Merge git://www.linux-watchdog.org/linux-watchdog
[linux/fpc-iii.git] / mm / compaction.c
blob8c0d9459b54a02042dd2caf9489566188d9ea908
1 /*
2 * linux/mm/compaction.c
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
6 * lifting
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9 */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include <linux/page-isolation.h>
19 #include <linux/kasan.h>
20 #include "internal.h"
22 #ifdef CONFIG_COMPACTION
23 static inline void count_compact_event(enum vm_event_item item)
25 count_vm_event(item);
28 static inline void count_compact_events(enum vm_event_item item, long delta)
30 count_vm_events(item, delta);
32 #else
33 #define count_compact_event(item) do { } while (0)
34 #define count_compact_events(item, delta) do { } while (0)
35 #endif
37 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
38 #ifdef CONFIG_TRACEPOINTS
39 static const char *const compaction_status_string[] = {
40 "deferred",
41 "skipped",
42 "continue",
43 "partial",
44 "complete",
45 "no_suitable_page",
46 "not_suitable_zone",
48 #endif
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/compaction.h>
53 static unsigned long release_freepages(struct list_head *freelist)
55 struct page *page, *next;
56 unsigned long high_pfn = 0;
58 list_for_each_entry_safe(page, next, freelist, lru) {
59 unsigned long pfn = page_to_pfn(page);
60 list_del(&page->lru);
61 __free_page(page);
62 if (pfn > high_pfn)
63 high_pfn = pfn;
66 return high_pfn;
69 static void map_pages(struct list_head *list)
71 struct page *page;
73 list_for_each_entry(page, list, lru) {
74 arch_alloc_page(page, 0);
75 kernel_map_pages(page, 1, 1);
76 kasan_alloc_pages(page, 0);
80 static inline bool migrate_async_suitable(int migratetype)
82 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
86 * Check that the whole (or subset of) a pageblock given by the interval of
87 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
88 * with the migration of free compaction scanner. The scanners then need to
89 * use only pfn_valid_within() check for arches that allow holes within
90 * pageblocks.
92 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
94 * It's possible on some configurations to have a setup like node0 node1 node0
95 * i.e. it's possible that all pages within a zones range of pages do not
96 * belong to a single zone. We assume that a border between node0 and node1
97 * can occur within a single pageblock, but not a node0 node1 node0
98 * interleaving within a single pageblock. It is therefore sufficient to check
99 * the first and last page of a pageblock and avoid checking each individual
100 * page in a pageblock.
102 static struct page *pageblock_pfn_to_page(unsigned long start_pfn,
103 unsigned long end_pfn, struct zone *zone)
105 struct page *start_page;
106 struct page *end_page;
108 /* end_pfn is one past the range we are checking */
109 end_pfn--;
111 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
112 return NULL;
114 start_page = pfn_to_page(start_pfn);
116 if (page_zone(start_page) != zone)
117 return NULL;
119 end_page = pfn_to_page(end_pfn);
121 /* This gives a shorter code than deriving page_zone(end_page) */
122 if (page_zone_id(start_page) != page_zone_id(end_page))
123 return NULL;
125 return start_page;
128 #ifdef CONFIG_COMPACTION
130 /* Do not skip compaction more than 64 times */
131 #define COMPACT_MAX_DEFER_SHIFT 6
134 * Compaction is deferred when compaction fails to result in a page
135 * allocation success. 1 << compact_defer_limit compactions are skipped up
136 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
138 void defer_compaction(struct zone *zone, int order)
140 zone->compact_considered = 0;
141 zone->compact_defer_shift++;
143 if (order < zone->compact_order_failed)
144 zone->compact_order_failed = order;
146 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
147 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
149 trace_mm_compaction_defer_compaction(zone, order);
152 /* Returns true if compaction should be skipped this time */
153 bool compaction_deferred(struct zone *zone, int order)
155 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
157 if (order < zone->compact_order_failed)
158 return false;
160 /* Avoid possible overflow */
161 if (++zone->compact_considered > defer_limit)
162 zone->compact_considered = defer_limit;
164 if (zone->compact_considered >= defer_limit)
165 return false;
167 trace_mm_compaction_deferred(zone, order);
169 return true;
173 * Update defer tracking counters after successful compaction of given order,
174 * which means an allocation either succeeded (alloc_success == true) or is
175 * expected to succeed.
177 void compaction_defer_reset(struct zone *zone, int order,
178 bool alloc_success)
180 if (alloc_success) {
181 zone->compact_considered = 0;
182 zone->compact_defer_shift = 0;
184 if (order >= zone->compact_order_failed)
185 zone->compact_order_failed = order + 1;
187 trace_mm_compaction_defer_reset(zone, order);
190 /* Returns true if restarting compaction after many failures */
191 bool compaction_restarting(struct zone *zone, int order)
193 if (order < zone->compact_order_failed)
194 return false;
196 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
197 zone->compact_considered >= 1UL << zone->compact_defer_shift;
200 /* Returns true if the pageblock should be scanned for pages to isolate. */
201 static inline bool isolation_suitable(struct compact_control *cc,
202 struct page *page)
204 if (cc->ignore_skip_hint)
205 return true;
207 return !get_pageblock_skip(page);
211 * This function is called to clear all cached information on pageblocks that
212 * should be skipped for page isolation when the migrate and free page scanner
213 * meet.
215 static void __reset_isolation_suitable(struct zone *zone)
217 unsigned long start_pfn = zone->zone_start_pfn;
218 unsigned long end_pfn = zone_end_pfn(zone);
219 unsigned long pfn;
221 zone->compact_cached_migrate_pfn[0] = start_pfn;
222 zone->compact_cached_migrate_pfn[1] = start_pfn;
223 zone->compact_cached_free_pfn = end_pfn;
224 zone->compact_blockskip_flush = false;
226 /* Walk the zone and mark every pageblock as suitable for isolation */
227 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
228 struct page *page;
230 cond_resched();
232 if (!pfn_valid(pfn))
233 continue;
235 page = pfn_to_page(pfn);
236 if (zone != page_zone(page))
237 continue;
239 clear_pageblock_skip(page);
243 void reset_isolation_suitable(pg_data_t *pgdat)
245 int zoneid;
247 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
248 struct zone *zone = &pgdat->node_zones[zoneid];
249 if (!populated_zone(zone))
250 continue;
252 /* Only flush if a full compaction finished recently */
253 if (zone->compact_blockskip_flush)
254 __reset_isolation_suitable(zone);
259 * If no pages were isolated then mark this pageblock to be skipped in the
260 * future. The information is later cleared by __reset_isolation_suitable().
262 static void update_pageblock_skip(struct compact_control *cc,
263 struct page *page, unsigned long nr_isolated,
264 bool migrate_scanner)
266 struct zone *zone = cc->zone;
267 unsigned long pfn;
269 if (cc->ignore_skip_hint)
270 return;
272 if (!page)
273 return;
275 if (nr_isolated)
276 return;
278 set_pageblock_skip(page);
280 pfn = page_to_pfn(page);
282 /* Update where async and sync compaction should restart */
283 if (migrate_scanner) {
284 if (pfn > zone->compact_cached_migrate_pfn[0])
285 zone->compact_cached_migrate_pfn[0] = pfn;
286 if (cc->mode != MIGRATE_ASYNC &&
287 pfn > zone->compact_cached_migrate_pfn[1])
288 zone->compact_cached_migrate_pfn[1] = pfn;
289 } else {
290 if (pfn < zone->compact_cached_free_pfn)
291 zone->compact_cached_free_pfn = pfn;
294 #else
295 static inline bool isolation_suitable(struct compact_control *cc,
296 struct page *page)
298 return true;
301 static void update_pageblock_skip(struct compact_control *cc,
302 struct page *page, unsigned long nr_isolated,
303 bool migrate_scanner)
306 #endif /* CONFIG_COMPACTION */
309 * Compaction requires the taking of some coarse locks that are potentially
310 * very heavily contended. For async compaction, back out if the lock cannot
311 * be taken immediately. For sync compaction, spin on the lock if needed.
313 * Returns true if the lock is held
314 * Returns false if the lock is not held and compaction should abort
316 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
317 struct compact_control *cc)
319 if (cc->mode == MIGRATE_ASYNC) {
320 if (!spin_trylock_irqsave(lock, *flags)) {
321 cc->contended = COMPACT_CONTENDED_LOCK;
322 return false;
324 } else {
325 spin_lock_irqsave(lock, *flags);
328 return true;
332 * Compaction requires the taking of some coarse locks that are potentially
333 * very heavily contended. The lock should be periodically unlocked to avoid
334 * having disabled IRQs for a long time, even when there is nobody waiting on
335 * the lock. It might also be that allowing the IRQs will result in
336 * need_resched() becoming true. If scheduling is needed, async compaction
337 * aborts. Sync compaction schedules.
338 * Either compaction type will also abort if a fatal signal is pending.
339 * In either case if the lock was locked, it is dropped and not regained.
341 * Returns true if compaction should abort due to fatal signal pending, or
342 * async compaction due to need_resched()
343 * Returns false when compaction can continue (sync compaction might have
344 * scheduled)
346 static bool compact_unlock_should_abort(spinlock_t *lock,
347 unsigned long flags, bool *locked, struct compact_control *cc)
349 if (*locked) {
350 spin_unlock_irqrestore(lock, flags);
351 *locked = false;
354 if (fatal_signal_pending(current)) {
355 cc->contended = COMPACT_CONTENDED_SCHED;
356 return true;
359 if (need_resched()) {
360 if (cc->mode == MIGRATE_ASYNC) {
361 cc->contended = COMPACT_CONTENDED_SCHED;
362 return true;
364 cond_resched();
367 return false;
371 * Aside from avoiding lock contention, compaction also periodically checks
372 * need_resched() and either schedules in sync compaction or aborts async
373 * compaction. This is similar to what compact_unlock_should_abort() does, but
374 * is used where no lock is concerned.
376 * Returns false when no scheduling was needed, or sync compaction scheduled.
377 * Returns true when async compaction should abort.
379 static inline bool compact_should_abort(struct compact_control *cc)
381 /* async compaction aborts if contended */
382 if (need_resched()) {
383 if (cc->mode == MIGRATE_ASYNC) {
384 cc->contended = COMPACT_CONTENDED_SCHED;
385 return true;
388 cond_resched();
391 return false;
394 /* Returns true if the page is within a block suitable for migration to */
395 static bool suitable_migration_target(struct page *page)
397 /* If the page is a large free page, then disallow migration */
398 if (PageBuddy(page)) {
400 * We are checking page_order without zone->lock taken. But
401 * the only small danger is that we skip a potentially suitable
402 * pageblock, so it's not worth to check order for valid range.
404 if (page_order_unsafe(page) >= pageblock_order)
405 return false;
408 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
409 if (migrate_async_suitable(get_pageblock_migratetype(page)))
410 return true;
412 /* Otherwise skip the block */
413 return false;
417 * Isolate free pages onto a private freelist. If @strict is true, will abort
418 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
419 * (even though it may still end up isolating some pages).
421 static unsigned long isolate_freepages_block(struct compact_control *cc,
422 unsigned long *start_pfn,
423 unsigned long end_pfn,
424 struct list_head *freelist,
425 bool strict)
427 int nr_scanned = 0, total_isolated = 0;
428 struct page *cursor, *valid_page = NULL;
429 unsigned long flags = 0;
430 bool locked = false;
431 unsigned long blockpfn = *start_pfn;
433 cursor = pfn_to_page(blockpfn);
435 /* Isolate free pages. */
436 for (; blockpfn < end_pfn; blockpfn++, cursor++) {
437 int isolated, i;
438 struct page *page = cursor;
441 * Periodically drop the lock (if held) regardless of its
442 * contention, to give chance to IRQs. Abort if fatal signal
443 * pending or async compaction detects need_resched()
445 if (!(blockpfn % SWAP_CLUSTER_MAX)
446 && compact_unlock_should_abort(&cc->zone->lock, flags,
447 &locked, cc))
448 break;
450 nr_scanned++;
451 if (!pfn_valid_within(blockpfn))
452 goto isolate_fail;
454 if (!valid_page)
455 valid_page = page;
456 if (!PageBuddy(page))
457 goto isolate_fail;
460 * If we already hold the lock, we can skip some rechecking.
461 * Note that if we hold the lock now, checked_pageblock was
462 * already set in some previous iteration (or strict is true),
463 * so it is correct to skip the suitable migration target
464 * recheck as well.
466 if (!locked) {
468 * The zone lock must be held to isolate freepages.
469 * Unfortunately this is a very coarse lock and can be
470 * heavily contended if there are parallel allocations
471 * or parallel compactions. For async compaction do not
472 * spin on the lock and we acquire the lock as late as
473 * possible.
475 locked = compact_trylock_irqsave(&cc->zone->lock,
476 &flags, cc);
477 if (!locked)
478 break;
480 /* Recheck this is a buddy page under lock */
481 if (!PageBuddy(page))
482 goto isolate_fail;
485 /* Found a free page, break it into order-0 pages */
486 isolated = split_free_page(page);
487 total_isolated += isolated;
488 for (i = 0; i < isolated; i++) {
489 list_add(&page->lru, freelist);
490 page++;
493 /* If a page was split, advance to the end of it */
494 if (isolated) {
495 cc->nr_freepages += isolated;
496 if (!strict &&
497 cc->nr_migratepages <= cc->nr_freepages) {
498 blockpfn += isolated;
499 break;
502 blockpfn += isolated - 1;
503 cursor += isolated - 1;
504 continue;
507 isolate_fail:
508 if (strict)
509 break;
510 else
511 continue;
515 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
516 nr_scanned, total_isolated);
518 /* Record how far we have got within the block */
519 *start_pfn = blockpfn;
522 * If strict isolation is requested by CMA then check that all the
523 * pages requested were isolated. If there were any failures, 0 is
524 * returned and CMA will fail.
526 if (strict && blockpfn < end_pfn)
527 total_isolated = 0;
529 if (locked)
530 spin_unlock_irqrestore(&cc->zone->lock, flags);
532 /* Update the pageblock-skip if the whole pageblock was scanned */
533 if (blockpfn == end_pfn)
534 update_pageblock_skip(cc, valid_page, total_isolated, false);
536 count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
537 if (total_isolated)
538 count_compact_events(COMPACTISOLATED, total_isolated);
539 return total_isolated;
543 * isolate_freepages_range() - isolate free pages.
544 * @start_pfn: The first PFN to start isolating.
545 * @end_pfn: The one-past-last PFN.
547 * Non-free pages, invalid PFNs, or zone boundaries within the
548 * [start_pfn, end_pfn) range are considered errors, cause function to
549 * undo its actions and return zero.
551 * Otherwise, function returns one-past-the-last PFN of isolated page
552 * (which may be greater then end_pfn if end fell in a middle of
553 * a free page).
555 unsigned long
556 isolate_freepages_range(struct compact_control *cc,
557 unsigned long start_pfn, unsigned long end_pfn)
559 unsigned long isolated, pfn, block_end_pfn;
560 LIST_HEAD(freelist);
562 pfn = start_pfn;
563 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
565 for (; pfn < end_pfn; pfn += isolated,
566 block_end_pfn += pageblock_nr_pages) {
567 /* Protect pfn from changing by isolate_freepages_block */
568 unsigned long isolate_start_pfn = pfn;
570 block_end_pfn = min(block_end_pfn, end_pfn);
573 * pfn could pass the block_end_pfn if isolated freepage
574 * is more than pageblock order. In this case, we adjust
575 * scanning range to right one.
577 if (pfn >= block_end_pfn) {
578 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
579 block_end_pfn = min(block_end_pfn, end_pfn);
582 if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
583 break;
585 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
586 block_end_pfn, &freelist, true);
589 * In strict mode, isolate_freepages_block() returns 0 if
590 * there are any holes in the block (ie. invalid PFNs or
591 * non-free pages).
593 if (!isolated)
594 break;
597 * If we managed to isolate pages, it is always (1 << n) *
598 * pageblock_nr_pages for some non-negative n. (Max order
599 * page may span two pageblocks).
603 /* split_free_page does not map the pages */
604 map_pages(&freelist);
606 if (pfn < end_pfn) {
607 /* Loop terminated early, cleanup. */
608 release_freepages(&freelist);
609 return 0;
612 /* We don't use freelists for anything. */
613 return pfn;
616 /* Update the number of anon and file isolated pages in the zone */
617 static void acct_isolated(struct zone *zone, struct compact_control *cc)
619 struct page *page;
620 unsigned int count[2] = { 0, };
622 if (list_empty(&cc->migratepages))
623 return;
625 list_for_each_entry(page, &cc->migratepages, lru)
626 count[!!page_is_file_cache(page)]++;
628 mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
629 mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
632 /* Similar to reclaim, but different enough that they don't share logic */
633 static bool too_many_isolated(struct zone *zone)
635 unsigned long active, inactive, isolated;
637 inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
638 zone_page_state(zone, NR_INACTIVE_ANON);
639 active = zone_page_state(zone, NR_ACTIVE_FILE) +
640 zone_page_state(zone, NR_ACTIVE_ANON);
641 isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
642 zone_page_state(zone, NR_ISOLATED_ANON);
644 return isolated > (inactive + active) / 2;
648 * isolate_migratepages_block() - isolate all migrate-able pages within
649 * a single pageblock
650 * @cc: Compaction control structure.
651 * @low_pfn: The first PFN to isolate
652 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
653 * @isolate_mode: Isolation mode to be used.
655 * Isolate all pages that can be migrated from the range specified by
656 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
657 * Returns zero if there is a fatal signal pending, otherwise PFN of the
658 * first page that was not scanned (which may be both less, equal to or more
659 * than end_pfn).
661 * The pages are isolated on cc->migratepages list (not required to be empty),
662 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
663 * is neither read nor updated.
665 static unsigned long
666 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
667 unsigned long end_pfn, isolate_mode_t isolate_mode)
669 struct zone *zone = cc->zone;
670 unsigned long nr_scanned = 0, nr_isolated = 0;
671 struct list_head *migratelist = &cc->migratepages;
672 struct lruvec *lruvec;
673 unsigned long flags = 0;
674 bool locked = false;
675 struct page *page = NULL, *valid_page = NULL;
676 unsigned long start_pfn = low_pfn;
679 * Ensure that there are not too many pages isolated from the LRU
680 * list by either parallel reclaimers or compaction. If there are,
681 * delay for some time until fewer pages are isolated
683 while (unlikely(too_many_isolated(zone))) {
684 /* async migration should just abort */
685 if (cc->mode == MIGRATE_ASYNC)
686 return 0;
688 congestion_wait(BLK_RW_ASYNC, HZ/10);
690 if (fatal_signal_pending(current))
691 return 0;
694 if (compact_should_abort(cc))
695 return 0;
697 /* Time to isolate some pages for migration */
698 for (; low_pfn < end_pfn; low_pfn++) {
700 * Periodically drop the lock (if held) regardless of its
701 * contention, to give chance to IRQs. Abort async compaction
702 * if contended.
704 if (!(low_pfn % SWAP_CLUSTER_MAX)
705 && compact_unlock_should_abort(&zone->lru_lock, flags,
706 &locked, cc))
707 break;
709 if (!pfn_valid_within(low_pfn))
710 continue;
711 nr_scanned++;
713 page = pfn_to_page(low_pfn);
715 if (!valid_page)
716 valid_page = page;
719 * Skip if free. We read page order here without zone lock
720 * which is generally unsafe, but the race window is small and
721 * the worst thing that can happen is that we skip some
722 * potential isolation targets.
724 if (PageBuddy(page)) {
725 unsigned long freepage_order = page_order_unsafe(page);
728 * Without lock, we cannot be sure that what we got is
729 * a valid page order. Consider only values in the
730 * valid order range to prevent low_pfn overflow.
732 if (freepage_order > 0 && freepage_order < MAX_ORDER)
733 low_pfn += (1UL << freepage_order) - 1;
734 continue;
738 * Check may be lockless but that's ok as we recheck later.
739 * It's possible to migrate LRU pages and balloon pages
740 * Skip any other type of page
742 if (!PageLRU(page)) {
743 if (unlikely(balloon_page_movable(page))) {
744 if (balloon_page_isolate(page)) {
745 /* Successfully isolated */
746 goto isolate_success;
749 continue;
753 * PageLRU is set. lru_lock normally excludes isolation
754 * splitting and collapsing (collapsing has already happened
755 * if PageLRU is set) but the lock is not necessarily taken
756 * here and it is wasteful to take it just to check transhuge.
757 * Check TransHuge without lock and skip the whole pageblock if
758 * it's either a transhuge or hugetlbfs page, as calling
759 * compound_order() without preventing THP from splitting the
760 * page underneath us may return surprising results.
762 if (PageTransHuge(page)) {
763 if (!locked)
764 low_pfn = ALIGN(low_pfn + 1,
765 pageblock_nr_pages) - 1;
766 else
767 low_pfn += (1 << compound_order(page)) - 1;
769 continue;
773 * Migration will fail if an anonymous page is pinned in memory,
774 * so avoid taking lru_lock and isolating it unnecessarily in an
775 * admittedly racy check.
777 if (!page_mapping(page) &&
778 page_count(page) > page_mapcount(page))
779 continue;
781 /* If we already hold the lock, we can skip some rechecking */
782 if (!locked) {
783 locked = compact_trylock_irqsave(&zone->lru_lock,
784 &flags, cc);
785 if (!locked)
786 break;
788 /* Recheck PageLRU and PageTransHuge under lock */
789 if (!PageLRU(page))
790 continue;
791 if (PageTransHuge(page)) {
792 low_pfn += (1 << compound_order(page)) - 1;
793 continue;
797 lruvec = mem_cgroup_page_lruvec(page, zone);
799 /* Try isolate the page */
800 if (__isolate_lru_page(page, isolate_mode) != 0)
801 continue;
803 VM_BUG_ON_PAGE(PageTransCompound(page), page);
805 /* Successfully isolated */
806 del_page_from_lru_list(page, lruvec, page_lru(page));
808 isolate_success:
809 list_add(&page->lru, migratelist);
810 cc->nr_migratepages++;
811 nr_isolated++;
813 /* Avoid isolating too much */
814 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
815 ++low_pfn;
816 break;
821 * The PageBuddy() check could have potentially brought us outside
822 * the range to be scanned.
824 if (unlikely(low_pfn > end_pfn))
825 low_pfn = end_pfn;
827 if (locked)
828 spin_unlock_irqrestore(&zone->lru_lock, flags);
831 * Update the pageblock-skip information and cached scanner pfn,
832 * if the whole pageblock was scanned without isolating any page.
834 if (low_pfn == end_pfn)
835 update_pageblock_skip(cc, valid_page, nr_isolated, true);
837 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
838 nr_scanned, nr_isolated);
840 count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
841 if (nr_isolated)
842 count_compact_events(COMPACTISOLATED, nr_isolated);
844 return low_pfn;
848 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
849 * @cc: Compaction control structure.
850 * @start_pfn: The first PFN to start isolating.
851 * @end_pfn: The one-past-last PFN.
853 * Returns zero if isolation fails fatally due to e.g. pending signal.
854 * Otherwise, function returns one-past-the-last PFN of isolated page
855 * (which may be greater than end_pfn if end fell in a middle of a THP page).
857 unsigned long
858 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
859 unsigned long end_pfn)
861 unsigned long pfn, block_end_pfn;
863 /* Scan block by block. First and last block may be incomplete */
864 pfn = start_pfn;
865 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
867 for (; pfn < end_pfn; pfn = block_end_pfn,
868 block_end_pfn += pageblock_nr_pages) {
870 block_end_pfn = min(block_end_pfn, end_pfn);
872 if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
873 continue;
875 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
876 ISOLATE_UNEVICTABLE);
879 * In case of fatal failure, release everything that might
880 * have been isolated in the previous iteration, and signal
881 * the failure back to caller.
883 if (!pfn) {
884 putback_movable_pages(&cc->migratepages);
885 cc->nr_migratepages = 0;
886 break;
889 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
890 break;
892 acct_isolated(cc->zone, cc);
894 return pfn;
897 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
898 #ifdef CONFIG_COMPACTION
900 * Based on information in the current compact_control, find blocks
901 * suitable for isolating free pages from and then isolate them.
903 static void isolate_freepages(struct compact_control *cc)
905 struct zone *zone = cc->zone;
906 struct page *page;
907 unsigned long block_start_pfn; /* start of current pageblock */
908 unsigned long isolate_start_pfn; /* exact pfn we start at */
909 unsigned long block_end_pfn; /* end of current pageblock */
910 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
911 struct list_head *freelist = &cc->freepages;
914 * Initialise the free scanner. The starting point is where we last
915 * successfully isolated from, zone-cached value, or the end of the
916 * zone when isolating for the first time. For looping we also need
917 * this pfn aligned down to the pageblock boundary, because we do
918 * block_start_pfn -= pageblock_nr_pages in the for loop.
919 * For ending point, take care when isolating in last pageblock of a
920 * a zone which ends in the middle of a pageblock.
921 * The low boundary is the end of the pageblock the migration scanner
922 * is using.
924 isolate_start_pfn = cc->free_pfn;
925 block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
926 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
927 zone_end_pfn(zone));
928 low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
931 * Isolate free pages until enough are available to migrate the
932 * pages on cc->migratepages. We stop searching if the migrate
933 * and free page scanners meet or enough free pages are isolated.
935 for (; block_start_pfn >= low_pfn &&
936 cc->nr_migratepages > cc->nr_freepages;
937 block_end_pfn = block_start_pfn,
938 block_start_pfn -= pageblock_nr_pages,
939 isolate_start_pfn = block_start_pfn) {
942 * This can iterate a massively long zone without finding any
943 * suitable migration targets, so periodically check if we need
944 * to schedule, or even abort async compaction.
946 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
947 && compact_should_abort(cc))
948 break;
950 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
951 zone);
952 if (!page)
953 continue;
955 /* Check the block is suitable for migration */
956 if (!suitable_migration_target(page))
957 continue;
959 /* If isolation recently failed, do not retry */
960 if (!isolation_suitable(cc, page))
961 continue;
963 /* Found a block suitable for isolating free pages from. */
964 isolate_freepages_block(cc, &isolate_start_pfn,
965 block_end_pfn, freelist, false);
968 * Remember where the free scanner should restart next time,
969 * which is where isolate_freepages_block() left off.
970 * But if it scanned the whole pageblock, isolate_start_pfn
971 * now points at block_end_pfn, which is the start of the next
972 * pageblock.
973 * In that case we will however want to restart at the start
974 * of the previous pageblock.
976 cc->free_pfn = (isolate_start_pfn < block_end_pfn) ?
977 isolate_start_pfn :
978 block_start_pfn - pageblock_nr_pages;
981 * isolate_freepages_block() might have aborted due to async
982 * compaction being contended
984 if (cc->contended)
985 break;
988 /* split_free_page does not map the pages */
989 map_pages(freelist);
992 * If we crossed the migrate scanner, we want to keep it that way
993 * so that compact_finished() may detect this
995 if (block_start_pfn < low_pfn)
996 cc->free_pfn = cc->migrate_pfn;
1000 * This is a migrate-callback that "allocates" freepages by taking pages
1001 * from the isolated freelists in the block we are migrating to.
1003 static struct page *compaction_alloc(struct page *migratepage,
1004 unsigned long data,
1005 int **result)
1007 struct compact_control *cc = (struct compact_control *)data;
1008 struct page *freepage;
1011 * Isolate free pages if necessary, and if we are not aborting due to
1012 * contention.
1014 if (list_empty(&cc->freepages)) {
1015 if (!cc->contended)
1016 isolate_freepages(cc);
1018 if (list_empty(&cc->freepages))
1019 return NULL;
1022 freepage = list_entry(cc->freepages.next, struct page, lru);
1023 list_del(&freepage->lru);
1024 cc->nr_freepages--;
1026 return freepage;
1030 * This is a migrate-callback that "frees" freepages back to the isolated
1031 * freelist. All pages on the freelist are from the same zone, so there is no
1032 * special handling needed for NUMA.
1034 static void compaction_free(struct page *page, unsigned long data)
1036 struct compact_control *cc = (struct compact_control *)data;
1038 list_add(&page->lru, &cc->freepages);
1039 cc->nr_freepages++;
1042 /* possible outcome of isolate_migratepages */
1043 typedef enum {
1044 ISOLATE_ABORT, /* Abort compaction now */
1045 ISOLATE_NONE, /* No pages isolated, continue scanning */
1046 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1047 } isolate_migrate_t;
1050 * Isolate all pages that can be migrated from the first suitable block,
1051 * starting at the block pointed to by the migrate scanner pfn within
1052 * compact_control.
1054 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1055 struct compact_control *cc)
1057 unsigned long low_pfn, end_pfn;
1058 struct page *page;
1059 const isolate_mode_t isolate_mode =
1060 (cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1063 * Start at where we last stopped, or beginning of the zone as
1064 * initialized by compact_zone()
1066 low_pfn = cc->migrate_pfn;
1068 /* Only scan within a pageblock boundary */
1069 end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
1072 * Iterate over whole pageblocks until we find the first suitable.
1073 * Do not cross the free scanner.
1075 for (; end_pfn <= cc->free_pfn;
1076 low_pfn = end_pfn, end_pfn += pageblock_nr_pages) {
1079 * This can potentially iterate a massively long zone with
1080 * many pageblocks unsuitable, so periodically check if we
1081 * need to schedule, or even abort async compaction.
1083 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1084 && compact_should_abort(cc))
1085 break;
1087 page = pageblock_pfn_to_page(low_pfn, end_pfn, zone);
1088 if (!page)
1089 continue;
1091 /* If isolation recently failed, do not retry */
1092 if (!isolation_suitable(cc, page))
1093 continue;
1096 * For async compaction, also only scan in MOVABLE blocks.
1097 * Async compaction is optimistic to see if the minimum amount
1098 * of work satisfies the allocation.
1100 if (cc->mode == MIGRATE_ASYNC &&
1101 !migrate_async_suitable(get_pageblock_migratetype(page)))
1102 continue;
1104 /* Perform the isolation */
1105 low_pfn = isolate_migratepages_block(cc, low_pfn, end_pfn,
1106 isolate_mode);
1108 if (!low_pfn || cc->contended) {
1109 acct_isolated(zone, cc);
1110 return ISOLATE_ABORT;
1114 * Either we isolated something and proceed with migration. Or
1115 * we failed and compact_zone should decide if we should
1116 * continue or not.
1118 break;
1121 acct_isolated(zone, cc);
1123 * Record where migration scanner will be restarted. If we end up in
1124 * the same pageblock as the free scanner, make the scanners fully
1125 * meet so that compact_finished() terminates compaction.
1127 cc->migrate_pfn = (end_pfn <= cc->free_pfn) ? low_pfn : cc->free_pfn;
1129 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1132 static int __compact_finished(struct zone *zone, struct compact_control *cc,
1133 const int migratetype)
1135 unsigned int order;
1136 unsigned long watermark;
1138 if (cc->contended || fatal_signal_pending(current))
1139 return COMPACT_PARTIAL;
1141 /* Compaction run completes if the migrate and free scanner meet */
1142 if (cc->free_pfn <= cc->migrate_pfn) {
1143 /* Let the next compaction start anew. */
1144 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
1145 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
1146 zone->compact_cached_free_pfn = zone_end_pfn(zone);
1149 * Mark that the PG_migrate_skip information should be cleared
1150 * by kswapd when it goes to sleep. kswapd does not set the
1151 * flag itself as the decision to be clear should be directly
1152 * based on an allocation request.
1154 if (!current_is_kswapd())
1155 zone->compact_blockskip_flush = true;
1157 return COMPACT_COMPLETE;
1161 * order == -1 is expected when compacting via
1162 * /proc/sys/vm/compact_memory
1164 if (cc->order == -1)
1165 return COMPACT_CONTINUE;
1167 /* Compaction run is not finished if the watermark is not met */
1168 watermark = low_wmark_pages(zone);
1170 if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
1171 cc->alloc_flags))
1172 return COMPACT_CONTINUE;
1174 /* Direct compactor: Is a suitable page free? */
1175 for (order = cc->order; order < MAX_ORDER; order++) {
1176 struct free_area *area = &zone->free_area[order];
1178 /* Job done if page is free of the right migratetype */
1179 if (!list_empty(&area->free_list[migratetype]))
1180 return COMPACT_PARTIAL;
1182 /* Job done if allocation would set block type */
1183 if (order >= pageblock_order && area->nr_free)
1184 return COMPACT_PARTIAL;
1187 return COMPACT_NO_SUITABLE_PAGE;
1190 static int compact_finished(struct zone *zone, struct compact_control *cc,
1191 const int migratetype)
1193 int ret;
1195 ret = __compact_finished(zone, cc, migratetype);
1196 trace_mm_compaction_finished(zone, cc->order, ret);
1197 if (ret == COMPACT_NO_SUITABLE_PAGE)
1198 ret = COMPACT_CONTINUE;
1200 return ret;
1204 * compaction_suitable: Is this suitable to run compaction on this zone now?
1205 * Returns
1206 * COMPACT_SKIPPED - If there are too few free pages for compaction
1207 * COMPACT_PARTIAL - If the allocation would succeed without compaction
1208 * COMPACT_CONTINUE - If compaction should run now
1210 static unsigned long __compaction_suitable(struct zone *zone, int order,
1211 int alloc_flags, int classzone_idx)
1213 int fragindex;
1214 unsigned long watermark;
1217 * order == -1 is expected when compacting via
1218 * /proc/sys/vm/compact_memory
1220 if (order == -1)
1221 return COMPACT_CONTINUE;
1223 watermark = low_wmark_pages(zone);
1225 * If watermarks for high-order allocation are already met, there
1226 * should be no need for compaction at all.
1228 if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1229 alloc_flags))
1230 return COMPACT_PARTIAL;
1233 * Watermarks for order-0 must be met for compaction. Note the 2UL.
1234 * This is because during migration, copies of pages need to be
1235 * allocated and for a short time, the footprint is higher
1237 watermark += (2UL << order);
1238 if (!zone_watermark_ok(zone, 0, watermark, classzone_idx, alloc_flags))
1239 return COMPACT_SKIPPED;
1242 * fragmentation index determines if allocation failures are due to
1243 * low memory or external fragmentation
1245 * index of -1000 would imply allocations might succeed depending on
1246 * watermarks, but we already failed the high-order watermark check
1247 * index towards 0 implies failure is due to lack of memory
1248 * index towards 1000 implies failure is due to fragmentation
1250 * Only compact if a failure would be due to fragmentation.
1252 fragindex = fragmentation_index(zone, order);
1253 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1254 return COMPACT_NOT_SUITABLE_ZONE;
1256 return COMPACT_CONTINUE;
1259 unsigned long compaction_suitable(struct zone *zone, int order,
1260 int alloc_flags, int classzone_idx)
1262 unsigned long ret;
1264 ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx);
1265 trace_mm_compaction_suitable(zone, order, ret);
1266 if (ret == COMPACT_NOT_SUITABLE_ZONE)
1267 ret = COMPACT_SKIPPED;
1269 return ret;
1272 static int compact_zone(struct zone *zone, struct compact_control *cc)
1274 int ret;
1275 unsigned long start_pfn = zone->zone_start_pfn;
1276 unsigned long end_pfn = zone_end_pfn(zone);
1277 const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1278 const bool sync = cc->mode != MIGRATE_ASYNC;
1279 unsigned long last_migrated_pfn = 0;
1281 ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1282 cc->classzone_idx);
1283 switch (ret) {
1284 case COMPACT_PARTIAL:
1285 case COMPACT_SKIPPED:
1286 /* Compaction is likely to fail */
1287 return ret;
1288 case COMPACT_CONTINUE:
1289 /* Fall through to compaction */
1294 * Clear pageblock skip if there were failures recently and compaction
1295 * is about to be retried after being deferred. kswapd does not do
1296 * this reset as it'll reset the cached information when going to sleep.
1298 if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
1299 __reset_isolation_suitable(zone);
1302 * Setup to move all movable pages to the end of the zone. Used cached
1303 * information on where the scanners should start but check that it
1304 * is initialised by ensuring the values are within zone boundaries.
1306 cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1307 cc->free_pfn = zone->compact_cached_free_pfn;
1308 if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
1309 cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
1310 zone->compact_cached_free_pfn = cc->free_pfn;
1312 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
1313 cc->migrate_pfn = start_pfn;
1314 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1315 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1318 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1319 cc->free_pfn, end_pfn, sync);
1321 migrate_prep_local();
1323 while ((ret = compact_finished(zone, cc, migratetype)) ==
1324 COMPACT_CONTINUE) {
1325 int err;
1326 unsigned long isolate_start_pfn = cc->migrate_pfn;
1328 switch (isolate_migratepages(zone, cc)) {
1329 case ISOLATE_ABORT:
1330 ret = COMPACT_PARTIAL;
1331 putback_movable_pages(&cc->migratepages);
1332 cc->nr_migratepages = 0;
1333 goto out;
1334 case ISOLATE_NONE:
1336 * We haven't isolated and migrated anything, but
1337 * there might still be unflushed migrations from
1338 * previous cc->order aligned block.
1340 goto check_drain;
1341 case ISOLATE_SUCCESS:
1345 err = migrate_pages(&cc->migratepages, compaction_alloc,
1346 compaction_free, (unsigned long)cc, cc->mode,
1347 MR_COMPACTION);
1349 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1350 &cc->migratepages);
1352 /* All pages were either migrated or will be released */
1353 cc->nr_migratepages = 0;
1354 if (err) {
1355 putback_movable_pages(&cc->migratepages);
1357 * migrate_pages() may return -ENOMEM when scanners meet
1358 * and we want compact_finished() to detect it
1360 if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) {
1361 ret = COMPACT_PARTIAL;
1362 goto out;
1367 * Record where we could have freed pages by migration and not
1368 * yet flushed them to buddy allocator. We use the pfn that
1369 * isolate_migratepages() started from in this loop iteration
1370 * - this is the lowest page that could have been isolated and
1371 * then freed by migration.
1373 if (!last_migrated_pfn)
1374 last_migrated_pfn = isolate_start_pfn;
1376 check_drain:
1378 * Has the migration scanner moved away from the previous
1379 * cc->order aligned block where we migrated from? If yes,
1380 * flush the pages that were freed, so that they can merge and
1381 * compact_finished() can detect immediately if allocation
1382 * would succeed.
1384 if (cc->order > 0 && last_migrated_pfn) {
1385 int cpu;
1386 unsigned long current_block_start =
1387 cc->migrate_pfn & ~((1UL << cc->order) - 1);
1389 if (last_migrated_pfn < current_block_start) {
1390 cpu = get_cpu();
1391 lru_add_drain_cpu(cpu);
1392 drain_local_pages(zone);
1393 put_cpu();
1394 /* No more flushing until we migrate again */
1395 last_migrated_pfn = 0;
1401 out:
1403 * Release free pages and update where the free scanner should restart,
1404 * so we don't leave any returned pages behind in the next attempt.
1406 if (cc->nr_freepages > 0) {
1407 unsigned long free_pfn = release_freepages(&cc->freepages);
1409 cc->nr_freepages = 0;
1410 VM_BUG_ON(free_pfn == 0);
1411 /* The cached pfn is always the first in a pageblock */
1412 free_pfn &= ~(pageblock_nr_pages-1);
1414 * Only go back, not forward. The cached pfn might have been
1415 * already reset to zone end in compact_finished()
1417 if (free_pfn > zone->compact_cached_free_pfn)
1418 zone->compact_cached_free_pfn = free_pfn;
1421 trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1422 cc->free_pfn, end_pfn, sync, ret);
1424 return ret;
1427 static unsigned long compact_zone_order(struct zone *zone, int order,
1428 gfp_t gfp_mask, enum migrate_mode mode, int *contended,
1429 int alloc_flags, int classzone_idx)
1431 unsigned long ret;
1432 struct compact_control cc = {
1433 .nr_freepages = 0,
1434 .nr_migratepages = 0,
1435 .order = order,
1436 .gfp_mask = gfp_mask,
1437 .zone = zone,
1438 .mode = mode,
1439 .alloc_flags = alloc_flags,
1440 .classzone_idx = classzone_idx,
1442 INIT_LIST_HEAD(&cc.freepages);
1443 INIT_LIST_HEAD(&cc.migratepages);
1445 ret = compact_zone(zone, &cc);
1447 VM_BUG_ON(!list_empty(&cc.freepages));
1448 VM_BUG_ON(!list_empty(&cc.migratepages));
1450 *contended = cc.contended;
1451 return ret;
1454 int sysctl_extfrag_threshold = 500;
1457 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1458 * @gfp_mask: The GFP mask of the current allocation
1459 * @order: The order of the current allocation
1460 * @alloc_flags: The allocation flags of the current allocation
1461 * @ac: The context of current allocation
1462 * @mode: The migration mode for async, sync light, or sync migration
1463 * @contended: Return value that determines if compaction was aborted due to
1464 * need_resched() or lock contention
1466 * This is the main entry point for direct page compaction.
1468 unsigned long try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1469 int alloc_flags, const struct alloc_context *ac,
1470 enum migrate_mode mode, int *contended)
1472 int may_enter_fs = gfp_mask & __GFP_FS;
1473 int may_perform_io = gfp_mask & __GFP_IO;
1474 struct zoneref *z;
1475 struct zone *zone;
1476 int rc = COMPACT_DEFERRED;
1477 int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */
1479 *contended = COMPACT_CONTENDED_NONE;
1481 /* Check if the GFP flags allow compaction */
1482 if (!order || !may_enter_fs || !may_perform_io)
1483 return COMPACT_SKIPPED;
1485 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode);
1487 /* Compact each zone in the list */
1488 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1489 ac->nodemask) {
1490 int status;
1491 int zone_contended;
1493 if (compaction_deferred(zone, order))
1494 continue;
1496 status = compact_zone_order(zone, order, gfp_mask, mode,
1497 &zone_contended, alloc_flags,
1498 ac->classzone_idx);
1499 rc = max(status, rc);
1501 * It takes at least one zone that wasn't lock contended
1502 * to clear all_zones_contended.
1504 all_zones_contended &= zone_contended;
1506 /* If a normal allocation would succeed, stop compacting */
1507 if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
1508 ac->classzone_idx, alloc_flags)) {
1510 * We think the allocation will succeed in this zone,
1511 * but it is not certain, hence the false. The caller
1512 * will repeat this with true if allocation indeed
1513 * succeeds in this zone.
1515 compaction_defer_reset(zone, order, false);
1517 * It is possible that async compaction aborted due to
1518 * need_resched() and the watermarks were ok thanks to
1519 * somebody else freeing memory. The allocation can
1520 * however still fail so we better signal the
1521 * need_resched() contention anyway (this will not
1522 * prevent the allocation attempt).
1524 if (zone_contended == COMPACT_CONTENDED_SCHED)
1525 *contended = COMPACT_CONTENDED_SCHED;
1527 goto break_loop;
1530 if (mode != MIGRATE_ASYNC && status == COMPACT_COMPLETE) {
1532 * We think that allocation won't succeed in this zone
1533 * so we defer compaction there. If it ends up
1534 * succeeding after all, it will be reset.
1536 defer_compaction(zone, order);
1540 * We might have stopped compacting due to need_resched() in
1541 * async compaction, or due to a fatal signal detected. In that
1542 * case do not try further zones and signal need_resched()
1543 * contention.
1545 if ((zone_contended == COMPACT_CONTENDED_SCHED)
1546 || fatal_signal_pending(current)) {
1547 *contended = COMPACT_CONTENDED_SCHED;
1548 goto break_loop;
1551 continue;
1552 break_loop:
1554 * We might not have tried all the zones, so be conservative
1555 * and assume they are not all lock contended.
1557 all_zones_contended = 0;
1558 break;
1562 * If at least one zone wasn't deferred or skipped, we report if all
1563 * zones that were tried were lock contended.
1565 if (rc > COMPACT_SKIPPED && all_zones_contended)
1566 *contended = COMPACT_CONTENDED_LOCK;
1568 return rc;
1572 /* Compact all zones within a node */
1573 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1575 int zoneid;
1576 struct zone *zone;
1578 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1580 zone = &pgdat->node_zones[zoneid];
1581 if (!populated_zone(zone))
1582 continue;
1584 cc->nr_freepages = 0;
1585 cc->nr_migratepages = 0;
1586 cc->zone = zone;
1587 INIT_LIST_HEAD(&cc->freepages);
1588 INIT_LIST_HEAD(&cc->migratepages);
1590 if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1591 compact_zone(zone, cc);
1593 if (cc->order > 0) {
1594 if (zone_watermark_ok(zone, cc->order,
1595 low_wmark_pages(zone), 0, 0))
1596 compaction_defer_reset(zone, cc->order, false);
1599 VM_BUG_ON(!list_empty(&cc->freepages));
1600 VM_BUG_ON(!list_empty(&cc->migratepages));
1604 void compact_pgdat(pg_data_t *pgdat, int order)
1606 struct compact_control cc = {
1607 .order = order,
1608 .mode = MIGRATE_ASYNC,
1611 if (!order)
1612 return;
1614 __compact_pgdat(pgdat, &cc);
1617 static void compact_node(int nid)
1619 struct compact_control cc = {
1620 .order = -1,
1621 .mode = MIGRATE_SYNC,
1622 .ignore_skip_hint = true,
1625 __compact_pgdat(NODE_DATA(nid), &cc);
1628 /* Compact all nodes in the system */
1629 static void compact_nodes(void)
1631 int nid;
1633 /* Flush pending updates to the LRU lists */
1634 lru_add_drain_all();
1636 for_each_online_node(nid)
1637 compact_node(nid);
1640 /* The written value is actually unused, all memory is compacted */
1641 int sysctl_compact_memory;
1643 /* This is the entry point for compacting all nodes via /proc/sys/vm */
1644 int sysctl_compaction_handler(struct ctl_table *table, int write,
1645 void __user *buffer, size_t *length, loff_t *ppos)
1647 if (write)
1648 compact_nodes();
1650 return 0;
1653 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1654 void __user *buffer, size_t *length, loff_t *ppos)
1656 proc_dointvec_minmax(table, write, buffer, length, ppos);
1658 return 0;
1661 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1662 static ssize_t sysfs_compact_node(struct device *dev,
1663 struct device_attribute *attr,
1664 const char *buf, size_t count)
1666 int nid = dev->id;
1668 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1669 /* Flush pending updates to the LRU lists */
1670 lru_add_drain_all();
1672 compact_node(nid);
1675 return count;
1677 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1679 int compaction_register_node(struct node *node)
1681 return device_create_file(&node->dev, &dev_attr_compact);
1684 void compaction_unregister_node(struct node *node)
1686 return device_remove_file(&node->dev, &dev_attr_compact);
1688 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1690 #endif /* CONFIG_COMPACTION */