filename, EMBEDDED_NAME_MAX);
241 return result;
244 #ifdef CONFIG_AUDITSYSCALL
245 void putname(struct filename *name)
247 if (unlikely(!audit_dummy_context()))
248 return audit_putname(name);
249 final_putname(name);
251 #endif
253 static int check_acl(struct inode *inode, int mask)
255 #ifdef CONFIG_FS_POSIX_ACL
256 struct posix_acl *acl;
258 if (mask & MAY_NOT_BLOCK) {
259 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
260 if (!acl)
261 return -EAGAIN;
262 /* no ->get_acl() calls in RCU mode... */
263 if (acl == ACL_NOT_CACHED)
264 return -ECHILD;
265 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
268 acl = get_acl(inode, ACL_TYPE_ACCESS);
269 if (IS_ERR(acl))
270 return PTR_ERR(acl);
271 if (acl) {
272 int error = posix_acl_permission(inode, acl, mask);
273 posix_acl_release(acl);
274 return error;
276 #endif
278 return -EAGAIN;
282 * This does the basic permission checking
284 static int acl_permission_check(struct inode *inode, int mask)
286 unsigned int mode = inode->i_mode;
288 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
289 mode >>= 6;
290 else {
291 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
292 int error = check_acl(inode, mask);
293 if (error != -EAGAIN)
294 return error;
297 if (in_group_p(inode->i_gid))
298 mode >>= 3;
302 * If the DACs are ok we don't need any capability check.
304 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
305 return 0;
306 return -EACCES;
310 * generic_permission - check for access rights on a Posix-like filesystem
311 * @inode: inode to check access rights for
312 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
314 * Used to check for read/write/execute permissions on a file.
315 * We use "fsuid" for this, letting us set arbitrary permissions
316 * for filesystem access without changing the "normal" uids which
317 * are used for other things.
319 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
320 * request cannot be satisfied (eg. requires blocking or too much complexity).
321 * It would then be called again in ref-walk mode.
323 int generic_permission(struct inode *inode, int mask)
325 int ret;
328 * Do the basic permission checks.
330 ret = acl_permission_check(inode, mask);
331 if (ret != -EACCES)
332 return ret;
334 if (S_ISDIR(inode->i_mode)) {
335 /* DACs are overridable for directories */
336 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
337 return 0;
338 if (!(mask & MAY_WRITE))
339 if (capable_wrt_inode_uidgid(inode,
340 CAP_DAC_READ_SEARCH))
341 return 0;
342 return -EACCES;
345 * Read/write DACs are always overridable.
346 * Executable DACs are overridable when there is
347 * at least one exec bit set.
349 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
350 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
351 return 0;
354 * Searching includes executable on directories, else just read.
356 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
357 if (mask == MAY_READ)
358 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
359 return 0;
361 return -EACCES;
363 EXPORT_SYMBOL(generic_permission);
366 * We _really_ want to just do "generic_permission()" without
367 * even looking at the inode->i_op values. So we keep a cache
368 * flag in inode->i_opflags, that says "this has not special
369 * permission function, use the fast case".
371 static inline int do_inode_permission(struct inode *inode, int mask)
373 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
374 if (likely(inode->i_op->permission))
375 return inode->i_op->permission(inode, mask);
377 /* This gets set once for the inode lifetime */
378 spin_lock(&inode->i_lock);
379 inode->i_opflags |= IOP_FASTPERM;
380 spin_unlock(&inode->i_lock);
382 return generic_permission(inode, mask);
386 * __inode_permission - Check for access rights to a given inode
387 * @inode: Inode to check permission on
388 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
390 * Check for read/write/execute permissions on an inode.
392 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
394 * This does not check for a read-only file system. You probably want
395 * inode_permission().
397 int __inode_permission(struct inode *inode, int mask)
399 int retval;
401 if (unlikely(mask & MAY_WRITE)) {
403 * Nobody gets write access to an immutable file.
405 if (IS_IMMUTABLE(inode))
406 return -EACCES;
409 retval = do_inode_permission(inode, mask);
410 if (retval)
411 return retval;
413 retval = devcgroup_inode_permission(inode, mask);
414 if (retval)
415 return retval;
417 return security_inode_permission(inode, mask);
421 * sb_permission - Check superblock-level permissions
422 * @sb: Superblock of inode to check permission on
423 * @inode: Inode to check permission on
424 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
426 * Separate out file-system wide checks from inode-specific permission checks.
428 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
430 if (unlikely(mask & MAY_WRITE)) {
431 umode_t mode = inode->i_mode;
433 /* Nobody gets write access to a read-only fs. */
434 if ((sb->s_flags & MS_RDONLY) &&
435 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
436 return -EROFS;
438 return 0;
442 * inode_permission - Check for access rights to a given inode
443 * @inode: Inode to check permission on
444 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
446 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
447 * this, letting us set arbitrary permissions for filesystem access without
448 * changing the "normal" UIDs which are used for other things.
450 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
452 int inode_permission(struct inode *inode, int mask)
454 int retval;
456 retval = sb_permission(inode->i_sb, inode, mask);
457 if (retval)
458 return retval;
459 return __inode_permission(inode, mask);
461 EXPORT_SYMBOL(inode_permission);
464 * path_get - get a reference to a path
465 * @path: path to get the reference to
467 * Given a path increment the reference count to the dentry and the vfsmount.
469 void path_get(const struct path *path)
471 mntget(path->mnt);
472 dget(path->dentry);
474 EXPORT_SYMBOL(path_get);
477 * path_put - put a reference to a path
478 * @path: path to put the reference to
480 * Given a path decrement the reference count to the dentry and the vfsmount.
482 void path_put(const struct path *path)
484 dput(path->dentry);
485 mntput(path->mnt);
487 EXPORT_SYMBOL(path_put);
490 * Path walking has 2 modes, rcu-walk and ref-walk (see
491 * Documentation/filesystems/path-lookup.txt). In situations when we can't
492 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
493 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
494 * mode. Refcounts are grabbed at the last known good point before rcu-walk
495 * got stuck, so ref-walk may continue from there. If this is not successful
496 * (eg. a seqcount has changed), then failure is returned and it's up to caller
497 * to restart the path walk from the beginning in ref-walk mode.
501 * unlazy_walk - try to switch to ref-walk mode.
502 * @nd: nameidata pathwalk data
503 * @dentry: child of nd->path.dentry or NULL
504 * Returns: 0 on success, -ECHILD on failure
506 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
507 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
508 * @nd or NULL. Must be called from rcu-walk context.
510 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
512 struct fs_struct *fs = current->fs;
513 struct dentry *parent = nd->path.dentry;
515 BUG_ON(!(nd->flags & LOOKUP_RCU));
518 * After legitimizing the bastards, terminate_walk()
519 * will do the right thing for non-RCU mode, and all our
520 * subsequent exit cases should rcu_read_unlock()
521 * before returning. Do vfsmount first; if dentry
522 * can't be legitimized, just set nd->path.dentry to NULL
523 * and rely on dput(NULL) being a no-op.
525 if (!legitimize_mnt(nd->path.mnt, nd->m_seq))
526 return -ECHILD;
527 nd->flags &= ~LOOKUP_RCU;
529 if (!lockref_get_not_dead(&parent->d_lockref)) {
530 nd->path.dentry = NULL;
531 goto out;
535 * For a negative lookup, the lookup sequence point is the parents
536 * sequence point, and it only needs to revalidate the parent dentry.
538 * For a positive lookup, we need to move both the parent and the
539 * dentry from the RCU domain to be properly refcounted. And the
540 * sequence number in the dentry validates *both* dentry counters,
541 * since we checked the sequence number of the parent after we got
542 * the child sequence number. So we know the parent must still
543 * be valid if the child sequence number is still valid.
545 if (!dentry) {
546 if (read_seqcount_retry(&parent->d_seq, nd->seq))
547 goto out;
548 BUG_ON(nd->inode != parent->d_inode);
549 } else {
550 if (!lockref_get_not_dead(&dentry->d_lockref))
551 goto out;
552 if (read_seqcount_retry(&dentry->d_seq, nd->seq))
553 goto drop_dentry;
557 * Sequence counts matched. Now make sure that the root is
558 * still valid and get it if required.
560 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
561 spin_lock(&fs->lock);
562 if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry)
563 goto unlock_and_drop_dentry;
564 path_get(&nd->root);
565 spin_unlock(&fs->lock);
568 rcu_read_unlock();
569 return 0;
571 unlock_and_drop_dentry:
572 spin_unlock(&fs->lock);
573 drop_dentry:
574 rcu_read_unlock();
575 dput(dentry);
576 goto drop_root_mnt;
577 out:
578 rcu_read_unlock();
579 drop_root_mnt:
580 if (!(nd->flags & LOOKUP_ROOT))
581 nd->root.mnt = NULL;
582 return -ECHILD;
585 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
587 return dentry->d_op->d_revalidate(dentry, flags);
591 * complete_walk - successful completion of path walk
592 * @nd: pointer nameidata
594 * If we had been in RCU mode, drop out of it and legitimize nd->path.
595 * Revalidate the final result, unless we'd already done that during
596 * the path walk or the filesystem doesn't ask for it. Return 0 on
597 * success, -error on failure. In case of failure caller does not
598 * need to drop nd->path.
600 static int complete_walk(struct nameidata *nd)
602 struct dentry *dentry = nd->path.dentry;
603 int status;
605 if (nd->flags & LOOKUP_RCU) {
606 nd->flags &= ~LOOKUP_RCU;
607 if (!(nd->flags & LOOKUP_ROOT))
608 nd->root.mnt = NULL;
610 if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) {
611 rcu_read_unlock();
612 return -ECHILD;
614 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) {
615 rcu_read_unlock();
616 mntput(nd->path.mnt);
617 return -ECHILD;
619 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) {
620 rcu_read_unlock();
621 dput(dentry);
622 mntput(nd->path.mnt);
623 return -ECHILD;
625 rcu_read_unlock();
628 if (likely(!(nd->flags & LOOKUP_JUMPED)))
629 return 0;
631 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
632 return 0;
634 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
635 if (status > 0)
636 return 0;
638 if (!status)
639 status = -ESTALE;
641 path_put(&nd->path);
642 return status;
645 static __always_inline void set_root(struct nameidata *nd)
647 if (!nd->root.mnt)
648 get_fs_root(current->fs, &nd->root);
651 static int link_path_walk(const char *, struct nameidata *);
653 static __always_inline void set_root_rcu(struct nameidata *nd)
655 if (!nd->root.mnt) {
656 struct fs_struct *fs = current->fs;
657 unsigned seq;
659 do {
660 seq = read_seqcount_begin(&fs->seq);
661 nd->root = fs->root;
662 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
663 } while (read_seqcount_retry(&fs->seq, seq));
667 static void path_put_conditional(struct path *path, struct nameidata *nd)
669 dput(path->dentry);
670 if (path->mnt != nd->path.mnt)
671 mntput(path->mnt);
674 static inline void path_to_nameidata(const struct path *path,
675 struct nameidata *nd)
677 if (!(nd->flags & LOOKUP_RCU)) {
678 dput(nd->path.dentry);
679 if (nd->path.mnt != path->mnt)
680 mntput(nd->path.mnt);
682 nd->path.mnt = path->mnt;
683 nd->path.dentry = path->dentry;
687 * Helper to directly jump to a known parsed path from ->follow_link,
688 * caller must have taken a reference to path beforehand.
690 void nd_jump_link(struct nameidata *nd, struct path *path)
692 path_put(&nd->path);
694 nd->path = *path;
695 nd->inode = nd->path.dentry->d_inode;
696 nd->flags |= LOOKUP_JUMPED;
699 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
701 struct inode *inode = link->dentry->d_inode;
702 if (inode->i_op->put_link)
703 inode->i_op->put_link(link->dentry, nd, cookie);
704 path_put(link);
707 int sysctl_protected_symlinks __read_mostly = 0;
708 int sysctl_protected_hardlinks __read_mostly = 0;
711 * may_follow_link - Check symlink following for unsafe situations
712 * @link: The path of the symlink
713 * @nd: nameidata pathwalk data
715 * In the case of the sysctl_protected_symlinks sysctl being enabled,
716 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
717 * in a sticky world-writable directory. This is to protect privileged
718 * processes from failing races against path names that may change out
719 * from under them by way of other users creating malicious symlinks.
720 * It will permit symlinks to be followed only when outside a sticky
721 * world-writable directory, or when the uid of the symlink and follower
722 * match, or when the directory owner matches the symlink's owner.
724 * Returns 0 if following the symlink is allowed, -ve on error.
726 static inline int may_follow_link(struct path *link, struct nameidata *nd)
728 const struct inode *inode;
729 const struct inode *parent;
731 if (!sysctl_protected_symlinks)
732 return 0;
734 /* Allowed if owner and follower match. */
735 inode = link->dentry->d_inode;
736 if (uid_eq(current_cred()->fsuid, inode->i_uid))
737 return 0;
739 /* Allowed if parent directory not sticky and world-writable. */
740 parent = nd->path.dentry->d_inode;
741 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
742 return 0;
744 /* Allowed if parent directory and link owner match. */
745 if (uid_eq(parent->i_uid, inode->i_uid))
746 return 0;
748 audit_log_link_denied("follow_link", link);
749 path_put_conditional(link, nd);
750 path_put(&nd->path);
751 return -EACCES;
755 * safe_hardlink_source - Check for safe hardlink conditions
756 * @inode: the source inode to hardlink from
758 * Return false if at least one of the following conditions:
759 * - inode is not a regular file
760 * - inode is setuid
761 * - inode is setgid and group-exec
762 * - access failure for read and write
764 * Otherwise returns true.
766 static bool safe_hardlink_source(struct inode *inode)
768 umode_t mode = inode->i_mode;
770 /* Special files should not get pinned to the filesystem. */
771 if (!S_ISREG(mode))
772 return false;
774 /* Setuid files should not get pinned to the filesystem. */
775 if (mode & S_ISUID)
776 return false;
778 /* Executable setgid files should not get pinned to the filesystem. */
779 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
780 return false;
782 /* Hardlinking to unreadable or unwritable sources is dangerous. */
783 if (inode_permission(inode, MAY_READ | MAY_WRITE))
784 return false;
786 return true;
790 * may_linkat - Check permissions for creating a hardlink
791 * @link: the source to hardlink from
793 * Block hardlink when all of:
794 * - sysctl_protected_hardlinks enabled
795 * - fsuid does not match inode
796 * - hardlink source is unsafe (see safe_hardlink_source() above)
797 * - not CAP_FOWNER
799 * Returns 0 if successful, -ve on error.
801 static int may_linkat(struct path *link)
803 const struct cred *cred;
804 struct inode *inode;
806 if (!sysctl_protected_hardlinks)
807 return 0;
809 cred = current_cred();
810 inode = link->dentry->d_inode;
812 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
813 * otherwise, it must be a safe source.
815 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
816 capable(CAP_FOWNER))
817 return 0;
819 audit_log_link_denied("linkat", link);
820 return -EPERM;
823 static __always_inline int
824 follow_link(struct path *link, struct nameidata *nd, void **p)
826 struct dentry *dentry = link->dentry;
827 int error;
828 char *s;
830 BUG_ON(nd->flags & LOOKUP_RCU);
832 if (link->mnt == nd->path.mnt)
833 mntget(link->mnt);
835 error = -ELOOP;
836 if (unlikely(current->total_link_count >= 40))
837 goto out_put_nd_path;
839 cond_resched();
840 current->total_link_count++;
842 touch_atime(link);
843 nd_set_link(nd, NULL);
845 error = security_inode_follow_link(link->dentry, nd);
846 if (error)
847 goto out_put_nd_path;
849 nd->last_type = LAST_BIND;
850 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
851 error = PTR_ERR(*p);
852 if (IS_ERR(*p))
853 goto out_put_nd_path;
855 error = 0;
856 s = nd_get_link(nd);
857 if (s) {
858 if (unlikely(IS_ERR(s))) {
859 path_put(&nd->path);
860 put_link(nd, link, *p);
861 return PTR_ERR(s);
863 if (*s == '/') {
864 set_root(nd);
865 path_put(&nd->path);
866 nd->path = nd->root;
867 path_get(&nd->root);
868 nd->flags |= LOOKUP_JUMPED;
870 nd->inode = nd->path.dentry->d_inode;
871 error = link_path_walk(s, nd);
872 if (unlikely(error))
873 put_link(nd, link, *p);
876 return error;
878 out_put_nd_path:
879 *p = NULL;
880 path_put(&nd->path);
881 path_put(link);
882 return error;
885 static int follow_up_rcu(struct path *path)
887 struct mount *mnt = real_mount(path->mnt);
888 struct mount *parent;
889 struct dentry *mountpoint;
891 parent = mnt->mnt_parent;
892 if (&parent->mnt == path->mnt)
893 return 0;
894 mountpoint = mnt->mnt_mountpoint;
895 path->dentry = mountpoint;
896 path->mnt = &parent->mnt;
897 return 1;
901 * follow_up - Find the mountpoint of path's vfsmount
903 * Given a path, find the mountpoint of its source file system.
904 * Replace @path with the path of the mountpoint in the parent mount.
905 * Up is towards /.
907 * Return 1 if we went up a level and 0 if we were already at the
908 * root.
910 int follow_up(struct path *path)
912 struct mount *mnt = real_mount(path->mnt);
913 struct mount *parent;
914 struct dentry *mountpoint;
916 read_seqlock_excl(&mount_lock);
917 parent = mnt->mnt_parent;
918 if (parent == mnt) {
919 read_sequnlock_excl(&mount_lock);
920 return 0;
922 mntget(&parent->mnt);
923 mountpoint = dget(mnt->mnt_mountpoint);
924 read_sequnlock_excl(&mount_lock);
925 dput(path->dentry);
926 path->dentry = mountpoint;
927 mntput(path->mnt);
928 path->mnt = &parent->mnt;
929 return 1;
931 EXPORT_SYMBOL(follow_up);
934 * Perform an automount
935 * - return -EISDIR to tell follow_managed() to stop and return the path we
936 * were called with.
938 static int follow_automount(struct path *path, unsigned flags,
939 bool *need_mntput)
941 struct vfsmount *mnt;
942 int err;
944 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
945 return -EREMOTE;
947 /* We don't want to mount if someone's just doing a stat -
948 * unless they're stat'ing a directory and appended a '/' to
949 * the name.
951 * We do, however, want to mount if someone wants to open or
952 * create a file of any type under the mountpoint, wants to
953 * traverse through the mountpoint or wants to open the
954 * mounted directory. Also, autofs may mark negative dentries
955 * as being automount points. These will need the attentions
956 * of the daemon to instantiate them before they can be used.
958 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
959 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
960 path->dentry->d_inode)
961 return -EISDIR;
963 current->total_link_count++;
964 if (current->total_link_count >= 40)
965 return -ELOOP;
967 mnt = path->dentry->d_op->d_automount(path);
968 if (IS_ERR(mnt)) {
970 * The filesystem is allowed to return -EISDIR here to indicate
971 * it doesn't want to automount. For instance, autofs would do
972 * this so that its userspace daemon can mount on this dentry.
974 * However, we can only permit this if it's a terminal point in
975 * the path being looked up; if it wasn't then the remainder of
976 * the path is inaccessible and we should say so.
978 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
979 return -EREMOTE;
980 return PTR_ERR(mnt);
983 if (!mnt) /* mount collision */
984 return 0;
986 if (!*need_mntput) {
987 /* lock_mount() may release path->mnt on error */
988 mntget(path->mnt);
989 *need_mntput = true;
991 err = finish_automount(mnt, path);
993 switch (err) {
994 case -EBUSY:
995 /* Someone else made a mount here whilst we were busy */
996 return 0;
997 case 0:
998 path_put(path);
999 path->mnt = mnt;
1000 path->dentry = dget(mnt->mnt_root);
1001 return 0;
1002 default:
1003 return err;
1009 * Handle a dentry that is managed in some way.
1010 * - Flagged for transit management (autofs)
1011 * - Flagged as mountpoint
1012 * - Flagged as automount point
1014 * This may only be called in refwalk mode.
1016 * Serialization is taken care of in namespace.c
1018 static int follow_managed(struct path *path, unsigned flags)
1020 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1021 unsigned managed;
1022 bool need_mntput = false;
1023 int ret = 0;
1025 /* Given that we're not holding a lock here, we retain the value in a
1026 * local variable for each dentry as we look at it so that we don't see
1027 * the components of that value change under us */
1028 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1029 managed &= DCACHE_MANAGED_DENTRY,
1030 unlikely(managed != 0)) {
1031 /* Allow the filesystem to manage the transit without i_mutex
1032 * being held. */
1033 if (managed & DCACHE_MANAGE_TRANSIT) {
1034 BUG_ON(!path->dentry->d_op);
1035 BUG_ON(!path->dentry->d_op->d_manage);
1036 ret = path->dentry->d_op->d_manage(path->dentry, false);
1037 if (ret < 0)
1038 break;
1041 /* Transit to a mounted filesystem. */
1042 if (managed & DCACHE_MOUNTED) {
1043 struct vfsmount *mounted = lookup_mnt(path);
1044 if (mounted) {
1045 dput(path->dentry);
1046 if (need_mntput)
1047 mntput(path->mnt);
1048 path->mnt = mounted;
1049 path->dentry = dget(mounted->mnt_root);
1050 need_mntput = true;
1051 continue;
1054 /* Something is mounted on this dentry in another
1055 * namespace and/or whatever was mounted there in this
1056 * namespace got unmounted before lookup_mnt() could
1057 * get it */
1060 /* Handle an automount point */
1061 if (managed & DCACHE_NEED_AUTOMOUNT) {
1062 ret = follow_automount(path, flags, &need_mntput);
1063 if (ret < 0)
1064 break;
1065 continue;
1068 /* We didn't change the current path point */
1069 break;
1072 if (need_mntput && path->mnt == mnt)
1073 mntput(path->mnt);
1074 if (ret == -EISDIR)
1075 ret = 0;
1076 return ret < 0 ? ret : need_mntput;
1079 int follow_down_one(struct path *path)
1081 struct vfsmount *mounted;
1083 mounted = lookup_mnt(path);
1084 if (mounted) {
1085 dput(path->dentry);
1086 mntput(path->mnt);
1087 path->mnt = mounted;
1088 path->dentry = dget(mounted->mnt_root);
1089 return 1;
1091 return 0;
1093 EXPORT_SYMBOL(follow_down_one);
1095 static inline int managed_dentry_rcu(struct dentry *dentry)
1097 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1098 dentry->d_op->d_manage(dentry, true) : 0;
1102 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1103 * we meet a managed dentry that would need blocking.
1105 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1106 struct inode **inode)
1108 for (;;) {
1109 struct mount *mounted;
1111 * Don't forget we might have a non-mountpoint managed dentry
1112 * that wants to block transit.
1114 switch (managed_dentry_rcu(path->dentry)) {
1115 case -ECHILD:
1116 default:
1117 return false;
1118 case -EISDIR:
1119 return true;
1120 case 0:
1121 break;
1124 if (!d_mountpoint(path->dentry))
1125 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1127 mounted = __lookup_mnt(path->mnt, path->dentry);
1128 if (!mounted)
1129 break;
1130 path->mnt = &mounted->mnt;
1131 path->dentry = mounted->mnt.mnt_root;
1132 nd->flags |= LOOKUP_JUMPED;
1133 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1135 * Update the inode too. We don't need to re-check the
1136 * dentry sequence number here after this d_inode read,
1137 * because a mount-point is always pinned.
1139 *inode = path->dentry->d_inode;
1141 return read_seqretry(&mount_lock, nd->m_seq) &&
1142 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1145 static int follow_dotdot_rcu(struct nameidata *nd)
1147 set_root_rcu(nd);
1149 while (1) {
1150 if (nd->path.dentry == nd->root.dentry &&
1151 nd->path.mnt == nd->root.mnt) {
1152 break;
1154 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1155 struct dentry *old = nd->path.dentry;
1156 struct dentry *parent = old->d_parent;
1157 unsigned seq;
1159 seq = read_seqcount_begin(&parent->d_seq);
1160 if (read_seqcount_retry(&old->d_seq, nd->seq))
1161 goto failed;
1162 nd->path.dentry = parent;
1163 nd->seq = seq;
1164 break;
1166 if (!follow_up_rcu(&nd->path))
1167 break;
1168 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1170 while (d_mountpoint(nd->path.dentry)) {
1171 struct mount *mounted;
1172 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1173 if (!mounted)
1174 break;
1175 nd->path.mnt = &mounted->mnt;
1176 nd->path.dentry = mounted->mnt.mnt_root;
1177 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1178 if (!read_seqretry(&mount_lock, nd->m_seq))
1179 goto failed;
1181 nd->inode = nd->path.dentry->d_inode;
1182 return 0;
1184 failed:
1185 nd->flags &= ~LOOKUP_RCU;
1186 if (!(nd->flags & LOOKUP_ROOT))
1187 nd->root.mnt = NULL;
1188 rcu_read_unlock();
1189 return -ECHILD;
1193 * Follow down to the covering mount currently visible to userspace. At each
1194 * point, the filesystem owning that dentry may be queried as to whether the
1195 * caller is permitted to proceed or not.
1197 int follow_down(struct path *path)
1199 unsigned managed;
1200 int ret;
1202 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1203 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1204 /* Allow the filesystem to manage the transit without i_mutex
1205 * being held.
1207 * We indicate to the filesystem if someone is trying to mount
1208 * something here. This gives autofs the chance to deny anyone
1209 * other than its daemon the right to mount on its
1210 * superstructure.
1212 * The filesystem may sleep at this point.
1214 if (managed & DCACHE_MANAGE_TRANSIT) {
1215 BUG_ON(!path->dentry->d_op);
1216 BUG_ON(!path->dentry->d_op->d_manage);
1217 ret = path->dentry->d_op->d_manage(
1218 path->dentry, false);
1219 if (ret < 0)
1220 return ret == -EISDIR ? 0 : ret;
1223 /* Transit to a mounted filesystem. */
1224 if (managed & DCACHE_MOUNTED) {
1225 struct vfsmount *mounted = lookup_mnt(path);
1226 if (!mounted)
1227 break;
1228 dput(path->dentry);
1229 mntput(path->mnt);
1230 path->mnt = mounted;
1231 path->dentry = dget(mounted->mnt_root);
1232 continue;
1235 /* Don't handle automount points here */
1236 break;
1238 return 0;
1240 EXPORT_SYMBOL(follow_down);
1243 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1245 static void follow_mount(struct path *path)
1247 while (d_mountpoint(path->dentry)) {
1248 struct vfsmount *mounted = lookup_mnt(path);
1249 if (!mounted)
1250 break;
1251 dput(path->dentry);
1252 mntput(path->mnt);
1253 path->mnt = mounted;
1254 path->dentry = dget(mounted->mnt_root);
1258 static void follow_dotdot(struct nameidata *nd)
1260 set_root(nd);
1262 while(1) {
1263 struct dentry *old = nd->path.dentry;
1265 if (nd->path.dentry == nd->root.dentry &&
1266 nd->path.mnt == nd->root.mnt) {
1267 break;
1269 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1270 /* rare case of legitimate dget_parent()... */
1271 nd->path.dentry = dget_parent(nd->path.dentry);
1272 dput(old);
1273 break;
1275 if (!follow_up(&nd->path))
1276 break;
1278 follow_mount(&nd->path);
1279 nd->inode = nd->path.dentry->d_inode;
1283 * This looks up the name in dcache, possibly revalidates the old dentry and
1284 * allocates a new one if not found or not valid. In the need_lookup argument
1285 * returns whether i_op->lookup is necessary.
1287 * dir->d_inode->i_mutex must be held
1289 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1290 unsigned int flags, bool *need_lookup)
1292 struct dentry *dentry;
1293 int error;
1295 *need_lookup = false;
1296 dentry = d_lookup(dir, name);
1297 if (dentry) {
1298 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1299 error = d_revalidate(dentry, flags);
1300 if (unlikely(error <= 0)) {
1301 if (error < 0) {
1302 dput(dentry);
1303 return ERR_PTR(error);
1304 } else if (!d_invalidate(dentry)) {
1305 dput(dentry);
1306 dentry = NULL;
1312 if (!dentry) {
1313 dentry = d_alloc(dir, name);
1314 if (unlikely(!dentry))
1315 return ERR_PTR(-ENOMEM);
1317 *need_lookup = true;
1319 return dentry;
1323 * Call i_op->lookup on the dentry. The dentry must be negative and
1324 * unhashed.
1326 * dir->d_inode->i_mutex must be held
1328 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1329 unsigned int flags)
1331 struct dentry *old;
1333 /* Don't create child dentry for a dead directory. */
1334 if (unlikely(IS_DEADDIR(dir))) {
1335 dput(dentry);
1336 return ERR_PTR(-ENOENT);
1339 old = dir->i_op->lookup(dir, dentry, flags);
1340 if (unlikely(old)) {
1341 dput(dentry);
1342 dentry = old;
1344 return dentry;
1347 static struct dentry *__lookup_hash(struct qstr *name,
1348 struct dentry *base, unsigned int flags)
1350 bool need_lookup;
1351 struct dentry *dentry;
1353 dentry = lookup_dcache(name, base, flags, &need_lookup);
1354 if (!need_lookup)
1355 return dentry;
1357 return lookup_real(base->d_inode, dentry, flags);
1361 * It's more convoluted than I'd like it to be, but... it's still fairly
1362 * small and for now I'd prefer to have fast path as straight as possible.
1363 * It _is_ time-critical.
1365 static int lookup_fast(struct nameidata *nd,
1366 struct path *path, struct inode **inode)
1368 struct vfsmount *mnt = nd->path.mnt;
1369 struct dentry *dentry, *parent = nd->path.dentry;
1370 int need_reval = 1;
1371 int status = 1;
1372 int err;
1375 * Rename seqlock is not required here because in the off chance
1376 * of a false negative due to a concurrent rename, we're going to
1377 * do the non-racy lookup, below.
1379 if (nd->flags & LOOKUP_RCU) {
1380 unsigned seq;
1381 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1382 if (!dentry)
1383 goto unlazy;
1386 * This sequence count validates that the inode matches
1387 * the dentry name information from lookup.
1389 *inode = dentry->d_inode;
1390 if (read_seqcount_retry(&dentry->d_seq, seq))
1391 return -ECHILD;
1394 * This sequence count validates that the parent had no
1395 * changes while we did the lookup of the dentry above.
1397 * The memory barrier in read_seqcount_begin of child is
1398 * enough, we can use __read_seqcount_retry here.
1400 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1401 return -ECHILD;
1402 nd->seq = seq;
1404 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1405 status = d_revalidate(dentry, nd->flags);
1406 if (unlikely(status <= 0)) {
1407 if (status != -ECHILD)
1408 need_reval = 0;
1409 goto unlazy;
1412 path->mnt = mnt;
1413 path->dentry = dentry;
1414 if (likely(__follow_mount_rcu(nd, path, inode)))
1415 return 0;
1416 unlazy:
1417 if (unlazy_walk(nd, dentry))
1418 return -ECHILD;
1419 } else {
1420 dentry = __d_lookup(parent, &nd->last);
1423 if (unlikely(!dentry))
1424 goto need_lookup;
1426 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1427 status = d_revalidate(dentry, nd->flags);
1428 if (unlikely(status <= 0)) {
1429 if (status < 0) {
1430 dput(dentry);
1431 return status;
1433 if (!d_invalidate(dentry)) {
1434 dput(dentry);
1435 goto need_lookup;
1439 path->mnt = mnt;
1440 path->dentry = dentry;
1441 err = follow_managed(path, nd->flags);
1442 if (unlikely(err < 0)) {
1443 path_put_conditional(path, nd);
1444 return err;
1446 if (err)
1447 nd->flags |= LOOKUP_JUMPED;
1448 *inode = path->dentry->d_inode;
1449 return 0;
1451 need_lookup:
1452 return 1;
1455 /* Fast lookup failed, do it the slow way */
1456 static int lookup_slow(struct nameidata *nd, struct path *path)
1458 struct dentry *dentry, *parent;
1459 int err;
1461 parent = nd->path.dentry;
1462 BUG_ON(nd->inode != parent->d_inode);
1464 mutex_lock(&parent->d_inode->i_mutex);
1465 dentry = __lookup_hash(&nd->last, parent, nd->flags);
1466 mutex_unlock(&parent->d_inode->i_mutex);
1467 if (IS_ERR(dentry))
1468 return PTR_ERR(dentry);
1469 path->mnt = nd->path.mnt;
1470 path->dentry = dentry;
1471 err = follow_managed(path, nd->flags);
1472 if (unlikely(err < 0)) {
1473 path_put_conditional(path, nd);
1474 return err;
1476 if (err)
1477 nd->flags |= LOOKUP_JUMPED;
1478 return 0;
1481 static inline int may_lookup(struct nameidata *nd)
1483 if (nd->flags & LOOKUP_RCU) {
1484 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1485 if (err != -ECHILD)
1486 return err;
1487 if (unlazy_walk(nd, NULL))
1488 return -ECHILD;
1490 return inode_permission(nd->inode, MAY_EXEC);
1493 static inline int handle_dots(struct nameidata *nd, int type)
1495 if (type == LAST_DOTDOT) {
1496 if (nd->flags & LOOKUP_RCU) {
1497 if (follow_dotdot_rcu(nd))
1498 return -ECHILD;
1499 } else
1500 follow_dotdot(nd);
1502 return 0;
1505 static void terminate_walk(struct nameidata *nd)
1507 if (!(nd->flags & LOOKUP_RCU)) {
1508 path_put(&nd->path);
1509 } else {
1510 nd->flags &= ~LOOKUP_RCU;
1511 if (!(nd->flags & LOOKUP_ROOT))
1512 nd->root.mnt = NULL;
1513 rcu_read_unlock();
1518 * Do we need to follow links? We _really_ want to be able
1519 * to do this check without having to look at inode->i_op,
1520 * so we keep a cache of "no, this doesn't need follow_link"
1521 * for the common case.
1523 static inline int should_follow_link(struct dentry *dentry, int follow)
1525 return unlikely(d_is_symlink(dentry)) ? follow : 0;
1528 static inline int walk_component(struct nameidata *nd, struct path *path,
1529 int follow)
1531 struct inode *inode;
1532 int err;
1534 * "." and ".." are special - ".." especially so because it has
1535 * to be able to know about the current root directory and
1536 * parent relationships.
1538 if (unlikely(nd->last_type != LAST_NORM))
1539 return handle_dots(nd, nd->last_type);
1540 err = lookup_fast(nd, path, &inode);
1541 if (unlikely(err)) {
1542 if (err < 0)
1543 goto out_err;
1545 err = lookup_slow(nd, path);
1546 if (err < 0)
1547 goto out_err;
1549 inode = path->dentry->d_inode;
1551 err = -ENOENT;
1552 if (!inode || d_is_negative(path->dentry))
1553 goto out_path_put;
1555 if (should_follow_link(path->dentry, follow)) {
1556 if (nd->flags & LOOKUP_RCU) {
1557 if (unlikely(unlazy_walk(nd, path->dentry))) {
1558 err = -ECHILD;
1559 goto out_err;
1562 BUG_ON(inode != path->dentry->d_inode);
1563 return 1;
1565 path_to_nameidata(path, nd);
1566 nd->inode = inode;
1567 return 0;
1569 out_path_put:
1570 path_to_nameidata(path, nd);
1571 out_err:
1572 terminate_walk(nd);
1573 return err;
1577 * This limits recursive symlink follows to 8, while
1578 * limiting consecutive symlinks to 40.
1580 * Without that kind of total limit, nasty chains of consecutive
1581 * symlinks can cause almost arbitrarily long lookups.
1583 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1585 int res;
1587 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1588 path_put_conditional(path, nd);
1589 path_put(&nd->path);
1590 return -ELOOP;
1592 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1594 nd->depth++;
1595 current->link_count++;
1597 do {
1598 struct path link = *path;
1599 void *cookie;
1601 res = follow_link(&link, nd, &cookie);
1602 if (res)
1603 break;
1604 res = walk_component(nd, path, LOOKUP_FOLLOW);
1605 put_link(nd, &link, cookie);
1606 } while (res > 0);
1608 current->link_count--;
1609 nd->depth--;
1610 return res;
1614 * We can do the critical dentry name comparison and hashing
1615 * operations one word at a time, but we are limited to:
1617 * - Architectures with fast unaligned word accesses. We could
1618 * do a "get_unaligned()" if this helps and is sufficiently
1619 * fast.
1621 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1622 * do not trap on the (extremely unlikely) case of a page
1623 * crossing operation.
1625 * - Furthermore, we need an efficient 64-bit compile for the
1626 * 64-bit case in order to generate the "number of bytes in
1627 * the final mask". Again, that could be replaced with a
1628 * efficient population count instruction or similar.
1630 #ifdef CONFIG_DCACHE_WORD_ACCESS
1632 #include <asm/word-at-a-time.h>
1634 #ifdef CONFIG_64BIT
1636 static inline unsigned int fold_hash(unsigned long hash)
1638 return hash_64(hash, 32);
1641 #else /* 32-bit case */
1643 #define fold_hash(x) (x)
1645 #endif
1647 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1649 unsigned long a, mask;
1650 unsigned long hash = 0;
1652 for (;;) {
1653 a = load_unaligned_zeropad(name);
1654 if (len < sizeof(unsigned long))
1655 break;
1656 hash += a;
1657 hash *= 9;
1658 name += sizeof(unsigned long);
1659 len -= sizeof(unsigned long);
1660 if (!len)
1661 goto done;
1663 mask = bytemask_from_count(len);
1664 hash += mask & a;
1665 done:
1666 return fold_hash(hash);
1668 EXPORT_SYMBOL(full_name_hash);
1671 * Calculate the length and hash of the path component, and
1672 * fill in the qstr. return the "len" as the result.
1674 static inline unsigned long hash_name(const char *name, struct qstr *res)
1676 unsigned long a, b, adata, bdata, mask, hash, len;
1677 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1679 res->name = name;
1680 hash = a = 0;
1681 len = -sizeof(unsigned long);
1682 do {
1683 hash = (hash + a) * 9;
1684 len += sizeof(unsigned long);
1685 a = load_unaligned_zeropad(name+len);
1686 b = a ^ REPEAT_BYTE('/');
1687 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1689 adata = prep_zero_mask(a, adata, &constants);
1690 bdata = prep_zero_mask(b, bdata, &constants);
1692 mask = create_zero_mask(adata | bdata);
1694 hash += a & zero_bytemask(mask);
1695 len += find_zero(mask);
1696 res->hash_len = hashlen_create(fold_hash(hash), len);
1698 return len;
1701 #else
1703 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1705 unsigned long hash = init_name_hash();
1706 while (len--)
1707 hash = partial_name_hash(*name++, hash);
1708 return end_name_hash(hash);
1710 EXPORT_SYMBOL(full_name_hash);
1713 * We know there's a real path component here of at least
1714 * one character.
1716 static inline long hash_name(const char *name, struct qstr *res)
1718 unsigned long hash = init_name_hash();
1719 unsigned long len = 0, c;
1721 res->name = name;
1722 c = (unsigned char)*name;
1723 do {
1724 len++;
1725 hash = partial_name_hash(c, hash);
1726 c = (unsigned char)name[len];
1727 } while (c && c != '/');
1728 res->hash_len = hashlen_create(end_name_hash(hash), len);
1729 return len;
1732 #endif
1735 * Name resolution.
1736 * This is the basic name resolution function, turning a pathname into
1737 * the final dentry. We expect 'base' to be positive and a directory.
1739 * Returns 0 and nd will have valid dentry and mnt on success.
1740 * Returns error and drops reference to input namei data on failure.
1742 static int link_path_walk(const char *name, struct nameidata *nd)
1744 struct path next;
1745 int err;
1747 while (*name=='/')
1748 name++;
1749 if (!*name)
1750 return 0;
1752 /* At this point we know we have a real path component. */
1753 for(;;) {
1754 struct qstr this;
1755 long len;
1756 int type;
1758 err = may_lookup(nd);
1759 if (err)
1760 break;
1762 len = hash_name(name, &this);
1764 type = LAST_NORM;
1765 if (name[0] == '.') switch (len) {
1766 case 2:
1767 if (name[1] == '.') {
1768 type = LAST_DOTDOT;
1769 nd->flags |= LOOKUP_JUMPED;
1771 break;
1772 case 1:
1773 type = LAST_DOT;
1775 if (likely(type == LAST_NORM)) {
1776 struct dentry *parent = nd->path.dentry;
1777 nd->flags &= ~LOOKUP_JUMPED;
1778 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1779 err = parent->d_op->d_hash(parent, &this);
1780 if (err < 0)
1781 break;
1785 nd->last = this;
1786 nd->last_type = type;
1788 if (!name[len])
1789 return 0;
1791 * If it wasn't NUL, we know it was '/'. Skip that
1792 * slash, and continue until no more slashes.
1794 do {
1795 len++;
1796 } while (unlikely(name[len] == '/'));
1797 if (!name[len])
1798 return 0;
1800 name += len;
1802 err = walk_component(nd, &next, LOOKUP_FOLLOW);
1803 if (err < 0)
1804 return err;
1806 if (err) {
1807 err = nested_symlink(&next, nd);
1808 if (err)
1809 return err;
1811 if (!d_can_lookup(nd->path.dentry)) {
1812 err = -ENOTDIR;
1813 break;
1816 terminate_walk(nd);
1817 return err;
1820 static int path_init(int dfd, const char *name, unsigned int flags,
1821 struct nameidata *nd, struct file **fp)
1823 int retval = 0;
1825 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1826 nd->flags = flags | LOOKUP_JUMPED;
1827 nd->depth = 0;
1828 if (flags & LOOKUP_ROOT) {
1829 struct dentry *root = nd->root.dentry;
1830 struct inode *inode = root->d_inode;
1831 if (*name) {
1832 if (!d_can_lookup(root))
1833 return -ENOTDIR;
1834 retval = inode_permission(inode, MAY_EXEC);
1835 if (retval)
1836 return retval;
1838 nd->path = nd->root;
1839 nd->inode = inode;
1840 if (flags & LOOKUP_RCU) {
1841 rcu_read_lock();
1842 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1843 nd->m_seq = read_seqbegin(&mount_lock);
1844 } else {
1845 path_get(&nd->path);
1847 return 0;
1850 nd->root.mnt = NULL;
1852 nd->m_seq = read_seqbegin(&mount_lock);
1853 if (*name=='/') {
1854 if (flags & LOOKUP_RCU) {
1855 rcu_read_lock();
1856 set_root_rcu(nd);
1857 } else {
1858 set_root(nd);
1859 path_get(&nd->root);
1861 nd->path = nd->root;
1862 } else if (dfd == AT_FDCWD) {
1863 if (flags & LOOKUP_RCU) {
1864 struct fs_struct *fs = current->fs;
1865 unsigned seq;
1867 rcu_read_lock();
1869 do {
1870 seq = read_seqcount_begin(&fs->seq);
1871 nd->path = fs->pwd;
1872 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1873 } while (read_seqcount_retry(&fs->seq, seq));
1874 } else {
1875 get_fs_pwd(current->fs, &nd->path);
1877 } else {
1878 /* Caller must check execute permissions on the starting path component */
1879 struct fd f = fdget_raw(dfd);
1880 struct dentry *dentry;
1882 if (!f.file)
1883 return -EBADF;
1885 dentry = f.file->f_path.dentry;
1887 if (*name) {
1888 if (!d_can_lookup(dentry)) {
1889 fdput(f);
1890 return -ENOTDIR;
1894 nd->path = f.file->f_path;
1895 if (flags & LOOKUP_RCU) {
1896 if (f.flags & FDPUT_FPUT)
1897 *fp = f.file;
1898 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1899 rcu_read_lock();
1900 } else {
1901 path_get(&nd->path);
1902 fdput(f);
1906 nd->inode = nd->path.dentry->d_inode;
1907 return 0;
1910 static inline int lookup_last(struct nameidata *nd, struct path *path)
1912 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1913 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1915 nd->flags &= ~LOOKUP_PARENT;
1916 return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW);
1919 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1920 static int path_lookupat(int dfd, const char *name,
1921 unsigned int flags, struct nameidata *nd)
1923 struct file *base = NULL;
1924 struct path path;
1925 int err;
1928 * Path walking is largely split up into 2 different synchronisation
1929 * schemes, rcu-walk and ref-walk (explained in
1930 * Documentation/filesystems/path-lookup.txt). These share much of the
1931 * path walk code, but some things particularly setup, cleanup, and
1932 * following mounts are sufficiently divergent that functions are
1933 * duplicated. Typically there is a function foo(), and its RCU
1934 * analogue, foo_rcu().
1936 * -ECHILD is the error number of choice (just to avoid clashes) that
1937 * is returned if some aspect of an rcu-walk fails. Such an error must
1938 * be handled by restarting a traditional ref-walk (which will always
1939 * be able to complete).
1941 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1943 if (unlikely(err))
1944 return err;
1946 current->total_link_count = 0;
1947 err = link_path_walk(name, nd);
1949 if (!err && !(flags & LOOKUP_PARENT)) {
1950 err = lookup_last(nd, &path);
1951 while (err > 0) {
1952 void *cookie;
1953 struct path link = path;
1954 err = may_follow_link(&link, nd);
1955 if (unlikely(err))
1956 break;
1957 nd->flags |= LOOKUP_PARENT;
1958 err = follow_link(&link, nd, &cookie);
1959 if (err)
1960 break;
1961 err = lookup_last(nd, &path);
1962 put_link(nd, &link, cookie);
1966 if (!err)
1967 err = complete_walk(nd);
1969 if (!err && nd->flags & LOOKUP_DIRECTORY) {
1970 if (!d_can_lookup(nd->path.dentry)) {
1971 path_put(&nd->path);
1972 err = -ENOTDIR;
1976 if (base)
1977 fput(base);
1979 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1980 path_put(&nd->root);
1981 nd->root.mnt = NULL;
1983 return err;
1986 static int filename_lookup(int dfd, struct filename *name,
1987 unsigned int flags, struct nameidata *nd)
1989 int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd);
1990 if (unlikely(retval == -ECHILD))
1991 retval = path_lookupat(dfd, name->name, flags, nd);
1992 if (unlikely(retval == -ESTALE))
1993 retval = path_lookupat(dfd, name->name,
1994 flags | LOOKUP_REVAL, nd);
1996 if (likely(!retval))
1997 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
1998 return retval;
2001 static int do_path_lookup(int dfd, const char *name,
2002 unsigned int flags, struct nameidata *nd)
2004 struct filename filename = { .name = name };
2006 return filename_lookup(dfd, &filename, flags, nd);
2009 /* does lookup, returns the object with parent locked */
2010 struct dentry *kern_path_locked(const char *name, struct path *path)
2012 struct nameidata nd;
2013 struct dentry *d;
2014 int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd);
2015 if (err)
2016 return ERR_PTR(err);
2017 if (nd.last_type != LAST_NORM) {
2018 path_put(&nd.path);
2019 return ERR_PTR(-EINVAL);
2021 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2022 d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2023 if (IS_ERR(d)) {
2024 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2025 path_put(&nd.path);
2026 return d;
2028 *path = nd.path;
2029 return d;
2032 int kern_path(const char *name, unsigned int flags, struct path *path)
2034 struct nameidata nd;
2035 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
2036 if (!res)
2037 *path = nd.path;
2038 return res;
2040 EXPORT_SYMBOL(kern_path);
2043 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2044 * @dentry: pointer to dentry of the base directory
2045 * @mnt: pointer to vfs mount of the base directory
2046 * @name: pointer to file name
2047 * @flags: lookup flags
2048 * @path: pointer to struct path to fill
2050 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2051 const char *name, unsigned int flags,
2052 struct path *path)
2054 struct nameidata nd;
2055 int err;
2056 nd.root.dentry = dentry;
2057 nd.root.mnt = mnt;
2058 BUG_ON(flags & LOOKUP_PARENT);
2059 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
2060 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
2061 if (!err)
2062 *path = nd.path;
2063 return err;
2065 EXPORT_SYMBOL(vfs_path_lookup);
2068 * Restricted form of lookup. Doesn't follow links, single-component only,
2069 * needs parent already locked. Doesn't follow mounts.
2070 * SMP-safe.
2072 static struct dentry *lookup_hash(struct nameidata *nd)
2074 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2078 * lookup_one_len - filesystem helper to lookup single pathname component
2079 * @name: pathname component to lookup
2080 * @base: base directory to lookup from
2081 * @len: maximum length @len should be interpreted to
2083 * Note that this routine is purely a helper for filesystem usage and should
2084 * not be called by generic code. Also note that by using this function the
2085 * nameidata argument is passed to the filesystem methods and a filesystem
2086 * using this helper needs to be prepared for that.
2088 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2090 struct qstr this;
2091 unsigned int c;
2092 int err;
2094 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2096 this.name = name;
2097 this.len = len;
2098 this.hash = full_name_hash(name, len);
2099 if (!len)
2100 return ERR_PTR(-EACCES);
2102 if (unlikely(name[0] == '.')) {
2103 if (len < 2 || (len == 2 && name[1] == '.'))
2104 return ERR_PTR(-EACCES);
2107 while (len--) {
2108 c = *(const unsigned char *)name++;
2109 if (c == '/' || c == '\0')
2110 return ERR_PTR(-EACCES);
2113 * See if the low-level filesystem might want
2114 * to use its own hash..
2116 if (base->d_flags & DCACHE_OP_HASH) {
2117 int err = base->d_op->d_hash(base, &this);
2118 if (err < 0)
2119 return ERR_PTR(err);
2122 err = inode_permission(base->d_inode, MAY_EXEC);
2123 if (err)
2124 return ERR_PTR(err);
2126 return __lookup_hash(&this, base, 0);
2128 EXPORT_SYMBOL(lookup_one_len);
2130 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2131 struct path *path, int *empty)
2133 struct nameidata nd;
2134 struct filename *tmp = getname_flags(name, flags, empty);
2135 int err = PTR_ERR(tmp);
2136 if (!IS_ERR(tmp)) {
2138 BUG_ON(flags & LOOKUP_PARENT);
2140 err = filename_lookup(dfd, tmp, flags, &nd);
2141 putname(tmp);
2142 if (!err)
2143 *path = nd.path;
2145 return err;
2148 int user_path_at(int dfd, const char __user *name, unsigned flags,
2149 struct path *path)
2151 return user_path_at_empty(dfd, name, flags, path, NULL);
2153 EXPORT_SYMBOL(user_path_at);
2156 * NB: most callers don't do anything directly with the reference to the
2157 * to struct filename, but the nd->last pointer points into the name string
2158 * allocated by getname. So we must hold the reference to it until all
2159 * path-walking is complete.
2161 static struct filename *
2162 user_path_parent(int dfd, const char __user *path, struct nameidata *nd,
2163 unsigned int flags)
2165 struct filename *s = getname(path);
2166 int error;
2168 /* only LOOKUP_REVAL is allowed in extra flags */
2169 flags &= LOOKUP_REVAL;
2171 if (IS_ERR(s))
2172 return s;
2174 error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd);
2175 if (error) {
2176 putname(s);
2177 return ERR_PTR(error);
2180 return s;
2184 * mountpoint_last - look up last component for umount
2185 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2186 * @path: pointer to container for result
2188 * This is a special lookup_last function just for umount. In this case, we
2189 * need to resolve the path without doing any revalidation.
2191 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2192 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2193 * in almost all cases, this lookup will be served out of the dcache. The only
2194 * cases where it won't are if nd->last refers to a symlink or the path is
2195 * bogus and it doesn't exist.
2197 * Returns:
2198 * -error: if there was an error during lookup. This includes -ENOENT if the
2199 * lookup found a negative dentry. The nd->path reference will also be
2200 * put in this case.
2202 * 0: if we successfully resolved nd->path and found it to not to be a
2203 * symlink that needs to be followed. "path" will also be populated.
2204 * The nd->path reference will also be put.
2206 * 1: if we successfully resolved nd->last and found it to be a symlink
2207 * that needs to be followed. "path" will be populated with the path
2208 * to the link, and nd->path will *not* be put.
2210 static int
2211 mountpoint_last(struct nameidata *nd, struct path *path)
2213 int error = 0;
2214 struct dentry *dentry;
2215 struct dentry *dir = nd->path.dentry;
2217 /* If we're in rcuwalk, drop out of it to handle last component */
2218 if (nd->flags & LOOKUP_RCU) {
2219 if (unlazy_walk(nd, NULL)) {
2220 error = -ECHILD;
2221 goto out;
2225 nd->flags &= ~LOOKUP_PARENT;
2227 if (unlikely(nd->last_type != LAST_NORM)) {
2228 error = handle_dots(nd, nd->last_type);
2229 if (error)
2230 goto out;
2231 dentry = dget(nd->path.dentry);
2232 goto done;
2235 mutex_lock(&dir->d_inode->i_mutex);
2236 dentry = d_lookup(dir, &nd->last);
2237 if (!dentry) {
2239 * No cached dentry. Mounted dentries are pinned in the cache,
2240 * so that means that this dentry is probably a symlink or the
2241 * path doesn't actually point to a mounted dentry.
2243 dentry = d_alloc(dir, &nd->last);
2244 if (!dentry) {
2245 error = -ENOMEM;
2246 mutex_unlock(&dir->d_inode->i_mutex);
2247 goto out;
2249 dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2250 error = PTR_ERR(dentry);
2251 if (IS_ERR(dentry)) {
2252 mutex_unlock(&dir->d_inode->i_mutex);
2253 goto out;
2256 mutex_unlock(&dir->d_inode->i_mutex);
2258 done:
2259 if (!dentry->d_inode || d_is_negative(dentry)) {
2260 error = -ENOENT;
2261 dput(dentry);
2262 goto out;
2264 path->dentry = dentry;
2265 path->mnt = nd->path.mnt;
2266 if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW))
2267 return 1;
2268 mntget(path->mnt);
2269 follow_mount(path);
2270 error = 0;
2271 out:
2272 terminate_walk(nd);
2273 return error;
2277 * path_mountpoint - look up a path to be umounted
2278 * @dfd: directory file descriptor to start walk from
2279 * @name: full pathname to walk
2280 * @path: pointer to container for result
2281 * @flags: lookup flags
2283 * Look up the given name, but don't attempt to revalidate the last component.
2284 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2286 static int
2287 path_mountpoint(int dfd, const char *name, struct path *path, unsigned int flags)
2289 struct file *base = NULL;
2290 struct nameidata nd;
2291 int err;
2293 err = path_init(dfd, name, flags | LOOKUP_PARENT, &nd, &base);
2294 if (unlikely(err))
2295 return err;
2297 current->total_link_count = 0;
2298 err = link_path_walk(name, &nd);
2299 if (err)
2300 goto out;
2302 err = mountpoint_last(&nd, path);
2303 while (err > 0) {
2304 void *cookie;
2305 struct path link = *path;
2306 err = may_follow_link(&link, &nd);
2307 if (unlikely(err))
2308 break;
2309 nd.flags |= LOOKUP_PARENT;
2310 err = follow_link(&link, &nd, &cookie);
2311 if (err)
2312 break;
2313 err = mountpoint_last(&nd, path);
2314 put_link(&nd, &link, cookie);
2316 out:
2317 if (base)
2318 fput(base);
2320 if (nd.root.mnt && !(nd.flags & LOOKUP_ROOT))
2321 path_put(&nd.root);
2323 return err;
2326 static int
2327 filename_mountpoint(int dfd, struct filename *s, struct path *path,
2328 unsigned int flags)
2330 int error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_RCU);
2331 if (unlikely(error == -ECHILD))
2332 error = path_mountpoint(dfd, s->name, path, flags);
2333 if (unlikely(error == -ESTALE))
2334 error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_REVAL);
2335 if (likely(!error))
2336 audit_inode(s, path->dentry, 0);
2337 return error;
2341 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2342 * @dfd: directory file descriptor
2343 * @name: pathname from userland
2344 * @flags: lookup flags
2345 * @path: pointer to container to hold result
2347 * A umount is a special case for path walking. We're not actually interested
2348 * in the inode in this situation, and ESTALE errors can be a problem. We
2349 * simply want track down the dentry and vfsmount attached at the mountpoint
2350 * and avoid revalidating the last component.
2352 * Returns 0 and populates "path" on success.
2355 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2356 struct path *path)
2358 struct filename *s = getname(name);
2359 int error;
2360 if (IS_ERR(s))
2361 return PTR_ERR(s);
2362 error = filename_mountpoint(dfd, s, path, flags);
2363 putname(s);
2364 return error;
2368 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2369 unsigned int flags)
2371 struct filename s = {.name = name};
2372 return filename_mountpoint(dfd, &s, path, flags);
2374 EXPORT_SYMBOL(kern_path_mountpoint);
2377 * It's inline, so penalty for filesystems that don't use sticky bit is
2378 * minimal.
2380 static inline int check_sticky(struct inode *dir, struct inode *inode)
2382 kuid_t fsuid = current_fsuid();
2384 if (!(dir->i_mode & S_ISVTX))
2385 return 0;
2386 if (uid_eq(inode->i_uid, fsuid))
2387 return 0;
2388 if (uid_eq(dir->i_uid, fsuid))
2389 return 0;
2390 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2394 * Check whether we can remove a link victim from directory dir, check
2395 * whether the type of victim is right.
2396 * 1. We can't do it if dir is read-only (done in permission())
2397 * 2. We should have write and exec permissions on dir
2398 * 3. We can't remove anything from append-only dir
2399 * 4. We can't do anything with immutable dir (done in permission())
2400 * 5. If the sticky bit on dir is set we should either
2401 * a. be owner of dir, or
2402 * b. be owner of victim, or
2403 * c. have CAP_FOWNER capability
2404 * 6. If the victim is append-only or immutable we can't do antyhing with
2405 * links pointing to it.
2406 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2407 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2408 * 9. We can't remove a root or mountpoint.
2409 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2410 * nfs_async_unlink().
2412 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2414 struct inode *inode = victim->d_inode;
2415 int error;
2417 if (d_is_negative(victim))
2418 return -ENOENT;
2419 BUG_ON(!inode);
2421 BUG_ON(victim->d_parent->d_inode != dir);
2422 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2424 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2425 if (error)
2426 return error;
2427 if (IS_APPEND(dir))
2428 return -EPERM;
2430 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2431 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2432 return -EPERM;
2433 if (isdir) {
2434 if (!d_is_dir(victim))
2435 return -ENOTDIR;
2436 if (IS_ROOT(victim))
2437 return -EBUSY;
2438 } else if (d_is_dir(victim))
2439 return -EISDIR;
2440 if (IS_DEADDIR(dir))
2441 return -ENOENT;
2442 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2443 return -EBUSY;
2444 return 0;
2447 /* Check whether we can create an object with dentry child in directory
2448 * dir.
2449 * 1. We can't do it if child already exists (open has special treatment for
2450 * this case, but since we are inlined it's OK)
2451 * 2. We can't do it if dir is read-only (done in permission())
2452 * 3. We should have write and exec permissions on dir
2453 * 4. We can't do it if dir is immutable (done in permission())
2455 static inline int may_create(struct inode *dir, struct dentry *child)
2457 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2458 if (child->d_inode)
2459 return -EEXIST;
2460 if (IS_DEADDIR(dir))
2461 return -ENOENT;
2462 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2466 * p1 and p2 should be directories on the same fs.
2468 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2470 struct dentry *p;
2472 if (p1 == p2) {
2473 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2474 return NULL;
2477 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2479 p = d_ancestor(p2, p1);
2480 if (p) {
2481 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2482 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2483 return p;
2486 p = d_ancestor(p1, p2);
2487 if (p) {
2488 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2489 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2490 return p;
2493 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2494 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2495 return NULL;
2497 EXPORT_SYMBOL(lock_rename);
2499 void unlock_rename(struct dentry *p1, struct dentry *p2)
2501 mutex_unlock(&p1->d_inode->i_mutex);
2502 if (p1 != p2) {
2503 mutex_unlock(&p2->d_inode->i_mutex);
2504 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2507 EXPORT_SYMBOL(unlock_rename);
2509 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2510 bool want_excl)
2512 int error = may_create(dir, dentry);
2513 if (error)
2514 return error;
2516 if (!dir->i_op->create)
2517 return -EACCES; /* shouldn't it be ENOSYS? */
2518 mode &= S_IALLUGO;
2519 mode |= S_IFREG;
2520 error = security_inode_create(dir, dentry, mode);
2521 if (error)
2522 return error;
2523 error = dir->i_op->create(dir, dentry, mode, want_excl);
2524 if (!error)
2525 fsnotify_create(dir, dentry);
2526 return error;
2528 EXPORT_SYMBOL(vfs_create);
2530 static int may_open(struct path *path, int acc_mode, int flag)
2532 struct dentry *dentry = path->dentry;
2533 struct inode *inode = dentry->d_inode;
2534 int error;
2536 /* O_PATH? */
2537 if (!acc_mode)
2538 return 0;
2540 if (!inode)
2541 return -ENOENT;
2543 switch (inode->i_mode & S_IFMT) {
2544 case S_IFLNK:
2545 return -ELOOP;
2546 case S_IFDIR:
2547 if (acc_mode & MAY_WRITE)
2548 return -EISDIR;
2549 break;
2550 case S_IFBLK:
2551 case S_IFCHR:
2552 if (path->mnt->mnt_flags & MNT_NODEV)
2553 return -EACCES;
2554 /*FALLTHRU*/
2555 case S_IFIFO:
2556 case S_IFSOCK:
2557 flag &= ~O_TRUNC;
2558 break;
2561 error = inode_permission(inode, acc_mode);
2562 if (error)
2563 return error;
2566 * An append-only file must be opened in append mode for writing.
2568 if (IS_APPEND(inode)) {
2569 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2570 return -EPERM;
2571 if (flag & O_TRUNC)
2572 return -EPERM;
2575 /* O_NOATIME can only be set by the owner or superuser */
2576 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2577 return -EPERM;
2579 return 0;
2582 static int handle_truncate(struct file *filp)
2584 struct path *path = &filp->f_path;
2585 struct inode *inode = path->dentry->d_inode;
2586 int error = get_write_access(inode);
2587 if (error)
2588 return error;
2590 * Refuse to truncate files with mandatory locks held on them.
2592 error = locks_verify_locked(filp);
2593 if (!error)
2594 error = security_path_truncate(path);
2595 if (!error) {
2596 error = do_truncate(path->dentry, 0,
2597 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2598 filp);
2600 put_write_access(inode);
2601 return error;
2604 static inline int open_to_namei_flags(int flag)
2606 if ((flag & O_ACCMODE) == 3)
2607 flag--;
2608 return flag;
2611 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2613 int error = security_path_mknod(dir, dentry, mode, 0);
2614 if (error)
2615 return error;
2617 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2618 if (error)
2619 return error;
2621 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2625 * Attempt to atomically look up, create and open a file from a negative
2626 * dentry.
2628 * Returns 0 if successful. The file will have been created and attached to
2629 * @file by the filesystem calling finish_open().
2631 * Returns 1 if the file was looked up only or didn't need creating. The
2632 * caller will need to perform the open themselves. @path will have been
2633 * updated to point to the new dentry. This may be negative.
2635 * Returns an error code otherwise.
2637 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2638 struct path *path, struct file *file,
2639 const struct open_flags *op,
2640 bool got_write, bool need_lookup,
2641 int *opened)
2643 struct inode *dir = nd->path.dentry->d_inode;
2644 unsigned open_flag = open_to_namei_flags(op->open_flag);
2645 umode_t mode;
2646 int error;
2647 int acc_mode;
2648 int create_error = 0;
2649 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2650 bool excl;
2652 BUG_ON(dentry->d_inode);
2654 /* Don't create child dentry for a dead directory. */
2655 if (unlikely(IS_DEADDIR(dir))) {
2656 error = -ENOENT;
2657 goto out;
2660 mode = op->mode;
2661 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2662 mode &= ~current_umask();
2664 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2665 if (excl)
2666 open_flag &= ~O_TRUNC;
2669 * Checking write permission is tricky, bacuse we don't know if we are
2670 * going to actually need it: O_CREAT opens should work as long as the
2671 * file exists. But checking existence breaks atomicity. The trick is
2672 * to check access and if not granted clear O_CREAT from the flags.
2674 * Another problem is returing the "right" error value (e.g. for an
2675 * O_EXCL open we want to return EEXIST not EROFS).
2677 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2678 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2679 if (!(open_flag & O_CREAT)) {
2681 * No O_CREATE -> atomicity not a requirement -> fall
2682 * back to lookup + open
2684 goto no_open;
2685 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2686 /* Fall back and fail with the right error */
2687 create_error = -EROFS;
2688 goto no_open;
2689 } else {
2690 /* No side effects, safe to clear O_CREAT */
2691 create_error = -EROFS;
2692 open_flag &= ~O_CREAT;
2696 if (open_flag & O_CREAT) {
2697 error = may_o_create(&nd->path, dentry, mode);
2698 if (error) {
2699 create_error = error;
2700 if (open_flag & O_EXCL)
2701 goto no_open;
2702 open_flag &= ~O_CREAT;
2706 if (nd->flags & LOOKUP_DIRECTORY)
2707 open_flag |= O_DIRECTORY;
2709 file->f_path.dentry = DENTRY_NOT_SET;
2710 file->f_path.mnt = nd->path.mnt;
2711 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2712 opened);
2713 if (error < 0) {
2714 if (create_error && error == -ENOENT)
2715 error = create_error;
2716 goto out;
2719 if (error) { /* returned 1, that is */
2720 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2721 error = -EIO;
2722 goto out;
2724 if (file->f_path.dentry) {
2725 dput(dentry);
2726 dentry = file->f_path.dentry;
2728 if (*opened & FILE_CREATED)
2729 fsnotify_create(dir, dentry);
2730 if (!dentry->d_inode) {
2731 WARN_ON(*opened & FILE_CREATED);
2732 if (create_error) {
2733 error = create_error;
2734 goto out;
2736 } else {
2737 if (excl && !(*opened & FILE_CREATED)) {
2738 error = -EEXIST;
2739 goto out;
2742 goto looked_up;
2746 * We didn't have the inode before the open, so check open permission
2747 * here.
2749 acc_mode = op->acc_mode;
2750 if (*opened & FILE_CREATED) {
2751 WARN_ON(!(open_flag & O_CREAT));
2752 fsnotify_create(dir, dentry);
2753 acc_mode = MAY_OPEN;
2755 error = may_open(&file->f_path, acc_mode, open_flag);
2756 if (error)
2757 fput(file);
2759 out:
2760 dput(dentry);
2761 return error;
2763 no_open:
2764 if (need_lookup) {
2765 dentry = lookup_real(dir, dentry, nd->flags);
2766 if (IS_ERR(dentry))
2767 return PTR_ERR(dentry);
2769 if (create_error) {
2770 int open_flag = op->open_flag;
2772 error = create_error;
2773 if ((open_flag & O_EXCL)) {
2774 if (!dentry->d_inode)
2775 goto out;
2776 } else if (!dentry->d_inode) {
2777 goto out;
2778 } else if ((open_flag & O_TRUNC) &&
2779 S_ISREG(dentry->d_inode->i_mode)) {
2780 goto out;
2782 /* will fail later, go on to get the right error */
2785 looked_up:
2786 path->dentry = dentry;
2787 path->mnt = nd->path.mnt;
2788 return 1;
2792 * Look up and maybe create and open the last component.
2794 * Must be called with i_mutex held on parent.
2796 * Returns 0 if the file was successfully atomically created (if necessary) and
2797 * opened. In this case the file will be returned attached to @file.
2799 * Returns 1 if the file was not completely opened at this time, though lookups
2800 * and creations will have been performed and the dentry returned in @path will
2801 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2802 * specified then a negative dentry may be returned.
2804 * An error code is returned otherwise.
2806 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2807 * cleared otherwise prior to returning.
2809 static int lookup_open(struct nameidata *nd, struct path *path,
2810 struct file *file,
2811 const struct open_flags *op,
2812 bool got_write, int *opened)
2814 struct dentry *dir = nd->path.dentry;
2815 struct inode *dir_inode = dir->d_inode;
2816 struct dentry *dentry;
2817 int error;
2818 bool need_lookup;
2820 *opened &= ~FILE_CREATED;
2821 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2822 if (IS_ERR(dentry))
2823 return PTR_ERR(dentry);
2825 /* Cached positive dentry: will open in f_op->open */
2826 if (!need_lookup && dentry->d_inode)
2827 goto out_no_open;
2829 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2830 return atomic_open(nd, dentry, path, file, op, got_write,
2831 need_lookup, opened);
2834 if (need_lookup) {
2835 BUG_ON(dentry->d_inode);
2837 dentry = lookup_real(dir_inode, dentry, nd->flags);
2838 if (IS_ERR(dentry))
2839 return PTR_ERR(dentry);
2842 /* Negative dentry, just create the file */
2843 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2844 umode_t mode = op->mode;
2845 if (!IS_POSIXACL(dir->d_inode))
2846 mode &= ~current_umask();
2848 * This write is needed to ensure that a
2849 * rw->ro transition does not occur between
2850 * the time when the file is created and when
2851 * a permanent write count is taken through
2852 * the 'struct file' in finish_open().
2854 if (!got_write) {
2855 error = -EROFS;
2856 goto out_dput;
2858 *opened |= FILE_CREATED;
2859 error = security_path_mknod(&nd->path, dentry, mode, 0);
2860 if (error)
2861 goto out_dput;
2862 error = vfs_create(dir->d_inode, dentry, mode,
2863 nd->flags & LOOKUP_EXCL);
2864 if (error)
2865 goto out_dput;
2867 out_no_open:
2868 path->dentry = dentry;
2869 path->mnt = nd->path.mnt;
2870 return 1;
2872 out_dput:
2873 dput(dentry);
2874 return error;
2878 * Handle the last step of open()
2880 static int do_last(struct nameidata *nd, struct path *path,
2881 struct file *file, const struct open_flags *op,
2882 int *opened, struct filename *name)
2884 struct dentry *dir = nd->path.dentry;
2885 int open_flag = op->open_flag;
2886 bool will_truncate = (open_flag & O_TRUNC) != 0;
2887 bool got_write = false;
2888 int acc_mode = op->acc_mode;
2889 struct inode *inode;
2890 bool symlink_ok = false;
2891 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2892 bool retried = false;
2893 int error;
2895 nd->flags &= ~LOOKUP_PARENT;
2896 nd->flags |= op->intent;
2898 if (nd->last_type != LAST_NORM) {
2899 error = handle_dots(nd, nd->last_type);
2900 if (error)
2901 return error;
2902 goto finish_open;
2905 if (!(open_flag & O_CREAT)) {
2906 if (nd->last.name[nd->last.len])
2907 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2908 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2909 symlink_ok = true;
2910 /* we _can_ be in RCU mode here */
2911 error = lookup_fast(nd, path, &inode);
2912 if (likely(!error))
2913 goto finish_lookup;
2915 if (error < 0)
2916 goto out;
2918 BUG_ON(nd->inode != dir->d_inode);
2919 } else {
2920 /* create side of things */
2922 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2923 * has been cleared when we got to the last component we are
2924 * about to look up
2926 error = complete_walk(nd);
2927 if (error)
2928 return error;
2930 audit_inode(name, dir, LOOKUP_PARENT);
2931 error = -EISDIR;
2932 /* trailing slashes? */
2933 if (nd->last.name[nd->last.len])
2934 goto out;
2937 retry_lookup:
2938 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2939 error = mnt_want_write(nd->path.mnt);
2940 if (!error)
2941 got_write = true;
2943 * do _not_ fail yet - we might not need that or fail with
2944 * a different error; let lookup_open() decide; we'll be
2945 * dropping this one anyway.
2948 mutex_lock(&dir->d_inode->i_mutex);
2949 error = lookup_open(nd, path, file, op, got_write, opened);
2950 mutex_unlock(&dir->d_inode->i_mutex);
2952 if (error <= 0) {
2953 if (error)
2954 goto out;
2956 if ((*opened & FILE_CREATED) ||
2957 !S_ISREG(file_inode(file)->i_mode))
2958 will_truncate = false;
2960 audit_inode(name, file->f_path.dentry, 0);
2961 goto opened;
2964 if (*opened & FILE_CREATED) {
2965 /* Don't check for write permission, don't truncate */
2966 open_flag &= ~O_TRUNC;
2967 will_truncate = false;
2968 acc_mode = MAY_OPEN;
2969 path_to_nameidata(path, nd);
2970 goto finish_open_created;
2974 * create/update audit record if it already exists.
2976 if (d_is_positive(path->dentry))
2977 audit_inode(name, path->dentry, 0);
2980 * If atomic_open() acquired write access it is dropped now due to
2981 * possible mount and symlink following (this might be optimized away if
2982 * necessary...)
2984 if (got_write) {
2985 mnt_drop_write(nd->path.mnt);
2986 got_write = false;
2989 error = -EEXIST;
2990 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
2991 goto exit_dput;
2993 error = follow_managed(path, nd->flags);
2994 if (error < 0)
2995 goto exit_dput;
2997 if (error)
2998 nd->flags |= LOOKUP_JUMPED;
3000 BUG_ON(nd->flags & LOOKUP_RCU);
3001 inode = path->dentry->d_inode;
3002 finish_lookup:
3003 /* we _can_ be in RCU mode here */
3004 error = -ENOENT;
3005 if (!inode || d_is_negative(path->dentry)) {
3006 path_to_nameidata(path, nd);
3007 goto out;
3010 if (should_follow_link(path->dentry, !symlink_ok)) {
3011 if (nd->flags & LOOKUP_RCU) {
3012 if (unlikely(unlazy_walk(nd, path->dentry))) {
3013 error = -ECHILD;
3014 goto out;
3017 BUG_ON(inode != path->dentry->d_inode);
3018 return 1;
3021 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
3022 path_to_nameidata(path, nd);
3023 } else {
3024 save_parent.dentry = nd->path.dentry;
3025 save_parent.mnt = mntget(path->mnt);
3026 nd->path.dentry = path->dentry;
3029 nd->inode = inode;
3030 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3031 finish_open:
3032 error = complete_walk(nd);
3033 if (error) {
3034 path_put(&save_parent);
3035 return error;
3037 audit_inode(name, nd->path.dentry, 0);
3038 error = -EISDIR;
3039 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3040 goto out;
3041 error = -ENOTDIR;
3042 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3043 goto out;
3044 if (!S_ISREG(nd->inode->i_mode))
3045 will_truncate = false;
3047 if (will_truncate) {
3048 error = mnt_want_write(nd->path.mnt);
3049 if (error)
3050 goto out;
3051 got_write = true;
3053 finish_open_created:
3054 error = may_open(&nd->path, acc_mode, open_flag);
3055 if (error)
3056 goto out;
3057 file->f_path.mnt = nd->path.mnt;
3058 error = finish_open(file, nd->path.dentry, NULL, opened);
3059 if (error) {
3060 if (error == -EOPENSTALE)
3061 goto stale_open;
3062 goto out;
3064 opened:
3065 error = open_check_o_direct(file);
3066 if (error)
3067 goto exit_fput;
3068 error = ima_file_check(file, op->acc_mode);
3069 if (error)
3070 goto exit_fput;
3072 if (will_truncate) {
3073 error = handle_truncate(file);
3074 if (error)
3075 goto exit_fput;
3077 out:
3078 if (got_write)
3079 mnt_drop_write(nd->path.mnt);
3080 path_put(&save_parent);
3081 terminate_walk(nd);
3082 return error;
3084 exit_dput:
3085 path_put_conditional(path, nd);
3086 goto out;
3087 exit_fput:
3088 fput(file);
3089 goto out;
3091 stale_open:
3092 /* If no saved parent or already retried then can't retry */
3093 if (!save_parent.dentry || retried)
3094 goto out;
3096 BUG_ON(save_parent.dentry != dir);
3097 path_put(&nd->path);
3098 nd->path = save_parent;
3099 nd->inode = dir->d_inode;
3100 save_parent.mnt = NULL;
3101 save_parent.dentry = NULL;
3102 if (got_write) {
3103 mnt_drop_write(nd->path.mnt);
3104 got_write = false;
3106 retried = true;
3107 goto retry_lookup;
3110 static int do_tmpfile(int dfd, struct filename *pathname,
3111 struct nameidata *nd, int flags,
3112 const struct open_flags *op,
3113 struct file *file, int *opened)
3115 static const struct qstr name = QSTR_INIT("/", 1);
3116 struct dentry *dentry, *child;
3117 struct inode *dir;
3118 int error = path_lookupat(dfd, pathname->name,
3119 flags | LOOKUP_DIRECTORY, nd);
3120 if (unlikely(error))
3121 return error;
3122 error = mnt_want_write(nd->path.mnt);
3123 if (unlikely(error))
3124 goto out;
3125 /* we want directory to be writable */
3126 error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3127 if (error)
3128 goto out2;
3129 dentry = nd->path.dentry;
3130 dir = dentry->d_inode;
3131 if (!dir->i_op->tmpfile) {
3132 error = -EOPNOTSUPP;
3133 goto out2;
3135 child = d_alloc(dentry, &name);
3136 if (unlikely(!child)) {
3137 error = -ENOMEM;
3138 goto out2;
3140 nd->flags &= ~LOOKUP_DIRECTORY;
3141 nd->flags |= op->intent;
3142 dput(nd->path.dentry);
3143 nd->path.dentry = child;
3144 error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3145 if (error)
3146 goto out2;
3147 audit_inode(pathname, nd->path.dentry, 0);
3148 error = may_open(&nd->path, op->acc_mode, op->open_flag);
3149 if (error)
3150 goto out2;
3151 file->f_path.mnt = nd->path.mnt;
3152 error = finish_open(file, nd->path.dentry, NULL, opened);
3153 if (error)
3154 goto out2;
3155 error = open_check_o_direct(file);
3156 if (error) {
3157 fput(file);
3158 } else if (!(op->open_flag & O_EXCL)) {
3159 struct inode *inode = file_inode(file);
3160 spin_lock(&inode->i_lock);
3161 inode->i_state |= I_LINKABLE;
3162 spin_unlock(&inode->i_lock);
3164 out2:
3165 mnt_drop_write(nd->path.mnt);
3166 out:
3167 path_put(&nd->path);
3168 return error;
3171 static struct file *path_openat(int dfd, struct filename *pathname,
3172 struct nameidata *nd, const struct open_flags *op, int flags)
3174 struct file *base = NULL;
3175 struct file *file;
3176 struct path path;
3177 int opened = 0;
3178 int error;
3180 file = get_empty_filp();
3181 if (IS_ERR(file))
3182 return file;
3184 file->f_flags = op->open_flag;
3186 if (unlikely(file->f_flags & __O_TMPFILE)) {
3187 error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3188 goto out;
3191 error = path_init(dfd, pathname->name, flags | LOOKUP_PARENT, nd, &base);
3192 if (unlikely(error))
3193 goto out;
3195 current->total_link_count = 0;
3196 error = link_path_walk(pathname->name, nd);
3197 if (unlikely(error))
3198 goto out;
3200 error = do_last(nd, &path, file, op, &opened, pathname);
3201 while (unlikely(error > 0)) { /* trailing symlink */
3202 struct path link = path;
3203 void *cookie;
3204 if (!(nd->flags & LOOKUP_FOLLOW)) {
3205 path_put_conditional(&path, nd);
3206 path_put(&nd->path);
3207 error = -ELOOP;
3208 break;
3210 error = may_follow_link(&link, nd);
3211 if (unlikely(error))
3212 break;
3213 nd->flags |= LOOKUP_PARENT;
3214 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3215 error = follow_link(&link, nd, &cookie);
3216 if (unlikely(error))
3217 break;
3218 error = do_last(nd, &path, file, op, &opened, pathname);
3219 put_link(nd, &link, cookie);
3221 out:
3222 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
3223 path_put(&nd->root);
3224 if (base)
3225 fput(base);
3226 if (!(opened & FILE_OPENED)) {
3227 BUG_ON(!error);
3228 put_filp(file);
3230 if (unlikely(error)) {
3231 if (error == -EOPENSTALE) {
3232 if (flags & LOOKUP_RCU)
3233 error = -ECHILD;
3234 else
3235 error = -ESTALE;
3237 file = ERR_PTR(error);
3239 return file;
3242 struct file *do_filp_open(int dfd, struct filename *pathname,
3243 const struct open_flags *op)
3245 struct nameidata nd;
3246 int flags = op->lookup_flags;
3247 struct file *filp;
3249 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3250 if (unlikely(filp == ERR_PTR(-ECHILD)))
3251 filp = path_openat(dfd, pathname, &nd, op, flags);
3252 if (unlikely(filp == ERR_PTR(-ESTALE)))
3253 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3254 return filp;
3257 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3258 const char *name, const struct open_flags *op)
3260 struct nameidata nd;
3261 struct file *file;
3262 struct filename filename = { .name = name };
3263 int flags = op->lookup_flags | LOOKUP_ROOT;
3265 nd.root.mnt = mnt;
3266 nd.root.dentry = dentry;
3268 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3269 return ERR_PTR(-ELOOP);
3271 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_RCU);
3272 if (unlikely(file == ERR_PTR(-ECHILD)))
3273 file = path_openat(-1, &filename, &nd, op, flags);
3274 if (unlikely(file == ERR_PTR(-ESTALE)))
3275 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_REVAL);
3276 return file;
3279 struct dentry *kern_path_create(int dfd, const char *pathname,
3280 struct path *path, unsigned int lookup_flags)
3282 struct dentry *dentry = ERR_PTR(-EEXIST);
3283 struct nameidata nd;
3284 int err2;
3285 int error;
3286 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3289 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3290 * other flags passed in are ignored!
3292 lookup_flags &= LOOKUP_REVAL;
3294 error = do_path_lookup(dfd, pathname, LOOKUP_PARENT|lookup_flags, &nd);
3295 if (error)
3296 return ERR_PTR(error);
3299 * Yucky last component or no last component at all?
3300 * (foo/., foo/.., /////)
3302 if (nd.last_type != LAST_NORM)
3303 goto out;
3304 nd.flags &= ~LOOKUP_PARENT;
3305 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3307 /* don't fail immediately if it's r/o, at least try to report other errors */
3308 err2 = mnt_want_write(nd.path.mnt);
3310 * Do the final lookup.
3312 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3313 dentry = lookup_hash(&nd);
3314 if (IS_ERR(dentry))
3315 goto unlock;
3317 error = -EEXIST;
3318 if (d_is_positive(dentry))
3319 goto fail;
3322 * Special case - lookup gave negative, but... we had foo/bar/
3323 * From the vfs_mknod() POV we just have a negative dentry -
3324 * all is fine. Let's be bastards - you had / on the end, you've
3325 * been asking for (non-existent) directory. -ENOENT for you.
3327 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3328 error = -ENOENT;
3329 goto fail;
3331 if (unlikely(err2)) {
3332 error = err2;
3333 goto fail;
3335 *path = nd.path;
3336 return dentry;
3337 fail:
3338 dput(dentry);
3339 dentry = ERR_PTR(error);
3340 unlock:
3341 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3342 if (!err2)
3343 mnt_drop_write(nd.path.mnt);
3344 out:
3345 path_put(&nd.path);
3346 return dentry;
3348 EXPORT_SYMBOL(kern_path_create);
3350 void done_path_create(struct path *path, struct dentry *dentry)
3352 dput(dentry);
3353 mutex_unlock(&path->dentry->d_inode->i_mutex);
3354 mnt_drop_write(path->mnt);
3355 path_put(path);
3357 EXPORT_SYMBOL(done_path_create);
3359 struct dentry *user_path_create(int dfd, const char __user *pathname,
3360 struct path *path, unsigned int lookup_flags)
3362 struct filename *tmp = getname(pathname);
3363 struct dentry *res;
3364 if (IS_ERR(tmp))
3365 return ERR_CAST(tmp);
3366 res = kern_path_create(dfd, tmp->name, path, lookup_flags);
3367 putname(tmp);
3368 return res;
3370 EXPORT_SYMBOL(user_path_create);
3372 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3374 int error = may_create(dir, dentry);
3376 if (error)
3377 return error;
3379 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3380 return -EPERM;
3382 if (!dir->i_op->mknod)
3383 return -EPERM;
3385 error = devcgroup_inode_mknod(mode, dev);
3386 if (error)
3387 return error;
3389 error = security_inode_mknod(dir, dentry, mode, dev);
3390 if (error)
3391 return error;
3393 error = dir->i_op->mknod(dir, dentry, mode, dev);
3394 if (!error)
3395 fsnotify_create(dir, dentry);
3396 return error;
3398 EXPORT_SYMBOL(vfs_mknod);
3400 static int may_mknod(umode_t mode)
3402 switch (mode & S_IFMT) {
3403 case S_IFREG:
3404 case S_IFCHR:
3405 case S_IFBLK:
3406 case S_IFIFO:
3407 case S_IFSOCK:
3408 case 0: /* zero mode translates to S_IFREG */
3409 return 0;
3410 case S_IFDIR:
3411 return -EPERM;
3412 default:
3413 return -EINVAL;
3417 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3418 unsigned, dev)
3420 struct dentry *dentry;
3421 struct path path;
3422 int error;
3423 unsigned int lookup_flags = 0;
3425 error = may_mknod(mode);
3426 if (error)
3427 return error;
3428 retry:
3429 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3430 if (IS_ERR(dentry))
3431 return PTR_ERR(dentry);
3433 if (!IS_POSIXACL(path.dentry->d_inode))
3434 mode &= ~current_umask();
3435 error = security_path_mknod(&path, dentry, mode, dev);
3436 if (error)
3437 goto out;
3438 switch (mode & S_IFMT) {
3439 case 0: case S_IFREG:
3440 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3441 break;
3442 case S_IFCHR: case S_IFBLK:
3443 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3444 new_decode_dev(dev));
3445 break;
3446 case S_IFIFO: case S_IFSOCK:
3447 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3448 break;
3450 out:
3451 done_path_create(&path, dentry);
3452 if (retry_estale(error, lookup_flags)) {
3453 lookup_flags |= LOOKUP_REVAL;
3454 goto retry;
3456 return error;
3459 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3461 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3464 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3466 int error = may_create(dir, dentry);
3467 unsigned max_links = dir->i_sb->s_max_links;
3469 if (error)
3470 return error;
3472 if (!dir->i_op->mkdir)
3473 return -EPERM;
3475 mode &= (S_IRWXUGO|S_ISVTX);
3476 error = security_inode_mkdir(dir, dentry, mode);
3477 if (error)
3478 return error;
3480 if (max_links && dir->i_nlink >= max_links)
3481 return -EMLINK;
3483 error = dir->i_op->mkdir(dir, dentry, mode);
3484 if (!error)
3485 fsnotify_mkdir(dir, dentry);
3486 return error;
3488 EXPORT_SYMBOL(vfs_mkdir);
3490 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3492 struct dentry *dentry;
3493 struct path path;
3494 int error;
3495 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3497 retry:
3498 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3499 if (IS_ERR(dentry))
3500 return PTR_ERR(dentry);
3502 if (!IS_POSIXACL(path.dentry->d_inode))
3503 mode &= ~current_umask();
3504 error = security_path_mkdir(&path, dentry, mode);
3505 if (!error)
3506 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3507 done_path_create(&path, dentry);
3508 if (retry_estale(error, lookup_flags)) {
3509 lookup_flags |= LOOKUP_REVAL;
3510 goto retry;
3512 return error;
3515 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3517 return sys_mkdirat(AT_FDCWD, pathname, mode);
3521 * The dentry_unhash() helper will try to drop the dentry early: we
3522 * should have a usage count of 1 if we're the only user of this
3523 * dentry, and if that is true (possibly after pruning the dcache),
3524 * then we drop the dentry now.
3526 * A low-level filesystem can, if it choses, legally
3527 * do a
3529 * if (!d_unhashed(dentry))
3530 * return -EBUSY;
3532 * if it cannot handle the case of removing a directory
3533 * that is still in use by something else..
3535 void dentry_unhash(struct dentry *dentry)
3537 shrink_dcache_parent(dentry);
3538 spin_lock(&dentry->d_lock);
3539 if (dentry->d_lockref.count == 1)
3540 __d_drop(dentry);
3541 spin_unlock(&dentry->d_lock);
3543 EXPORT_SYMBOL(dentry_unhash);
3545 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3547 int error = may_delete(dir, dentry, 1);
3549 if (error)
3550 return error;
3552 if (!dir->i_op->rmdir)
3553 return -EPERM;
3555 dget(dentry);
3556 mutex_lock(&dentry->d_inode->i_mutex);
3558 error = -EBUSY;
3559 if (d_mountpoint(dentry))
3560 goto out;
3562 error = security_inode_rmdir(dir, dentry);
3563 if (error)
3564 goto out;
3566 shrink_dcache_parent(dentry);
3567 error = dir->i_op->rmdir(dir, dentry);
3568 if (error)
3569 goto out;
3571 dentry->d_inode->i_flags |= S_DEAD;
3572 dont_mount(dentry);
3574 out:
3575 mutex_unlock(&dentry->d_inode->i_mutex);
3576 dput(dentry);
3577 if (!error)
3578 d_delete(dentry);
3579 return error;
3581 EXPORT_SYMBOL(vfs_rmdir);
3583 static long do_rmdir(int dfd, const char __user *pathname)
3585 int error = 0;
3586 struct filename *name;
3587 struct dentry *dentry;
3588 struct nameidata nd;
3589 unsigned int lookup_flags = 0;
3590 retry:
3591 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3592 if (IS_ERR(name))
3593 return PTR_ERR(name);
3595 switch(nd.last_type) {
3596 case LAST_DOTDOT:
3597 error = -ENOTEMPTY;
3598 goto exit1;
3599 case LAST_DOT:
3600 error = -EINVAL;
3601 goto exit1;
3602 case LAST_ROOT:
3603 error = -EBUSY;
3604 goto exit1;
3607 nd.flags &= ~LOOKUP_PARENT;
3608 error = mnt_want_write(nd.path.mnt);
3609 if (error)
3610 goto exit1;
3612 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3613 dentry = lookup_hash(&nd);
3614 error = PTR_ERR(dentry);
3615 if (IS_ERR(dentry))
3616 goto exit2;
3617 if (!dentry->d_inode) {
3618 error = -ENOENT;
3619 goto exit3;
3621 error = security_path_rmdir(&nd.path, dentry);
3622 if (error)
3623 goto exit3;
3624 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3625 exit3:
3626 dput(dentry);
3627 exit2:
3628 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3629 mnt_drop_write(nd.path.mnt);
3630 exit1:
3631 path_put(&nd.path);
3632 putname(name);
3633 if (retry_estale(error, lookup_flags)) {
3634 lookup_flags |= LOOKUP_REVAL;
3635 goto retry;
3637 return error;
3640 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3642 return do_rmdir(AT_FDCWD, pathname);
3646 * vfs_unlink - unlink a filesystem object
3647 * @dir: parent directory
3648 * @dentry: victim
3649 * @delegated_inode: returns victim inode, if the inode is delegated.
3651 * The caller must hold dir->i_mutex.
3653 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3654 * return a reference to the inode in delegated_inode. The caller
3655 * should then break the delegation on that inode and retry. Because
3656 * breaking a delegation may take a long time, the caller should drop
3657 * dir->i_mutex before doing so.
3659 * Alternatively, a caller may pass NULL for delegated_inode. This may
3660 * be appropriate for callers that expect the underlying filesystem not
3661 * to be NFS exported.
3663 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3665 struct inode *target = dentry->d_inode;
3666 int error = may_delete(dir, dentry, 0);
3668 if (error)
3669 return error;
3671 if (!dir->i_op->unlink)
3672 return -EPERM;
3674 mutex_lock(&target->i_mutex);
3675 if (d_mountpoint(dentry))
3676 error = -EBUSY;
3677 else {
3678 error = security_inode_unlink(dir, dentry);
3679 if (!error) {
3680 error = try_break_deleg(target, delegated_inode);
3681 if (error)
3682 goto out;
3683 error = dir->i_op->unlink(dir, dentry);
3684 if (!error)
3685 dont_mount(dentry);
3688 out:
3689 mutex_unlock(&target->i_mutex);
3691 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3692 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3693 fsnotify_link_count(target);
3694 d_delete(dentry);
3697 return error;
3699 EXPORT_SYMBOL(vfs_unlink);
3702 * Make sure that the actual truncation of the file will occur outside its
3703 * directory's i_mutex. Truncate can take a long time if there is a lot of
3704 * writeout happening, and we don't want to prevent access to the directory
3705 * while waiting on the I/O.
3707 static long do_unlinkat(int dfd, const char __user *pathname)
3709 int error;
3710 struct filename *name;
3711 struct dentry *dentry;
3712 struct nameidata nd;
3713 struct inode *inode = NULL;
3714 struct inode *delegated_inode = NULL;
3715 unsigned int lookup_flags = 0;
3716 retry:
3717 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3718 if (IS_ERR(name))
3719 return PTR_ERR(name);
3721 error = -EISDIR;
3722 if (nd.last_type != LAST_NORM)
3723 goto exit1;
3725 nd.flags &= ~LOOKUP_PARENT;
3726 error = mnt_want_write(nd.path.mnt);
3727 if (error)
3728 goto exit1;
3729 retry_deleg:
3730 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3731 dentry = lookup_hash(&nd);
3732 error = PTR_ERR(dentry);
3733 if (!IS_ERR(dentry)) {
3734 /* Why not before? Because we want correct error value */
3735 if (nd.last.name[nd.last.len])
3736 goto slashes;
3737 inode = dentry->d_inode;
3738 if (d_is_negative(dentry))
3739 goto slashes;
3740 ihold(inode);
3741 error = security_path_unlink(&nd.path, dentry);
3742 if (error)
3743 goto exit2;
3744 error = vfs_unlink(nd.path.dentry->d_inode, dentry, &delegated_inode);
3745 exit2:
3746 dput(dentry);
3748 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3749 if (inode)
3750 iput(inode); /* truncate the inode here */
3751 inode = NULL;
3752 if (delegated_inode) {
3753 error = break_deleg_wait(&delegated_inode);
3754 if (!error)
3755 goto retry_deleg;
3757 mnt_drop_write(nd.path.mnt);
3758 exit1:
3759 path_put(&nd.path);
3760 putname(name);
3761 if (retry_estale(error, lookup_flags)) {
3762 lookup_flags |= LOOKUP_REVAL;
3763 inode = NULL;
3764 goto retry;
3766 return error;
3768 slashes:
3769 if (d_is_negative(dentry))
3770 error = -ENOENT;
3771 else if (d_is_dir(dentry))
3772 error = -EISDIR;
3773 else
3774 error = -ENOTDIR;
3775 goto exit2;
3778 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3780 if ((flag & ~AT_REMOVEDIR) != 0)
3781 return -EINVAL;
3783 if (flag & AT_REMOVEDIR)
3784 return do_rmdir(dfd, pathname);
3786 return do_unlinkat(dfd, pathname);
3789 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3791 return do_unlinkat(AT_FDCWD, pathname);
3794 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3796 int error = may_create(dir, dentry);
3798 if (error)
3799 return error;
3801 if (!dir->i_op->symlink)
3802 return -EPERM;
3804 error = security_inode_symlink(dir, dentry, oldname);
3805 if (error)
3806 return error;
3808 error = dir->i_op->symlink(dir, dentry, oldname);
3809 if (!error)
3810 fsnotify_create(dir, dentry);
3811 return error;
3813 EXPORT_SYMBOL(vfs_symlink);
3815 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3816 int, newdfd, const char __user *, newname)
3818 int error;
3819 struct filename *from;
3820 struct dentry *dentry;
3821 struct path path;
3822 unsigned int lookup_flags = 0;
3824 from = getname(oldname);
3825 if (IS_ERR(from))
3826 return PTR_ERR(from);
3827 retry:
3828 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3829 error = PTR_ERR(dentry);
3830 if (IS_ERR(dentry))
3831 goto out_putname;
3833 error = security_path_symlink(&path, dentry, from->name);
3834 if (!error)
3835 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3836 done_path_create(&path, dentry);
3837 if (retry_estale(error, lookup_flags)) {
3838 lookup_flags |= LOOKUP_REVAL;
3839 goto retry;
3841 out_putname:
3842 putname(from);
3843 return error;
3846 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3848 return sys_symlinkat(oldname, AT_FDCWD, newname);
3852 * vfs_link - create a new link
3853 * @old_dentry: object to be linked
3854 * @dir: new parent
3855 * @new_dentry: where to create the new link
3856 * @delegated_inode: returns inode needing a delegation break
3858 * The caller must hold dir->i_mutex
3860 * If vfs_link discovers a delegation on the to-be-linked file in need
3861 * of breaking, it will return -EWOULDBLOCK and return a reference to the
3862 * inode in delegated_inode. The caller should then break the delegation
3863 * and retry. Because breaking a delegation may take a long time, the
3864 * caller should drop the i_mutex before doing so.
3866 * Alternatively, a caller may pass NULL for delegated_inode. This may
3867 * be appropriate for callers that expect the underlying filesystem not
3868 * to be NFS exported.
3870 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3872 struct inode *inode = old_dentry->d_inode;
3873 unsigned max_links = dir->i_sb->s_max_links;
3874 int error;
3876 if (!inode)
3877 return -ENOENT;
3879 error = may_create(dir, new_dentry);
3880 if (error)
3881 return error;
3883 if (dir->i_sb != inode->i_sb)
3884 return -EXDEV;
3887 * A link to an append-only or immutable file cannot be created.
3889 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3890 return -EPERM;
3891 if (!dir->i_op->link)
3892 return -EPERM;
3893 if (S_ISDIR(inode->i_mode))
3894 return -EPERM;
3896 error = security_inode_link(old_dentry, dir, new_dentry);
3897 if (error)
3898 return error;
3900 mutex_lock(&inode->i_mutex);
3901 /* Make sure we don't allow creating hardlink to an unlinked file */
3902 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
3903 error = -ENOENT;
3904 else if (max_links && inode->i_nlink >= max_links)
3905 error = -EMLINK;
3906 else {
3907 error = try_break_deleg(inode, delegated_inode);
3908 if (!error)
3909 error = dir->i_op->link(old_dentry, dir, new_dentry);
3912 if (!error && (inode->i_state & I_LINKABLE)) {
3913 spin_lock(&inode->i_lock);
3914 inode->i_state &= ~I_LINKABLE;
3915 spin_unlock(&inode->i_lock);
3917 mutex_unlock(&inode->i_mutex);
3918 if (!error)
3919 fsnotify_link(dir, inode, new_dentry);
3920 return error;
3922 EXPORT_SYMBOL(vfs_link);
3925 * Hardlinks are often used in delicate situations. We avoid
3926 * security-related surprises by not following symlinks on the
3927 * newname. --KAB
3929 * We don't follow them on the oldname either to be compatible
3930 * with linux 2.0, and to avoid hard-linking to directories
3931 * and other special files. --ADM
3933 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3934 int, newdfd, const char __user *, newname, int, flags)
3936 struct dentry *new_dentry;
3937 struct path old_path, new_path;
3938 struct inode *delegated_inode = NULL;
3939 int how = 0;
3940 int error;
3942 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3943 return -EINVAL;
3945 * To use null names we require CAP_DAC_READ_SEARCH
3946 * This ensures that not everyone will be able to create
3947 * handlink using the passed filedescriptor.
3949 if (flags & AT_EMPTY_PATH) {
3950 if (!capable(CAP_DAC_READ_SEARCH))
3951 return -ENOENT;
3952 how = LOOKUP_EMPTY;
3955 if (flags & AT_SYMLINK_FOLLOW)
3956 how |= LOOKUP_FOLLOW;
3957 retry:
3958 error = user_path_at(olddfd, oldname, how, &old_path);
3959 if (error)
3960 return error;
3962 new_dentry = user_path_create(newdfd, newname, &new_path,
3963 (how & LOOKUP_REVAL));
3964 error = PTR_ERR(new_dentry);
3965 if (IS_ERR(new_dentry))
3966 goto out;
3968 error = -EXDEV;
3969 if (old_path.mnt != new_path.mnt)
3970 goto out_dput;
3971 error = may_linkat(&old_path);
3972 if (unlikely(error))
3973 goto out_dput;
3974 error = security_path_link(old_path.dentry, &new_path, new_dentry);
3975 if (error)
3976 goto out_dput;
3977 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
3978 out_dput:
3979 done_path_create(&new_path, new_dentry);
3980 if (delegated_inode) {
3981 error = break_deleg_wait(&delegated_inode);
3982 if (!error) {
3983 path_put(&old_path);
3984 goto retry;
3987 if (retry_estale(error, how)) {
3988 path_put(&old_path);
3989 how |= LOOKUP_REVAL;
3990 goto retry;
3992 out:
3993 path_put(&old_path);
3995 return error;
3998 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4000 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4004 * vfs_rename - rename a filesystem object
4005 * @old_dir: parent of source
4006 * @old_dentry: source
4007 * @new_dir: parent of destination
4008 * @new_dentry: destination
4009 * @delegated_inode: returns an inode needing a delegation break
4010 * @flags: rename flags
4012 * The caller must hold multiple mutexes--see lock_rename()).
4014 * If vfs_rename discovers a delegation in need of breaking at either
4015 * the source or destination, it will return -EWOULDBLOCK and return a
4016 * reference to the inode in delegated_inode. The caller should then
4017 * break the delegation and retry. Because breaking a delegation may
4018 * take a long time, the caller should drop all locks before doing
4019 * so.
4021 * Alternatively, a caller may pass NULL for delegated_inode. This may
4022 * be appropriate for callers that expect the underlying filesystem not
4023 * to be NFS exported.
4025 * The worst of all namespace operations - renaming directory. "Perverted"
4026 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4027 * Problems:
4028 * a) we can get into loop creation.
4029 * b) race potential - two innocent renames can create a loop together.
4030 * That's where 4.4 screws up. Current fix: serialization on
4031 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4032 * story.
4033 * c) we have to lock _four_ objects - parents and victim (if it exists),
4034 * and source (if it is not a directory).
4035 * And that - after we got ->i_mutex on parents (until then we don't know
4036 * whether the target exists). Solution: try to be smart with locking
4037 * order for inodes. We rely on the fact that tree topology may change
4038 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4039 * move will be locked. Thus we can rank directories by the tree
4040 * (ancestors first) and rank all non-directories after them.
4041 * That works since everybody except rename does "lock parent, lookup,
4042 * lock child" and rename is under ->s_vfs_rename_mutex.
4043 * HOWEVER, it relies on the assumption that any object with ->lookup()
4044 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4045 * we'd better make sure that there's no link(2) for them.
4046 * d) conversion from fhandle to dentry may come in the wrong moment - when
4047 * we are removing the target. Solution: we will have to grab ->i_mutex
4048 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4049 * ->i_mutex on parents, which works but leads to some truly excessive
4050 * locking].
4052 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4053 struct inode *new_dir, struct dentry *new_dentry,
4054 struct inode **delegated_inode, unsigned int flags)
4056 int error;
4057 bool is_dir = d_is_dir(old_dentry);
4058 const unsigned char *old_name;
4059 struct inode *source = old_dentry->d_inode;
4060 struct inode *target = new_dentry->d_inode;
4061 bool new_is_dir = false;
4062 unsigned max_links = new_dir->i_sb->s_max_links;
4064 if (source == target)
4065 return 0;
4067 error = may_delete(old_dir, old_dentry, is_dir);
4068 if (error)
4069 return error;
4071 if (!target) {
4072 error = may_create(new_dir, new_dentry);
4073 } else {
4074 new_is_dir = d_is_dir(new_dentry);
4076 if (!(flags & RENAME_EXCHANGE))
4077 error = may_delete(new_dir, new_dentry, is_dir);
4078 else
4079 error = may_delete(new_dir, new_dentry, new_is_dir);
4081 if (error)
4082 return error;
4084 if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4085 return -EPERM;
4087 if (flags && !old_dir->i_op->rename2)
4088 return -EINVAL;
4091 * If we are going to change the parent - check write permissions,
4092 * we'll need to flip '..'.
4094 if (new_dir != old_dir) {
4095 if (is_dir) {
4096 error = inode_permission(source, MAY_WRITE);
4097 if (error)
4098 return error;
4100 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4101 error = inode_permission(target, MAY_WRITE);
4102 if (error)
4103 return error;
4107 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4108 flags);
4109 if (error)
4110 return error;
4112 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4113 dget(new_dentry);
4114 if (!is_dir || (flags & RENAME_EXCHANGE))
4115 lock_two_nondirectories(source, target);
4116 else if (target)
4117 mutex_lock(&target->i_mutex);
4119 error = -EBUSY;
4120 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
4121 goto out;
4123 if (max_links && new_dir != old_dir) {
4124 error = -EMLINK;
4125 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4126 goto out;
4127 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4128 old_dir->i_nlink >= max_links)
4129 goto out;
4131 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4132 shrink_dcache_parent(new_dentry);
4133 if (!is_dir) {
4134 error = try_break_deleg(source, delegated_inode);
4135 if (error)
4136 goto out;
4138 if (target && !new_is_dir) {
4139 error = try_break_deleg(target, delegated_inode);
4140 if (error)
4141 goto out;
4143 if (!old_dir->i_op->rename2) {
4144 error = old_dir->i_op->rename(old_dir, old_dentry,
4145 new_dir, new_dentry);
4146 } else {
4147 WARN_ON(old_dir->i_op->rename != NULL);
4148 error = old_dir->i_op->rename2(old_dir, old_dentry,
4149 new_dir, new_dentry, flags);
4151 if (error)
4152 goto out;
4154 if (!(flags & RENAME_EXCHANGE) && target) {
4155 if (is_dir)
4156 target->i_flags |= S_DEAD;
4157 dont_mount(new_dentry);
4159 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4160 if (!(flags & RENAME_EXCHANGE))
4161 d_move(old_dentry, new_dentry);
4162 else
4163 d_exchange(old_dentry, new_dentry);
4165 out:
4166 if (!is_dir || (flags & RENAME_EXCHANGE))
4167 unlock_two_nondirectories(source, target);
4168 else if (target)
4169 mutex_unlock(&target->i_mutex);
4170 dput(new_dentry);
4171 if (!error) {
4172 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4173 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4174 if (flags & RENAME_EXCHANGE) {
4175 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4176 new_is_dir, NULL, new_dentry);
4179 fsnotify_oldname_free(old_name);
4181 return error;
4183 EXPORT_SYMBOL(vfs_rename);
4185 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4186 int, newdfd, const char __user *, newname, unsigned int, flags)
4188 struct dentry *old_dir, *new_dir;
4189 struct dentry *old_dentry, *new_dentry;
4190 struct dentry *trap;
4191 struct nameidata oldnd, newnd;
4192 struct inode *delegated_inode = NULL;
4193 struct filename *from;
4194 struct filename *to;
4195 unsigned int lookup_flags = 0;
4196 bool should_retry = false;
4197 int error;
4199 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
4200 return -EINVAL;
4202 if ((flags & RENAME_NOREPLACE) && (flags & RENAME_EXCHANGE))
4203 return -EINVAL;
4205 retry:
4206 from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags);
4207 if (IS_ERR(from)) {
4208 error = PTR_ERR(from);
4209 goto exit;
4212 to = user_path_parent(newdfd, newname, &newnd, lookup_flags);
4213 if (IS_ERR(to)) {
4214 error = PTR_ERR(to);
4215 goto exit1;
4218 error = -EXDEV;
4219 if (oldnd.path.mnt != newnd.path.mnt)
4220 goto exit2;
4222 old_dir = oldnd.path.dentry;
4223 error = -EBUSY;
4224 if (oldnd.last_type != LAST_NORM)
4225 goto exit2;
4227 new_dir = newnd.path.dentry;
4228 if (flags & RENAME_NOREPLACE)
4229 error = -EEXIST;
4230 if (newnd.last_type != LAST_NORM)
4231 goto exit2;
4233 error = mnt_want_write(oldnd.path.mnt);
4234 if (error)
4235 goto exit2;
4237 oldnd.flags &= ~LOOKUP_PARENT;
4238 newnd.flags &= ~LOOKUP_PARENT;
4239 if (!(flags & RENAME_EXCHANGE))
4240 newnd.flags |= LOOKUP_RENAME_TARGET;
4242 retry_deleg:
4243 trap = lock_rename(new_dir, old_dir);
4245 old_dentry = lookup_hash(&oldnd);
4246 error = PTR_ERR(old_dentry);
4247 if (IS_ERR(old_dentry))
4248 goto exit3;
4249 /* source must exist */
4250 error = -ENOENT;
4251 if (d_is_negative(old_dentry))
4252 goto exit4;
4253 new_dentry = lookup_hash(&newnd);
4254 error = PTR_ERR(new_dentry);
4255 if (IS_ERR(new_dentry))
4256 goto exit4;
4257 error = -EEXIST;
4258 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4259 goto exit5;
4260 if (flags & RENAME_EXCHANGE) {
4261 error = -ENOENT;
4262 if (d_is_negative(new_dentry))
4263 goto exit5;
4265 if (!d_is_dir(new_dentry)) {
4266 error = -ENOTDIR;
4267 if (newnd.last.name[newnd.last.len])
4268 goto exit5;
4271 /* unless the source is a directory trailing slashes give -ENOTDIR */
4272 if (!d_is_dir(old_dentry)) {
4273 error = -ENOTDIR;
4274 if (oldnd.last.name[oldnd.last.len])
4275 goto exit5;
4276 if (!(flags & RENAME_EXCHANGE) && newnd.last.name[newnd.last.len])
4277 goto exit5;
4279 /* source should not be ancestor of target */
4280 error = -EINVAL;
4281 if (old_dentry == trap)
4282 goto exit5;
4283 /* target should not be an ancestor of source */
4284 if (!(flags & RENAME_EXCHANGE))
4285 error = -ENOTEMPTY;
4286 if (new_dentry == trap)
4287 goto exit5;
4289 error = security_path_rename(&oldnd.path, old_dentry,
4290 &newnd.path, new_dentry, flags);
4291 if (error)
4292 goto exit5;
4293 error = vfs_rename(old_dir->d_inode, old_dentry,
4294 new_dir->d_inode, new_dentry,
4295 &delegated_inode, flags);
4296 exit5:
4297 dput(new_dentry);
4298 exit4:
4299 dput(old_dentry);
4300 exit3:
4301 unlock_rename(new_dir, old_dir);
4302 if (delegated_inode) {
4303 error = break_deleg_wait(&delegated_inode);
4304 if (!error)
4305 goto retry_deleg;
4307 mnt_drop_write(oldnd.path.mnt);
4308 exit2:
4309 if (retry_estale(error, lookup_flags))
4310 should_retry = true;
4311 path_put(&newnd.path);
4312 putname(to);
4313 exit1:
4314 path_put(&oldnd.path);
4315 putname(from);
4316 if (should_retry) {
4317 should_retry = false;
4318 lookup_flags |= LOOKUP_REVAL;
4319 goto retry;
4321 exit:
4322 return error;
4325 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4326 int, newdfd, const char __user *, newname)
4328 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4331 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4333 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4336 int readlink_copy(char __user *buffer, int buflen, const char *link)
4338 int len = PTR_ERR(link);
4339 if (IS_ERR(link))
4340 goto out;
4342 len = strlen(link);
4343 if (len > (unsigned) buflen)
4344 len = buflen;
4345 if (copy_to_user(buffer, link, len))
4346 len = -EFAULT;
4347 out:
4348 return len;
4350 EXPORT_SYMBOL(readlink_copy);
4353 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4354 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
4355 * using) it for any given inode is up to filesystem.
4357 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4359 struct nameidata nd;
4360 void *cookie;
4361 int res;
4363 nd.depth = 0;
4364 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
4365 if (IS_ERR(cookie))
4366 return PTR_ERR(cookie);
4368 res = readlink_copy(buffer, buflen, nd_get_link(&nd));
4369 if (dentry->d_inode->i_op->put_link)
4370 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
4371 return res;
4373 EXPORT_SYMBOL(generic_readlink);
4375 /* get the link contents into pagecache */
4376 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4378 char *kaddr;
4379 struct page *page;
4380 struct address_space *mapping = dentry->d_inode->i_mapping;
4381 page = read_mapping_page(mapping, 0, NULL);
4382 if (IS_ERR(page))
4383 return (char*)page;
4384 *ppage = page;
4385 kaddr = kmap(page);
4386 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4387 return kaddr;
4390 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4392 struct page *page = NULL;
4393 int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4394 if (page) {
4395 kunmap(page);
4396 page_cache_release(page);
4398 return res;
4400 EXPORT_SYMBOL(page_readlink);
4402 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
4404 struct page *page = NULL;
4405 nd_set_link(nd, page_getlink(dentry, &page));
4406 return page;
4408 EXPORT_SYMBOL(page_follow_link_light);
4410 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
4412 struct page *page = cookie;
4414 if (page) {
4415 kunmap(page);
4416 page_cache_release(page);
4419 EXPORT_SYMBOL(page_put_link);
4422 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4424 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4426 struct address_space *mapping = inode->i_mapping;
4427 struct page *page;
4428 void *fsdata;
4429 int err;
4430 char *kaddr;
4431 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4432 if (nofs)
4433 flags |= AOP_FLAG_NOFS;
4435 retry:
4436 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4437 flags, &page, &fsdata);
4438 if (err)
4439 goto fail;
4441 kaddr = kmap_atomic(page);
4442 memcpy(kaddr, symname, len-1);
4443 kunmap_atomic(kaddr);
4445 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4446 page, fsdata);
4447 if (err < 0)
4448 goto fail;
4449 if (err < len-1)
4450 goto retry;
4452 mark_inode_dirty(inode);
4453 return 0;
4454 fail:
4455 return err;
4457 EXPORT_SYMBOL(__page_symlink);
4459 int page_symlink(struct inode *inode, const char *symname, int len)
4461 return __page_symlink(inode, symname, len,
4462 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4464 EXPORT_SYMBOL(page_symlink);
4466 const struct inode_operations page_symlink_inode_operations = {
4467 .readlink = generic_readlink,
4468 .follow_link = page_follow_link_light,
4469 .put_link = page_put_link,
4471 EXPORT_SYMBOL(page_symlink_inode_operations);