2 * linux/mm/compaction.c
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include <linux/page-isolation.h>
19 #include <linux/kasan.h>
22 #ifdef CONFIG_COMPACTION
23 static inline void count_compact_event(enum vm_event_item item
)
28 static inline void count_compact_events(enum vm_event_item item
, long delta
)
30 count_vm_events(item
, delta
);
33 #define count_compact_event(item) do { } while (0)
34 #define count_compact_events(item, delta) do { } while (0)
37 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
38 #ifdef CONFIG_TRACEPOINTS
39 static const char *const compaction_status_string
[] = {
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/compaction.h>
53 static unsigned long release_freepages(struct list_head
*freelist
)
55 struct page
*page
, *next
;
56 unsigned long high_pfn
= 0;
58 list_for_each_entry_safe(page
, next
, freelist
, lru
) {
59 unsigned long pfn
= page_to_pfn(page
);
69 static void map_pages(struct list_head
*list
)
73 list_for_each_entry(page
, list
, lru
) {
74 arch_alloc_page(page
, 0);
75 kernel_map_pages(page
, 1, 1);
76 kasan_alloc_pages(page
, 0);
80 static inline bool migrate_async_suitable(int migratetype
)
82 return is_migrate_cma(migratetype
) || migratetype
== MIGRATE_MOVABLE
;
86 * Check that the whole (or subset of) a pageblock given by the interval of
87 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
88 * with the migration of free compaction scanner. The scanners then need to
89 * use only pfn_valid_within() check for arches that allow holes within
92 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
94 * It's possible on some configurations to have a setup like node0 node1 node0
95 * i.e. it's possible that all pages within a zones range of pages do not
96 * belong to a single zone. We assume that a border between node0 and node1
97 * can occur within a single pageblock, but not a node0 node1 node0
98 * interleaving within a single pageblock. It is therefore sufficient to check
99 * the first and last page of a pageblock and avoid checking each individual
100 * page in a pageblock.
102 static struct page
*pageblock_pfn_to_page(unsigned long start_pfn
,
103 unsigned long end_pfn
, struct zone
*zone
)
105 struct page
*start_page
;
106 struct page
*end_page
;
108 /* end_pfn is one past the range we are checking */
111 if (!pfn_valid(start_pfn
) || !pfn_valid(end_pfn
))
114 start_page
= pfn_to_page(start_pfn
);
116 if (page_zone(start_page
) != zone
)
119 end_page
= pfn_to_page(end_pfn
);
121 /* This gives a shorter code than deriving page_zone(end_page) */
122 if (page_zone_id(start_page
) != page_zone_id(end_page
))
128 #ifdef CONFIG_COMPACTION
130 /* Do not skip compaction more than 64 times */
131 #define COMPACT_MAX_DEFER_SHIFT 6
134 * Compaction is deferred when compaction fails to result in a page
135 * allocation success. 1 << compact_defer_limit compactions are skipped up
136 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
138 void defer_compaction(struct zone
*zone
, int order
)
140 zone
->compact_considered
= 0;
141 zone
->compact_defer_shift
++;
143 if (order
< zone
->compact_order_failed
)
144 zone
->compact_order_failed
= order
;
146 if (zone
->compact_defer_shift
> COMPACT_MAX_DEFER_SHIFT
)
147 zone
->compact_defer_shift
= COMPACT_MAX_DEFER_SHIFT
;
149 trace_mm_compaction_defer_compaction(zone
, order
);
152 /* Returns true if compaction should be skipped this time */
153 bool compaction_deferred(struct zone
*zone
, int order
)
155 unsigned long defer_limit
= 1UL << zone
->compact_defer_shift
;
157 if (order
< zone
->compact_order_failed
)
160 /* Avoid possible overflow */
161 if (++zone
->compact_considered
> defer_limit
)
162 zone
->compact_considered
= defer_limit
;
164 if (zone
->compact_considered
>= defer_limit
)
167 trace_mm_compaction_deferred(zone
, order
);
173 * Update defer tracking counters after successful compaction of given order,
174 * which means an allocation either succeeded (alloc_success == true) or is
175 * expected to succeed.
177 void compaction_defer_reset(struct zone
*zone
, int order
,
181 zone
->compact_considered
= 0;
182 zone
->compact_defer_shift
= 0;
184 if (order
>= zone
->compact_order_failed
)
185 zone
->compact_order_failed
= order
+ 1;
187 trace_mm_compaction_defer_reset(zone
, order
);
190 /* Returns true if restarting compaction after many failures */
191 bool compaction_restarting(struct zone
*zone
, int order
)
193 if (order
< zone
->compact_order_failed
)
196 return zone
->compact_defer_shift
== COMPACT_MAX_DEFER_SHIFT
&&
197 zone
->compact_considered
>= 1UL << zone
->compact_defer_shift
;
200 /* Returns true if the pageblock should be scanned for pages to isolate. */
201 static inline bool isolation_suitable(struct compact_control
*cc
,
204 if (cc
->ignore_skip_hint
)
207 return !get_pageblock_skip(page
);
211 * This function is called to clear all cached information on pageblocks that
212 * should be skipped for page isolation when the migrate and free page scanner
215 static void __reset_isolation_suitable(struct zone
*zone
)
217 unsigned long start_pfn
= zone
->zone_start_pfn
;
218 unsigned long end_pfn
= zone_end_pfn(zone
);
221 zone
->compact_cached_migrate_pfn
[0] = start_pfn
;
222 zone
->compact_cached_migrate_pfn
[1] = start_pfn
;
223 zone
->compact_cached_free_pfn
= end_pfn
;
224 zone
->compact_blockskip_flush
= false;
226 /* Walk the zone and mark every pageblock as suitable for isolation */
227 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
235 page
= pfn_to_page(pfn
);
236 if (zone
!= page_zone(page
))
239 clear_pageblock_skip(page
);
243 void reset_isolation_suitable(pg_data_t
*pgdat
)
247 for (zoneid
= 0; zoneid
< MAX_NR_ZONES
; zoneid
++) {
248 struct zone
*zone
= &pgdat
->node_zones
[zoneid
];
249 if (!populated_zone(zone
))
252 /* Only flush if a full compaction finished recently */
253 if (zone
->compact_blockskip_flush
)
254 __reset_isolation_suitable(zone
);
259 * If no pages were isolated then mark this pageblock to be skipped in the
260 * future. The information is later cleared by __reset_isolation_suitable().
262 static void update_pageblock_skip(struct compact_control
*cc
,
263 struct page
*page
, unsigned long nr_isolated
,
264 bool migrate_scanner
)
266 struct zone
*zone
= cc
->zone
;
269 if (cc
->ignore_skip_hint
)
278 set_pageblock_skip(page
);
280 pfn
= page_to_pfn(page
);
282 /* Update where async and sync compaction should restart */
283 if (migrate_scanner
) {
284 if (pfn
> zone
->compact_cached_migrate_pfn
[0])
285 zone
->compact_cached_migrate_pfn
[0] = pfn
;
286 if (cc
->mode
!= MIGRATE_ASYNC
&&
287 pfn
> zone
->compact_cached_migrate_pfn
[1])
288 zone
->compact_cached_migrate_pfn
[1] = pfn
;
290 if (pfn
< zone
->compact_cached_free_pfn
)
291 zone
->compact_cached_free_pfn
= pfn
;
295 static inline bool isolation_suitable(struct compact_control
*cc
,
301 static void update_pageblock_skip(struct compact_control
*cc
,
302 struct page
*page
, unsigned long nr_isolated
,
303 bool migrate_scanner
)
306 #endif /* CONFIG_COMPACTION */
309 * Compaction requires the taking of some coarse locks that are potentially
310 * very heavily contended. For async compaction, back out if the lock cannot
311 * be taken immediately. For sync compaction, spin on the lock if needed.
313 * Returns true if the lock is held
314 * Returns false if the lock is not held and compaction should abort
316 static bool compact_trylock_irqsave(spinlock_t
*lock
, unsigned long *flags
,
317 struct compact_control
*cc
)
319 if (cc
->mode
== MIGRATE_ASYNC
) {
320 if (!spin_trylock_irqsave(lock
, *flags
)) {
321 cc
->contended
= COMPACT_CONTENDED_LOCK
;
325 spin_lock_irqsave(lock
, *flags
);
332 * Compaction requires the taking of some coarse locks that are potentially
333 * very heavily contended. The lock should be periodically unlocked to avoid
334 * having disabled IRQs for a long time, even when there is nobody waiting on
335 * the lock. It might also be that allowing the IRQs will result in
336 * need_resched() becoming true. If scheduling is needed, async compaction
337 * aborts. Sync compaction schedules.
338 * Either compaction type will also abort if a fatal signal is pending.
339 * In either case if the lock was locked, it is dropped and not regained.
341 * Returns true if compaction should abort due to fatal signal pending, or
342 * async compaction due to need_resched()
343 * Returns false when compaction can continue (sync compaction might have
346 static bool compact_unlock_should_abort(spinlock_t
*lock
,
347 unsigned long flags
, bool *locked
, struct compact_control
*cc
)
350 spin_unlock_irqrestore(lock
, flags
);
354 if (fatal_signal_pending(current
)) {
355 cc
->contended
= COMPACT_CONTENDED_SCHED
;
359 if (need_resched()) {
360 if (cc
->mode
== MIGRATE_ASYNC
) {
361 cc
->contended
= COMPACT_CONTENDED_SCHED
;
371 * Aside from avoiding lock contention, compaction also periodically checks
372 * need_resched() and either schedules in sync compaction or aborts async
373 * compaction. This is similar to what compact_unlock_should_abort() does, but
374 * is used where no lock is concerned.
376 * Returns false when no scheduling was needed, or sync compaction scheduled.
377 * Returns true when async compaction should abort.
379 static inline bool compact_should_abort(struct compact_control
*cc
)
381 /* async compaction aborts if contended */
382 if (need_resched()) {
383 if (cc
->mode
== MIGRATE_ASYNC
) {
384 cc
->contended
= COMPACT_CONTENDED_SCHED
;
394 /* Returns true if the page is within a block suitable for migration to */
395 static bool suitable_migration_target(struct page
*page
)
397 /* If the page is a large free page, then disallow migration */
398 if (PageBuddy(page
)) {
400 * We are checking page_order without zone->lock taken. But
401 * the only small danger is that we skip a potentially suitable
402 * pageblock, so it's not worth to check order for valid range.
404 if (page_order_unsafe(page
) >= pageblock_order
)
408 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
409 if (migrate_async_suitable(get_pageblock_migratetype(page
)))
412 /* Otherwise skip the block */
417 * Isolate free pages onto a private freelist. If @strict is true, will abort
418 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
419 * (even though it may still end up isolating some pages).
421 static unsigned long isolate_freepages_block(struct compact_control
*cc
,
422 unsigned long *start_pfn
,
423 unsigned long end_pfn
,
424 struct list_head
*freelist
,
427 int nr_scanned
= 0, total_isolated
= 0;
428 struct page
*cursor
, *valid_page
= NULL
;
429 unsigned long flags
= 0;
431 unsigned long blockpfn
= *start_pfn
;
433 cursor
= pfn_to_page(blockpfn
);
435 /* Isolate free pages. */
436 for (; blockpfn
< end_pfn
; blockpfn
++, cursor
++) {
438 struct page
*page
= cursor
;
441 * Periodically drop the lock (if held) regardless of its
442 * contention, to give chance to IRQs. Abort if fatal signal
443 * pending or async compaction detects need_resched()
445 if (!(blockpfn
% SWAP_CLUSTER_MAX
)
446 && compact_unlock_should_abort(&cc
->zone
->lock
, flags
,
451 if (!pfn_valid_within(blockpfn
))
456 if (!PageBuddy(page
))
460 * If we already hold the lock, we can skip some rechecking.
461 * Note that if we hold the lock now, checked_pageblock was
462 * already set in some previous iteration (or strict is true),
463 * so it is correct to skip the suitable migration target
468 * The zone lock must be held to isolate freepages.
469 * Unfortunately this is a very coarse lock and can be
470 * heavily contended if there are parallel allocations
471 * or parallel compactions. For async compaction do not
472 * spin on the lock and we acquire the lock as late as
475 locked
= compact_trylock_irqsave(&cc
->zone
->lock
,
480 /* Recheck this is a buddy page under lock */
481 if (!PageBuddy(page
))
485 /* Found a free page, break it into order-0 pages */
486 isolated
= split_free_page(page
);
487 total_isolated
+= isolated
;
488 for (i
= 0; i
< isolated
; i
++) {
489 list_add(&page
->lru
, freelist
);
493 /* If a page was split, advance to the end of it */
495 cc
->nr_freepages
+= isolated
;
497 cc
->nr_migratepages
<= cc
->nr_freepages
) {
498 blockpfn
+= isolated
;
502 blockpfn
+= isolated
- 1;
503 cursor
+= isolated
- 1;
515 trace_mm_compaction_isolate_freepages(*start_pfn
, blockpfn
,
516 nr_scanned
, total_isolated
);
518 /* Record how far we have got within the block */
519 *start_pfn
= blockpfn
;
522 * If strict isolation is requested by CMA then check that all the
523 * pages requested were isolated. If there were any failures, 0 is
524 * returned and CMA will fail.
526 if (strict
&& blockpfn
< end_pfn
)
530 spin_unlock_irqrestore(&cc
->zone
->lock
, flags
);
532 /* Update the pageblock-skip if the whole pageblock was scanned */
533 if (blockpfn
== end_pfn
)
534 update_pageblock_skip(cc
, valid_page
, total_isolated
, false);
536 count_compact_events(COMPACTFREE_SCANNED
, nr_scanned
);
538 count_compact_events(COMPACTISOLATED
, total_isolated
);
539 return total_isolated
;
543 * isolate_freepages_range() - isolate free pages.
544 * @start_pfn: The first PFN to start isolating.
545 * @end_pfn: The one-past-last PFN.
547 * Non-free pages, invalid PFNs, or zone boundaries within the
548 * [start_pfn, end_pfn) range are considered errors, cause function to
549 * undo its actions and return zero.
551 * Otherwise, function returns one-past-the-last PFN of isolated page
552 * (which may be greater then end_pfn if end fell in a middle of
556 isolate_freepages_range(struct compact_control
*cc
,
557 unsigned long start_pfn
, unsigned long end_pfn
)
559 unsigned long isolated
, pfn
, block_end_pfn
;
563 block_end_pfn
= ALIGN(pfn
+ 1, pageblock_nr_pages
);
565 for (; pfn
< end_pfn
; pfn
+= isolated
,
566 block_end_pfn
+= pageblock_nr_pages
) {
567 /* Protect pfn from changing by isolate_freepages_block */
568 unsigned long isolate_start_pfn
= pfn
;
570 block_end_pfn
= min(block_end_pfn
, end_pfn
);
573 * pfn could pass the block_end_pfn if isolated freepage
574 * is more than pageblock order. In this case, we adjust
575 * scanning range to right one.
577 if (pfn
>= block_end_pfn
) {
578 block_end_pfn
= ALIGN(pfn
+ 1, pageblock_nr_pages
);
579 block_end_pfn
= min(block_end_pfn
, end_pfn
);
582 if (!pageblock_pfn_to_page(pfn
, block_end_pfn
, cc
->zone
))
585 isolated
= isolate_freepages_block(cc
, &isolate_start_pfn
,
586 block_end_pfn
, &freelist
, true);
589 * In strict mode, isolate_freepages_block() returns 0 if
590 * there are any holes in the block (ie. invalid PFNs or
597 * If we managed to isolate pages, it is always (1 << n) *
598 * pageblock_nr_pages for some non-negative n. (Max order
599 * page may span two pageblocks).
603 /* split_free_page does not map the pages */
604 map_pages(&freelist
);
607 /* Loop terminated early, cleanup. */
608 release_freepages(&freelist
);
612 /* We don't use freelists for anything. */
616 /* Update the number of anon and file isolated pages in the zone */
617 static void acct_isolated(struct zone
*zone
, struct compact_control
*cc
)
620 unsigned int count
[2] = { 0, };
622 if (list_empty(&cc
->migratepages
))
625 list_for_each_entry(page
, &cc
->migratepages
, lru
)
626 count
[!!page_is_file_cache(page
)]++;
628 mod_zone_page_state(zone
, NR_ISOLATED_ANON
, count
[0]);
629 mod_zone_page_state(zone
, NR_ISOLATED_FILE
, count
[1]);
632 /* Similar to reclaim, but different enough that they don't share logic */
633 static bool too_many_isolated(struct zone
*zone
)
635 unsigned long active
, inactive
, isolated
;
637 inactive
= zone_page_state(zone
, NR_INACTIVE_FILE
) +
638 zone_page_state(zone
, NR_INACTIVE_ANON
);
639 active
= zone_page_state(zone
, NR_ACTIVE_FILE
) +
640 zone_page_state(zone
, NR_ACTIVE_ANON
);
641 isolated
= zone_page_state(zone
, NR_ISOLATED_FILE
) +
642 zone_page_state(zone
, NR_ISOLATED_ANON
);
644 return isolated
> (inactive
+ active
) / 2;
648 * isolate_migratepages_block() - isolate all migrate-able pages within
650 * @cc: Compaction control structure.
651 * @low_pfn: The first PFN to isolate
652 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
653 * @isolate_mode: Isolation mode to be used.
655 * Isolate all pages that can be migrated from the range specified by
656 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
657 * Returns zero if there is a fatal signal pending, otherwise PFN of the
658 * first page that was not scanned (which may be both less, equal to or more
661 * The pages are isolated on cc->migratepages list (not required to be empty),
662 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
663 * is neither read nor updated.
666 isolate_migratepages_block(struct compact_control
*cc
, unsigned long low_pfn
,
667 unsigned long end_pfn
, isolate_mode_t isolate_mode
)
669 struct zone
*zone
= cc
->zone
;
670 unsigned long nr_scanned
= 0, nr_isolated
= 0;
671 struct list_head
*migratelist
= &cc
->migratepages
;
672 struct lruvec
*lruvec
;
673 unsigned long flags
= 0;
675 struct page
*page
= NULL
, *valid_page
= NULL
;
676 unsigned long start_pfn
= low_pfn
;
679 * Ensure that there are not too many pages isolated from the LRU
680 * list by either parallel reclaimers or compaction. If there are,
681 * delay for some time until fewer pages are isolated
683 while (unlikely(too_many_isolated(zone
))) {
684 /* async migration should just abort */
685 if (cc
->mode
== MIGRATE_ASYNC
)
688 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
690 if (fatal_signal_pending(current
))
694 if (compact_should_abort(cc
))
697 /* Time to isolate some pages for migration */
698 for (; low_pfn
< end_pfn
; low_pfn
++) {
700 * Periodically drop the lock (if held) regardless of its
701 * contention, to give chance to IRQs. Abort async compaction
704 if (!(low_pfn
% SWAP_CLUSTER_MAX
)
705 && compact_unlock_should_abort(&zone
->lru_lock
, flags
,
709 if (!pfn_valid_within(low_pfn
))
713 page
= pfn_to_page(low_pfn
);
719 * Skip if free. We read page order here without zone lock
720 * which is generally unsafe, but the race window is small and
721 * the worst thing that can happen is that we skip some
722 * potential isolation targets.
724 if (PageBuddy(page
)) {
725 unsigned long freepage_order
= page_order_unsafe(page
);
728 * Without lock, we cannot be sure that what we got is
729 * a valid page order. Consider only values in the
730 * valid order range to prevent low_pfn overflow.
732 if (freepage_order
> 0 && freepage_order
< MAX_ORDER
)
733 low_pfn
+= (1UL << freepage_order
) - 1;
738 * Check may be lockless but that's ok as we recheck later.
739 * It's possible to migrate LRU pages and balloon pages
740 * Skip any other type of page
742 if (!PageLRU(page
)) {
743 if (unlikely(balloon_page_movable(page
))) {
744 if (balloon_page_isolate(page
)) {
745 /* Successfully isolated */
746 goto isolate_success
;
753 * PageLRU is set. lru_lock normally excludes isolation
754 * splitting and collapsing (collapsing has already happened
755 * if PageLRU is set) but the lock is not necessarily taken
756 * here and it is wasteful to take it just to check transhuge.
757 * Check TransHuge without lock and skip the whole pageblock if
758 * it's either a transhuge or hugetlbfs page, as calling
759 * compound_order() without preventing THP from splitting the
760 * page underneath us may return surprising results.
762 if (PageTransHuge(page
)) {
764 low_pfn
= ALIGN(low_pfn
+ 1,
765 pageblock_nr_pages
) - 1;
767 low_pfn
+= (1 << compound_order(page
)) - 1;
773 * Migration will fail if an anonymous page is pinned in memory,
774 * so avoid taking lru_lock and isolating it unnecessarily in an
775 * admittedly racy check.
777 if (!page_mapping(page
) &&
778 page_count(page
) > page_mapcount(page
))
781 /* If we already hold the lock, we can skip some rechecking */
783 locked
= compact_trylock_irqsave(&zone
->lru_lock
,
788 /* Recheck PageLRU and PageTransHuge under lock */
791 if (PageTransHuge(page
)) {
792 low_pfn
+= (1 << compound_order(page
)) - 1;
797 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
799 /* Try isolate the page */
800 if (__isolate_lru_page(page
, isolate_mode
) != 0)
803 VM_BUG_ON_PAGE(PageTransCompound(page
), page
);
805 /* Successfully isolated */
806 del_page_from_lru_list(page
, lruvec
, page_lru(page
));
809 list_add(&page
->lru
, migratelist
);
810 cc
->nr_migratepages
++;
813 /* Avoid isolating too much */
814 if (cc
->nr_migratepages
== COMPACT_CLUSTER_MAX
) {
821 * The PageBuddy() check could have potentially brought us outside
822 * the range to be scanned.
824 if (unlikely(low_pfn
> end_pfn
))
828 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
831 * Update the pageblock-skip information and cached scanner pfn,
832 * if the whole pageblock was scanned without isolating any page.
834 if (low_pfn
== end_pfn
)
835 update_pageblock_skip(cc
, valid_page
, nr_isolated
, true);
837 trace_mm_compaction_isolate_migratepages(start_pfn
, low_pfn
,
838 nr_scanned
, nr_isolated
);
840 count_compact_events(COMPACTMIGRATE_SCANNED
, nr_scanned
);
842 count_compact_events(COMPACTISOLATED
, nr_isolated
);
848 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
849 * @cc: Compaction control structure.
850 * @start_pfn: The first PFN to start isolating.
851 * @end_pfn: The one-past-last PFN.
853 * Returns zero if isolation fails fatally due to e.g. pending signal.
854 * Otherwise, function returns one-past-the-last PFN of isolated page
855 * (which may be greater than end_pfn if end fell in a middle of a THP page).
858 isolate_migratepages_range(struct compact_control
*cc
, unsigned long start_pfn
,
859 unsigned long end_pfn
)
861 unsigned long pfn
, block_end_pfn
;
863 /* Scan block by block. First and last block may be incomplete */
865 block_end_pfn
= ALIGN(pfn
+ 1, pageblock_nr_pages
);
867 for (; pfn
< end_pfn
; pfn
= block_end_pfn
,
868 block_end_pfn
+= pageblock_nr_pages
) {
870 block_end_pfn
= min(block_end_pfn
, end_pfn
);
872 if (!pageblock_pfn_to_page(pfn
, block_end_pfn
, cc
->zone
))
875 pfn
= isolate_migratepages_block(cc
, pfn
, block_end_pfn
,
876 ISOLATE_UNEVICTABLE
);
879 * In case of fatal failure, release everything that might
880 * have been isolated in the previous iteration, and signal
881 * the failure back to caller.
884 putback_movable_pages(&cc
->migratepages
);
885 cc
->nr_migratepages
= 0;
889 if (cc
->nr_migratepages
== COMPACT_CLUSTER_MAX
)
892 acct_isolated(cc
->zone
, cc
);
897 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
898 #ifdef CONFIG_COMPACTION
900 * Based on information in the current compact_control, find blocks
901 * suitable for isolating free pages from and then isolate them.
903 static void isolate_freepages(struct compact_control
*cc
)
905 struct zone
*zone
= cc
->zone
;
907 unsigned long block_start_pfn
; /* start of current pageblock */
908 unsigned long isolate_start_pfn
; /* exact pfn we start at */
909 unsigned long block_end_pfn
; /* end of current pageblock */
910 unsigned long low_pfn
; /* lowest pfn scanner is able to scan */
911 struct list_head
*freelist
= &cc
->freepages
;
914 * Initialise the free scanner. The starting point is where we last
915 * successfully isolated from, zone-cached value, or the end of the
916 * zone when isolating for the first time. For looping we also need
917 * this pfn aligned down to the pageblock boundary, because we do
918 * block_start_pfn -= pageblock_nr_pages in the for loop.
919 * For ending point, take care when isolating in last pageblock of a
920 * a zone which ends in the middle of a pageblock.
921 * The low boundary is the end of the pageblock the migration scanner
924 isolate_start_pfn
= cc
->free_pfn
;
925 block_start_pfn
= cc
->free_pfn
& ~(pageblock_nr_pages
-1);
926 block_end_pfn
= min(block_start_pfn
+ pageblock_nr_pages
,
928 low_pfn
= ALIGN(cc
->migrate_pfn
+ 1, pageblock_nr_pages
);
931 * Isolate free pages until enough are available to migrate the
932 * pages on cc->migratepages. We stop searching if the migrate
933 * and free page scanners meet or enough free pages are isolated.
935 for (; block_start_pfn
>= low_pfn
&&
936 cc
->nr_migratepages
> cc
->nr_freepages
;
937 block_end_pfn
= block_start_pfn
,
938 block_start_pfn
-= pageblock_nr_pages
,
939 isolate_start_pfn
= block_start_pfn
) {
942 * This can iterate a massively long zone without finding any
943 * suitable migration targets, so periodically check if we need
944 * to schedule, or even abort async compaction.
946 if (!(block_start_pfn
% (SWAP_CLUSTER_MAX
* pageblock_nr_pages
))
947 && compact_should_abort(cc
))
950 page
= pageblock_pfn_to_page(block_start_pfn
, block_end_pfn
,
955 /* Check the block is suitable for migration */
956 if (!suitable_migration_target(page
))
959 /* If isolation recently failed, do not retry */
960 if (!isolation_suitable(cc
, page
))
963 /* Found a block suitable for isolating free pages from. */
964 isolate_freepages_block(cc
, &isolate_start_pfn
,
965 block_end_pfn
, freelist
, false);
968 * Remember where the free scanner should restart next time,
969 * which is where isolate_freepages_block() left off.
970 * But if it scanned the whole pageblock, isolate_start_pfn
971 * now points at block_end_pfn, which is the start of the next
973 * In that case we will however want to restart at the start
974 * of the previous pageblock.
976 cc
->free_pfn
= (isolate_start_pfn
< block_end_pfn
) ?
978 block_start_pfn
- pageblock_nr_pages
;
981 * isolate_freepages_block() might have aborted due to async
982 * compaction being contended
988 /* split_free_page does not map the pages */
992 * If we crossed the migrate scanner, we want to keep it that way
993 * so that compact_finished() may detect this
995 if (block_start_pfn
< low_pfn
)
996 cc
->free_pfn
= cc
->migrate_pfn
;
1000 * This is a migrate-callback that "allocates" freepages by taking pages
1001 * from the isolated freelists in the block we are migrating to.
1003 static struct page
*compaction_alloc(struct page
*migratepage
,
1007 struct compact_control
*cc
= (struct compact_control
*)data
;
1008 struct page
*freepage
;
1011 * Isolate free pages if necessary, and if we are not aborting due to
1014 if (list_empty(&cc
->freepages
)) {
1016 isolate_freepages(cc
);
1018 if (list_empty(&cc
->freepages
))
1022 freepage
= list_entry(cc
->freepages
.next
, struct page
, lru
);
1023 list_del(&freepage
->lru
);
1030 * This is a migrate-callback that "frees" freepages back to the isolated
1031 * freelist. All pages on the freelist are from the same zone, so there is no
1032 * special handling needed for NUMA.
1034 static void compaction_free(struct page
*page
, unsigned long data
)
1036 struct compact_control
*cc
= (struct compact_control
*)data
;
1038 list_add(&page
->lru
, &cc
->freepages
);
1042 /* possible outcome of isolate_migratepages */
1044 ISOLATE_ABORT
, /* Abort compaction now */
1045 ISOLATE_NONE
, /* No pages isolated, continue scanning */
1046 ISOLATE_SUCCESS
, /* Pages isolated, migrate */
1047 } isolate_migrate_t
;
1050 * Isolate all pages that can be migrated from the first suitable block,
1051 * starting at the block pointed to by the migrate scanner pfn within
1054 static isolate_migrate_t
isolate_migratepages(struct zone
*zone
,
1055 struct compact_control
*cc
)
1057 unsigned long low_pfn
, end_pfn
;
1059 const isolate_mode_t isolate_mode
=
1060 (cc
->mode
== MIGRATE_ASYNC
? ISOLATE_ASYNC_MIGRATE
: 0);
1063 * Start at where we last stopped, or beginning of the zone as
1064 * initialized by compact_zone()
1066 low_pfn
= cc
->migrate_pfn
;
1068 /* Only scan within a pageblock boundary */
1069 end_pfn
= ALIGN(low_pfn
+ 1, pageblock_nr_pages
);
1072 * Iterate over whole pageblocks until we find the first suitable.
1073 * Do not cross the free scanner.
1075 for (; end_pfn
<= cc
->free_pfn
;
1076 low_pfn
= end_pfn
, end_pfn
+= pageblock_nr_pages
) {
1079 * This can potentially iterate a massively long zone with
1080 * many pageblocks unsuitable, so periodically check if we
1081 * need to schedule, or even abort async compaction.
1083 if (!(low_pfn
% (SWAP_CLUSTER_MAX
* pageblock_nr_pages
))
1084 && compact_should_abort(cc
))
1087 page
= pageblock_pfn_to_page(low_pfn
, end_pfn
, zone
);
1091 /* If isolation recently failed, do not retry */
1092 if (!isolation_suitable(cc
, page
))
1096 * For async compaction, also only scan in MOVABLE blocks.
1097 * Async compaction is optimistic to see if the minimum amount
1098 * of work satisfies the allocation.
1100 if (cc
->mode
== MIGRATE_ASYNC
&&
1101 !migrate_async_suitable(get_pageblock_migratetype(page
)))
1104 /* Perform the isolation */
1105 low_pfn
= isolate_migratepages_block(cc
, low_pfn
, end_pfn
,
1108 if (!low_pfn
|| cc
->contended
) {
1109 acct_isolated(zone
, cc
);
1110 return ISOLATE_ABORT
;
1114 * Either we isolated something and proceed with migration. Or
1115 * we failed and compact_zone should decide if we should
1121 acct_isolated(zone
, cc
);
1123 * Record where migration scanner will be restarted. If we end up in
1124 * the same pageblock as the free scanner, make the scanners fully
1125 * meet so that compact_finished() terminates compaction.
1127 cc
->migrate_pfn
= (end_pfn
<= cc
->free_pfn
) ? low_pfn
: cc
->free_pfn
;
1129 return cc
->nr_migratepages
? ISOLATE_SUCCESS
: ISOLATE_NONE
;
1132 static int __compact_finished(struct zone
*zone
, struct compact_control
*cc
,
1133 const int migratetype
)
1136 unsigned long watermark
;
1138 if (cc
->contended
|| fatal_signal_pending(current
))
1139 return COMPACT_PARTIAL
;
1141 /* Compaction run completes if the migrate and free scanner meet */
1142 if (cc
->free_pfn
<= cc
->migrate_pfn
) {
1143 /* Let the next compaction start anew. */
1144 zone
->compact_cached_migrate_pfn
[0] = zone
->zone_start_pfn
;
1145 zone
->compact_cached_migrate_pfn
[1] = zone
->zone_start_pfn
;
1146 zone
->compact_cached_free_pfn
= zone_end_pfn(zone
);
1149 * Mark that the PG_migrate_skip information should be cleared
1150 * by kswapd when it goes to sleep. kswapd does not set the
1151 * flag itself as the decision to be clear should be directly
1152 * based on an allocation request.
1154 if (!current_is_kswapd())
1155 zone
->compact_blockskip_flush
= true;
1157 return COMPACT_COMPLETE
;
1161 * order == -1 is expected when compacting via
1162 * /proc/sys/vm/compact_memory
1164 if (cc
->order
== -1)
1165 return COMPACT_CONTINUE
;
1167 /* Compaction run is not finished if the watermark is not met */
1168 watermark
= low_wmark_pages(zone
);
1170 if (!zone_watermark_ok(zone
, cc
->order
, watermark
, cc
->classzone_idx
,
1172 return COMPACT_CONTINUE
;
1174 /* Direct compactor: Is a suitable page free? */
1175 for (order
= cc
->order
; order
< MAX_ORDER
; order
++) {
1176 struct free_area
*area
= &zone
->free_area
[order
];
1178 /* Job done if page is free of the right migratetype */
1179 if (!list_empty(&area
->free_list
[migratetype
]))
1180 return COMPACT_PARTIAL
;
1182 /* Job done if allocation would set block type */
1183 if (order
>= pageblock_order
&& area
->nr_free
)
1184 return COMPACT_PARTIAL
;
1187 return COMPACT_NO_SUITABLE_PAGE
;
1190 static int compact_finished(struct zone
*zone
, struct compact_control
*cc
,
1191 const int migratetype
)
1195 ret
= __compact_finished(zone
, cc
, migratetype
);
1196 trace_mm_compaction_finished(zone
, cc
->order
, ret
);
1197 if (ret
== COMPACT_NO_SUITABLE_PAGE
)
1198 ret
= COMPACT_CONTINUE
;
1204 * compaction_suitable: Is this suitable to run compaction on this zone now?
1206 * COMPACT_SKIPPED - If there are too few free pages for compaction
1207 * COMPACT_PARTIAL - If the allocation would succeed without compaction
1208 * COMPACT_CONTINUE - If compaction should run now
1210 static unsigned long __compaction_suitable(struct zone
*zone
, int order
,
1211 int alloc_flags
, int classzone_idx
)
1214 unsigned long watermark
;
1217 * order == -1 is expected when compacting via
1218 * /proc/sys/vm/compact_memory
1221 return COMPACT_CONTINUE
;
1223 watermark
= low_wmark_pages(zone
);
1225 * If watermarks for high-order allocation are already met, there
1226 * should be no need for compaction at all.
1228 if (zone_watermark_ok(zone
, order
, watermark
, classzone_idx
,
1230 return COMPACT_PARTIAL
;
1233 * Watermarks for order-0 must be met for compaction. Note the 2UL.
1234 * This is because during migration, copies of pages need to be
1235 * allocated and for a short time, the footprint is higher
1237 watermark
+= (2UL << order
);
1238 if (!zone_watermark_ok(zone
, 0, watermark
, classzone_idx
, alloc_flags
))
1239 return COMPACT_SKIPPED
;
1242 * fragmentation index determines if allocation failures are due to
1243 * low memory or external fragmentation
1245 * index of -1000 would imply allocations might succeed depending on
1246 * watermarks, but we already failed the high-order watermark check
1247 * index towards 0 implies failure is due to lack of memory
1248 * index towards 1000 implies failure is due to fragmentation
1250 * Only compact if a failure would be due to fragmentation.
1252 fragindex
= fragmentation_index(zone
, order
);
1253 if (fragindex
>= 0 && fragindex
<= sysctl_extfrag_threshold
)
1254 return COMPACT_NOT_SUITABLE_ZONE
;
1256 return COMPACT_CONTINUE
;
1259 unsigned long compaction_suitable(struct zone
*zone
, int order
,
1260 int alloc_flags
, int classzone_idx
)
1264 ret
= __compaction_suitable(zone
, order
, alloc_flags
, classzone_idx
);
1265 trace_mm_compaction_suitable(zone
, order
, ret
);
1266 if (ret
== COMPACT_NOT_SUITABLE_ZONE
)
1267 ret
= COMPACT_SKIPPED
;
1272 static int compact_zone(struct zone
*zone
, struct compact_control
*cc
)
1275 unsigned long start_pfn
= zone
->zone_start_pfn
;
1276 unsigned long end_pfn
= zone_end_pfn(zone
);
1277 const int migratetype
= gfpflags_to_migratetype(cc
->gfp_mask
);
1278 const bool sync
= cc
->mode
!= MIGRATE_ASYNC
;
1279 unsigned long last_migrated_pfn
= 0;
1281 ret
= compaction_suitable(zone
, cc
->order
, cc
->alloc_flags
,
1284 case COMPACT_PARTIAL
:
1285 case COMPACT_SKIPPED
:
1286 /* Compaction is likely to fail */
1288 case COMPACT_CONTINUE
:
1289 /* Fall through to compaction */
1294 * Clear pageblock skip if there were failures recently and compaction
1295 * is about to be retried after being deferred. kswapd does not do
1296 * this reset as it'll reset the cached information when going to sleep.
1298 if (compaction_restarting(zone
, cc
->order
) && !current_is_kswapd())
1299 __reset_isolation_suitable(zone
);
1302 * Setup to move all movable pages to the end of the zone. Used cached
1303 * information on where the scanners should start but check that it
1304 * is initialised by ensuring the values are within zone boundaries.
1306 cc
->migrate_pfn
= zone
->compact_cached_migrate_pfn
[sync
];
1307 cc
->free_pfn
= zone
->compact_cached_free_pfn
;
1308 if (cc
->free_pfn
< start_pfn
|| cc
->free_pfn
> end_pfn
) {
1309 cc
->free_pfn
= end_pfn
& ~(pageblock_nr_pages
-1);
1310 zone
->compact_cached_free_pfn
= cc
->free_pfn
;
1312 if (cc
->migrate_pfn
< start_pfn
|| cc
->migrate_pfn
> end_pfn
) {
1313 cc
->migrate_pfn
= start_pfn
;
1314 zone
->compact_cached_migrate_pfn
[0] = cc
->migrate_pfn
;
1315 zone
->compact_cached_migrate_pfn
[1] = cc
->migrate_pfn
;
1318 trace_mm_compaction_begin(start_pfn
, cc
->migrate_pfn
,
1319 cc
->free_pfn
, end_pfn
, sync
);
1321 migrate_prep_local();
1323 while ((ret
= compact_finished(zone
, cc
, migratetype
)) ==
1326 unsigned long isolate_start_pfn
= cc
->migrate_pfn
;
1328 switch (isolate_migratepages(zone
, cc
)) {
1330 ret
= COMPACT_PARTIAL
;
1331 putback_movable_pages(&cc
->migratepages
);
1332 cc
->nr_migratepages
= 0;
1336 * We haven't isolated and migrated anything, but
1337 * there might still be unflushed migrations from
1338 * previous cc->order aligned block.
1341 case ISOLATE_SUCCESS
:
1345 err
= migrate_pages(&cc
->migratepages
, compaction_alloc
,
1346 compaction_free
, (unsigned long)cc
, cc
->mode
,
1349 trace_mm_compaction_migratepages(cc
->nr_migratepages
, err
,
1352 /* All pages were either migrated or will be released */
1353 cc
->nr_migratepages
= 0;
1355 putback_movable_pages(&cc
->migratepages
);
1357 * migrate_pages() may return -ENOMEM when scanners meet
1358 * and we want compact_finished() to detect it
1360 if (err
== -ENOMEM
&& cc
->free_pfn
> cc
->migrate_pfn
) {
1361 ret
= COMPACT_PARTIAL
;
1367 * Record where we could have freed pages by migration and not
1368 * yet flushed them to buddy allocator. We use the pfn that
1369 * isolate_migratepages() started from in this loop iteration
1370 * - this is the lowest page that could have been isolated and
1371 * then freed by migration.
1373 if (!last_migrated_pfn
)
1374 last_migrated_pfn
= isolate_start_pfn
;
1378 * Has the migration scanner moved away from the previous
1379 * cc->order aligned block where we migrated from? If yes,
1380 * flush the pages that were freed, so that they can merge and
1381 * compact_finished() can detect immediately if allocation
1384 if (cc
->order
> 0 && last_migrated_pfn
) {
1386 unsigned long current_block_start
=
1387 cc
->migrate_pfn
& ~((1UL << cc
->order
) - 1);
1389 if (last_migrated_pfn
< current_block_start
) {
1391 lru_add_drain_cpu(cpu
);
1392 drain_local_pages(zone
);
1394 /* No more flushing until we migrate again */
1395 last_migrated_pfn
= 0;
1403 * Release free pages and update where the free scanner should restart,
1404 * so we don't leave any returned pages behind in the next attempt.
1406 if (cc
->nr_freepages
> 0) {
1407 unsigned long free_pfn
= release_freepages(&cc
->freepages
);
1409 cc
->nr_freepages
= 0;
1410 VM_BUG_ON(free_pfn
== 0);
1411 /* The cached pfn is always the first in a pageblock */
1412 free_pfn
&= ~(pageblock_nr_pages
-1);
1414 * Only go back, not forward. The cached pfn might have been
1415 * already reset to zone end in compact_finished()
1417 if (free_pfn
> zone
->compact_cached_free_pfn
)
1418 zone
->compact_cached_free_pfn
= free_pfn
;
1421 trace_mm_compaction_end(start_pfn
, cc
->migrate_pfn
,
1422 cc
->free_pfn
, end_pfn
, sync
, ret
);
1427 static unsigned long compact_zone_order(struct zone
*zone
, int order
,
1428 gfp_t gfp_mask
, enum migrate_mode mode
, int *contended
,
1429 int alloc_flags
, int classzone_idx
)
1432 struct compact_control cc
= {
1434 .nr_migratepages
= 0,
1436 .gfp_mask
= gfp_mask
,
1439 .alloc_flags
= alloc_flags
,
1440 .classzone_idx
= classzone_idx
,
1442 INIT_LIST_HEAD(&cc
.freepages
);
1443 INIT_LIST_HEAD(&cc
.migratepages
);
1445 ret
= compact_zone(zone
, &cc
);
1447 VM_BUG_ON(!list_empty(&cc
.freepages
));
1448 VM_BUG_ON(!list_empty(&cc
.migratepages
));
1450 *contended
= cc
.contended
;
1454 int sysctl_extfrag_threshold
= 500;
1457 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1458 * @gfp_mask: The GFP mask of the current allocation
1459 * @order: The order of the current allocation
1460 * @alloc_flags: The allocation flags of the current allocation
1461 * @ac: The context of current allocation
1462 * @mode: The migration mode for async, sync light, or sync migration
1463 * @contended: Return value that determines if compaction was aborted due to
1464 * need_resched() or lock contention
1466 * This is the main entry point for direct page compaction.
1468 unsigned long try_to_compact_pages(gfp_t gfp_mask
, unsigned int order
,
1469 int alloc_flags
, const struct alloc_context
*ac
,
1470 enum migrate_mode mode
, int *contended
)
1472 int may_enter_fs
= gfp_mask
& __GFP_FS
;
1473 int may_perform_io
= gfp_mask
& __GFP_IO
;
1476 int rc
= COMPACT_DEFERRED
;
1477 int all_zones_contended
= COMPACT_CONTENDED_LOCK
; /* init for &= op */
1479 *contended
= COMPACT_CONTENDED_NONE
;
1481 /* Check if the GFP flags allow compaction */
1482 if (!order
|| !may_enter_fs
|| !may_perform_io
)
1483 return COMPACT_SKIPPED
;
1485 trace_mm_compaction_try_to_compact_pages(order
, gfp_mask
, mode
);
1487 /* Compact each zone in the list */
1488 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
1493 if (compaction_deferred(zone
, order
))
1496 status
= compact_zone_order(zone
, order
, gfp_mask
, mode
,
1497 &zone_contended
, alloc_flags
,
1499 rc
= max(status
, rc
);
1501 * It takes at least one zone that wasn't lock contended
1502 * to clear all_zones_contended.
1504 all_zones_contended
&= zone_contended
;
1506 /* If a normal allocation would succeed, stop compacting */
1507 if (zone_watermark_ok(zone
, order
, low_wmark_pages(zone
),
1508 ac
->classzone_idx
, alloc_flags
)) {
1510 * We think the allocation will succeed in this zone,
1511 * but it is not certain, hence the false. The caller
1512 * will repeat this with true if allocation indeed
1513 * succeeds in this zone.
1515 compaction_defer_reset(zone
, order
, false);
1517 * It is possible that async compaction aborted due to
1518 * need_resched() and the watermarks were ok thanks to
1519 * somebody else freeing memory. The allocation can
1520 * however still fail so we better signal the
1521 * need_resched() contention anyway (this will not
1522 * prevent the allocation attempt).
1524 if (zone_contended
== COMPACT_CONTENDED_SCHED
)
1525 *contended
= COMPACT_CONTENDED_SCHED
;
1530 if (mode
!= MIGRATE_ASYNC
&& status
== COMPACT_COMPLETE
) {
1532 * We think that allocation won't succeed in this zone
1533 * so we defer compaction there. If it ends up
1534 * succeeding after all, it will be reset.
1536 defer_compaction(zone
, order
);
1540 * We might have stopped compacting due to need_resched() in
1541 * async compaction, or due to a fatal signal detected. In that
1542 * case do not try further zones and signal need_resched()
1545 if ((zone_contended
== COMPACT_CONTENDED_SCHED
)
1546 || fatal_signal_pending(current
)) {
1547 *contended
= COMPACT_CONTENDED_SCHED
;
1554 * We might not have tried all the zones, so be conservative
1555 * and assume they are not all lock contended.
1557 all_zones_contended
= 0;
1562 * If at least one zone wasn't deferred or skipped, we report if all
1563 * zones that were tried were lock contended.
1565 if (rc
> COMPACT_SKIPPED
&& all_zones_contended
)
1566 *contended
= COMPACT_CONTENDED_LOCK
;
1572 /* Compact all zones within a node */
1573 static void __compact_pgdat(pg_data_t
*pgdat
, struct compact_control
*cc
)
1578 for (zoneid
= 0; zoneid
< MAX_NR_ZONES
; zoneid
++) {
1580 zone
= &pgdat
->node_zones
[zoneid
];
1581 if (!populated_zone(zone
))
1584 cc
->nr_freepages
= 0;
1585 cc
->nr_migratepages
= 0;
1587 INIT_LIST_HEAD(&cc
->freepages
);
1588 INIT_LIST_HEAD(&cc
->migratepages
);
1590 if (cc
->order
== -1 || !compaction_deferred(zone
, cc
->order
))
1591 compact_zone(zone
, cc
);
1593 if (cc
->order
> 0) {
1594 if (zone_watermark_ok(zone
, cc
->order
,
1595 low_wmark_pages(zone
), 0, 0))
1596 compaction_defer_reset(zone
, cc
->order
, false);
1599 VM_BUG_ON(!list_empty(&cc
->freepages
));
1600 VM_BUG_ON(!list_empty(&cc
->migratepages
));
1604 void compact_pgdat(pg_data_t
*pgdat
, int order
)
1606 struct compact_control cc
= {
1608 .mode
= MIGRATE_ASYNC
,
1614 __compact_pgdat(pgdat
, &cc
);
1617 static void compact_node(int nid
)
1619 struct compact_control cc
= {
1621 .mode
= MIGRATE_SYNC
,
1622 .ignore_skip_hint
= true,
1625 __compact_pgdat(NODE_DATA(nid
), &cc
);
1628 /* Compact all nodes in the system */
1629 static void compact_nodes(void)
1633 /* Flush pending updates to the LRU lists */
1634 lru_add_drain_all();
1636 for_each_online_node(nid
)
1640 /* The written value is actually unused, all memory is compacted */
1641 int sysctl_compact_memory
;
1643 /* This is the entry point for compacting all nodes via /proc/sys/vm */
1644 int sysctl_compaction_handler(struct ctl_table
*table
, int write
,
1645 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
1653 int sysctl_extfrag_handler(struct ctl_table
*table
, int write
,
1654 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
1656 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
1661 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1662 static ssize_t
sysfs_compact_node(struct device
*dev
,
1663 struct device_attribute
*attr
,
1664 const char *buf
, size_t count
)
1668 if (nid
>= 0 && nid
< nr_node_ids
&& node_online(nid
)) {
1669 /* Flush pending updates to the LRU lists */
1670 lru_add_drain_all();
1677 static DEVICE_ATTR(compact
, S_IWUSR
, NULL
, sysfs_compact_node
);
1679 int compaction_register_node(struct node
*node
)
1681 return device_create_file(&node
->dev
, &dev_attr_compact
);
1684 void compaction_unregister_node(struct node
*node
)
1686 return device_remove_file(&node
->dev
, &dev_attr_compact
);
1688 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1690 #endif /* CONFIG_COMPACTION */