2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
23 * Pedro Roque : Fast Retransmit/Recovery.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
56 * J Hadi Salim: ECN support
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
65 #include <linux/module.h>
66 #include <linux/sysctl.h>
67 #include <linux/kernel.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
75 int sysctl_tcp_timestamps __read_mostly
= 1;
76 int sysctl_tcp_window_scaling __read_mostly
= 1;
77 int sysctl_tcp_sack __read_mostly
= 1;
78 int sysctl_tcp_fack __read_mostly
= 1;
79 int sysctl_tcp_reordering __read_mostly
= TCP_FASTRETRANS_THRESH
;
80 int sysctl_tcp_ecn __read_mostly
= 2;
81 int sysctl_tcp_dsack __read_mostly
= 1;
82 int sysctl_tcp_app_win __read_mostly
= 31;
83 int sysctl_tcp_adv_win_scale __read_mostly
= 2;
85 int sysctl_tcp_stdurg __read_mostly
;
86 int sysctl_tcp_rfc1337 __read_mostly
;
87 int sysctl_tcp_max_orphans __read_mostly
= NR_FILE
;
88 int sysctl_tcp_frto __read_mostly
= 2;
89 int sysctl_tcp_frto_response __read_mostly
;
90 int sysctl_tcp_nometrics_save __read_mostly
;
92 int sysctl_tcp_moderate_rcvbuf __read_mostly
= 1;
93 int sysctl_tcp_abc __read_mostly
;
95 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
96 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
97 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
98 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
99 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
100 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
101 #define FLAG_ECE 0x40 /* ECE in this ACK */
102 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
103 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
105 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
106 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
107 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
108 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
110 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
111 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
112 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
113 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
114 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
116 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
117 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
119 /* Adapt the MSS value used to make delayed ack decision to the
122 static void tcp_measure_rcv_mss(struct sock
*sk
, const struct sk_buff
*skb
)
124 struct inet_connection_sock
*icsk
= inet_csk(sk
);
125 const unsigned int lss
= icsk
->icsk_ack
.last_seg_size
;
128 icsk
->icsk_ack
.last_seg_size
= 0;
130 /* skb->len may jitter because of SACKs, even if peer
131 * sends good full-sized frames.
133 len
= skb_shinfo(skb
)->gso_size
? : skb
->len
;
134 if (len
>= icsk
->icsk_ack
.rcv_mss
) {
135 icsk
->icsk_ack
.rcv_mss
= len
;
137 /* Otherwise, we make more careful check taking into account,
138 * that SACKs block is variable.
140 * "len" is invariant segment length, including TCP header.
142 len
+= skb
->data
- skb_transport_header(skb
);
143 if (len
>= TCP_MIN_RCVMSS
+ sizeof(struct tcphdr
) ||
144 /* If PSH is not set, packet should be
145 * full sized, provided peer TCP is not badly broken.
146 * This observation (if it is correct 8)) allows
147 * to handle super-low mtu links fairly.
149 (len
>= TCP_MIN_MSS
+ sizeof(struct tcphdr
) &&
150 !(tcp_flag_word(tcp_hdr(skb
)) & TCP_REMNANT
))) {
151 /* Subtract also invariant (if peer is RFC compliant),
152 * tcp header plus fixed timestamp option length.
153 * Resulting "len" is MSS free of SACK jitter.
155 len
-= tcp_sk(sk
)->tcp_header_len
;
156 icsk
->icsk_ack
.last_seg_size
= len
;
158 icsk
->icsk_ack
.rcv_mss
= len
;
162 if (icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
)
163 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED2
;
164 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED
;
168 static void tcp_incr_quickack(struct sock
*sk
)
170 struct inet_connection_sock
*icsk
= inet_csk(sk
);
171 unsigned quickacks
= tcp_sk(sk
)->rcv_wnd
/ (2 * icsk
->icsk_ack
.rcv_mss
);
175 if (quickacks
> icsk
->icsk_ack
.quick
)
176 icsk
->icsk_ack
.quick
= min(quickacks
, TCP_MAX_QUICKACKS
);
179 void tcp_enter_quickack_mode(struct sock
*sk
)
181 struct inet_connection_sock
*icsk
= inet_csk(sk
);
182 tcp_incr_quickack(sk
);
183 icsk
->icsk_ack
.pingpong
= 0;
184 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
187 /* Send ACKs quickly, if "quick" count is not exhausted
188 * and the session is not interactive.
191 static inline int tcp_in_quickack_mode(const struct sock
*sk
)
193 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
194 return icsk
->icsk_ack
.quick
&& !icsk
->icsk_ack
.pingpong
;
197 static inline void TCP_ECN_queue_cwr(struct tcp_sock
*tp
)
199 if (tp
->ecn_flags
& TCP_ECN_OK
)
200 tp
->ecn_flags
|= TCP_ECN_QUEUE_CWR
;
203 static inline void TCP_ECN_accept_cwr(struct tcp_sock
*tp
, struct sk_buff
*skb
)
205 if (tcp_hdr(skb
)->cwr
)
206 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
209 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock
*tp
)
211 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
214 static inline void TCP_ECN_check_ce(struct tcp_sock
*tp
, struct sk_buff
*skb
)
216 if (tp
->ecn_flags
& TCP_ECN_OK
) {
217 if (INET_ECN_is_ce(TCP_SKB_CB(skb
)->flags
))
218 tp
->ecn_flags
|= TCP_ECN_DEMAND_CWR
;
219 /* Funny extension: if ECT is not set on a segment,
220 * it is surely retransmit. It is not in ECN RFC,
221 * but Linux follows this rule. */
222 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb
)->flags
)))
223 tcp_enter_quickack_mode((struct sock
*)tp
);
227 static inline void TCP_ECN_rcv_synack(struct tcp_sock
*tp
, struct tcphdr
*th
)
229 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| th
->cwr
))
230 tp
->ecn_flags
&= ~TCP_ECN_OK
;
233 static inline void TCP_ECN_rcv_syn(struct tcp_sock
*tp
, struct tcphdr
*th
)
235 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| !th
->cwr
))
236 tp
->ecn_flags
&= ~TCP_ECN_OK
;
239 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock
*tp
, struct tcphdr
*th
)
241 if (th
->ece
&& !th
->syn
&& (tp
->ecn_flags
& TCP_ECN_OK
))
246 /* Buffer size and advertised window tuning.
248 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
251 static void tcp_fixup_sndbuf(struct sock
*sk
)
253 int sndmem
= tcp_sk(sk
)->rx_opt
.mss_clamp
+ MAX_TCP_HEADER
+ 16 +
254 sizeof(struct sk_buff
);
256 if (sk
->sk_sndbuf
< 3 * sndmem
)
257 sk
->sk_sndbuf
= min(3 * sndmem
, sysctl_tcp_wmem
[2]);
260 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
262 * All tcp_full_space() is split to two parts: "network" buffer, allocated
263 * forward and advertised in receiver window (tp->rcv_wnd) and
264 * "application buffer", required to isolate scheduling/application
265 * latencies from network.
266 * window_clamp is maximal advertised window. It can be less than
267 * tcp_full_space(), in this case tcp_full_space() - window_clamp
268 * is reserved for "application" buffer. The less window_clamp is
269 * the smoother our behaviour from viewpoint of network, but the lower
270 * throughput and the higher sensitivity of the connection to losses. 8)
272 * rcv_ssthresh is more strict window_clamp used at "slow start"
273 * phase to predict further behaviour of this connection.
274 * It is used for two goals:
275 * - to enforce header prediction at sender, even when application
276 * requires some significant "application buffer". It is check #1.
277 * - to prevent pruning of receive queue because of misprediction
278 * of receiver window. Check #2.
280 * The scheme does not work when sender sends good segments opening
281 * window and then starts to feed us spaghetti. But it should work
282 * in common situations. Otherwise, we have to rely on queue collapsing.
285 /* Slow part of check#2. */
286 static int __tcp_grow_window(const struct sock
*sk
, const struct sk_buff
*skb
)
288 struct tcp_sock
*tp
= tcp_sk(sk
);
290 int truesize
= tcp_win_from_space(skb
->truesize
) >> 1;
291 int window
= tcp_win_from_space(sysctl_tcp_rmem
[2]) >> 1;
293 while (tp
->rcv_ssthresh
<= window
) {
294 if (truesize
<= skb
->len
)
295 return 2 * inet_csk(sk
)->icsk_ack
.rcv_mss
;
303 static void tcp_grow_window(struct sock
*sk
, struct sk_buff
*skb
)
305 struct tcp_sock
*tp
= tcp_sk(sk
);
308 if (tp
->rcv_ssthresh
< tp
->window_clamp
&&
309 (int)tp
->rcv_ssthresh
< tcp_space(sk
) &&
310 !tcp_memory_pressure
) {
313 /* Check #2. Increase window, if skb with such overhead
314 * will fit to rcvbuf in future.
316 if (tcp_win_from_space(skb
->truesize
) <= skb
->len
)
317 incr
= 2 * tp
->advmss
;
319 incr
= __tcp_grow_window(sk
, skb
);
322 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
+ incr
,
324 inet_csk(sk
)->icsk_ack
.quick
|= 1;
329 /* 3. Tuning rcvbuf, when connection enters established state. */
331 static void tcp_fixup_rcvbuf(struct sock
*sk
)
333 struct tcp_sock
*tp
= tcp_sk(sk
);
334 int rcvmem
= tp
->advmss
+ MAX_TCP_HEADER
+ 16 + sizeof(struct sk_buff
);
336 /* Try to select rcvbuf so that 4 mss-sized segments
337 * will fit to window and corresponding skbs will fit to our rcvbuf.
338 * (was 3; 4 is minimum to allow fast retransmit to work.)
340 while (tcp_win_from_space(rcvmem
) < tp
->advmss
)
342 if (sk
->sk_rcvbuf
< 4 * rcvmem
)
343 sk
->sk_rcvbuf
= min(4 * rcvmem
, sysctl_tcp_rmem
[2]);
346 /* 4. Try to fixup all. It is made immediately after connection enters
349 static void tcp_init_buffer_space(struct sock
*sk
)
351 struct tcp_sock
*tp
= tcp_sk(sk
);
354 if (!(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
))
355 tcp_fixup_rcvbuf(sk
);
356 if (!(sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
))
357 tcp_fixup_sndbuf(sk
);
359 tp
->rcvq_space
.space
= tp
->rcv_wnd
;
361 maxwin
= tcp_full_space(sk
);
363 if (tp
->window_clamp
>= maxwin
) {
364 tp
->window_clamp
= maxwin
;
366 if (sysctl_tcp_app_win
&& maxwin
> 4 * tp
->advmss
)
367 tp
->window_clamp
= max(maxwin
-
368 (maxwin
>> sysctl_tcp_app_win
),
372 /* Force reservation of one segment. */
373 if (sysctl_tcp_app_win
&&
374 tp
->window_clamp
> 2 * tp
->advmss
&&
375 tp
->window_clamp
+ tp
->advmss
> maxwin
)
376 tp
->window_clamp
= max(2 * tp
->advmss
, maxwin
- tp
->advmss
);
378 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, tp
->window_clamp
);
379 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
382 /* 5. Recalculate window clamp after socket hit its memory bounds. */
383 static void tcp_clamp_window(struct sock
*sk
)
385 struct tcp_sock
*tp
= tcp_sk(sk
);
386 struct inet_connection_sock
*icsk
= inet_csk(sk
);
388 icsk
->icsk_ack
.quick
= 0;
390 if (sk
->sk_rcvbuf
< sysctl_tcp_rmem
[2] &&
391 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
) &&
392 !tcp_memory_pressure
&&
393 atomic_read(&tcp_memory_allocated
) < sysctl_tcp_mem
[0]) {
394 sk
->sk_rcvbuf
= min(atomic_read(&sk
->sk_rmem_alloc
),
397 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
)
398 tp
->rcv_ssthresh
= min(tp
->window_clamp
, 2U * tp
->advmss
);
401 /* Initialize RCV_MSS value.
402 * RCV_MSS is an our guess about MSS used by the peer.
403 * We haven't any direct information about the MSS.
404 * It's better to underestimate the RCV_MSS rather than overestimate.
405 * Overestimations make us ACKing less frequently than needed.
406 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
408 void tcp_initialize_rcv_mss(struct sock
*sk
)
410 struct tcp_sock
*tp
= tcp_sk(sk
);
411 unsigned int hint
= min_t(unsigned int, tp
->advmss
, tp
->mss_cache
);
413 hint
= min(hint
, tp
->rcv_wnd
/ 2);
414 hint
= min(hint
, TCP_MIN_RCVMSS
);
415 hint
= max(hint
, TCP_MIN_MSS
);
417 inet_csk(sk
)->icsk_ack
.rcv_mss
= hint
;
420 /* Receiver "autotuning" code.
422 * The algorithm for RTT estimation w/o timestamps is based on
423 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
424 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
426 * More detail on this code can be found at
427 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
428 * though this reference is out of date. A new paper
431 static void tcp_rcv_rtt_update(struct tcp_sock
*tp
, u32 sample
, int win_dep
)
433 u32 new_sample
= tp
->rcv_rtt_est
.rtt
;
439 if (new_sample
!= 0) {
440 /* If we sample in larger samples in the non-timestamp
441 * case, we could grossly overestimate the RTT especially
442 * with chatty applications or bulk transfer apps which
443 * are stalled on filesystem I/O.
445 * Also, since we are only going for a minimum in the
446 * non-timestamp case, we do not smooth things out
447 * else with timestamps disabled convergence takes too
451 m
-= (new_sample
>> 3);
453 } else if (m
< new_sample
)
456 /* No previous measure. */
460 if (tp
->rcv_rtt_est
.rtt
!= new_sample
)
461 tp
->rcv_rtt_est
.rtt
= new_sample
;
464 static inline void tcp_rcv_rtt_measure(struct tcp_sock
*tp
)
466 if (tp
->rcv_rtt_est
.time
== 0)
468 if (before(tp
->rcv_nxt
, tp
->rcv_rtt_est
.seq
))
470 tcp_rcv_rtt_update(tp
, jiffies
- tp
->rcv_rtt_est
.time
, 1);
473 tp
->rcv_rtt_est
.seq
= tp
->rcv_nxt
+ tp
->rcv_wnd
;
474 tp
->rcv_rtt_est
.time
= tcp_time_stamp
;
477 static inline void tcp_rcv_rtt_measure_ts(struct sock
*sk
,
478 const struct sk_buff
*skb
)
480 struct tcp_sock
*tp
= tcp_sk(sk
);
481 if (tp
->rx_opt
.rcv_tsecr
&&
482 (TCP_SKB_CB(skb
)->end_seq
-
483 TCP_SKB_CB(skb
)->seq
>= inet_csk(sk
)->icsk_ack
.rcv_mss
))
484 tcp_rcv_rtt_update(tp
, tcp_time_stamp
- tp
->rx_opt
.rcv_tsecr
, 0);
488 * This function should be called every time data is copied to user space.
489 * It calculates the appropriate TCP receive buffer space.
491 void tcp_rcv_space_adjust(struct sock
*sk
)
493 struct tcp_sock
*tp
= tcp_sk(sk
);
497 if (tp
->rcvq_space
.time
== 0)
500 time
= tcp_time_stamp
- tp
->rcvq_space
.time
;
501 if (time
< (tp
->rcv_rtt_est
.rtt
>> 3) || tp
->rcv_rtt_est
.rtt
== 0)
504 space
= 2 * (tp
->copied_seq
- tp
->rcvq_space
.seq
);
506 space
= max(tp
->rcvq_space
.space
, space
);
508 if (tp
->rcvq_space
.space
!= space
) {
511 tp
->rcvq_space
.space
= space
;
513 if (sysctl_tcp_moderate_rcvbuf
&&
514 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
)) {
515 int new_clamp
= space
;
517 /* Receive space grows, normalize in order to
518 * take into account packet headers and sk_buff
519 * structure overhead.
524 rcvmem
= (tp
->advmss
+ MAX_TCP_HEADER
+
525 16 + sizeof(struct sk_buff
));
526 while (tcp_win_from_space(rcvmem
) < tp
->advmss
)
529 space
= min(space
, sysctl_tcp_rmem
[2]);
530 if (space
> sk
->sk_rcvbuf
) {
531 sk
->sk_rcvbuf
= space
;
533 /* Make the window clamp follow along. */
534 tp
->window_clamp
= new_clamp
;
540 tp
->rcvq_space
.seq
= tp
->copied_seq
;
541 tp
->rcvq_space
.time
= tcp_time_stamp
;
544 /* There is something which you must keep in mind when you analyze the
545 * behavior of the tp->ato delayed ack timeout interval. When a
546 * connection starts up, we want to ack as quickly as possible. The
547 * problem is that "good" TCP's do slow start at the beginning of data
548 * transmission. The means that until we send the first few ACK's the
549 * sender will sit on his end and only queue most of his data, because
550 * he can only send snd_cwnd unacked packets at any given time. For
551 * each ACK we send, he increments snd_cwnd and transmits more of his
554 static void tcp_event_data_recv(struct sock
*sk
, struct sk_buff
*skb
)
556 struct tcp_sock
*tp
= tcp_sk(sk
);
557 struct inet_connection_sock
*icsk
= inet_csk(sk
);
560 inet_csk_schedule_ack(sk
);
562 tcp_measure_rcv_mss(sk
, skb
);
564 tcp_rcv_rtt_measure(tp
);
566 now
= tcp_time_stamp
;
568 if (!icsk
->icsk_ack
.ato
) {
569 /* The _first_ data packet received, initialize
570 * delayed ACK engine.
572 tcp_incr_quickack(sk
);
573 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
575 int m
= now
- icsk
->icsk_ack
.lrcvtime
;
577 if (m
<= TCP_ATO_MIN
/ 2) {
578 /* The fastest case is the first. */
579 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + TCP_ATO_MIN
/ 2;
580 } else if (m
< icsk
->icsk_ack
.ato
) {
581 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + m
;
582 if (icsk
->icsk_ack
.ato
> icsk
->icsk_rto
)
583 icsk
->icsk_ack
.ato
= icsk
->icsk_rto
;
584 } else if (m
> icsk
->icsk_rto
) {
585 /* Too long gap. Apparently sender failed to
586 * restart window, so that we send ACKs quickly.
588 tcp_incr_quickack(sk
);
592 icsk
->icsk_ack
.lrcvtime
= now
;
594 TCP_ECN_check_ce(tp
, skb
);
597 tcp_grow_window(sk
, skb
);
600 /* Called to compute a smoothed rtt estimate. The data fed to this
601 * routine either comes from timestamps, or from segments that were
602 * known _not_ to have been retransmitted [see Karn/Partridge
603 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
604 * piece by Van Jacobson.
605 * NOTE: the next three routines used to be one big routine.
606 * To save cycles in the RFC 1323 implementation it was better to break
607 * it up into three procedures. -- erics
609 static void tcp_rtt_estimator(struct sock
*sk
, const __u32 mrtt
)
611 struct tcp_sock
*tp
= tcp_sk(sk
);
612 long m
= mrtt
; /* RTT */
614 /* The following amusing code comes from Jacobson's
615 * article in SIGCOMM '88. Note that rtt and mdev
616 * are scaled versions of rtt and mean deviation.
617 * This is designed to be as fast as possible
618 * m stands for "measurement".
620 * On a 1990 paper the rto value is changed to:
621 * RTO = rtt + 4 * mdev
623 * Funny. This algorithm seems to be very broken.
624 * These formulae increase RTO, when it should be decreased, increase
625 * too slowly, when it should be increased quickly, decrease too quickly
626 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
627 * does not matter how to _calculate_ it. Seems, it was trap
628 * that VJ failed to avoid. 8)
633 m
-= (tp
->srtt
>> 3); /* m is now error in rtt est */
634 tp
->srtt
+= m
; /* rtt = 7/8 rtt + 1/8 new */
636 m
= -m
; /* m is now abs(error) */
637 m
-= (tp
->mdev
>> 2); /* similar update on mdev */
638 /* This is similar to one of Eifel findings.
639 * Eifel blocks mdev updates when rtt decreases.
640 * This solution is a bit different: we use finer gain
641 * for mdev in this case (alpha*beta).
642 * Like Eifel it also prevents growth of rto,
643 * but also it limits too fast rto decreases,
644 * happening in pure Eifel.
649 m
-= (tp
->mdev
>> 2); /* similar update on mdev */
651 tp
->mdev
+= m
; /* mdev = 3/4 mdev + 1/4 new */
652 if (tp
->mdev
> tp
->mdev_max
) {
653 tp
->mdev_max
= tp
->mdev
;
654 if (tp
->mdev_max
> tp
->rttvar
)
655 tp
->rttvar
= tp
->mdev_max
;
657 if (after(tp
->snd_una
, tp
->rtt_seq
)) {
658 if (tp
->mdev_max
< tp
->rttvar
)
659 tp
->rttvar
-= (tp
->rttvar
- tp
->mdev_max
) >> 2;
660 tp
->rtt_seq
= tp
->snd_nxt
;
661 tp
->mdev_max
= tcp_rto_min(sk
);
664 /* no previous measure. */
665 tp
->srtt
= m
<< 3; /* take the measured time to be rtt */
666 tp
->mdev
= m
<< 1; /* make sure rto = 3*rtt */
667 tp
->mdev_max
= tp
->rttvar
= max(tp
->mdev
, tcp_rto_min(sk
));
668 tp
->rtt_seq
= tp
->snd_nxt
;
672 /* Calculate rto without backoff. This is the second half of Van Jacobson's
673 * routine referred to above.
675 static inline void tcp_set_rto(struct sock
*sk
)
677 const struct tcp_sock
*tp
= tcp_sk(sk
);
678 /* Old crap is replaced with new one. 8)
681 * 1. If rtt variance happened to be less 50msec, it is hallucination.
682 * It cannot be less due to utterly erratic ACK generation made
683 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
684 * to do with delayed acks, because at cwnd>2 true delack timeout
685 * is invisible. Actually, Linux-2.4 also generates erratic
686 * ACKs in some circumstances.
688 inet_csk(sk
)->icsk_rto
= __tcp_set_rto(tp
);
690 /* 2. Fixups made earlier cannot be right.
691 * If we do not estimate RTO correctly without them,
692 * all the algo is pure shit and should be replaced
693 * with correct one. It is exactly, which we pretend to do.
696 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
697 * guarantees that rto is higher.
702 /* Save metrics learned by this TCP session.
703 This function is called only, when TCP finishes successfully
704 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
706 void tcp_update_metrics(struct sock
*sk
)
708 struct tcp_sock
*tp
= tcp_sk(sk
);
709 struct dst_entry
*dst
= __sk_dst_get(sk
);
711 if (sysctl_tcp_nometrics_save
)
716 if (dst
&& (dst
->flags
& DST_HOST
)) {
717 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
721 if (icsk
->icsk_backoff
|| !tp
->srtt
) {
722 /* This session failed to estimate rtt. Why?
723 * Probably, no packets returned in time.
726 if (!(dst_metric_locked(dst
, RTAX_RTT
)))
727 dst
->metrics
[RTAX_RTT
- 1] = 0;
731 rtt
= dst_metric_rtt(dst
, RTAX_RTT
);
734 /* If newly calculated rtt larger than stored one,
735 * store new one. Otherwise, use EWMA. Remember,
736 * rtt overestimation is always better than underestimation.
738 if (!(dst_metric_locked(dst
, RTAX_RTT
))) {
740 set_dst_metric_rtt(dst
, RTAX_RTT
, tp
->srtt
);
742 set_dst_metric_rtt(dst
, RTAX_RTT
, rtt
- (m
>> 3));
745 if (!(dst_metric_locked(dst
, RTAX_RTTVAR
))) {
750 /* Scale deviation to rttvar fixed point */
755 var
= dst_metric_rtt(dst
, RTAX_RTTVAR
);
759 var
-= (var
- m
) >> 2;
761 set_dst_metric_rtt(dst
, RTAX_RTTVAR
, var
);
764 if (tcp_in_initial_slowstart(tp
)) {
765 /* Slow start still did not finish. */
766 if (dst_metric(dst
, RTAX_SSTHRESH
) &&
767 !dst_metric_locked(dst
, RTAX_SSTHRESH
) &&
768 (tp
->snd_cwnd
>> 1) > dst_metric(dst
, RTAX_SSTHRESH
))
769 dst
->metrics
[RTAX_SSTHRESH
-1] = tp
->snd_cwnd
>> 1;
770 if (!dst_metric_locked(dst
, RTAX_CWND
) &&
771 tp
->snd_cwnd
> dst_metric(dst
, RTAX_CWND
))
772 dst
->metrics
[RTAX_CWND
- 1] = tp
->snd_cwnd
;
773 } else if (tp
->snd_cwnd
> tp
->snd_ssthresh
&&
774 icsk
->icsk_ca_state
== TCP_CA_Open
) {
775 /* Cong. avoidance phase, cwnd is reliable. */
776 if (!dst_metric_locked(dst
, RTAX_SSTHRESH
))
777 dst
->metrics
[RTAX_SSTHRESH
-1] =
778 max(tp
->snd_cwnd
>> 1, tp
->snd_ssthresh
);
779 if (!dst_metric_locked(dst
, RTAX_CWND
))
780 dst
->metrics
[RTAX_CWND
-1] = (dst_metric(dst
, RTAX_CWND
) + tp
->snd_cwnd
) >> 1;
782 /* Else slow start did not finish, cwnd is non-sense,
783 ssthresh may be also invalid.
785 if (!dst_metric_locked(dst
, RTAX_CWND
))
786 dst
->metrics
[RTAX_CWND
-1] = (dst_metric(dst
, RTAX_CWND
) + tp
->snd_ssthresh
) >> 1;
787 if (dst_metric(dst
, RTAX_SSTHRESH
) &&
788 !dst_metric_locked(dst
, RTAX_SSTHRESH
) &&
789 tp
->snd_ssthresh
> dst_metric(dst
, RTAX_SSTHRESH
))
790 dst
->metrics
[RTAX_SSTHRESH
-1] = tp
->snd_ssthresh
;
793 if (!dst_metric_locked(dst
, RTAX_REORDERING
)) {
794 if (dst_metric(dst
, RTAX_REORDERING
) < tp
->reordering
&&
795 tp
->reordering
!= sysctl_tcp_reordering
)
796 dst
->metrics
[RTAX_REORDERING
-1] = tp
->reordering
;
801 /* Numbers are taken from RFC3390.
803 * John Heffner states:
805 * The RFC specifies a window of no more than 4380 bytes
806 * unless 2*MSS > 4380. Reading the pseudocode in the RFC
807 * is a bit misleading because they use a clamp at 4380 bytes
808 * rather than use a multiplier in the relevant range.
810 __u32
tcp_init_cwnd(struct tcp_sock
*tp
, struct dst_entry
*dst
)
812 __u32 cwnd
= (dst
? dst_metric(dst
, RTAX_INITCWND
) : 0);
815 if (tp
->mss_cache
> 1460)
818 cwnd
= (tp
->mss_cache
> 1095) ? 3 : 4;
820 return min_t(__u32
, cwnd
, tp
->snd_cwnd_clamp
);
823 /* Set slow start threshold and cwnd not falling to slow start */
824 void tcp_enter_cwr(struct sock
*sk
, const int set_ssthresh
)
826 struct tcp_sock
*tp
= tcp_sk(sk
);
827 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
829 tp
->prior_ssthresh
= 0;
831 if (icsk
->icsk_ca_state
< TCP_CA_CWR
) {
834 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
835 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
836 tcp_packets_in_flight(tp
) + 1U);
837 tp
->snd_cwnd_cnt
= 0;
838 tp
->high_seq
= tp
->snd_nxt
;
839 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
840 TCP_ECN_queue_cwr(tp
);
842 tcp_set_ca_state(sk
, TCP_CA_CWR
);
847 * Packet counting of FACK is based on in-order assumptions, therefore TCP
848 * disables it when reordering is detected
850 static void tcp_disable_fack(struct tcp_sock
*tp
)
852 /* RFC3517 uses different metric in lost marker => reset on change */
854 tp
->lost_skb_hint
= NULL
;
855 tp
->rx_opt
.sack_ok
&= ~2;
858 /* Take a notice that peer is sending D-SACKs */
859 static void tcp_dsack_seen(struct tcp_sock
*tp
)
861 tp
->rx_opt
.sack_ok
|= 4;
864 /* Initialize metrics on socket. */
866 static void tcp_init_metrics(struct sock
*sk
)
868 struct tcp_sock
*tp
= tcp_sk(sk
);
869 struct dst_entry
*dst
= __sk_dst_get(sk
);
876 if (dst_metric_locked(dst
, RTAX_CWND
))
877 tp
->snd_cwnd_clamp
= dst_metric(dst
, RTAX_CWND
);
878 if (dst_metric(dst
, RTAX_SSTHRESH
)) {
879 tp
->snd_ssthresh
= dst_metric(dst
, RTAX_SSTHRESH
);
880 if (tp
->snd_ssthresh
> tp
->snd_cwnd_clamp
)
881 tp
->snd_ssthresh
= tp
->snd_cwnd_clamp
;
883 if (dst_metric(dst
, RTAX_REORDERING
) &&
884 tp
->reordering
!= dst_metric(dst
, RTAX_REORDERING
)) {
885 tcp_disable_fack(tp
);
886 tp
->reordering
= dst_metric(dst
, RTAX_REORDERING
);
889 if (dst_metric(dst
, RTAX_RTT
) == 0)
892 if (!tp
->srtt
&& dst_metric_rtt(dst
, RTAX_RTT
) < (TCP_TIMEOUT_INIT
<< 3))
895 /* Initial rtt is determined from SYN,SYN-ACK.
896 * The segment is small and rtt may appear much
897 * less than real one. Use per-dst memory
898 * to make it more realistic.
900 * A bit of theory. RTT is time passed after "normal" sized packet
901 * is sent until it is ACKed. In normal circumstances sending small
902 * packets force peer to delay ACKs and calculation is correct too.
903 * The algorithm is adaptive and, provided we follow specs, it
904 * NEVER underestimate RTT. BUT! If peer tries to make some clever
905 * tricks sort of "quick acks" for time long enough to decrease RTT
906 * to low value, and then abruptly stops to do it and starts to delay
907 * ACKs, wait for troubles.
909 if (dst_metric_rtt(dst
, RTAX_RTT
) > tp
->srtt
) {
910 tp
->srtt
= dst_metric_rtt(dst
, RTAX_RTT
);
911 tp
->rtt_seq
= tp
->snd_nxt
;
913 if (dst_metric_rtt(dst
, RTAX_RTTVAR
) > tp
->mdev
) {
914 tp
->mdev
= dst_metric_rtt(dst
, RTAX_RTTVAR
);
915 tp
->mdev_max
= tp
->rttvar
= max(tp
->mdev
, tcp_rto_min(sk
));
918 if (inet_csk(sk
)->icsk_rto
< TCP_TIMEOUT_INIT
&& !tp
->rx_opt
.saw_tstamp
)
922 tp
->snd_cwnd
= tcp_init_cwnd(tp
, dst
);
923 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
927 /* Play conservative. If timestamps are not
928 * supported, TCP will fail to recalculate correct
929 * rtt, if initial rto is too small. FORGET ALL AND RESET!
931 if (!tp
->rx_opt
.saw_tstamp
&& tp
->srtt
) {
933 tp
->mdev
= tp
->mdev_max
= tp
->rttvar
= TCP_TIMEOUT_INIT
;
934 inet_csk(sk
)->icsk_rto
= TCP_TIMEOUT_INIT
;
939 static void tcp_update_reordering(struct sock
*sk
, const int metric
,
942 struct tcp_sock
*tp
= tcp_sk(sk
);
943 if (metric
> tp
->reordering
) {
946 tp
->reordering
= min(TCP_MAX_REORDERING
, metric
);
948 /* This exciting event is worth to be remembered. 8) */
950 mib_idx
= LINUX_MIB_TCPTSREORDER
;
951 else if (tcp_is_reno(tp
))
952 mib_idx
= LINUX_MIB_TCPRENOREORDER
;
953 else if (tcp_is_fack(tp
))
954 mib_idx
= LINUX_MIB_TCPFACKREORDER
;
956 mib_idx
= LINUX_MIB_TCPSACKREORDER
;
958 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
959 #if FASTRETRANS_DEBUG > 1
960 printk(KERN_DEBUG
"Disorder%d %d %u f%u s%u rr%d\n",
961 tp
->rx_opt
.sack_ok
, inet_csk(sk
)->icsk_ca_state
,
965 tp
->undo_marker
? tp
->undo_retrans
: 0);
967 tcp_disable_fack(tp
);
971 /* This must be called before lost_out is incremented */
972 static void tcp_verify_retransmit_hint(struct tcp_sock
*tp
, struct sk_buff
*skb
)
974 if ((tp
->retransmit_skb_hint
== NULL
) ||
975 before(TCP_SKB_CB(skb
)->seq
,
976 TCP_SKB_CB(tp
->retransmit_skb_hint
)->seq
))
977 tp
->retransmit_skb_hint
= skb
;
980 after(TCP_SKB_CB(skb
)->end_seq
, tp
->retransmit_high
))
981 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
984 static void tcp_skb_mark_lost(struct tcp_sock
*tp
, struct sk_buff
*skb
)
986 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
987 tcp_verify_retransmit_hint(tp
, skb
);
989 tp
->lost_out
+= tcp_skb_pcount(skb
);
990 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
994 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock
*tp
,
997 tcp_verify_retransmit_hint(tp
, skb
);
999 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
1000 tp
->lost_out
+= tcp_skb_pcount(skb
);
1001 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1005 /* This procedure tags the retransmission queue when SACKs arrive.
1007 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1008 * Packets in queue with these bits set are counted in variables
1009 * sacked_out, retrans_out and lost_out, correspondingly.
1011 * Valid combinations are:
1012 * Tag InFlight Description
1013 * 0 1 - orig segment is in flight.
1014 * S 0 - nothing flies, orig reached receiver.
1015 * L 0 - nothing flies, orig lost by net.
1016 * R 2 - both orig and retransmit are in flight.
1017 * L|R 1 - orig is lost, retransmit is in flight.
1018 * S|R 1 - orig reached receiver, retrans is still in flight.
1019 * (L|S|R is logically valid, it could occur when L|R is sacked,
1020 * but it is equivalent to plain S and code short-curcuits it to S.
1021 * L|S is logically invalid, it would mean -1 packet in flight 8))
1023 * These 6 states form finite state machine, controlled by the following events:
1024 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1025 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1026 * 3. Loss detection event of one of three flavors:
1027 * A. Scoreboard estimator decided the packet is lost.
1028 * A'. Reno "three dupacks" marks head of queue lost.
1029 * A''. Its FACK modfication, head until snd.fack is lost.
1030 * B. SACK arrives sacking data transmitted after never retransmitted
1031 * hole was sent out.
1032 * C. SACK arrives sacking SND.NXT at the moment, when the
1033 * segment was retransmitted.
1034 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1036 * It is pleasant to note, that state diagram turns out to be commutative,
1037 * so that we are allowed not to be bothered by order of our actions,
1038 * when multiple events arrive simultaneously. (see the function below).
1040 * Reordering detection.
1041 * --------------------
1042 * Reordering metric is maximal distance, which a packet can be displaced
1043 * in packet stream. With SACKs we can estimate it:
1045 * 1. SACK fills old hole and the corresponding segment was not
1046 * ever retransmitted -> reordering. Alas, we cannot use it
1047 * when segment was retransmitted.
1048 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1049 * for retransmitted and already SACKed segment -> reordering..
1050 * Both of these heuristics are not used in Loss state, when we cannot
1051 * account for retransmits accurately.
1053 * SACK block validation.
1054 * ----------------------
1056 * SACK block range validation checks that the received SACK block fits to
1057 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1058 * Note that SND.UNA is not included to the range though being valid because
1059 * it means that the receiver is rather inconsistent with itself reporting
1060 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1061 * perfectly valid, however, in light of RFC2018 which explicitly states
1062 * that "SACK block MUST reflect the newest segment. Even if the newest
1063 * segment is going to be discarded ...", not that it looks very clever
1064 * in case of head skb. Due to potentional receiver driven attacks, we
1065 * choose to avoid immediate execution of a walk in write queue due to
1066 * reneging and defer head skb's loss recovery to standard loss recovery
1067 * procedure that will eventually trigger (nothing forbids us doing this).
1069 * Implements also blockage to start_seq wrap-around. Problem lies in the
1070 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1071 * there's no guarantee that it will be before snd_nxt (n). The problem
1072 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1075 * <- outs wnd -> <- wrapzone ->
1076 * u e n u_w e_w s n_w
1078 * |<------------+------+----- TCP seqno space --------------+---------->|
1079 * ...-- <2^31 ->| |<--------...
1080 * ...---- >2^31 ------>| |<--------...
1082 * Current code wouldn't be vulnerable but it's better still to discard such
1083 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1084 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1085 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1086 * equal to the ideal case (infinite seqno space without wrap caused issues).
1088 * With D-SACK the lower bound is extended to cover sequence space below
1089 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1090 * again, D-SACK block must not to go across snd_una (for the same reason as
1091 * for the normal SACK blocks, explained above). But there all simplicity
1092 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1093 * fully below undo_marker they do not affect behavior in anyway and can
1094 * therefore be safely ignored. In rare cases (which are more or less
1095 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1096 * fragmentation and packet reordering past skb's retransmission. To consider
1097 * them correctly, the acceptable range must be extended even more though
1098 * the exact amount is rather hard to quantify. However, tp->max_window can
1099 * be used as an exaggerated estimate.
1101 static int tcp_is_sackblock_valid(struct tcp_sock
*tp
, int is_dsack
,
1102 u32 start_seq
, u32 end_seq
)
1104 /* Too far in future, or reversed (interpretation is ambiguous) */
1105 if (after(end_seq
, tp
->snd_nxt
) || !before(start_seq
, end_seq
))
1108 /* Nasty start_seq wrap-around check (see comments above) */
1109 if (!before(start_seq
, tp
->snd_nxt
))
1112 /* In outstanding window? ...This is valid exit for D-SACKs too.
1113 * start_seq == snd_una is non-sensical (see comments above)
1115 if (after(start_seq
, tp
->snd_una
))
1118 if (!is_dsack
|| !tp
->undo_marker
)
1121 /* ...Then it's D-SACK, and must reside below snd_una completely */
1122 if (!after(end_seq
, tp
->snd_una
))
1125 if (!before(start_seq
, tp
->undo_marker
))
1129 if (!after(end_seq
, tp
->undo_marker
))
1132 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1133 * start_seq < undo_marker and end_seq >= undo_marker.
1135 return !before(start_seq
, end_seq
- tp
->max_window
);
1138 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1139 * Event "C". Later note: FACK people cheated me again 8), we have to account
1140 * for reordering! Ugly, but should help.
1142 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1143 * less than what is now known to be received by the other end (derived from
1144 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1145 * retransmitted skbs to avoid some costly processing per ACKs.
1147 static void tcp_mark_lost_retrans(struct sock
*sk
)
1149 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1150 struct tcp_sock
*tp
= tcp_sk(sk
);
1151 struct sk_buff
*skb
;
1153 u32 new_low_seq
= tp
->snd_nxt
;
1154 u32 received_upto
= tcp_highest_sack_seq(tp
);
1156 if (!tcp_is_fack(tp
) || !tp
->retrans_out
||
1157 !after(received_upto
, tp
->lost_retrans_low
) ||
1158 icsk
->icsk_ca_state
!= TCP_CA_Recovery
)
1161 tcp_for_write_queue(skb
, sk
) {
1162 u32 ack_seq
= TCP_SKB_CB(skb
)->ack_seq
;
1164 if (skb
== tcp_send_head(sk
))
1166 if (cnt
== tp
->retrans_out
)
1168 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1171 if (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
))
1174 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1175 * constraint here (see above) but figuring out that at
1176 * least tp->reordering SACK blocks reside between ack_seq
1177 * and received_upto is not easy task to do cheaply with
1178 * the available datastructures.
1180 * Whether FACK should check here for tp->reordering segs
1181 * in-between one could argue for either way (it would be
1182 * rather simple to implement as we could count fack_count
1183 * during the walk and do tp->fackets_out - fack_count).
1185 if (after(received_upto
, ack_seq
)) {
1186 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
1187 tp
->retrans_out
-= tcp_skb_pcount(skb
);
1189 tcp_skb_mark_lost_uncond_verify(tp
, skb
);
1190 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPLOSTRETRANSMIT
);
1192 if (before(ack_seq
, new_low_seq
))
1193 new_low_seq
= ack_seq
;
1194 cnt
+= tcp_skb_pcount(skb
);
1198 if (tp
->retrans_out
)
1199 tp
->lost_retrans_low
= new_low_seq
;
1202 static int tcp_check_dsack(struct sock
*sk
, struct sk_buff
*ack_skb
,
1203 struct tcp_sack_block_wire
*sp
, int num_sacks
,
1206 struct tcp_sock
*tp
= tcp_sk(sk
);
1207 u32 start_seq_0
= get_unaligned_be32(&sp
[0].start_seq
);
1208 u32 end_seq_0
= get_unaligned_be32(&sp
[0].end_seq
);
1211 if (before(start_seq_0
, TCP_SKB_CB(ack_skb
)->ack_seq
)) {
1214 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPDSACKRECV
);
1215 } else if (num_sacks
> 1) {
1216 u32 end_seq_1
= get_unaligned_be32(&sp
[1].end_seq
);
1217 u32 start_seq_1
= get_unaligned_be32(&sp
[1].start_seq
);
1219 if (!after(end_seq_0
, end_seq_1
) &&
1220 !before(start_seq_0
, start_seq_1
)) {
1223 NET_INC_STATS_BH(sock_net(sk
),
1224 LINUX_MIB_TCPDSACKOFORECV
);
1228 /* D-SACK for already forgotten data... Do dumb counting. */
1230 !after(end_seq_0
, prior_snd_una
) &&
1231 after(end_seq_0
, tp
->undo_marker
))
1237 struct tcp_sacktag_state
{
1243 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1244 * the incoming SACK may not exactly match but we can find smaller MSS
1245 * aligned portion of it that matches. Therefore we might need to fragment
1246 * which may fail and creates some hassle (caller must handle error case
1249 * FIXME: this could be merged to shift decision code
1251 static int tcp_match_skb_to_sack(struct sock
*sk
, struct sk_buff
*skb
,
1252 u32 start_seq
, u32 end_seq
)
1255 unsigned int pkt_len
;
1258 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1259 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1261 if (tcp_skb_pcount(skb
) > 1 && !in_sack
&&
1262 after(TCP_SKB_CB(skb
)->end_seq
, start_seq
)) {
1263 mss
= tcp_skb_mss(skb
);
1264 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1267 pkt_len
= start_seq
- TCP_SKB_CB(skb
)->seq
;
1271 pkt_len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1276 /* Round if necessary so that SACKs cover only full MSSes
1277 * and/or the remaining small portion (if present)
1279 if (pkt_len
> mss
) {
1280 unsigned int new_len
= (pkt_len
/ mss
) * mss
;
1281 if (!in_sack
&& new_len
< pkt_len
) {
1283 if (new_len
> skb
->len
)
1288 err
= tcp_fragment(sk
, skb
, pkt_len
, mss
);
1296 static u8
tcp_sacktag_one(struct sk_buff
*skb
, struct sock
*sk
,
1297 struct tcp_sacktag_state
*state
,
1298 int dup_sack
, int pcount
)
1300 struct tcp_sock
*tp
= tcp_sk(sk
);
1301 u8 sacked
= TCP_SKB_CB(skb
)->sacked
;
1302 int fack_count
= state
->fack_count
;
1304 /* Account D-SACK for retransmitted packet. */
1305 if (dup_sack
&& (sacked
& TCPCB_RETRANS
)) {
1306 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->undo_marker
))
1308 if (sacked
& TCPCB_SACKED_ACKED
)
1309 state
->reord
= min(fack_count
, state
->reord
);
1312 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1313 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1316 if (!(sacked
& TCPCB_SACKED_ACKED
)) {
1317 if (sacked
& TCPCB_SACKED_RETRANS
) {
1318 /* If the segment is not tagged as lost,
1319 * we do not clear RETRANS, believing
1320 * that retransmission is still in flight.
1322 if (sacked
& TCPCB_LOST
) {
1323 sacked
&= ~(TCPCB_LOST
|TCPCB_SACKED_RETRANS
);
1324 tp
->lost_out
-= pcount
;
1325 tp
->retrans_out
-= pcount
;
1328 if (!(sacked
& TCPCB_RETRANS
)) {
1329 /* New sack for not retransmitted frame,
1330 * which was in hole. It is reordering.
1332 if (before(TCP_SKB_CB(skb
)->seq
,
1333 tcp_highest_sack_seq(tp
)))
1334 state
->reord
= min(fack_count
,
1337 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1338 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->frto_highmark
))
1339 state
->flag
|= FLAG_ONLY_ORIG_SACKED
;
1342 if (sacked
& TCPCB_LOST
) {
1343 sacked
&= ~TCPCB_LOST
;
1344 tp
->lost_out
-= pcount
;
1348 sacked
|= TCPCB_SACKED_ACKED
;
1349 state
->flag
|= FLAG_DATA_SACKED
;
1350 tp
->sacked_out
+= pcount
;
1352 fack_count
+= pcount
;
1354 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1355 if (!tcp_is_fack(tp
) && (tp
->lost_skb_hint
!= NULL
) &&
1356 before(TCP_SKB_CB(skb
)->seq
,
1357 TCP_SKB_CB(tp
->lost_skb_hint
)->seq
))
1358 tp
->lost_cnt_hint
+= pcount
;
1360 if (fack_count
> tp
->fackets_out
)
1361 tp
->fackets_out
= fack_count
;
1364 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1365 * frames and clear it. undo_retrans is decreased above, L|R frames
1366 * are accounted above as well.
1368 if (dup_sack
&& (sacked
& TCPCB_SACKED_RETRANS
)) {
1369 sacked
&= ~TCPCB_SACKED_RETRANS
;
1370 tp
->retrans_out
-= pcount
;
1376 static int tcp_shifted_skb(struct sock
*sk
, struct sk_buff
*skb
,
1377 struct tcp_sacktag_state
*state
,
1378 unsigned int pcount
, int shifted
, int mss
,
1381 struct tcp_sock
*tp
= tcp_sk(sk
);
1382 struct sk_buff
*prev
= tcp_write_queue_prev(sk
, skb
);
1386 /* Tweak before seqno plays */
1387 if (!tcp_is_fack(tp
) && tcp_is_sack(tp
) && tp
->lost_skb_hint
&&
1388 !before(TCP_SKB_CB(tp
->lost_skb_hint
)->seq
, TCP_SKB_CB(skb
)->seq
))
1389 tp
->lost_cnt_hint
+= pcount
;
1391 TCP_SKB_CB(prev
)->end_seq
+= shifted
;
1392 TCP_SKB_CB(skb
)->seq
+= shifted
;
1394 skb_shinfo(prev
)->gso_segs
+= pcount
;
1395 BUG_ON(skb_shinfo(skb
)->gso_segs
< pcount
);
1396 skb_shinfo(skb
)->gso_segs
-= pcount
;
1398 /* When we're adding to gso_segs == 1, gso_size will be zero,
1399 * in theory this shouldn't be necessary but as long as DSACK
1400 * code can come after this skb later on it's better to keep
1401 * setting gso_size to something.
1403 if (!skb_shinfo(prev
)->gso_size
) {
1404 skb_shinfo(prev
)->gso_size
= mss
;
1405 skb_shinfo(prev
)->gso_type
= sk
->sk_gso_type
;
1408 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1409 if (skb_shinfo(skb
)->gso_segs
<= 1) {
1410 skb_shinfo(skb
)->gso_size
= 0;
1411 skb_shinfo(skb
)->gso_type
= 0;
1414 /* We discard results */
1415 tcp_sacktag_one(skb
, sk
, state
, dup_sack
, pcount
);
1417 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1418 TCP_SKB_CB(prev
)->sacked
|= (TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
);
1421 BUG_ON(!tcp_skb_pcount(skb
));
1422 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKSHIFTED
);
1426 /* Whole SKB was eaten :-) */
1428 if (skb
== tp
->retransmit_skb_hint
)
1429 tp
->retransmit_skb_hint
= prev
;
1430 if (skb
== tp
->scoreboard_skb_hint
)
1431 tp
->scoreboard_skb_hint
= prev
;
1432 if (skb
== tp
->lost_skb_hint
) {
1433 tp
->lost_skb_hint
= prev
;
1434 tp
->lost_cnt_hint
-= tcp_skb_pcount(prev
);
1437 TCP_SKB_CB(skb
)->flags
|= TCP_SKB_CB(prev
)->flags
;
1438 if (skb
== tcp_highest_sack(sk
))
1439 tcp_advance_highest_sack(sk
, skb
);
1441 tcp_unlink_write_queue(skb
, sk
);
1442 sk_wmem_free_skb(sk
, skb
);
1444 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKMERGED
);
1449 /* I wish gso_size would have a bit more sane initialization than
1450 * something-or-zero which complicates things
1452 static int tcp_skb_seglen(struct sk_buff
*skb
)
1454 return tcp_skb_pcount(skb
) == 1 ? skb
->len
: tcp_skb_mss(skb
);
1457 /* Shifting pages past head area doesn't work */
1458 static int skb_can_shift(struct sk_buff
*skb
)
1460 return !skb_headlen(skb
) && skb_is_nonlinear(skb
);
1463 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1466 static struct sk_buff
*tcp_shift_skb_data(struct sock
*sk
, struct sk_buff
*skb
,
1467 struct tcp_sacktag_state
*state
,
1468 u32 start_seq
, u32 end_seq
,
1471 struct tcp_sock
*tp
= tcp_sk(sk
);
1472 struct sk_buff
*prev
;
1478 if (!sk_can_gso(sk
))
1481 /* Normally R but no L won't result in plain S */
1483 (TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_RETRANS
)) == TCPCB_SACKED_RETRANS
)
1485 if (!skb_can_shift(skb
))
1487 /* This frame is about to be dropped (was ACKed). */
1488 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1491 /* Can only happen with delayed DSACK + discard craziness */
1492 if (unlikely(skb
== tcp_write_queue_head(sk
)))
1494 prev
= tcp_write_queue_prev(sk
, skb
);
1496 if ((TCP_SKB_CB(prev
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
)
1499 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1500 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1504 pcount
= tcp_skb_pcount(skb
);
1505 mss
= tcp_skb_seglen(skb
);
1507 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1508 * drop this restriction as unnecessary
1510 if (mss
!= tcp_skb_seglen(prev
))
1513 if (!after(TCP_SKB_CB(skb
)->end_seq
, start_seq
))
1515 /* CHECKME: This is non-MSS split case only?, this will
1516 * cause skipped skbs due to advancing loop btw, original
1517 * has that feature too
1519 if (tcp_skb_pcount(skb
) <= 1)
1522 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1524 /* TODO: head merge to next could be attempted here
1525 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1526 * though it might not be worth of the additional hassle
1528 * ...we can probably just fallback to what was done
1529 * previously. We could try merging non-SACKed ones
1530 * as well but it probably isn't going to buy off
1531 * because later SACKs might again split them, and
1532 * it would make skb timestamp tracking considerably
1538 len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1540 BUG_ON(len
> skb
->len
);
1542 /* MSS boundaries should be honoured or else pcount will
1543 * severely break even though it makes things bit trickier.
1544 * Optimize common case to avoid most of the divides
1546 mss
= tcp_skb_mss(skb
);
1548 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1549 * drop this restriction as unnecessary
1551 if (mss
!= tcp_skb_seglen(prev
))
1556 } else if (len
< mss
) {
1564 if (!skb_shift(prev
, skb
, len
))
1566 if (!tcp_shifted_skb(sk
, skb
, state
, pcount
, len
, mss
, dup_sack
))
1569 /* Hole filled allows collapsing with the next as well, this is very
1570 * useful when hole on every nth skb pattern happens
1572 if (prev
== tcp_write_queue_tail(sk
))
1574 skb
= tcp_write_queue_next(sk
, prev
);
1576 if (!skb_can_shift(skb
) ||
1577 (skb
== tcp_send_head(sk
)) ||
1578 ((TCP_SKB_CB(skb
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
) ||
1579 (mss
!= tcp_skb_seglen(skb
)))
1583 if (skb_shift(prev
, skb
, len
)) {
1584 pcount
+= tcp_skb_pcount(skb
);
1585 tcp_shifted_skb(sk
, skb
, state
, tcp_skb_pcount(skb
), len
, mss
, 0);
1589 state
->fack_count
+= pcount
;
1596 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKSHIFTFALLBACK
);
1600 static struct sk_buff
*tcp_sacktag_walk(struct sk_buff
*skb
, struct sock
*sk
,
1601 struct tcp_sack_block
*next_dup
,
1602 struct tcp_sacktag_state
*state
,
1603 u32 start_seq
, u32 end_seq
,
1606 struct tcp_sock
*tp
= tcp_sk(sk
);
1607 struct sk_buff
*tmp
;
1609 tcp_for_write_queue_from(skb
, sk
) {
1611 int dup_sack
= dup_sack_in
;
1613 if (skb
== tcp_send_head(sk
))
1616 /* queue is in-order => we can short-circuit the walk early */
1617 if (!before(TCP_SKB_CB(skb
)->seq
, end_seq
))
1620 if ((next_dup
!= NULL
) &&
1621 before(TCP_SKB_CB(skb
)->seq
, next_dup
->end_seq
)) {
1622 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1623 next_dup
->start_seq
,
1629 /* skb reference here is a bit tricky to get right, since
1630 * shifting can eat and free both this skb and the next,
1631 * so not even _safe variant of the loop is enough.
1634 tmp
= tcp_shift_skb_data(sk
, skb
, state
,
1635 start_seq
, end_seq
, dup_sack
);
1644 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1650 if (unlikely(in_sack
< 0))
1654 TCP_SKB_CB(skb
)->sacked
= tcp_sacktag_one(skb
, sk
,
1657 tcp_skb_pcount(skb
));
1659 if (!before(TCP_SKB_CB(skb
)->seq
,
1660 tcp_highest_sack_seq(tp
)))
1661 tcp_advance_highest_sack(sk
, skb
);
1664 state
->fack_count
+= tcp_skb_pcount(skb
);
1669 /* Avoid all extra work that is being done by sacktag while walking in
1672 static struct sk_buff
*tcp_sacktag_skip(struct sk_buff
*skb
, struct sock
*sk
,
1673 struct tcp_sacktag_state
*state
,
1676 tcp_for_write_queue_from(skb
, sk
) {
1677 if (skb
== tcp_send_head(sk
))
1680 if (after(TCP_SKB_CB(skb
)->end_seq
, skip_to_seq
))
1683 state
->fack_count
+= tcp_skb_pcount(skb
);
1688 static struct sk_buff
*tcp_maybe_skipping_dsack(struct sk_buff
*skb
,
1690 struct tcp_sack_block
*next_dup
,
1691 struct tcp_sacktag_state
*state
,
1694 if (next_dup
== NULL
)
1697 if (before(next_dup
->start_seq
, skip_to_seq
)) {
1698 skb
= tcp_sacktag_skip(skb
, sk
, state
, next_dup
->start_seq
);
1699 skb
= tcp_sacktag_walk(skb
, sk
, NULL
, state
,
1700 next_dup
->start_seq
, next_dup
->end_seq
,
1707 static int tcp_sack_cache_ok(struct tcp_sock
*tp
, struct tcp_sack_block
*cache
)
1709 return cache
< tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1713 tcp_sacktag_write_queue(struct sock
*sk
, struct sk_buff
*ack_skb
,
1716 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1717 struct tcp_sock
*tp
= tcp_sk(sk
);
1718 unsigned char *ptr
= (skb_transport_header(ack_skb
) +
1719 TCP_SKB_CB(ack_skb
)->sacked
);
1720 struct tcp_sack_block_wire
*sp_wire
= (struct tcp_sack_block_wire
*)(ptr
+2);
1721 struct tcp_sack_block sp
[TCP_NUM_SACKS
];
1722 struct tcp_sack_block
*cache
;
1723 struct tcp_sacktag_state state
;
1724 struct sk_buff
*skb
;
1725 int num_sacks
= min(TCP_NUM_SACKS
, (ptr
[1] - TCPOLEN_SACK_BASE
) >> 3);
1727 int found_dup_sack
= 0;
1729 int first_sack_index
;
1732 state
.reord
= tp
->packets_out
;
1734 if (!tp
->sacked_out
) {
1735 if (WARN_ON(tp
->fackets_out
))
1736 tp
->fackets_out
= 0;
1737 tcp_highest_sack_reset(sk
);
1740 found_dup_sack
= tcp_check_dsack(sk
, ack_skb
, sp_wire
,
1741 num_sacks
, prior_snd_una
);
1743 state
.flag
|= FLAG_DSACKING_ACK
;
1745 /* Eliminate too old ACKs, but take into
1746 * account more or less fresh ones, they can
1747 * contain valid SACK info.
1749 if (before(TCP_SKB_CB(ack_skb
)->ack_seq
, prior_snd_una
- tp
->max_window
))
1752 if (!tp
->packets_out
)
1756 first_sack_index
= 0;
1757 for (i
= 0; i
< num_sacks
; i
++) {
1758 int dup_sack
= !i
&& found_dup_sack
;
1760 sp
[used_sacks
].start_seq
= get_unaligned_be32(&sp_wire
[i
].start_seq
);
1761 sp
[used_sacks
].end_seq
= get_unaligned_be32(&sp_wire
[i
].end_seq
);
1763 if (!tcp_is_sackblock_valid(tp
, dup_sack
,
1764 sp
[used_sacks
].start_seq
,
1765 sp
[used_sacks
].end_seq
)) {
1769 if (!tp
->undo_marker
)
1770 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDNOUNDO
;
1772 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDOLD
;
1774 /* Don't count olds caused by ACK reordering */
1775 if ((TCP_SKB_CB(ack_skb
)->ack_seq
!= tp
->snd_una
) &&
1776 !after(sp
[used_sacks
].end_seq
, tp
->snd_una
))
1778 mib_idx
= LINUX_MIB_TCPSACKDISCARD
;
1781 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
1783 first_sack_index
= -1;
1787 /* Ignore very old stuff early */
1788 if (!after(sp
[used_sacks
].end_seq
, prior_snd_una
))
1794 /* order SACK blocks to allow in order walk of the retrans queue */
1795 for (i
= used_sacks
- 1; i
> 0; i
--) {
1796 for (j
= 0; j
< i
; j
++) {
1797 if (after(sp
[j
].start_seq
, sp
[j
+ 1].start_seq
)) {
1798 swap(sp
[j
], sp
[j
+ 1]);
1800 /* Track where the first SACK block goes to */
1801 if (j
== first_sack_index
)
1802 first_sack_index
= j
+ 1;
1807 skb
= tcp_write_queue_head(sk
);
1808 state
.fack_count
= 0;
1811 if (!tp
->sacked_out
) {
1812 /* It's already past, so skip checking against it */
1813 cache
= tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1815 cache
= tp
->recv_sack_cache
;
1816 /* Skip empty blocks in at head of the cache */
1817 while (tcp_sack_cache_ok(tp
, cache
) && !cache
->start_seq
&&
1822 while (i
< used_sacks
) {
1823 u32 start_seq
= sp
[i
].start_seq
;
1824 u32 end_seq
= sp
[i
].end_seq
;
1825 int dup_sack
= (found_dup_sack
&& (i
== first_sack_index
));
1826 struct tcp_sack_block
*next_dup
= NULL
;
1828 if (found_dup_sack
&& ((i
+ 1) == first_sack_index
))
1829 next_dup
= &sp
[i
+ 1];
1831 /* Event "B" in the comment above. */
1832 if (after(end_seq
, tp
->high_seq
))
1833 state
.flag
|= FLAG_DATA_LOST
;
1835 /* Skip too early cached blocks */
1836 while (tcp_sack_cache_ok(tp
, cache
) &&
1837 !before(start_seq
, cache
->end_seq
))
1840 /* Can skip some work by looking recv_sack_cache? */
1841 if (tcp_sack_cache_ok(tp
, cache
) && !dup_sack
&&
1842 after(end_seq
, cache
->start_seq
)) {
1845 if (before(start_seq
, cache
->start_seq
)) {
1846 skb
= tcp_sacktag_skip(skb
, sk
, &state
,
1848 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
,
1855 /* Rest of the block already fully processed? */
1856 if (!after(end_seq
, cache
->end_seq
))
1859 skb
= tcp_maybe_skipping_dsack(skb
, sk
, next_dup
,
1863 /* ...tail remains todo... */
1864 if (tcp_highest_sack_seq(tp
) == cache
->end_seq
) {
1865 /* ...but better entrypoint exists! */
1866 skb
= tcp_highest_sack(sk
);
1869 state
.fack_count
= tp
->fackets_out
;
1874 skb
= tcp_sacktag_skip(skb
, sk
, &state
, cache
->end_seq
);
1875 /* Check overlap against next cached too (past this one already) */
1880 if (!before(start_seq
, tcp_highest_sack_seq(tp
))) {
1881 skb
= tcp_highest_sack(sk
);
1884 state
.fack_count
= tp
->fackets_out
;
1886 skb
= tcp_sacktag_skip(skb
, sk
, &state
, start_seq
);
1889 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
, &state
,
1890 start_seq
, end_seq
, dup_sack
);
1893 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1894 * due to in-order walk
1896 if (after(end_seq
, tp
->frto_highmark
))
1897 state
.flag
&= ~FLAG_ONLY_ORIG_SACKED
;
1902 /* Clear the head of the cache sack blocks so we can skip it next time */
1903 for (i
= 0; i
< ARRAY_SIZE(tp
->recv_sack_cache
) - used_sacks
; i
++) {
1904 tp
->recv_sack_cache
[i
].start_seq
= 0;
1905 tp
->recv_sack_cache
[i
].end_seq
= 0;
1907 for (j
= 0; j
< used_sacks
; j
++)
1908 tp
->recv_sack_cache
[i
++] = sp
[j
];
1910 tcp_mark_lost_retrans(sk
);
1912 tcp_verify_left_out(tp
);
1914 if ((state
.reord
< tp
->fackets_out
) &&
1915 ((icsk
->icsk_ca_state
!= TCP_CA_Loss
) || tp
->undo_marker
) &&
1916 (!tp
->frto_highmark
|| after(tp
->snd_una
, tp
->frto_highmark
)))
1917 tcp_update_reordering(sk
, tp
->fackets_out
- state
.reord
, 0);
1921 #if FASTRETRANS_DEBUG > 0
1922 WARN_ON((int)tp
->sacked_out
< 0);
1923 WARN_ON((int)tp
->lost_out
< 0);
1924 WARN_ON((int)tp
->retrans_out
< 0);
1925 WARN_ON((int)tcp_packets_in_flight(tp
) < 0);
1930 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1931 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1933 static int tcp_limit_reno_sacked(struct tcp_sock
*tp
)
1937 holes
= max(tp
->lost_out
, 1U);
1938 holes
= min(holes
, tp
->packets_out
);
1940 if ((tp
->sacked_out
+ holes
) > tp
->packets_out
) {
1941 tp
->sacked_out
= tp
->packets_out
- holes
;
1947 /* If we receive more dupacks than we expected counting segments
1948 * in assumption of absent reordering, interpret this as reordering.
1949 * The only another reason could be bug in receiver TCP.
1951 static void tcp_check_reno_reordering(struct sock
*sk
, const int addend
)
1953 struct tcp_sock
*tp
= tcp_sk(sk
);
1954 if (tcp_limit_reno_sacked(tp
))
1955 tcp_update_reordering(sk
, tp
->packets_out
+ addend
, 0);
1958 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1960 static void tcp_add_reno_sack(struct sock
*sk
)
1962 struct tcp_sock
*tp
= tcp_sk(sk
);
1964 tcp_check_reno_reordering(sk
, 0);
1965 tcp_verify_left_out(tp
);
1968 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1970 static void tcp_remove_reno_sacks(struct sock
*sk
, int acked
)
1972 struct tcp_sock
*tp
= tcp_sk(sk
);
1975 /* One ACK acked hole. The rest eat duplicate ACKs. */
1976 if (acked
- 1 >= tp
->sacked_out
)
1979 tp
->sacked_out
-= acked
- 1;
1981 tcp_check_reno_reordering(sk
, acked
);
1982 tcp_verify_left_out(tp
);
1985 static inline void tcp_reset_reno_sack(struct tcp_sock
*tp
)
1990 static int tcp_is_sackfrto(const struct tcp_sock
*tp
)
1992 return (sysctl_tcp_frto
== 0x2) && !tcp_is_reno(tp
);
1995 /* F-RTO can only be used if TCP has never retransmitted anything other than
1996 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1998 int tcp_use_frto(struct sock
*sk
)
2000 const struct tcp_sock
*tp
= tcp_sk(sk
);
2001 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2002 struct sk_buff
*skb
;
2004 if (!sysctl_tcp_frto
)
2007 /* MTU probe and F-RTO won't really play nicely along currently */
2008 if (icsk
->icsk_mtup
.probe_size
)
2011 if (tcp_is_sackfrto(tp
))
2014 /* Avoid expensive walking of rexmit queue if possible */
2015 if (tp
->retrans_out
> 1)
2018 skb
= tcp_write_queue_head(sk
);
2019 if (tcp_skb_is_last(sk
, skb
))
2021 skb
= tcp_write_queue_next(sk
, skb
); /* Skips head */
2022 tcp_for_write_queue_from(skb
, sk
) {
2023 if (skb
== tcp_send_head(sk
))
2025 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
2027 /* Short-circuit when first non-SACKed skb has been checked */
2028 if (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
2034 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2035 * recovery a bit and use heuristics in tcp_process_frto() to detect if
2036 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2037 * keep retrans_out counting accurate (with SACK F-RTO, other than head
2038 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2039 * bits are handled if the Loss state is really to be entered (in
2040 * tcp_enter_frto_loss).
2042 * Do like tcp_enter_loss() would; when RTO expires the second time it
2044 * "Reduce ssthresh if it has not yet been made inside this window."
2046 void tcp_enter_frto(struct sock
*sk
)
2048 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2049 struct tcp_sock
*tp
= tcp_sk(sk
);
2050 struct sk_buff
*skb
;
2052 if ((!tp
->frto_counter
&& icsk
->icsk_ca_state
<= TCP_CA_Disorder
) ||
2053 tp
->snd_una
== tp
->high_seq
||
2054 ((icsk
->icsk_ca_state
== TCP_CA_Loss
|| tp
->frto_counter
) &&
2055 !icsk
->icsk_retransmits
)) {
2056 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2057 /* Our state is too optimistic in ssthresh() call because cwnd
2058 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2059 * recovery has not yet completed. Pattern would be this: RTO,
2060 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2062 * RFC4138 should be more specific on what to do, even though
2063 * RTO is quite unlikely to occur after the first Cumulative ACK
2064 * due to back-off and complexity of triggering events ...
2066 if (tp
->frto_counter
) {
2068 stored_cwnd
= tp
->snd_cwnd
;
2070 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
2071 tp
->snd_cwnd
= stored_cwnd
;
2073 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
2075 /* ... in theory, cong.control module could do "any tricks" in
2076 * ssthresh(), which means that ca_state, lost bits and lost_out
2077 * counter would have to be faked before the call occurs. We
2078 * consider that too expensive, unlikely and hacky, so modules
2079 * using these in ssthresh() must deal these incompatibility
2080 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2082 tcp_ca_event(sk
, CA_EVENT_FRTO
);
2085 tp
->undo_marker
= tp
->snd_una
;
2086 tp
->undo_retrans
= 0;
2088 skb
= tcp_write_queue_head(sk
);
2089 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
2090 tp
->undo_marker
= 0;
2091 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
2092 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2093 tp
->retrans_out
-= tcp_skb_pcount(skb
);
2095 tcp_verify_left_out(tp
);
2097 /* Too bad if TCP was application limited */
2098 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tcp_packets_in_flight(tp
) + 1);
2100 /* Earlier loss recovery underway (see RFC4138; Appendix B).
2101 * The last condition is necessary at least in tp->frto_counter case.
2103 if (tcp_is_sackfrto(tp
) && (tp
->frto_counter
||
2104 ((1 << icsk
->icsk_ca_state
) & (TCPF_CA_Recovery
|TCPF_CA_Loss
))) &&
2105 after(tp
->high_seq
, tp
->snd_una
)) {
2106 tp
->frto_highmark
= tp
->high_seq
;
2108 tp
->frto_highmark
= tp
->snd_nxt
;
2110 tcp_set_ca_state(sk
, TCP_CA_Disorder
);
2111 tp
->high_seq
= tp
->snd_nxt
;
2112 tp
->frto_counter
= 1;
2115 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2116 * which indicates that we should follow the traditional RTO recovery,
2117 * i.e. mark everything lost and do go-back-N retransmission.
2119 static void tcp_enter_frto_loss(struct sock
*sk
, int allowed_segments
, int flag
)
2121 struct tcp_sock
*tp
= tcp_sk(sk
);
2122 struct sk_buff
*skb
;
2125 tp
->retrans_out
= 0;
2126 if (tcp_is_reno(tp
))
2127 tcp_reset_reno_sack(tp
);
2129 tcp_for_write_queue(skb
, sk
) {
2130 if (skb
== tcp_send_head(sk
))
2133 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
2135 * Count the retransmission made on RTO correctly (only when
2136 * waiting for the first ACK and did not get it)...
2138 if ((tp
->frto_counter
== 1) && !(flag
& FLAG_DATA_ACKED
)) {
2139 /* For some reason this R-bit might get cleared? */
2140 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
)
2141 tp
->retrans_out
+= tcp_skb_pcount(skb
);
2142 /* ...enter this if branch just for the first segment */
2143 flag
|= FLAG_DATA_ACKED
;
2145 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
2146 tp
->undo_marker
= 0;
2147 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2150 /* Marking forward transmissions that were made after RTO lost
2151 * can cause unnecessary retransmissions in some scenarios,
2152 * SACK blocks will mitigate that in some but not in all cases.
2153 * We used to not mark them but it was causing break-ups with
2154 * receivers that do only in-order receival.
2156 * TODO: we could detect presence of such receiver and select
2157 * different behavior per flow.
2159 if (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)) {
2160 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
2161 tp
->lost_out
+= tcp_skb_pcount(skb
);
2162 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
2165 tcp_verify_left_out(tp
);
2167 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + allowed_segments
;
2168 tp
->snd_cwnd_cnt
= 0;
2169 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2170 tp
->frto_counter
= 0;
2171 tp
->bytes_acked
= 0;
2173 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
2174 sysctl_tcp_reordering
);
2175 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2176 tp
->high_seq
= tp
->snd_nxt
;
2177 TCP_ECN_queue_cwr(tp
);
2179 tcp_clear_all_retrans_hints(tp
);
2182 static void tcp_clear_retrans_partial(struct tcp_sock
*tp
)
2184 tp
->retrans_out
= 0;
2187 tp
->undo_marker
= 0;
2188 tp
->undo_retrans
= 0;
2191 void tcp_clear_retrans(struct tcp_sock
*tp
)
2193 tcp_clear_retrans_partial(tp
);
2195 tp
->fackets_out
= 0;
2199 /* Enter Loss state. If "how" is not zero, forget all SACK information
2200 * and reset tags completely, otherwise preserve SACKs. If receiver
2201 * dropped its ofo queue, we will know this due to reneging detection.
2203 void tcp_enter_loss(struct sock
*sk
, int how
)
2205 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2206 struct tcp_sock
*tp
= tcp_sk(sk
);
2207 struct sk_buff
*skb
;
2209 /* Reduce ssthresh if it has not yet been made inside this window. */
2210 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
|| tp
->snd_una
== tp
->high_seq
||
2211 (icsk
->icsk_ca_state
== TCP_CA_Loss
&& !icsk
->icsk_retransmits
)) {
2212 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2213 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
2214 tcp_ca_event(sk
, CA_EVENT_LOSS
);
2217 tp
->snd_cwnd_cnt
= 0;
2218 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2220 tp
->bytes_acked
= 0;
2221 tcp_clear_retrans_partial(tp
);
2223 if (tcp_is_reno(tp
))
2224 tcp_reset_reno_sack(tp
);
2227 /* Push undo marker, if it was plain RTO and nothing
2228 * was retransmitted. */
2229 tp
->undo_marker
= tp
->snd_una
;
2232 tp
->fackets_out
= 0;
2234 tcp_clear_all_retrans_hints(tp
);
2236 tcp_for_write_queue(skb
, sk
) {
2237 if (skb
== tcp_send_head(sk
))
2240 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
2241 tp
->undo_marker
= 0;
2242 TCP_SKB_CB(skb
)->sacked
&= (~TCPCB_TAGBITS
)|TCPCB_SACKED_ACKED
;
2243 if (!(TCP_SKB_CB(skb
)->sacked
&TCPCB_SACKED_ACKED
) || how
) {
2244 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_ACKED
;
2245 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
2246 tp
->lost_out
+= tcp_skb_pcount(skb
);
2247 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
2250 tcp_verify_left_out(tp
);
2252 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
2253 sysctl_tcp_reordering
);
2254 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2255 tp
->high_seq
= tp
->snd_nxt
;
2256 TCP_ECN_queue_cwr(tp
);
2257 /* Abort F-RTO algorithm if one is in progress */
2258 tp
->frto_counter
= 0;
2261 /* If ACK arrived pointing to a remembered SACK, it means that our
2262 * remembered SACKs do not reflect real state of receiver i.e.
2263 * receiver _host_ is heavily congested (or buggy).
2265 * Do processing similar to RTO timeout.
2267 static int tcp_check_sack_reneging(struct sock
*sk
, int flag
)
2269 if (flag
& FLAG_SACK_RENEGING
) {
2270 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2271 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPSACKRENEGING
);
2273 tcp_enter_loss(sk
, 1);
2274 icsk
->icsk_retransmits
++;
2275 tcp_retransmit_skb(sk
, tcp_write_queue_head(sk
));
2276 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
2277 icsk
->icsk_rto
, TCP_RTO_MAX
);
2283 static inline int tcp_fackets_out(struct tcp_sock
*tp
)
2285 return tcp_is_reno(tp
) ? tp
->sacked_out
+ 1 : tp
->fackets_out
;
2288 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2289 * counter when SACK is enabled (without SACK, sacked_out is used for
2292 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2293 * segments up to the highest received SACK block so far and holes in
2296 * With reordering, holes may still be in flight, so RFC3517 recovery
2297 * uses pure sacked_out (total number of SACKed segments) even though
2298 * it violates the RFC that uses duplicate ACKs, often these are equal
2299 * but when e.g. out-of-window ACKs or packet duplication occurs,
2300 * they differ. Since neither occurs due to loss, TCP should really
2303 static inline int tcp_dupack_heurestics(struct tcp_sock
*tp
)
2305 return tcp_is_fack(tp
) ? tp
->fackets_out
: tp
->sacked_out
+ 1;
2308 static inline int tcp_skb_timedout(struct sock
*sk
, struct sk_buff
*skb
)
2310 return (tcp_time_stamp
- TCP_SKB_CB(skb
)->when
> inet_csk(sk
)->icsk_rto
);
2313 static inline int tcp_head_timedout(struct sock
*sk
)
2315 struct tcp_sock
*tp
= tcp_sk(sk
);
2317 return tp
->packets_out
&&
2318 tcp_skb_timedout(sk
, tcp_write_queue_head(sk
));
2321 /* Linux NewReno/SACK/FACK/ECN state machine.
2322 * --------------------------------------
2324 * "Open" Normal state, no dubious events, fast path.
2325 * "Disorder" In all the respects it is "Open",
2326 * but requires a bit more attention. It is entered when
2327 * we see some SACKs or dupacks. It is split of "Open"
2328 * mainly to move some processing from fast path to slow one.
2329 * "CWR" CWND was reduced due to some Congestion Notification event.
2330 * It can be ECN, ICMP source quench, local device congestion.
2331 * "Recovery" CWND was reduced, we are fast-retransmitting.
2332 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2334 * tcp_fastretrans_alert() is entered:
2335 * - each incoming ACK, if state is not "Open"
2336 * - when arrived ACK is unusual, namely:
2341 * Counting packets in flight is pretty simple.
2343 * in_flight = packets_out - left_out + retrans_out
2345 * packets_out is SND.NXT-SND.UNA counted in packets.
2347 * retrans_out is number of retransmitted segments.
2349 * left_out is number of segments left network, but not ACKed yet.
2351 * left_out = sacked_out + lost_out
2353 * sacked_out: Packets, which arrived to receiver out of order
2354 * and hence not ACKed. With SACKs this number is simply
2355 * amount of SACKed data. Even without SACKs
2356 * it is easy to give pretty reliable estimate of this number,
2357 * counting duplicate ACKs.
2359 * lost_out: Packets lost by network. TCP has no explicit
2360 * "loss notification" feedback from network (for now).
2361 * It means that this number can be only _guessed_.
2362 * Actually, it is the heuristics to predict lossage that
2363 * distinguishes different algorithms.
2365 * F.e. after RTO, when all the queue is considered as lost,
2366 * lost_out = packets_out and in_flight = retrans_out.
2368 * Essentially, we have now two algorithms counting
2371 * FACK: It is the simplest heuristics. As soon as we decided
2372 * that something is lost, we decide that _all_ not SACKed
2373 * packets until the most forward SACK are lost. I.e.
2374 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2375 * It is absolutely correct estimate, if network does not reorder
2376 * packets. And it loses any connection to reality when reordering
2377 * takes place. We use FACK by default until reordering
2378 * is suspected on the path to this destination.
2380 * NewReno: when Recovery is entered, we assume that one segment
2381 * is lost (classic Reno). While we are in Recovery and
2382 * a partial ACK arrives, we assume that one more packet
2383 * is lost (NewReno). This heuristics are the same in NewReno
2386 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2387 * deflation etc. CWND is real congestion window, never inflated, changes
2388 * only according to classic VJ rules.
2390 * Really tricky (and requiring careful tuning) part of algorithm
2391 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2392 * The first determines the moment _when_ we should reduce CWND and,
2393 * hence, slow down forward transmission. In fact, it determines the moment
2394 * when we decide that hole is caused by loss, rather than by a reorder.
2396 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2397 * holes, caused by lost packets.
2399 * And the most logically complicated part of algorithm is undo
2400 * heuristics. We detect false retransmits due to both too early
2401 * fast retransmit (reordering) and underestimated RTO, analyzing
2402 * timestamps and D-SACKs. When we detect that some segments were
2403 * retransmitted by mistake and CWND reduction was wrong, we undo
2404 * window reduction and abort recovery phase. This logic is hidden
2405 * inside several functions named tcp_try_undo_<something>.
2408 /* This function decides, when we should leave Disordered state
2409 * and enter Recovery phase, reducing congestion window.
2411 * Main question: may we further continue forward transmission
2412 * with the same cwnd?
2414 static int tcp_time_to_recover(struct sock
*sk
)
2416 struct tcp_sock
*tp
= tcp_sk(sk
);
2419 /* Do not perform any recovery during F-RTO algorithm */
2420 if (tp
->frto_counter
)
2423 /* Trick#1: The loss is proven. */
2427 /* Not-A-Trick#2 : Classic rule... */
2428 if (tcp_dupack_heurestics(tp
) > tp
->reordering
)
2431 /* Trick#3 : when we use RFC2988 timer restart, fast
2432 * retransmit can be triggered by timeout of queue head.
2434 if (tcp_is_fack(tp
) && tcp_head_timedout(sk
))
2437 /* Trick#4: It is still not OK... But will it be useful to delay
2440 packets_out
= tp
->packets_out
;
2441 if (packets_out
<= tp
->reordering
&&
2442 tp
->sacked_out
>= max_t(__u32
, packets_out
/2, sysctl_tcp_reordering
) &&
2443 !tcp_may_send_now(sk
)) {
2444 /* We have nothing to send. This connection is limited
2445 * either by receiver window or by application.
2453 /* New heuristics: it is possible only after we switched to restart timer
2454 * each time when something is ACKed. Hence, we can detect timed out packets
2455 * during fast retransmit without falling to slow start.
2457 * Usefulness of this as is very questionable, since we should know which of
2458 * the segments is the next to timeout which is relatively expensive to find
2459 * in general case unless we add some data structure just for that. The
2460 * current approach certainly won't find the right one too often and when it
2461 * finally does find _something_ it usually marks large part of the window
2462 * right away (because a retransmission with a larger timestamp blocks the
2463 * loop from advancing). -ij
2465 static void tcp_timeout_skbs(struct sock
*sk
)
2467 struct tcp_sock
*tp
= tcp_sk(sk
);
2468 struct sk_buff
*skb
;
2470 if (!tcp_is_fack(tp
) || !tcp_head_timedout(sk
))
2473 skb
= tp
->scoreboard_skb_hint
;
2474 if (tp
->scoreboard_skb_hint
== NULL
)
2475 skb
= tcp_write_queue_head(sk
);
2477 tcp_for_write_queue_from(skb
, sk
) {
2478 if (skb
== tcp_send_head(sk
))
2480 if (!tcp_skb_timedout(sk
, skb
))
2483 tcp_skb_mark_lost(tp
, skb
);
2486 tp
->scoreboard_skb_hint
= skb
;
2488 tcp_verify_left_out(tp
);
2491 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2492 * is against sacked "cnt", otherwise it's against facked "cnt"
2494 static void tcp_mark_head_lost(struct sock
*sk
, int packets
)
2496 struct tcp_sock
*tp
= tcp_sk(sk
);
2497 struct sk_buff
*skb
;
2502 WARN_ON(packets
> tp
->packets_out
);
2503 if (tp
->lost_skb_hint
) {
2504 skb
= tp
->lost_skb_hint
;
2505 cnt
= tp
->lost_cnt_hint
;
2507 skb
= tcp_write_queue_head(sk
);
2511 tcp_for_write_queue_from(skb
, sk
) {
2512 if (skb
== tcp_send_head(sk
))
2514 /* TODO: do this better */
2515 /* this is not the most efficient way to do this... */
2516 tp
->lost_skb_hint
= skb
;
2517 tp
->lost_cnt_hint
= cnt
;
2519 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->high_seq
))
2523 if (tcp_is_fack(tp
) || tcp_is_reno(tp
) ||
2524 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
2525 cnt
+= tcp_skb_pcount(skb
);
2527 if (cnt
> packets
) {
2528 if (tcp_is_sack(tp
) || (oldcnt
>= packets
))
2531 mss
= skb_shinfo(skb
)->gso_size
;
2532 err
= tcp_fragment(sk
, skb
, (packets
- oldcnt
) * mss
, mss
);
2538 tcp_skb_mark_lost(tp
, skb
);
2540 tcp_verify_left_out(tp
);
2543 /* Account newly detected lost packet(s) */
2545 static void tcp_update_scoreboard(struct sock
*sk
, int fast_rexmit
)
2547 struct tcp_sock
*tp
= tcp_sk(sk
);
2549 if (tcp_is_reno(tp
)) {
2550 tcp_mark_head_lost(sk
, 1);
2551 } else if (tcp_is_fack(tp
)) {
2552 int lost
= tp
->fackets_out
- tp
->reordering
;
2555 tcp_mark_head_lost(sk
, lost
);
2557 int sacked_upto
= tp
->sacked_out
- tp
->reordering
;
2558 if (sacked_upto
< fast_rexmit
)
2559 sacked_upto
= fast_rexmit
;
2560 tcp_mark_head_lost(sk
, sacked_upto
);
2563 tcp_timeout_skbs(sk
);
2566 /* CWND moderation, preventing bursts due to too big ACKs
2567 * in dubious situations.
2569 static inline void tcp_moderate_cwnd(struct tcp_sock
*tp
)
2571 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
2572 tcp_packets_in_flight(tp
) + tcp_max_burst(tp
));
2573 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2576 /* Lower bound on congestion window is slow start threshold
2577 * unless congestion avoidance choice decides to overide it.
2579 static inline u32
tcp_cwnd_min(const struct sock
*sk
)
2581 const struct tcp_congestion_ops
*ca_ops
= inet_csk(sk
)->icsk_ca_ops
;
2583 return ca_ops
->min_cwnd
? ca_ops
->min_cwnd(sk
) : tcp_sk(sk
)->snd_ssthresh
;
2586 /* Decrease cwnd each second ack. */
2587 static void tcp_cwnd_down(struct sock
*sk
, int flag
)
2589 struct tcp_sock
*tp
= tcp_sk(sk
);
2590 int decr
= tp
->snd_cwnd_cnt
+ 1;
2592 if ((flag
& (FLAG_ANY_PROGRESS
| FLAG_DSACKING_ACK
)) ||
2593 (tcp_is_reno(tp
) && !(flag
& FLAG_NOT_DUP
))) {
2594 tp
->snd_cwnd_cnt
= decr
& 1;
2597 if (decr
&& tp
->snd_cwnd
> tcp_cwnd_min(sk
))
2598 tp
->snd_cwnd
-= decr
;
2600 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tcp_packets_in_flight(tp
) + 1);
2601 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2605 /* Nothing was retransmitted or returned timestamp is less
2606 * than timestamp of the first retransmission.
2608 static inline int tcp_packet_delayed(struct tcp_sock
*tp
)
2610 return !tp
->retrans_stamp
||
2611 (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
2612 before(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
));
2615 /* Undo procedures. */
2617 #if FASTRETRANS_DEBUG > 1
2618 static void DBGUNDO(struct sock
*sk
, const char *msg
)
2620 struct tcp_sock
*tp
= tcp_sk(sk
);
2621 struct inet_sock
*inet
= inet_sk(sk
);
2623 if (sk
->sk_family
== AF_INET
) {
2624 printk(KERN_DEBUG
"Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2626 &inet
->daddr
, ntohs(inet
->dport
),
2627 tp
->snd_cwnd
, tcp_left_out(tp
),
2628 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2631 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2632 else if (sk
->sk_family
== AF_INET6
) {
2633 struct ipv6_pinfo
*np
= inet6_sk(sk
);
2634 printk(KERN_DEBUG
"Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2636 &np
->daddr
, ntohs(inet
->dport
),
2637 tp
->snd_cwnd
, tcp_left_out(tp
),
2638 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2644 #define DBGUNDO(x...) do { } while (0)
2647 static void tcp_undo_cwr(struct sock
*sk
, const int undo
)
2649 struct tcp_sock
*tp
= tcp_sk(sk
);
2651 if (tp
->prior_ssthresh
) {
2652 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2654 if (icsk
->icsk_ca_ops
->undo_cwnd
)
2655 tp
->snd_cwnd
= icsk
->icsk_ca_ops
->undo_cwnd(sk
);
2657 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tp
->snd_ssthresh
<< 1);
2659 if (undo
&& tp
->prior_ssthresh
> tp
->snd_ssthresh
) {
2660 tp
->snd_ssthresh
= tp
->prior_ssthresh
;
2661 TCP_ECN_withdraw_cwr(tp
);
2664 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tp
->snd_ssthresh
);
2666 tcp_moderate_cwnd(tp
);
2667 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2670 static inline int tcp_may_undo(struct tcp_sock
*tp
)
2672 return tp
->undo_marker
&& (!tp
->undo_retrans
|| tcp_packet_delayed(tp
));
2675 /* People celebrate: "We love our President!" */
2676 static int tcp_try_undo_recovery(struct sock
*sk
)
2678 struct tcp_sock
*tp
= tcp_sk(sk
);
2680 if (tcp_may_undo(tp
)) {
2683 /* Happy end! We did not retransmit anything
2684 * or our original transmission succeeded.
2686 DBGUNDO(sk
, inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
? "loss" : "retrans");
2687 tcp_undo_cwr(sk
, 1);
2688 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
)
2689 mib_idx
= LINUX_MIB_TCPLOSSUNDO
;
2691 mib_idx
= LINUX_MIB_TCPFULLUNDO
;
2693 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
2694 tp
->undo_marker
= 0;
2696 if (tp
->snd_una
== tp
->high_seq
&& tcp_is_reno(tp
)) {
2697 /* Hold old state until something *above* high_seq
2698 * is ACKed. For Reno it is MUST to prevent false
2699 * fast retransmits (RFC2582). SACK TCP is safe. */
2700 tcp_moderate_cwnd(tp
);
2703 tcp_set_ca_state(sk
, TCP_CA_Open
);
2707 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2708 static void tcp_try_undo_dsack(struct sock
*sk
)
2710 struct tcp_sock
*tp
= tcp_sk(sk
);
2712 if (tp
->undo_marker
&& !tp
->undo_retrans
) {
2713 DBGUNDO(sk
, "D-SACK");
2714 tcp_undo_cwr(sk
, 1);
2715 tp
->undo_marker
= 0;
2716 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPDSACKUNDO
);
2720 /* Undo during fast recovery after partial ACK. */
2722 static int tcp_try_undo_partial(struct sock
*sk
, int acked
)
2724 struct tcp_sock
*tp
= tcp_sk(sk
);
2725 /* Partial ACK arrived. Force Hoe's retransmit. */
2726 int failed
= tcp_is_reno(tp
) || (tcp_fackets_out(tp
) > tp
->reordering
);
2728 if (tcp_may_undo(tp
)) {
2729 /* Plain luck! Hole if filled with delayed
2730 * packet, rather than with a retransmit.
2732 if (tp
->retrans_out
== 0)
2733 tp
->retrans_stamp
= 0;
2735 tcp_update_reordering(sk
, tcp_fackets_out(tp
) + acked
, 1);
2738 tcp_undo_cwr(sk
, 0);
2739 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPPARTIALUNDO
);
2741 /* So... Do not make Hoe's retransmit yet.
2742 * If the first packet was delayed, the rest
2743 * ones are most probably delayed as well.
2750 /* Undo during loss recovery after partial ACK. */
2751 static int tcp_try_undo_loss(struct sock
*sk
)
2753 struct tcp_sock
*tp
= tcp_sk(sk
);
2755 if (tcp_may_undo(tp
)) {
2756 struct sk_buff
*skb
;
2757 tcp_for_write_queue(skb
, sk
) {
2758 if (skb
== tcp_send_head(sk
))
2760 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
2763 tcp_clear_all_retrans_hints(tp
);
2765 DBGUNDO(sk
, "partial loss");
2767 tcp_undo_cwr(sk
, 1);
2768 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPLOSSUNDO
);
2769 inet_csk(sk
)->icsk_retransmits
= 0;
2770 tp
->undo_marker
= 0;
2771 if (tcp_is_sack(tp
))
2772 tcp_set_ca_state(sk
, TCP_CA_Open
);
2778 static inline void tcp_complete_cwr(struct sock
*sk
)
2780 struct tcp_sock
*tp
= tcp_sk(sk
);
2781 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tp
->snd_ssthresh
);
2782 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2783 tcp_ca_event(sk
, CA_EVENT_COMPLETE_CWR
);
2786 static void tcp_try_keep_open(struct sock
*sk
)
2788 struct tcp_sock
*tp
= tcp_sk(sk
);
2789 int state
= TCP_CA_Open
;
2791 if (tcp_left_out(tp
) || tp
->retrans_out
|| tp
->undo_marker
)
2792 state
= TCP_CA_Disorder
;
2794 if (inet_csk(sk
)->icsk_ca_state
!= state
) {
2795 tcp_set_ca_state(sk
, state
);
2796 tp
->high_seq
= tp
->snd_nxt
;
2800 static void tcp_try_to_open(struct sock
*sk
, int flag
)
2802 struct tcp_sock
*tp
= tcp_sk(sk
);
2804 tcp_verify_left_out(tp
);
2806 if (!tp
->frto_counter
&& tp
->retrans_out
== 0)
2807 tp
->retrans_stamp
= 0;
2809 if (flag
& FLAG_ECE
)
2810 tcp_enter_cwr(sk
, 1);
2812 if (inet_csk(sk
)->icsk_ca_state
!= TCP_CA_CWR
) {
2813 tcp_try_keep_open(sk
);
2814 tcp_moderate_cwnd(tp
);
2816 tcp_cwnd_down(sk
, flag
);
2820 static void tcp_mtup_probe_failed(struct sock
*sk
)
2822 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2824 icsk
->icsk_mtup
.search_high
= icsk
->icsk_mtup
.probe_size
- 1;
2825 icsk
->icsk_mtup
.probe_size
= 0;
2828 static void tcp_mtup_probe_success(struct sock
*sk
)
2830 struct tcp_sock
*tp
= tcp_sk(sk
);
2831 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2833 /* FIXME: breaks with very large cwnd */
2834 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2835 tp
->snd_cwnd
= tp
->snd_cwnd
*
2836 tcp_mss_to_mtu(sk
, tp
->mss_cache
) /
2837 icsk
->icsk_mtup
.probe_size
;
2838 tp
->snd_cwnd_cnt
= 0;
2839 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2840 tp
->rcv_ssthresh
= tcp_current_ssthresh(sk
);
2842 icsk
->icsk_mtup
.search_low
= icsk
->icsk_mtup
.probe_size
;
2843 icsk
->icsk_mtup
.probe_size
= 0;
2844 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
2847 /* Do a simple retransmit without using the backoff mechanisms in
2848 * tcp_timer. This is used for path mtu discovery.
2849 * The socket is already locked here.
2851 void tcp_simple_retransmit(struct sock
*sk
)
2853 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2854 struct tcp_sock
*tp
= tcp_sk(sk
);
2855 struct sk_buff
*skb
;
2856 unsigned int mss
= tcp_current_mss(sk
);
2857 u32 prior_lost
= tp
->lost_out
;
2859 tcp_for_write_queue(skb
, sk
) {
2860 if (skb
== tcp_send_head(sk
))
2862 if (tcp_skb_seglen(skb
) > mss
&&
2863 !(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)) {
2864 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
2865 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2866 tp
->retrans_out
-= tcp_skb_pcount(skb
);
2868 tcp_skb_mark_lost_uncond_verify(tp
, skb
);
2872 tcp_clear_retrans_hints_partial(tp
);
2874 if (prior_lost
== tp
->lost_out
)
2877 if (tcp_is_reno(tp
))
2878 tcp_limit_reno_sacked(tp
);
2880 tcp_verify_left_out(tp
);
2882 /* Don't muck with the congestion window here.
2883 * Reason is that we do not increase amount of _data_
2884 * in network, but units changed and effective
2885 * cwnd/ssthresh really reduced now.
2887 if (icsk
->icsk_ca_state
!= TCP_CA_Loss
) {
2888 tp
->high_seq
= tp
->snd_nxt
;
2889 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2890 tp
->prior_ssthresh
= 0;
2891 tp
->undo_marker
= 0;
2892 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2894 tcp_xmit_retransmit_queue(sk
);
2897 /* Process an event, which can update packets-in-flight not trivially.
2898 * Main goal of this function is to calculate new estimate for left_out,
2899 * taking into account both packets sitting in receiver's buffer and
2900 * packets lost by network.
2902 * Besides that it does CWND reduction, when packet loss is detected
2903 * and changes state of machine.
2905 * It does _not_ decide what to send, it is made in function
2906 * tcp_xmit_retransmit_queue().
2908 static void tcp_fastretrans_alert(struct sock
*sk
, int pkts_acked
, int flag
)
2910 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2911 struct tcp_sock
*tp
= tcp_sk(sk
);
2912 int is_dupack
= !(flag
& (FLAG_SND_UNA_ADVANCED
| FLAG_NOT_DUP
));
2913 int do_lost
= is_dupack
|| ((flag
& FLAG_DATA_SACKED
) &&
2914 (tcp_fackets_out(tp
) > tp
->reordering
));
2915 int fast_rexmit
= 0, mib_idx
;
2917 if (WARN_ON(!tp
->packets_out
&& tp
->sacked_out
))
2919 if (WARN_ON(!tp
->sacked_out
&& tp
->fackets_out
))
2920 tp
->fackets_out
= 0;
2922 /* Now state machine starts.
2923 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2924 if (flag
& FLAG_ECE
)
2925 tp
->prior_ssthresh
= 0;
2927 /* B. In all the states check for reneging SACKs. */
2928 if (tcp_check_sack_reneging(sk
, flag
))
2931 /* C. Process data loss notification, provided it is valid. */
2932 if (tcp_is_fack(tp
) && (flag
& FLAG_DATA_LOST
) &&
2933 before(tp
->snd_una
, tp
->high_seq
) &&
2934 icsk
->icsk_ca_state
!= TCP_CA_Open
&&
2935 tp
->fackets_out
> tp
->reordering
) {
2936 tcp_mark_head_lost(sk
, tp
->fackets_out
- tp
->reordering
);
2937 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPLOSS
);
2940 /* D. Check consistency of the current state. */
2941 tcp_verify_left_out(tp
);
2943 /* E. Check state exit conditions. State can be terminated
2944 * when high_seq is ACKed. */
2945 if (icsk
->icsk_ca_state
== TCP_CA_Open
) {
2946 WARN_ON(tp
->retrans_out
!= 0);
2947 tp
->retrans_stamp
= 0;
2948 } else if (!before(tp
->snd_una
, tp
->high_seq
)) {
2949 switch (icsk
->icsk_ca_state
) {
2951 icsk
->icsk_retransmits
= 0;
2952 if (tcp_try_undo_recovery(sk
))
2957 /* CWR is to be held something *above* high_seq
2958 * is ACKed for CWR bit to reach receiver. */
2959 if (tp
->snd_una
!= tp
->high_seq
) {
2960 tcp_complete_cwr(sk
);
2961 tcp_set_ca_state(sk
, TCP_CA_Open
);
2965 case TCP_CA_Disorder
:
2966 tcp_try_undo_dsack(sk
);
2967 if (!tp
->undo_marker
||
2968 /* For SACK case do not Open to allow to undo
2969 * catching for all duplicate ACKs. */
2970 tcp_is_reno(tp
) || tp
->snd_una
!= tp
->high_seq
) {
2971 tp
->undo_marker
= 0;
2972 tcp_set_ca_state(sk
, TCP_CA_Open
);
2976 case TCP_CA_Recovery
:
2977 if (tcp_is_reno(tp
))
2978 tcp_reset_reno_sack(tp
);
2979 if (tcp_try_undo_recovery(sk
))
2981 tcp_complete_cwr(sk
);
2986 /* F. Process state. */
2987 switch (icsk
->icsk_ca_state
) {
2988 case TCP_CA_Recovery
:
2989 if (!(flag
& FLAG_SND_UNA_ADVANCED
)) {
2990 if (tcp_is_reno(tp
) && is_dupack
)
2991 tcp_add_reno_sack(sk
);
2993 do_lost
= tcp_try_undo_partial(sk
, pkts_acked
);
2996 if (flag
& FLAG_DATA_ACKED
)
2997 icsk
->icsk_retransmits
= 0;
2998 if (tcp_is_reno(tp
) && flag
& FLAG_SND_UNA_ADVANCED
)
2999 tcp_reset_reno_sack(tp
);
3000 if (!tcp_try_undo_loss(sk
)) {
3001 tcp_moderate_cwnd(tp
);
3002 tcp_xmit_retransmit_queue(sk
);
3005 if (icsk
->icsk_ca_state
!= TCP_CA_Open
)
3007 /* Loss is undone; fall through to processing in Open state. */
3009 if (tcp_is_reno(tp
)) {
3010 if (flag
& FLAG_SND_UNA_ADVANCED
)
3011 tcp_reset_reno_sack(tp
);
3013 tcp_add_reno_sack(sk
);
3016 if (icsk
->icsk_ca_state
== TCP_CA_Disorder
)
3017 tcp_try_undo_dsack(sk
);
3019 if (!tcp_time_to_recover(sk
)) {
3020 tcp_try_to_open(sk
, flag
);
3024 /* MTU probe failure: don't reduce cwnd */
3025 if (icsk
->icsk_ca_state
< TCP_CA_CWR
&&
3026 icsk
->icsk_mtup
.probe_size
&&
3027 tp
->snd_una
== tp
->mtu_probe
.probe_seq_start
) {
3028 tcp_mtup_probe_failed(sk
);
3029 /* Restores the reduction we did in tcp_mtup_probe() */
3031 tcp_simple_retransmit(sk
);
3035 /* Otherwise enter Recovery state */
3037 if (tcp_is_reno(tp
))
3038 mib_idx
= LINUX_MIB_TCPRENORECOVERY
;
3040 mib_idx
= LINUX_MIB_TCPSACKRECOVERY
;
3042 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
3044 tp
->high_seq
= tp
->snd_nxt
;
3045 tp
->prior_ssthresh
= 0;
3046 tp
->undo_marker
= tp
->snd_una
;
3047 tp
->undo_retrans
= tp
->retrans_out
;
3049 if (icsk
->icsk_ca_state
< TCP_CA_CWR
) {
3050 if (!(flag
& FLAG_ECE
))
3051 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
3052 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
3053 TCP_ECN_queue_cwr(tp
);
3056 tp
->bytes_acked
= 0;
3057 tp
->snd_cwnd_cnt
= 0;
3058 tcp_set_ca_state(sk
, TCP_CA_Recovery
);
3062 if (do_lost
|| (tcp_is_fack(tp
) && tcp_head_timedout(sk
)))
3063 tcp_update_scoreboard(sk
, fast_rexmit
);
3064 tcp_cwnd_down(sk
, flag
);
3065 tcp_xmit_retransmit_queue(sk
);
3068 static void tcp_valid_rtt_meas(struct sock
*sk
, u32 seq_rtt
)
3070 tcp_rtt_estimator(sk
, seq_rtt
);
3072 inet_csk(sk
)->icsk_backoff
= 0;
3075 /* Read draft-ietf-tcplw-high-performance before mucking
3076 * with this code. (Supersedes RFC1323)
3078 static void tcp_ack_saw_tstamp(struct sock
*sk
, int flag
)
3080 /* RTTM Rule: A TSecr value received in a segment is used to
3081 * update the averaged RTT measurement only if the segment
3082 * acknowledges some new data, i.e., only if it advances the
3083 * left edge of the send window.
3085 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3086 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3088 * Changed: reset backoff as soon as we see the first valid sample.
3089 * If we do not, we get strongly overestimated rto. With timestamps
3090 * samples are accepted even from very old segments: f.e., when rtt=1
3091 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3092 * answer arrives rto becomes 120 seconds! If at least one of segments
3093 * in window is lost... Voila. --ANK (010210)
3095 struct tcp_sock
*tp
= tcp_sk(sk
);
3097 tcp_valid_rtt_meas(sk
, tcp_time_stamp
- tp
->rx_opt
.rcv_tsecr
);
3100 static void tcp_ack_no_tstamp(struct sock
*sk
, u32 seq_rtt
, int flag
)
3102 /* We don't have a timestamp. Can only use
3103 * packets that are not retransmitted to determine
3104 * rtt estimates. Also, we must not reset the
3105 * backoff for rto until we get a non-retransmitted
3106 * packet. This allows us to deal with a situation
3107 * where the network delay has increased suddenly.
3108 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3111 if (flag
& FLAG_RETRANS_DATA_ACKED
)
3114 tcp_valid_rtt_meas(sk
, seq_rtt
);
3117 static inline void tcp_ack_update_rtt(struct sock
*sk
, const int flag
,
3120 const struct tcp_sock
*tp
= tcp_sk(sk
);
3121 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3122 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
3123 tcp_ack_saw_tstamp(sk
, flag
);
3124 else if (seq_rtt
>= 0)
3125 tcp_ack_no_tstamp(sk
, seq_rtt
, flag
);
3128 static void tcp_cong_avoid(struct sock
*sk
, u32 ack
, u32 in_flight
)
3130 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3131 icsk
->icsk_ca_ops
->cong_avoid(sk
, ack
, in_flight
);
3132 tcp_sk(sk
)->snd_cwnd_stamp
= tcp_time_stamp
;
3135 /* Restart timer after forward progress on connection.
3136 * RFC2988 recommends to restart timer to now+rto.
3138 static void tcp_rearm_rto(struct sock
*sk
)
3140 struct tcp_sock
*tp
= tcp_sk(sk
);
3142 if (!tp
->packets_out
) {
3143 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_RETRANS
);
3145 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
3146 inet_csk(sk
)->icsk_rto
, TCP_RTO_MAX
);
3150 /* If we get here, the whole TSO packet has not been acked. */
3151 static u32
tcp_tso_acked(struct sock
*sk
, struct sk_buff
*skb
)
3153 struct tcp_sock
*tp
= tcp_sk(sk
);
3156 BUG_ON(!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
));
3158 packets_acked
= tcp_skb_pcount(skb
);
3159 if (tcp_trim_head(sk
, skb
, tp
->snd_una
- TCP_SKB_CB(skb
)->seq
))
3161 packets_acked
-= tcp_skb_pcount(skb
);
3163 if (packets_acked
) {
3164 BUG_ON(tcp_skb_pcount(skb
) == 0);
3165 BUG_ON(!before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
));
3168 return packets_acked
;
3171 /* Remove acknowledged frames from the retransmission queue. If our packet
3172 * is before the ack sequence we can discard it as it's confirmed to have
3173 * arrived at the other end.
3175 static int tcp_clean_rtx_queue(struct sock
*sk
, int prior_fackets
,
3178 struct tcp_sock
*tp
= tcp_sk(sk
);
3179 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3180 struct sk_buff
*skb
;
3181 u32 now
= tcp_time_stamp
;
3182 int fully_acked
= 1;
3185 u32 reord
= tp
->packets_out
;
3186 u32 prior_sacked
= tp
->sacked_out
;
3188 s32 ca_seq_rtt
= -1;
3189 ktime_t last_ackt
= net_invalid_timestamp();
3191 while ((skb
= tcp_write_queue_head(sk
)) && skb
!= tcp_send_head(sk
)) {
3192 struct tcp_skb_cb
*scb
= TCP_SKB_CB(skb
);
3194 u8 sacked
= scb
->sacked
;
3196 /* Determine how many packets and what bytes were acked, tso and else */
3197 if (after(scb
->end_seq
, tp
->snd_una
)) {
3198 if (tcp_skb_pcount(skb
) == 1 ||
3199 !after(tp
->snd_una
, scb
->seq
))
3202 acked_pcount
= tcp_tso_acked(sk
, skb
);
3208 acked_pcount
= tcp_skb_pcount(skb
);
3211 if (sacked
& TCPCB_RETRANS
) {
3212 if (sacked
& TCPCB_SACKED_RETRANS
)
3213 tp
->retrans_out
-= acked_pcount
;
3214 flag
|= FLAG_RETRANS_DATA_ACKED
;
3217 if ((flag
& FLAG_DATA_ACKED
) || (acked_pcount
> 1))
3218 flag
|= FLAG_NONHEAD_RETRANS_ACKED
;
3220 ca_seq_rtt
= now
- scb
->when
;
3221 last_ackt
= skb
->tstamp
;
3223 seq_rtt
= ca_seq_rtt
;
3225 if (!(sacked
& TCPCB_SACKED_ACKED
))
3226 reord
= min(pkts_acked
, reord
);
3229 if (sacked
& TCPCB_SACKED_ACKED
)
3230 tp
->sacked_out
-= acked_pcount
;
3231 if (sacked
& TCPCB_LOST
)
3232 tp
->lost_out
-= acked_pcount
;
3234 tp
->packets_out
-= acked_pcount
;
3235 pkts_acked
+= acked_pcount
;
3237 /* Initial outgoing SYN's get put onto the write_queue
3238 * just like anything else we transmit. It is not
3239 * true data, and if we misinform our callers that
3240 * this ACK acks real data, we will erroneously exit
3241 * connection startup slow start one packet too
3242 * quickly. This is severely frowned upon behavior.
3244 if (!(scb
->flags
& TCPCB_FLAG_SYN
)) {
3245 flag
|= FLAG_DATA_ACKED
;
3247 flag
|= FLAG_SYN_ACKED
;
3248 tp
->retrans_stamp
= 0;
3254 tcp_unlink_write_queue(skb
, sk
);
3255 sk_wmem_free_skb(sk
, skb
);
3256 tp
->scoreboard_skb_hint
= NULL
;
3257 if (skb
== tp
->retransmit_skb_hint
)
3258 tp
->retransmit_skb_hint
= NULL
;
3259 if (skb
== tp
->lost_skb_hint
)
3260 tp
->lost_skb_hint
= NULL
;
3263 if (likely(between(tp
->snd_up
, prior_snd_una
, tp
->snd_una
)))
3264 tp
->snd_up
= tp
->snd_una
;
3266 if (skb
&& (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
3267 flag
|= FLAG_SACK_RENEGING
;
3269 if (flag
& FLAG_ACKED
) {
3270 const struct tcp_congestion_ops
*ca_ops
3271 = inet_csk(sk
)->icsk_ca_ops
;
3273 if (unlikely(icsk
->icsk_mtup
.probe_size
&&
3274 !after(tp
->mtu_probe
.probe_seq_end
, tp
->snd_una
))) {
3275 tcp_mtup_probe_success(sk
);
3278 tcp_ack_update_rtt(sk
, flag
, seq_rtt
);
3281 if (tcp_is_reno(tp
)) {
3282 tcp_remove_reno_sacks(sk
, pkts_acked
);
3286 /* Non-retransmitted hole got filled? That's reordering */
3287 if (reord
< prior_fackets
)
3288 tcp_update_reordering(sk
, tp
->fackets_out
- reord
, 0);
3290 delta
= tcp_is_fack(tp
) ? pkts_acked
:
3291 prior_sacked
- tp
->sacked_out
;
3292 tp
->lost_cnt_hint
-= min(tp
->lost_cnt_hint
, delta
);
3295 tp
->fackets_out
-= min(pkts_acked
, tp
->fackets_out
);
3297 if (ca_ops
->pkts_acked
) {
3300 /* Is the ACK triggering packet unambiguous? */
3301 if (!(flag
& FLAG_RETRANS_DATA_ACKED
)) {
3302 /* High resolution needed and available? */
3303 if (ca_ops
->flags
& TCP_CONG_RTT_STAMP
&&
3304 !ktime_equal(last_ackt
,
3305 net_invalid_timestamp()))
3306 rtt_us
= ktime_us_delta(ktime_get_real(),
3308 else if (ca_seq_rtt
> 0)
3309 rtt_us
= jiffies_to_usecs(ca_seq_rtt
);
3312 ca_ops
->pkts_acked(sk
, pkts_acked
, rtt_us
);
3316 #if FASTRETRANS_DEBUG > 0
3317 WARN_ON((int)tp
->sacked_out
< 0);
3318 WARN_ON((int)tp
->lost_out
< 0);
3319 WARN_ON((int)tp
->retrans_out
< 0);
3320 if (!tp
->packets_out
&& tcp_is_sack(tp
)) {
3321 icsk
= inet_csk(sk
);
3323 printk(KERN_DEBUG
"Leak l=%u %d\n",
3324 tp
->lost_out
, icsk
->icsk_ca_state
);
3327 if (tp
->sacked_out
) {
3328 printk(KERN_DEBUG
"Leak s=%u %d\n",
3329 tp
->sacked_out
, icsk
->icsk_ca_state
);
3332 if (tp
->retrans_out
) {
3333 printk(KERN_DEBUG
"Leak r=%u %d\n",
3334 tp
->retrans_out
, icsk
->icsk_ca_state
);
3335 tp
->retrans_out
= 0;
3342 static void tcp_ack_probe(struct sock
*sk
)
3344 const struct tcp_sock
*tp
= tcp_sk(sk
);
3345 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3347 /* Was it a usable window open? */
3349 if (!after(TCP_SKB_CB(tcp_send_head(sk
))->end_seq
, tcp_wnd_end(tp
))) {
3350 icsk
->icsk_backoff
= 0;
3351 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_PROBE0
);
3352 /* Socket must be waked up by subsequent tcp_data_snd_check().
3353 * This function is not for random using!
3356 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
3357 min(icsk
->icsk_rto
<< icsk
->icsk_backoff
, TCP_RTO_MAX
),
3362 static inline int tcp_ack_is_dubious(const struct sock
*sk
, const int flag
)
3364 return (!(flag
& FLAG_NOT_DUP
) || (flag
& FLAG_CA_ALERT
) ||
3365 inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
);
3368 static inline int tcp_may_raise_cwnd(const struct sock
*sk
, const int flag
)
3370 const struct tcp_sock
*tp
= tcp_sk(sk
);
3371 return (!(flag
& FLAG_ECE
) || tp
->snd_cwnd
< tp
->snd_ssthresh
) &&
3372 !((1 << inet_csk(sk
)->icsk_ca_state
) & (TCPF_CA_Recovery
| TCPF_CA_CWR
));
3375 /* Check that window update is acceptable.
3376 * The function assumes that snd_una<=ack<=snd_next.
3378 static inline int tcp_may_update_window(const struct tcp_sock
*tp
,
3379 const u32 ack
, const u32 ack_seq
,
3382 return (after(ack
, tp
->snd_una
) ||
3383 after(ack_seq
, tp
->snd_wl1
) ||
3384 (ack_seq
== tp
->snd_wl1
&& nwin
> tp
->snd_wnd
));
3387 /* Update our send window.
3389 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3390 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3392 static int tcp_ack_update_window(struct sock
*sk
, struct sk_buff
*skb
, u32 ack
,
3395 struct tcp_sock
*tp
= tcp_sk(sk
);
3397 u32 nwin
= ntohs(tcp_hdr(skb
)->window
);
3399 if (likely(!tcp_hdr(skb
)->syn
))
3400 nwin
<<= tp
->rx_opt
.snd_wscale
;
3402 if (tcp_may_update_window(tp
, ack
, ack_seq
, nwin
)) {
3403 flag
|= FLAG_WIN_UPDATE
;
3404 tcp_update_wl(tp
, ack_seq
);
3406 if (tp
->snd_wnd
!= nwin
) {
3409 /* Note, it is the only place, where
3410 * fast path is recovered for sending TCP.
3413 tcp_fast_path_check(sk
);
3415 if (nwin
> tp
->max_window
) {
3416 tp
->max_window
= nwin
;
3417 tcp_sync_mss(sk
, inet_csk(sk
)->icsk_pmtu_cookie
);
3427 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3428 * continue in congestion avoidance.
3430 static void tcp_conservative_spur_to_response(struct tcp_sock
*tp
)
3432 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tp
->snd_ssthresh
);
3433 tp
->snd_cwnd_cnt
= 0;
3434 tp
->bytes_acked
= 0;
3435 TCP_ECN_queue_cwr(tp
);
3436 tcp_moderate_cwnd(tp
);
3439 /* A conservative spurious RTO response algorithm: reduce cwnd using
3440 * rate halving and continue in congestion avoidance.
3442 static void tcp_ratehalving_spur_to_response(struct sock
*sk
)
3444 tcp_enter_cwr(sk
, 0);
3447 static void tcp_undo_spur_to_response(struct sock
*sk
, int flag
)
3449 if (flag
& FLAG_ECE
)
3450 tcp_ratehalving_spur_to_response(sk
);
3452 tcp_undo_cwr(sk
, 1);
3455 /* F-RTO spurious RTO detection algorithm (RFC4138)
3457 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3458 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3459 * window (but not to or beyond highest sequence sent before RTO):
3460 * On First ACK, send two new segments out.
3461 * On Second ACK, RTO was likely spurious. Do spurious response (response
3462 * algorithm is not part of the F-RTO detection algorithm
3463 * given in RFC4138 but can be selected separately).
3464 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3465 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3466 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3467 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3469 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3470 * original window even after we transmit two new data segments.
3473 * on first step, wait until first cumulative ACK arrives, then move to
3474 * the second step. In second step, the next ACK decides.
3476 * F-RTO is implemented (mainly) in four functions:
3477 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3478 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3479 * called when tcp_use_frto() showed green light
3480 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3481 * - tcp_enter_frto_loss() is called if there is not enough evidence
3482 * to prove that the RTO is indeed spurious. It transfers the control
3483 * from F-RTO to the conventional RTO recovery
3485 static int tcp_process_frto(struct sock
*sk
, int flag
)
3487 struct tcp_sock
*tp
= tcp_sk(sk
);
3489 tcp_verify_left_out(tp
);
3491 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3492 if (flag
& FLAG_DATA_ACKED
)
3493 inet_csk(sk
)->icsk_retransmits
= 0;
3495 if ((flag
& FLAG_NONHEAD_RETRANS_ACKED
) ||
3496 ((tp
->frto_counter
>= 2) && (flag
& FLAG_RETRANS_DATA_ACKED
)))
3497 tp
->undo_marker
= 0;
3499 if (!before(tp
->snd_una
, tp
->frto_highmark
)) {
3500 tcp_enter_frto_loss(sk
, (tp
->frto_counter
== 1 ? 2 : 3), flag
);
3504 if (!tcp_is_sackfrto(tp
)) {
3505 /* RFC4138 shortcoming in step 2; should also have case c):
3506 * ACK isn't duplicate nor advances window, e.g., opposite dir
3509 if (!(flag
& FLAG_ANY_PROGRESS
) && (flag
& FLAG_NOT_DUP
))
3512 if (!(flag
& FLAG_DATA_ACKED
)) {
3513 tcp_enter_frto_loss(sk
, (tp
->frto_counter
== 1 ? 0 : 3),
3518 if (!(flag
& FLAG_DATA_ACKED
) && (tp
->frto_counter
== 1)) {
3519 /* Prevent sending of new data. */
3520 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
3521 tcp_packets_in_flight(tp
));
3525 if ((tp
->frto_counter
>= 2) &&
3526 (!(flag
& FLAG_FORWARD_PROGRESS
) ||
3527 ((flag
& FLAG_DATA_SACKED
) &&
3528 !(flag
& FLAG_ONLY_ORIG_SACKED
)))) {
3529 /* RFC4138 shortcoming (see comment above) */
3530 if (!(flag
& FLAG_FORWARD_PROGRESS
) &&
3531 (flag
& FLAG_NOT_DUP
))
3534 tcp_enter_frto_loss(sk
, 3, flag
);
3539 if (tp
->frto_counter
== 1) {
3540 /* tcp_may_send_now needs to see updated state */
3541 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + 2;
3542 tp
->frto_counter
= 2;
3544 if (!tcp_may_send_now(sk
))
3545 tcp_enter_frto_loss(sk
, 2, flag
);
3549 switch (sysctl_tcp_frto_response
) {
3551 tcp_undo_spur_to_response(sk
, flag
);
3554 tcp_conservative_spur_to_response(tp
);
3557 tcp_ratehalving_spur_to_response(sk
);
3560 tp
->frto_counter
= 0;
3561 tp
->undo_marker
= 0;
3562 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPSPURIOUSRTOS
);
3567 /* This routine deals with incoming acks, but not outgoing ones. */
3568 static int tcp_ack(struct sock
*sk
, struct sk_buff
*skb
, int flag
)
3570 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3571 struct tcp_sock
*tp
= tcp_sk(sk
);
3572 u32 prior_snd_una
= tp
->snd_una
;
3573 u32 ack_seq
= TCP_SKB_CB(skb
)->seq
;
3574 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3575 u32 prior_in_flight
;
3580 /* If the ack is older than previous acks
3581 * then we can probably ignore it.
3583 if (before(ack
, prior_snd_una
))
3586 /* If the ack includes data we haven't sent yet, discard
3587 * this segment (RFC793 Section 3.9).
3589 if (after(ack
, tp
->snd_nxt
))
3592 if (after(ack
, prior_snd_una
))
3593 flag
|= FLAG_SND_UNA_ADVANCED
;
3595 if (sysctl_tcp_abc
) {
3596 if (icsk
->icsk_ca_state
< TCP_CA_CWR
)
3597 tp
->bytes_acked
+= ack
- prior_snd_una
;
3598 else if (icsk
->icsk_ca_state
== TCP_CA_Loss
)
3599 /* we assume just one segment left network */
3600 tp
->bytes_acked
+= min(ack
- prior_snd_una
,
3604 prior_fackets
= tp
->fackets_out
;
3605 prior_in_flight
= tcp_packets_in_flight(tp
);
3607 if (!(flag
& FLAG_SLOWPATH
) && after(ack
, prior_snd_una
)) {
3608 /* Window is constant, pure forward advance.
3609 * No more checks are required.
3610 * Note, we use the fact that SND.UNA>=SND.WL2.
3612 tcp_update_wl(tp
, ack_seq
);
3614 flag
|= FLAG_WIN_UPDATE
;
3616 tcp_ca_event(sk
, CA_EVENT_FAST_ACK
);
3618 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPACKS
);
3620 if (ack_seq
!= TCP_SKB_CB(skb
)->end_seq
)
3623 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPPUREACKS
);
3625 flag
|= tcp_ack_update_window(sk
, skb
, ack
, ack_seq
);
3627 if (TCP_SKB_CB(skb
)->sacked
)
3628 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
);
3630 if (TCP_ECN_rcv_ecn_echo(tp
, tcp_hdr(skb
)))
3633 tcp_ca_event(sk
, CA_EVENT_SLOW_ACK
);
3636 /* We passed data and got it acked, remove any soft error
3637 * log. Something worked...
3639 sk
->sk_err_soft
= 0;
3640 icsk
->icsk_probes_out
= 0;
3641 tp
->rcv_tstamp
= tcp_time_stamp
;
3642 prior_packets
= tp
->packets_out
;
3646 /* See if we can take anything off of the retransmit queue. */
3647 flag
|= tcp_clean_rtx_queue(sk
, prior_fackets
, prior_snd_una
);
3649 if (tp
->frto_counter
)
3650 frto_cwnd
= tcp_process_frto(sk
, flag
);
3651 /* Guarantee sacktag reordering detection against wrap-arounds */
3652 if (before(tp
->frto_highmark
, tp
->snd_una
))
3653 tp
->frto_highmark
= 0;
3655 if (tcp_ack_is_dubious(sk
, flag
)) {
3656 /* Advance CWND, if state allows this. */
3657 if ((flag
& FLAG_DATA_ACKED
) && !frto_cwnd
&&
3658 tcp_may_raise_cwnd(sk
, flag
))
3659 tcp_cong_avoid(sk
, ack
, prior_in_flight
);
3660 tcp_fastretrans_alert(sk
, prior_packets
- tp
->packets_out
,
3663 if ((flag
& FLAG_DATA_ACKED
) && !frto_cwnd
)
3664 tcp_cong_avoid(sk
, ack
, prior_in_flight
);
3667 if ((flag
& FLAG_FORWARD_PROGRESS
) || !(flag
& FLAG_NOT_DUP
))
3668 dst_confirm(sk
->sk_dst_cache
);
3673 /* If this ack opens up a zero window, clear backoff. It was
3674 * being used to time the probes, and is probably far higher than
3675 * it needs to be for normal retransmission.
3677 if (tcp_send_head(sk
))
3682 SOCK_DEBUG(sk
, "Ack %u after %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3686 if (TCP_SKB_CB(skb
)->sacked
) {
3687 tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
);
3688 if (icsk
->icsk_ca_state
== TCP_CA_Open
)
3689 tcp_try_keep_open(sk
);
3692 SOCK_DEBUG(sk
, "Ack %u before %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3696 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3697 * But, this can also be called on packets in the established flow when
3698 * the fast version below fails.
3700 void tcp_parse_options(struct sk_buff
*skb
, struct tcp_options_received
*opt_rx
,
3704 struct tcphdr
*th
= tcp_hdr(skb
);
3705 int length
= (th
->doff
* 4) - sizeof(struct tcphdr
);
3707 ptr
= (unsigned char *)(th
+ 1);
3708 opt_rx
->saw_tstamp
= 0;
3710 while (length
> 0) {
3711 int opcode
= *ptr
++;
3717 case TCPOPT_NOP
: /* Ref: RFC 793 section 3.1 */
3722 if (opsize
< 2) /* "silly options" */
3724 if (opsize
> length
)
3725 return; /* don't parse partial options */
3728 if (opsize
== TCPOLEN_MSS
&& th
->syn
&& !estab
) {
3729 u16 in_mss
= get_unaligned_be16(ptr
);
3731 if (opt_rx
->user_mss
&&
3732 opt_rx
->user_mss
< in_mss
)
3733 in_mss
= opt_rx
->user_mss
;
3734 opt_rx
->mss_clamp
= in_mss
;
3739 if (opsize
== TCPOLEN_WINDOW
&& th
->syn
&&
3740 !estab
&& sysctl_tcp_window_scaling
) {
3741 __u8 snd_wscale
= *(__u8
*)ptr
;
3742 opt_rx
->wscale_ok
= 1;
3743 if (snd_wscale
> 14) {
3744 if (net_ratelimit())
3745 printk(KERN_INFO
"tcp_parse_options: Illegal window "
3746 "scaling value %d >14 received.\n",
3750 opt_rx
->snd_wscale
= snd_wscale
;
3753 case TCPOPT_TIMESTAMP
:
3754 if ((opsize
== TCPOLEN_TIMESTAMP
) &&
3755 ((estab
&& opt_rx
->tstamp_ok
) ||
3756 (!estab
&& sysctl_tcp_timestamps
))) {
3757 opt_rx
->saw_tstamp
= 1;
3758 opt_rx
->rcv_tsval
= get_unaligned_be32(ptr
);
3759 opt_rx
->rcv_tsecr
= get_unaligned_be32(ptr
+ 4);
3762 case TCPOPT_SACK_PERM
:
3763 if (opsize
== TCPOLEN_SACK_PERM
&& th
->syn
&&
3764 !estab
&& sysctl_tcp_sack
) {
3765 opt_rx
->sack_ok
= 1;
3766 tcp_sack_reset(opt_rx
);
3771 if ((opsize
>= (TCPOLEN_SACK_BASE
+ TCPOLEN_SACK_PERBLOCK
)) &&
3772 !((opsize
- TCPOLEN_SACK_BASE
) % TCPOLEN_SACK_PERBLOCK
) &&
3774 TCP_SKB_CB(skb
)->sacked
= (ptr
- 2) - (unsigned char *)th
;
3777 #ifdef CONFIG_TCP_MD5SIG
3780 * The MD5 Hash has already been
3781 * checked (see tcp_v{4,6}_do_rcv()).
3793 static int tcp_parse_aligned_timestamp(struct tcp_sock
*tp
, struct tcphdr
*th
)
3795 __be32
*ptr
= (__be32
*)(th
+ 1);
3797 if (*ptr
== htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16)
3798 | (TCPOPT_TIMESTAMP
<< 8) | TCPOLEN_TIMESTAMP
)) {
3799 tp
->rx_opt
.saw_tstamp
= 1;
3801 tp
->rx_opt
.rcv_tsval
= ntohl(*ptr
);
3803 tp
->rx_opt
.rcv_tsecr
= ntohl(*ptr
);
3809 /* Fast parse options. This hopes to only see timestamps.
3810 * If it is wrong it falls back on tcp_parse_options().
3812 static int tcp_fast_parse_options(struct sk_buff
*skb
, struct tcphdr
*th
,
3813 struct tcp_sock
*tp
)
3815 if (th
->doff
== sizeof(struct tcphdr
) >> 2) {
3816 tp
->rx_opt
.saw_tstamp
= 0;
3818 } else if (tp
->rx_opt
.tstamp_ok
&&
3819 th
->doff
== (sizeof(struct tcphdr
)>>2)+(TCPOLEN_TSTAMP_ALIGNED
>>2)) {
3820 if (tcp_parse_aligned_timestamp(tp
, th
))
3823 tcp_parse_options(skb
, &tp
->rx_opt
, 1);
3827 #ifdef CONFIG_TCP_MD5SIG
3829 * Parse MD5 Signature option
3831 u8
*tcp_parse_md5sig_option(struct tcphdr
*th
)
3833 int length
= (th
->doff
<< 2) - sizeof (*th
);
3834 u8
*ptr
= (u8
*)(th
+ 1);
3836 /* If the TCP option is too short, we can short cut */
3837 if (length
< TCPOLEN_MD5SIG
)
3840 while (length
> 0) {
3841 int opcode
= *ptr
++;
3852 if (opsize
< 2 || opsize
> length
)
3854 if (opcode
== TCPOPT_MD5SIG
)
3864 static inline void tcp_store_ts_recent(struct tcp_sock
*tp
)
3866 tp
->rx_opt
.ts_recent
= tp
->rx_opt
.rcv_tsval
;
3867 tp
->rx_opt
.ts_recent_stamp
= get_seconds();
3870 static inline void tcp_replace_ts_recent(struct tcp_sock
*tp
, u32 seq
)
3872 if (tp
->rx_opt
.saw_tstamp
&& !after(seq
, tp
->rcv_wup
)) {
3873 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3874 * extra check below makes sure this can only happen
3875 * for pure ACK frames. -DaveM
3877 * Not only, also it occurs for expired timestamps.
3880 if (tcp_paws_check(&tp
->rx_opt
, 0))
3881 tcp_store_ts_recent(tp
);
3885 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3887 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3888 * it can pass through stack. So, the following predicate verifies that
3889 * this segment is not used for anything but congestion avoidance or
3890 * fast retransmit. Moreover, we even are able to eliminate most of such
3891 * second order effects, if we apply some small "replay" window (~RTO)
3892 * to timestamp space.
3894 * All these measures still do not guarantee that we reject wrapped ACKs
3895 * on networks with high bandwidth, when sequence space is recycled fastly,
3896 * but it guarantees that such events will be very rare and do not affect
3897 * connection seriously. This doesn't look nice, but alas, PAWS is really
3900 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3901 * states that events when retransmit arrives after original data are rare.
3902 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3903 * the biggest problem on large power networks even with minor reordering.
3904 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3905 * up to bandwidth of 18Gigabit/sec. 8) ]
3908 static int tcp_disordered_ack(const struct sock
*sk
, const struct sk_buff
*skb
)
3910 struct tcp_sock
*tp
= tcp_sk(sk
);
3911 struct tcphdr
*th
= tcp_hdr(skb
);
3912 u32 seq
= TCP_SKB_CB(skb
)->seq
;
3913 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3915 return (/* 1. Pure ACK with correct sequence number. */
3916 (th
->ack
&& seq
== TCP_SKB_CB(skb
)->end_seq
&& seq
== tp
->rcv_nxt
) &&
3918 /* 2. ... and duplicate ACK. */
3919 ack
== tp
->snd_una
&&
3921 /* 3. ... and does not update window. */
3922 !tcp_may_update_window(tp
, ack
, seq
, ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
) &&
3924 /* 4. ... and sits in replay window. */
3925 (s32
)(tp
->rx_opt
.ts_recent
- tp
->rx_opt
.rcv_tsval
) <= (inet_csk(sk
)->icsk_rto
* 1024) / HZ
);
3928 static inline int tcp_paws_discard(const struct sock
*sk
,
3929 const struct sk_buff
*skb
)
3931 const struct tcp_sock
*tp
= tcp_sk(sk
);
3933 return !tcp_paws_check(&tp
->rx_opt
, TCP_PAWS_WINDOW
) &&
3934 !tcp_disordered_ack(sk
, skb
);
3937 /* Check segment sequence number for validity.
3939 * Segment controls are considered valid, if the segment
3940 * fits to the window after truncation to the window. Acceptability
3941 * of data (and SYN, FIN, of course) is checked separately.
3942 * See tcp_data_queue(), for example.
3944 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3945 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3946 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3947 * (borrowed from freebsd)
3950 static inline int tcp_sequence(struct tcp_sock
*tp
, u32 seq
, u32 end_seq
)
3952 return !before(end_seq
, tp
->rcv_wup
) &&
3953 !after(seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
));
3956 /* When we get a reset we do this. */
3957 static void tcp_reset(struct sock
*sk
)
3959 /* We want the right error as BSD sees it (and indeed as we do). */
3960 switch (sk
->sk_state
) {
3962 sk
->sk_err
= ECONNREFUSED
;
3964 case TCP_CLOSE_WAIT
:
3970 sk
->sk_err
= ECONNRESET
;
3973 if (!sock_flag(sk
, SOCK_DEAD
))
3974 sk
->sk_error_report(sk
);
3980 * Process the FIN bit. This now behaves as it is supposed to work
3981 * and the FIN takes effect when it is validly part of sequence
3982 * space. Not before when we get holes.
3984 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3985 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3988 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3989 * close and we go into CLOSING (and later onto TIME-WAIT)
3991 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3993 static void tcp_fin(struct sk_buff
*skb
, struct sock
*sk
, struct tcphdr
*th
)
3995 struct tcp_sock
*tp
= tcp_sk(sk
);
3997 inet_csk_schedule_ack(sk
);
3999 sk
->sk_shutdown
|= RCV_SHUTDOWN
;
4000 sock_set_flag(sk
, SOCK_DONE
);
4002 switch (sk
->sk_state
) {
4004 case TCP_ESTABLISHED
:
4005 /* Move to CLOSE_WAIT */
4006 tcp_set_state(sk
, TCP_CLOSE_WAIT
);
4007 inet_csk(sk
)->icsk_ack
.pingpong
= 1;
4010 case TCP_CLOSE_WAIT
:
4012 /* Received a retransmission of the FIN, do
4017 /* RFC793: Remain in the LAST-ACK state. */
4021 /* This case occurs when a simultaneous close
4022 * happens, we must ack the received FIN and
4023 * enter the CLOSING state.
4026 tcp_set_state(sk
, TCP_CLOSING
);
4029 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4031 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
4034 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4035 * cases we should never reach this piece of code.
4037 printk(KERN_ERR
"%s: Impossible, sk->sk_state=%d\n",
4038 __func__
, sk
->sk_state
);
4042 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4043 * Probably, we should reset in this case. For now drop them.
4045 __skb_queue_purge(&tp
->out_of_order_queue
);
4046 if (tcp_is_sack(tp
))
4047 tcp_sack_reset(&tp
->rx_opt
);
4050 if (!sock_flag(sk
, SOCK_DEAD
)) {
4051 sk
->sk_state_change(sk
);
4053 /* Do not send POLL_HUP for half duplex close. */
4054 if (sk
->sk_shutdown
== SHUTDOWN_MASK
||
4055 sk
->sk_state
== TCP_CLOSE
)
4056 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_HUP
);
4058 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_IN
);
4062 static inline int tcp_sack_extend(struct tcp_sack_block
*sp
, u32 seq
,
4065 if (!after(seq
, sp
->end_seq
) && !after(sp
->start_seq
, end_seq
)) {
4066 if (before(seq
, sp
->start_seq
))
4067 sp
->start_seq
= seq
;
4068 if (after(end_seq
, sp
->end_seq
))
4069 sp
->end_seq
= end_seq
;
4075 static void tcp_dsack_set(struct sock
*sk
, u32 seq
, u32 end_seq
)
4077 struct tcp_sock
*tp
= tcp_sk(sk
);
4079 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
4082 if (before(seq
, tp
->rcv_nxt
))
4083 mib_idx
= LINUX_MIB_TCPDSACKOLDSENT
;
4085 mib_idx
= LINUX_MIB_TCPDSACKOFOSENT
;
4087 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
4089 tp
->rx_opt
.dsack
= 1;
4090 tp
->duplicate_sack
[0].start_seq
= seq
;
4091 tp
->duplicate_sack
[0].end_seq
= end_seq
;
4095 static void tcp_dsack_extend(struct sock
*sk
, u32 seq
, u32 end_seq
)
4097 struct tcp_sock
*tp
= tcp_sk(sk
);
4099 if (!tp
->rx_opt
.dsack
)
4100 tcp_dsack_set(sk
, seq
, end_seq
);
4102 tcp_sack_extend(tp
->duplicate_sack
, seq
, end_seq
);
4105 static void tcp_send_dupack(struct sock
*sk
, struct sk_buff
*skb
)
4107 struct tcp_sock
*tp
= tcp_sk(sk
);
4109 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
4110 before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4111 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4112 tcp_enter_quickack_mode(sk
);
4114 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
4115 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4117 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
))
4118 end_seq
= tp
->rcv_nxt
;
4119 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, end_seq
);
4126 /* These routines update the SACK block as out-of-order packets arrive or
4127 * in-order packets close up the sequence space.
4129 static void tcp_sack_maybe_coalesce(struct tcp_sock
*tp
)
4132 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4133 struct tcp_sack_block
*swalk
= sp
+ 1;
4135 /* See if the recent change to the first SACK eats into
4136 * or hits the sequence space of other SACK blocks, if so coalesce.
4138 for (this_sack
= 1; this_sack
< tp
->rx_opt
.num_sacks
;) {
4139 if (tcp_sack_extend(sp
, swalk
->start_seq
, swalk
->end_seq
)) {
4142 /* Zap SWALK, by moving every further SACK up by one slot.
4143 * Decrease num_sacks.
4145 tp
->rx_opt
.num_sacks
--;
4146 for (i
= this_sack
; i
< tp
->rx_opt
.num_sacks
; i
++)
4150 this_sack
++, swalk
++;
4154 static void tcp_sack_new_ofo_skb(struct sock
*sk
, u32 seq
, u32 end_seq
)
4156 struct tcp_sock
*tp
= tcp_sk(sk
);
4157 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4158 int cur_sacks
= tp
->rx_opt
.num_sacks
;
4164 for (this_sack
= 0; this_sack
< cur_sacks
; this_sack
++, sp
++) {
4165 if (tcp_sack_extend(sp
, seq
, end_seq
)) {
4166 /* Rotate this_sack to the first one. */
4167 for (; this_sack
> 0; this_sack
--, sp
--)
4168 swap(*sp
, *(sp
- 1));
4170 tcp_sack_maybe_coalesce(tp
);
4175 /* Could not find an adjacent existing SACK, build a new one,
4176 * put it at the front, and shift everyone else down. We
4177 * always know there is at least one SACK present already here.
4179 * If the sack array is full, forget about the last one.
4181 if (this_sack
>= TCP_NUM_SACKS
) {
4183 tp
->rx_opt
.num_sacks
--;
4186 for (; this_sack
> 0; this_sack
--, sp
--)
4190 /* Build the new head SACK, and we're done. */
4191 sp
->start_seq
= seq
;
4192 sp
->end_seq
= end_seq
;
4193 tp
->rx_opt
.num_sacks
++;
4196 /* RCV.NXT advances, some SACKs should be eaten. */
4198 static void tcp_sack_remove(struct tcp_sock
*tp
)
4200 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4201 int num_sacks
= tp
->rx_opt
.num_sacks
;
4204 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4205 if (skb_queue_empty(&tp
->out_of_order_queue
)) {
4206 tp
->rx_opt
.num_sacks
= 0;
4210 for (this_sack
= 0; this_sack
< num_sacks
;) {
4211 /* Check if the start of the sack is covered by RCV.NXT. */
4212 if (!before(tp
->rcv_nxt
, sp
->start_seq
)) {
4215 /* RCV.NXT must cover all the block! */
4216 WARN_ON(before(tp
->rcv_nxt
, sp
->end_seq
));
4218 /* Zap this SACK, by moving forward any other SACKS. */
4219 for (i
=this_sack
+1; i
< num_sacks
; i
++)
4220 tp
->selective_acks
[i
-1] = tp
->selective_acks
[i
];
4227 tp
->rx_opt
.num_sacks
= num_sacks
;
4230 /* This one checks to see if we can put data from the
4231 * out_of_order queue into the receive_queue.
4233 static void tcp_ofo_queue(struct sock
*sk
)
4235 struct tcp_sock
*tp
= tcp_sk(sk
);
4236 __u32 dsack_high
= tp
->rcv_nxt
;
4237 struct sk_buff
*skb
;
4239 while ((skb
= skb_peek(&tp
->out_of_order_queue
)) != NULL
) {
4240 if (after(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
4243 if (before(TCP_SKB_CB(skb
)->seq
, dsack_high
)) {
4244 __u32 dsack
= dsack_high
;
4245 if (before(TCP_SKB_CB(skb
)->end_seq
, dsack_high
))
4246 dsack_high
= TCP_SKB_CB(skb
)->end_seq
;
4247 tcp_dsack_extend(sk
, TCP_SKB_CB(skb
)->seq
, dsack
);
4250 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
4251 SOCK_DEBUG(sk
, "ofo packet was already received \n");
4252 __skb_unlink(skb
, &tp
->out_of_order_queue
);
4256 SOCK_DEBUG(sk
, "ofo requeuing : rcv_next %X seq %X - %X\n",
4257 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4258 TCP_SKB_CB(skb
)->end_seq
);
4260 __skb_unlink(skb
, &tp
->out_of_order_queue
);
4261 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4262 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
4263 if (tcp_hdr(skb
)->fin
)
4264 tcp_fin(skb
, sk
, tcp_hdr(skb
));
4268 static int tcp_prune_ofo_queue(struct sock
*sk
);
4269 static int tcp_prune_queue(struct sock
*sk
);
4271 static inline int tcp_try_rmem_schedule(struct sock
*sk
, unsigned int size
)
4273 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
||
4274 !sk_rmem_schedule(sk
, size
)) {
4276 if (tcp_prune_queue(sk
) < 0)
4279 if (!sk_rmem_schedule(sk
, size
)) {
4280 if (!tcp_prune_ofo_queue(sk
))
4283 if (!sk_rmem_schedule(sk
, size
))
4290 static void tcp_data_queue(struct sock
*sk
, struct sk_buff
*skb
)
4292 struct tcphdr
*th
= tcp_hdr(skb
);
4293 struct tcp_sock
*tp
= tcp_sk(sk
);
4296 if (TCP_SKB_CB(skb
)->seq
== TCP_SKB_CB(skb
)->end_seq
)
4299 __skb_pull(skb
, th
->doff
* 4);
4301 TCP_ECN_accept_cwr(tp
, skb
);
4303 tp
->rx_opt
.dsack
= 0;
4305 /* Queue data for delivery to the user.
4306 * Packets in sequence go to the receive queue.
4307 * Out of sequence packets to the out_of_order_queue.
4309 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
) {
4310 if (tcp_receive_window(tp
) == 0)
4313 /* Ok. In sequence. In window. */
4314 if (tp
->ucopy
.task
== current
&&
4315 tp
->copied_seq
== tp
->rcv_nxt
&& tp
->ucopy
.len
&&
4316 sock_owned_by_user(sk
) && !tp
->urg_data
) {
4317 int chunk
= min_t(unsigned int, skb
->len
,
4320 __set_current_state(TASK_RUNNING
);
4323 if (!skb_copy_datagram_iovec(skb
, 0, tp
->ucopy
.iov
, chunk
)) {
4324 tp
->ucopy
.len
-= chunk
;
4325 tp
->copied_seq
+= chunk
;
4326 eaten
= (chunk
== skb
->len
&& !th
->fin
);
4327 tcp_rcv_space_adjust(sk
);
4335 tcp_try_rmem_schedule(sk
, skb
->truesize
))
4338 skb_set_owner_r(skb
, sk
);
4339 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4341 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
4343 tcp_event_data_recv(sk
, skb
);
4345 tcp_fin(skb
, sk
, th
);
4347 if (!skb_queue_empty(&tp
->out_of_order_queue
)) {
4350 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4351 * gap in queue is filled.
4353 if (skb_queue_empty(&tp
->out_of_order_queue
))
4354 inet_csk(sk
)->icsk_ack
.pingpong
= 0;
4357 if (tp
->rx_opt
.num_sacks
)
4358 tcp_sack_remove(tp
);
4360 tcp_fast_path_check(sk
);
4364 else if (!sock_flag(sk
, SOCK_DEAD
))
4365 sk
->sk_data_ready(sk
, 0);
4369 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
4370 /* A retransmit, 2nd most common case. Force an immediate ack. */
4371 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4372 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
4375 tcp_enter_quickack_mode(sk
);
4376 inet_csk_schedule_ack(sk
);
4382 /* Out of window. F.e. zero window probe. */
4383 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
)))
4386 tcp_enter_quickack_mode(sk
);
4388 if (before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4389 /* Partial packet, seq < rcv_next < end_seq */
4390 SOCK_DEBUG(sk
, "partial packet: rcv_next %X seq %X - %X\n",
4391 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4392 TCP_SKB_CB(skb
)->end_seq
);
4394 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
);
4396 /* If window is closed, drop tail of packet. But after
4397 * remembering D-SACK for its head made in previous line.
4399 if (!tcp_receive_window(tp
))
4404 TCP_ECN_check_ce(tp
, skb
);
4406 if (tcp_try_rmem_schedule(sk
, skb
->truesize
))
4409 /* Disable header prediction. */
4411 inet_csk_schedule_ack(sk
);
4413 SOCK_DEBUG(sk
, "out of order segment: rcv_next %X seq %X - %X\n",
4414 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
4416 skb_set_owner_r(skb
, sk
);
4418 if (!skb_peek(&tp
->out_of_order_queue
)) {
4419 /* Initial out of order segment, build 1 SACK. */
4420 if (tcp_is_sack(tp
)) {
4421 tp
->rx_opt
.num_sacks
= 1;
4422 tp
->selective_acks
[0].start_seq
= TCP_SKB_CB(skb
)->seq
;
4423 tp
->selective_acks
[0].end_seq
=
4424 TCP_SKB_CB(skb
)->end_seq
;
4426 __skb_queue_head(&tp
->out_of_order_queue
, skb
);
4428 struct sk_buff
*skb1
= skb_peek_tail(&tp
->out_of_order_queue
);
4429 u32 seq
= TCP_SKB_CB(skb
)->seq
;
4430 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4432 if (seq
== TCP_SKB_CB(skb1
)->end_seq
) {
4433 __skb_queue_after(&tp
->out_of_order_queue
, skb1
, skb
);
4435 if (!tp
->rx_opt
.num_sacks
||
4436 tp
->selective_acks
[0].end_seq
!= seq
)
4439 /* Common case: data arrive in order after hole. */
4440 tp
->selective_acks
[0].end_seq
= end_seq
;
4444 /* Find place to insert this segment. */
4446 if (!after(TCP_SKB_CB(skb1
)->seq
, seq
))
4448 if (skb_queue_is_first(&tp
->out_of_order_queue
, skb1
)) {
4452 skb1
= skb_queue_prev(&tp
->out_of_order_queue
, skb1
);
4455 /* Do skb overlap to previous one? */
4456 if (skb1
&& before(seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4457 if (!after(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4458 /* All the bits are present. Drop. */
4460 tcp_dsack_set(sk
, seq
, end_seq
);
4463 if (after(seq
, TCP_SKB_CB(skb1
)->seq
)) {
4464 /* Partial overlap. */
4465 tcp_dsack_set(sk
, seq
,
4466 TCP_SKB_CB(skb1
)->end_seq
);
4468 if (skb_queue_is_first(&tp
->out_of_order_queue
,
4472 skb1
= skb_queue_prev(
4473 &tp
->out_of_order_queue
,
4478 __skb_queue_head(&tp
->out_of_order_queue
, skb
);
4480 __skb_queue_after(&tp
->out_of_order_queue
, skb1
, skb
);
4482 /* And clean segments covered by new one as whole. */
4483 while (!skb_queue_is_last(&tp
->out_of_order_queue
, skb
)) {
4484 skb1
= skb_queue_next(&tp
->out_of_order_queue
, skb
);
4486 if (!after(end_seq
, TCP_SKB_CB(skb1
)->seq
))
4488 if (before(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4489 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4493 __skb_unlink(skb1
, &tp
->out_of_order_queue
);
4494 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4495 TCP_SKB_CB(skb1
)->end_seq
);
4500 if (tcp_is_sack(tp
))
4501 tcp_sack_new_ofo_skb(sk
, seq
, end_seq
);
4505 static struct sk_buff
*tcp_collapse_one(struct sock
*sk
, struct sk_buff
*skb
,
4506 struct sk_buff_head
*list
)
4508 struct sk_buff
*next
= NULL
;
4510 if (!skb_queue_is_last(list
, skb
))
4511 next
= skb_queue_next(list
, skb
);
4513 __skb_unlink(skb
, list
);
4515 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPRCVCOLLAPSED
);
4520 /* Collapse contiguous sequence of skbs head..tail with
4521 * sequence numbers start..end.
4523 * If tail is NULL, this means until the end of the list.
4525 * Segments with FIN/SYN are not collapsed (only because this
4529 tcp_collapse(struct sock
*sk
, struct sk_buff_head
*list
,
4530 struct sk_buff
*head
, struct sk_buff
*tail
,
4533 struct sk_buff
*skb
, *n
;
4536 /* First, check that queue is collapsible and find
4537 * the point where collapsing can be useful. */
4541 skb_queue_walk_from_safe(list
, skb
, n
) {
4544 /* No new bits? It is possible on ofo queue. */
4545 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4546 skb
= tcp_collapse_one(sk
, skb
, list
);
4552 /* The first skb to collapse is:
4554 * - bloated or contains data before "start" or
4555 * overlaps to the next one.
4557 if (!tcp_hdr(skb
)->syn
&& !tcp_hdr(skb
)->fin
&&
4558 (tcp_win_from_space(skb
->truesize
) > skb
->len
||
4559 before(TCP_SKB_CB(skb
)->seq
, start
))) {
4560 end_of_skbs
= false;
4564 if (!skb_queue_is_last(list
, skb
)) {
4565 struct sk_buff
*next
= skb_queue_next(list
, skb
);
4567 TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(next
)->seq
) {
4568 end_of_skbs
= false;
4573 /* Decided to skip this, advance start seq. */
4574 start
= TCP_SKB_CB(skb
)->end_seq
;
4576 if (end_of_skbs
|| tcp_hdr(skb
)->syn
|| tcp_hdr(skb
)->fin
)
4579 while (before(start
, end
)) {
4580 struct sk_buff
*nskb
;
4581 unsigned int header
= skb_headroom(skb
);
4582 int copy
= SKB_MAX_ORDER(header
, 0);
4584 /* Too big header? This can happen with IPv6. */
4587 if (end
- start
< copy
)
4589 nskb
= alloc_skb(copy
+ header
, GFP_ATOMIC
);
4593 skb_set_mac_header(nskb
, skb_mac_header(skb
) - skb
->head
);
4594 skb_set_network_header(nskb
, (skb_network_header(skb
) -
4596 skb_set_transport_header(nskb
, (skb_transport_header(skb
) -
4598 skb_reserve(nskb
, header
);
4599 memcpy(nskb
->head
, skb
->head
, header
);
4600 memcpy(nskb
->cb
, skb
->cb
, sizeof(skb
->cb
));
4601 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(nskb
)->end_seq
= start
;
4602 __skb_queue_before(list
, skb
, nskb
);
4603 skb_set_owner_r(nskb
, sk
);
4605 /* Copy data, releasing collapsed skbs. */
4607 int offset
= start
- TCP_SKB_CB(skb
)->seq
;
4608 int size
= TCP_SKB_CB(skb
)->end_seq
- start
;
4612 size
= min(copy
, size
);
4613 if (skb_copy_bits(skb
, offset
, skb_put(nskb
, size
), size
))
4615 TCP_SKB_CB(nskb
)->end_seq
+= size
;
4619 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4620 skb
= tcp_collapse_one(sk
, skb
, list
);
4623 tcp_hdr(skb
)->syn
||
4631 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4632 * and tcp_collapse() them until all the queue is collapsed.
4634 static void tcp_collapse_ofo_queue(struct sock
*sk
)
4636 struct tcp_sock
*tp
= tcp_sk(sk
);
4637 struct sk_buff
*skb
= skb_peek(&tp
->out_of_order_queue
);
4638 struct sk_buff
*head
;
4644 start
= TCP_SKB_CB(skb
)->seq
;
4645 end
= TCP_SKB_CB(skb
)->end_seq
;
4649 struct sk_buff
*next
= NULL
;
4651 if (!skb_queue_is_last(&tp
->out_of_order_queue
, skb
))
4652 next
= skb_queue_next(&tp
->out_of_order_queue
, skb
);
4655 /* Segment is terminated when we see gap or when
4656 * we are at the end of all the queue. */
4658 after(TCP_SKB_CB(skb
)->seq
, end
) ||
4659 before(TCP_SKB_CB(skb
)->end_seq
, start
)) {
4660 tcp_collapse(sk
, &tp
->out_of_order_queue
,
4661 head
, skb
, start
, end
);
4665 /* Start new segment */
4666 start
= TCP_SKB_CB(skb
)->seq
;
4667 end
= TCP_SKB_CB(skb
)->end_seq
;
4669 if (before(TCP_SKB_CB(skb
)->seq
, start
))
4670 start
= TCP_SKB_CB(skb
)->seq
;
4671 if (after(TCP_SKB_CB(skb
)->end_seq
, end
))
4672 end
= TCP_SKB_CB(skb
)->end_seq
;
4678 * Purge the out-of-order queue.
4679 * Return true if queue was pruned.
4681 static int tcp_prune_ofo_queue(struct sock
*sk
)
4683 struct tcp_sock
*tp
= tcp_sk(sk
);
4686 if (!skb_queue_empty(&tp
->out_of_order_queue
)) {
4687 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_OFOPRUNED
);
4688 __skb_queue_purge(&tp
->out_of_order_queue
);
4690 /* Reset SACK state. A conforming SACK implementation will
4691 * do the same at a timeout based retransmit. When a connection
4692 * is in a sad state like this, we care only about integrity
4693 * of the connection not performance.
4695 if (tp
->rx_opt
.sack_ok
)
4696 tcp_sack_reset(&tp
->rx_opt
);
4703 /* Reduce allocated memory if we can, trying to get
4704 * the socket within its memory limits again.
4706 * Return less than zero if we should start dropping frames
4707 * until the socket owning process reads some of the data
4708 * to stabilize the situation.
4710 static int tcp_prune_queue(struct sock
*sk
)
4712 struct tcp_sock
*tp
= tcp_sk(sk
);
4714 SOCK_DEBUG(sk
, "prune_queue: c=%x\n", tp
->copied_seq
);
4716 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PRUNECALLED
);
4718 if (atomic_read(&sk
->sk_rmem_alloc
) >= sk
->sk_rcvbuf
)
4719 tcp_clamp_window(sk
);
4720 else if (tcp_memory_pressure
)
4721 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, 4U * tp
->advmss
);
4723 tcp_collapse_ofo_queue(sk
);
4724 if (!skb_queue_empty(&sk
->sk_receive_queue
))
4725 tcp_collapse(sk
, &sk
->sk_receive_queue
,
4726 skb_peek(&sk
->sk_receive_queue
),
4728 tp
->copied_seq
, tp
->rcv_nxt
);
4731 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
4734 /* Collapsing did not help, destructive actions follow.
4735 * This must not ever occur. */
4737 tcp_prune_ofo_queue(sk
);
4739 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
4742 /* If we are really being abused, tell the caller to silently
4743 * drop receive data on the floor. It will get retransmitted
4744 * and hopefully then we'll have sufficient space.
4746 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_RCVPRUNED
);
4748 /* Massive buffer overcommit. */
4753 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4754 * As additional protections, we do not touch cwnd in retransmission phases,
4755 * and if application hit its sndbuf limit recently.
4757 void tcp_cwnd_application_limited(struct sock
*sk
)
4759 struct tcp_sock
*tp
= tcp_sk(sk
);
4761 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Open
&&
4762 sk
->sk_socket
&& !test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
)) {
4763 /* Limited by application or receiver window. */
4764 u32 init_win
= tcp_init_cwnd(tp
, __sk_dst_get(sk
));
4765 u32 win_used
= max(tp
->snd_cwnd_used
, init_win
);
4766 if (win_used
< tp
->snd_cwnd
) {
4767 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
4768 tp
->snd_cwnd
= (tp
->snd_cwnd
+ win_used
) >> 1;
4770 tp
->snd_cwnd_used
= 0;
4772 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
4775 static int tcp_should_expand_sndbuf(struct sock
*sk
)
4777 struct tcp_sock
*tp
= tcp_sk(sk
);
4779 /* If the user specified a specific send buffer setting, do
4782 if (sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
)
4785 /* If we are under global TCP memory pressure, do not expand. */
4786 if (tcp_memory_pressure
)
4789 /* If we are under soft global TCP memory pressure, do not expand. */
4790 if (atomic_read(&tcp_memory_allocated
) >= sysctl_tcp_mem
[0])
4793 /* If we filled the congestion window, do not expand. */
4794 if (tp
->packets_out
>= tp
->snd_cwnd
)
4800 /* When incoming ACK allowed to free some skb from write_queue,
4801 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4802 * on the exit from tcp input handler.
4804 * PROBLEM: sndbuf expansion does not work well with largesend.
4806 static void tcp_new_space(struct sock
*sk
)
4808 struct tcp_sock
*tp
= tcp_sk(sk
);
4810 if (tcp_should_expand_sndbuf(sk
)) {
4811 int sndmem
= max_t(u32
, tp
->rx_opt
.mss_clamp
, tp
->mss_cache
) +
4812 MAX_TCP_HEADER
+ 16 + sizeof(struct sk_buff
);
4813 int demanded
= max_t(unsigned int, tp
->snd_cwnd
,
4814 tp
->reordering
+ 1);
4815 sndmem
*= 2 * demanded
;
4816 if (sndmem
> sk
->sk_sndbuf
)
4817 sk
->sk_sndbuf
= min(sndmem
, sysctl_tcp_wmem
[2]);
4818 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
4821 sk
->sk_write_space(sk
);
4824 static void tcp_check_space(struct sock
*sk
)
4826 if (sock_flag(sk
, SOCK_QUEUE_SHRUNK
)) {
4827 sock_reset_flag(sk
, SOCK_QUEUE_SHRUNK
);
4828 if (sk
->sk_socket
&&
4829 test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
))
4834 static inline void tcp_data_snd_check(struct sock
*sk
)
4836 tcp_push_pending_frames(sk
);
4837 tcp_check_space(sk
);
4841 * Check if sending an ack is needed.
4843 static void __tcp_ack_snd_check(struct sock
*sk
, int ofo_possible
)
4845 struct tcp_sock
*tp
= tcp_sk(sk
);
4847 /* More than one full frame received... */
4848 if (((tp
->rcv_nxt
- tp
->rcv_wup
) > inet_csk(sk
)->icsk_ack
.rcv_mss
4849 /* ... and right edge of window advances far enough.
4850 * (tcp_recvmsg() will send ACK otherwise). Or...
4852 && __tcp_select_window(sk
) >= tp
->rcv_wnd
) ||
4853 /* We ACK each frame or... */
4854 tcp_in_quickack_mode(sk
) ||
4855 /* We have out of order data. */
4856 (ofo_possible
&& skb_peek(&tp
->out_of_order_queue
))) {
4857 /* Then ack it now */
4860 /* Else, send delayed ack. */
4861 tcp_send_delayed_ack(sk
);
4865 static inline void tcp_ack_snd_check(struct sock
*sk
)
4867 if (!inet_csk_ack_scheduled(sk
)) {
4868 /* We sent a data segment already. */
4871 __tcp_ack_snd_check(sk
, 1);
4875 * This routine is only called when we have urgent data
4876 * signaled. Its the 'slow' part of tcp_urg. It could be
4877 * moved inline now as tcp_urg is only called from one
4878 * place. We handle URGent data wrong. We have to - as
4879 * BSD still doesn't use the correction from RFC961.
4880 * For 1003.1g we should support a new option TCP_STDURG to permit
4881 * either form (or just set the sysctl tcp_stdurg).
4884 static void tcp_check_urg(struct sock
*sk
, struct tcphdr
*th
)
4886 struct tcp_sock
*tp
= tcp_sk(sk
);
4887 u32 ptr
= ntohs(th
->urg_ptr
);
4889 if (ptr
&& !sysctl_tcp_stdurg
)
4891 ptr
+= ntohl(th
->seq
);
4893 /* Ignore urgent data that we've already seen and read. */
4894 if (after(tp
->copied_seq
, ptr
))
4897 /* Do not replay urg ptr.
4899 * NOTE: interesting situation not covered by specs.
4900 * Misbehaving sender may send urg ptr, pointing to segment,
4901 * which we already have in ofo queue. We are not able to fetch
4902 * such data and will stay in TCP_URG_NOTYET until will be eaten
4903 * by recvmsg(). Seems, we are not obliged to handle such wicked
4904 * situations. But it is worth to think about possibility of some
4905 * DoSes using some hypothetical application level deadlock.
4907 if (before(ptr
, tp
->rcv_nxt
))
4910 /* Do we already have a newer (or duplicate) urgent pointer? */
4911 if (tp
->urg_data
&& !after(ptr
, tp
->urg_seq
))
4914 /* Tell the world about our new urgent pointer. */
4917 /* We may be adding urgent data when the last byte read was
4918 * urgent. To do this requires some care. We cannot just ignore
4919 * tp->copied_seq since we would read the last urgent byte again
4920 * as data, nor can we alter copied_seq until this data arrives
4921 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4923 * NOTE. Double Dutch. Rendering to plain English: author of comment
4924 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4925 * and expect that both A and B disappear from stream. This is _wrong_.
4926 * Though this happens in BSD with high probability, this is occasional.
4927 * Any application relying on this is buggy. Note also, that fix "works"
4928 * only in this artificial test. Insert some normal data between A and B and we will
4929 * decline of BSD again. Verdict: it is better to remove to trap
4932 if (tp
->urg_seq
== tp
->copied_seq
&& tp
->urg_data
&&
4933 !sock_flag(sk
, SOCK_URGINLINE
) && tp
->copied_seq
!= tp
->rcv_nxt
) {
4934 struct sk_buff
*skb
= skb_peek(&sk
->sk_receive_queue
);
4936 if (skb
&& !before(tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
)) {
4937 __skb_unlink(skb
, &sk
->sk_receive_queue
);
4942 tp
->urg_data
= TCP_URG_NOTYET
;
4945 /* Disable header prediction. */
4949 /* This is the 'fast' part of urgent handling. */
4950 static void tcp_urg(struct sock
*sk
, struct sk_buff
*skb
, struct tcphdr
*th
)
4952 struct tcp_sock
*tp
= tcp_sk(sk
);
4954 /* Check if we get a new urgent pointer - normally not. */
4956 tcp_check_urg(sk
, th
);
4958 /* Do we wait for any urgent data? - normally not... */
4959 if (tp
->urg_data
== TCP_URG_NOTYET
) {
4960 u32 ptr
= tp
->urg_seq
- ntohl(th
->seq
) + (th
->doff
* 4) -
4963 /* Is the urgent pointer pointing into this packet? */
4964 if (ptr
< skb
->len
) {
4966 if (skb_copy_bits(skb
, ptr
, &tmp
, 1))
4968 tp
->urg_data
= TCP_URG_VALID
| tmp
;
4969 if (!sock_flag(sk
, SOCK_DEAD
))
4970 sk
->sk_data_ready(sk
, 0);
4975 static int tcp_copy_to_iovec(struct sock
*sk
, struct sk_buff
*skb
, int hlen
)
4977 struct tcp_sock
*tp
= tcp_sk(sk
);
4978 int chunk
= skb
->len
- hlen
;
4982 if (skb_csum_unnecessary(skb
))
4983 err
= skb_copy_datagram_iovec(skb
, hlen
, tp
->ucopy
.iov
, chunk
);
4985 err
= skb_copy_and_csum_datagram_iovec(skb
, hlen
,
4989 tp
->ucopy
.len
-= chunk
;
4990 tp
->copied_seq
+= chunk
;
4991 tcp_rcv_space_adjust(sk
);
4998 static __sum16
__tcp_checksum_complete_user(struct sock
*sk
,
4999 struct sk_buff
*skb
)
5003 if (sock_owned_by_user(sk
)) {
5005 result
= __tcp_checksum_complete(skb
);
5008 result
= __tcp_checksum_complete(skb
);
5013 static inline int tcp_checksum_complete_user(struct sock
*sk
,
5014 struct sk_buff
*skb
)
5016 return !skb_csum_unnecessary(skb
) &&
5017 __tcp_checksum_complete_user(sk
, skb
);
5020 #ifdef CONFIG_NET_DMA
5021 static int tcp_dma_try_early_copy(struct sock
*sk
, struct sk_buff
*skb
,
5024 struct tcp_sock
*tp
= tcp_sk(sk
);
5025 int chunk
= skb
->len
- hlen
;
5027 int copied_early
= 0;
5029 if (tp
->ucopy
.wakeup
)
5032 if (!tp
->ucopy
.dma_chan
&& tp
->ucopy
.pinned_list
)
5033 tp
->ucopy
.dma_chan
= dma_find_channel(DMA_MEMCPY
);
5035 if (tp
->ucopy
.dma_chan
&& skb_csum_unnecessary(skb
)) {
5037 dma_cookie
= dma_skb_copy_datagram_iovec(tp
->ucopy
.dma_chan
,
5039 tp
->ucopy
.iov
, chunk
,
5040 tp
->ucopy
.pinned_list
);
5045 tp
->ucopy
.dma_cookie
= dma_cookie
;
5048 tp
->ucopy
.len
-= chunk
;
5049 tp
->copied_seq
+= chunk
;
5050 tcp_rcv_space_adjust(sk
);
5052 if ((tp
->ucopy
.len
== 0) ||
5053 (tcp_flag_word(tcp_hdr(skb
)) & TCP_FLAG_PSH
) ||
5054 (atomic_read(&sk
->sk_rmem_alloc
) > (sk
->sk_rcvbuf
>> 1))) {
5055 tp
->ucopy
.wakeup
= 1;
5056 sk
->sk_data_ready(sk
, 0);
5058 } else if (chunk
> 0) {
5059 tp
->ucopy
.wakeup
= 1;
5060 sk
->sk_data_ready(sk
, 0);
5063 return copied_early
;
5065 #endif /* CONFIG_NET_DMA */
5067 /* Does PAWS and seqno based validation of an incoming segment, flags will
5068 * play significant role here.
5070 static int tcp_validate_incoming(struct sock
*sk
, struct sk_buff
*skb
,
5071 struct tcphdr
*th
, int syn_inerr
)
5073 struct tcp_sock
*tp
= tcp_sk(sk
);
5075 /* RFC1323: H1. Apply PAWS check first. */
5076 if (tcp_fast_parse_options(skb
, th
, tp
) && tp
->rx_opt
.saw_tstamp
&&
5077 tcp_paws_discard(sk
, skb
)) {
5079 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PAWSESTABREJECTED
);
5080 tcp_send_dupack(sk
, skb
);
5083 /* Reset is accepted even if it did not pass PAWS. */
5086 /* Step 1: check sequence number */
5087 if (!tcp_sequence(tp
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5088 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5089 * (RST) segments are validated by checking their SEQ-fields."
5090 * And page 69: "If an incoming segment is not acceptable,
5091 * an acknowledgment should be sent in reply (unless the RST
5092 * bit is set, if so drop the segment and return)".
5095 tcp_send_dupack(sk
, skb
);
5099 /* Step 2: check RST bit */
5105 /* ts_recent update must be made after we are sure that the packet
5108 tcp_replace_ts_recent(tp
, TCP_SKB_CB(skb
)->seq
);
5110 /* step 3: check security and precedence [ignored] */
5112 /* step 4: Check for a SYN in window. */
5113 if (th
->syn
&& !before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
5115 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5116 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPABORTONSYN
);
5129 * TCP receive function for the ESTABLISHED state.
5131 * It is split into a fast path and a slow path. The fast path is
5133 * - A zero window was announced from us - zero window probing
5134 * is only handled properly in the slow path.
5135 * - Out of order segments arrived.
5136 * - Urgent data is expected.
5137 * - There is no buffer space left
5138 * - Unexpected TCP flags/window values/header lengths are received
5139 * (detected by checking the TCP header against pred_flags)
5140 * - Data is sent in both directions. Fast path only supports pure senders
5141 * or pure receivers (this means either the sequence number or the ack
5142 * value must stay constant)
5143 * - Unexpected TCP option.
5145 * When these conditions are not satisfied it drops into a standard
5146 * receive procedure patterned after RFC793 to handle all cases.
5147 * The first three cases are guaranteed by proper pred_flags setting,
5148 * the rest is checked inline. Fast processing is turned on in
5149 * tcp_data_queue when everything is OK.
5151 int tcp_rcv_established(struct sock
*sk
, struct sk_buff
*skb
,
5152 struct tcphdr
*th
, unsigned len
)
5154 struct tcp_sock
*tp
= tcp_sk(sk
);
5158 * Header prediction.
5159 * The code loosely follows the one in the famous
5160 * "30 instruction TCP receive" Van Jacobson mail.
5162 * Van's trick is to deposit buffers into socket queue
5163 * on a device interrupt, to call tcp_recv function
5164 * on the receive process context and checksum and copy
5165 * the buffer to user space. smart...
5167 * Our current scheme is not silly either but we take the
5168 * extra cost of the net_bh soft interrupt processing...
5169 * We do checksum and copy also but from device to kernel.
5172 tp
->rx_opt
.saw_tstamp
= 0;
5174 /* pred_flags is 0xS?10 << 16 + snd_wnd
5175 * if header_prediction is to be made
5176 * 'S' will always be tp->tcp_header_len >> 2
5177 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5178 * turn it off (when there are holes in the receive
5179 * space for instance)
5180 * PSH flag is ignored.
5183 if ((tcp_flag_word(th
) & TCP_HP_BITS
) == tp
->pred_flags
&&
5184 TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
&&
5185 !after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_nxt
)) {
5186 int tcp_header_len
= tp
->tcp_header_len
;
5188 /* Timestamp header prediction: tcp_header_len
5189 * is automatically equal to th->doff*4 due to pred_flags
5193 /* Check timestamp */
5194 if (tcp_header_len
== sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) {
5195 /* No? Slow path! */
5196 if (!tcp_parse_aligned_timestamp(tp
, th
))
5199 /* If PAWS failed, check it more carefully in slow path */
5200 if ((s32
)(tp
->rx_opt
.rcv_tsval
- tp
->rx_opt
.ts_recent
) < 0)
5203 /* DO NOT update ts_recent here, if checksum fails
5204 * and timestamp was corrupted part, it will result
5205 * in a hung connection since we will drop all
5206 * future packets due to the PAWS test.
5210 if (len
<= tcp_header_len
) {
5211 /* Bulk data transfer: sender */
5212 if (len
== tcp_header_len
) {
5213 /* Predicted packet is in window by definition.
5214 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5215 * Hence, check seq<=rcv_wup reduces to:
5217 if (tcp_header_len
==
5218 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5219 tp
->rcv_nxt
== tp
->rcv_wup
)
5220 tcp_store_ts_recent(tp
);
5222 /* We know that such packets are checksummed
5225 tcp_ack(sk
, skb
, 0);
5227 tcp_data_snd_check(sk
);
5229 } else { /* Header too small */
5230 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5235 int copied_early
= 0;
5237 if (tp
->copied_seq
== tp
->rcv_nxt
&&
5238 len
- tcp_header_len
<= tp
->ucopy
.len
) {
5239 #ifdef CONFIG_NET_DMA
5240 if (tcp_dma_try_early_copy(sk
, skb
, tcp_header_len
)) {
5245 if (tp
->ucopy
.task
== current
&&
5246 sock_owned_by_user(sk
) && !copied_early
) {
5247 __set_current_state(TASK_RUNNING
);
5249 if (!tcp_copy_to_iovec(sk
, skb
, tcp_header_len
))
5253 /* Predicted packet is in window by definition.
5254 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5255 * Hence, check seq<=rcv_wup reduces to:
5257 if (tcp_header_len
==
5258 (sizeof(struct tcphdr
) +
5259 TCPOLEN_TSTAMP_ALIGNED
) &&
5260 tp
->rcv_nxt
== tp
->rcv_wup
)
5261 tcp_store_ts_recent(tp
);
5263 tcp_rcv_rtt_measure_ts(sk
, skb
);
5265 __skb_pull(skb
, tcp_header_len
);
5266 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
5267 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPHITSTOUSER
);
5270 tcp_cleanup_rbuf(sk
, skb
->len
);
5273 if (tcp_checksum_complete_user(sk
, skb
))
5276 /* Predicted packet is in window by definition.
5277 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5278 * Hence, check seq<=rcv_wup reduces to:
5280 if (tcp_header_len
==
5281 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5282 tp
->rcv_nxt
== tp
->rcv_wup
)
5283 tcp_store_ts_recent(tp
);
5285 tcp_rcv_rtt_measure_ts(sk
, skb
);
5287 if ((int)skb
->truesize
> sk
->sk_forward_alloc
)
5290 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPHITS
);
5292 /* Bulk data transfer: receiver */
5293 __skb_pull(skb
, tcp_header_len
);
5294 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
5295 skb_set_owner_r(skb
, sk
);
5296 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
5299 tcp_event_data_recv(sk
, skb
);
5301 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_una
) {
5302 /* Well, only one small jumplet in fast path... */
5303 tcp_ack(sk
, skb
, FLAG_DATA
);
5304 tcp_data_snd_check(sk
);
5305 if (!inet_csk_ack_scheduled(sk
))
5309 if (!copied_early
|| tp
->rcv_nxt
!= tp
->rcv_wup
)
5310 __tcp_ack_snd_check(sk
, 0);
5312 #ifdef CONFIG_NET_DMA
5314 __skb_queue_tail(&sk
->sk_async_wait_queue
, skb
);
5320 sk
->sk_data_ready(sk
, 0);
5326 if (len
< (th
->doff
<< 2) || tcp_checksum_complete_user(sk
, skb
))
5330 * Standard slow path.
5333 res
= tcp_validate_incoming(sk
, skb
, th
, 1);
5338 if (th
->ack
&& tcp_ack(sk
, skb
, FLAG_SLOWPATH
) < 0)
5341 tcp_rcv_rtt_measure_ts(sk
, skb
);
5343 /* Process urgent data. */
5344 tcp_urg(sk
, skb
, th
);
5346 /* step 7: process the segment text */
5347 tcp_data_queue(sk
, skb
);
5349 tcp_data_snd_check(sk
);
5350 tcp_ack_snd_check(sk
);
5354 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5361 static int tcp_rcv_synsent_state_process(struct sock
*sk
, struct sk_buff
*skb
,
5362 struct tcphdr
*th
, unsigned len
)
5364 struct tcp_sock
*tp
= tcp_sk(sk
);
5365 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5366 int saved_clamp
= tp
->rx_opt
.mss_clamp
;
5368 tcp_parse_options(skb
, &tp
->rx_opt
, 0);
5372 * "If the state is SYN-SENT then
5373 * first check the ACK bit
5374 * If the ACK bit is set
5375 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5376 * a reset (unless the RST bit is set, if so drop
5377 * the segment and return)"
5379 * We do not send data with SYN, so that RFC-correct
5382 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_nxt
)
5383 goto reset_and_undo
;
5385 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
5386 !between(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
,
5388 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PAWSACTIVEREJECTED
);
5389 goto reset_and_undo
;
5392 /* Now ACK is acceptable.
5394 * "If the RST bit is set
5395 * If the ACK was acceptable then signal the user "error:
5396 * connection reset", drop the segment, enter CLOSED state,
5397 * delete TCB, and return."
5406 * "fifth, if neither of the SYN or RST bits is set then
5407 * drop the segment and return."
5413 goto discard_and_undo
;
5416 * "If the SYN bit is on ...
5417 * are acceptable then ...
5418 * (our SYN has been ACKed), change the connection
5419 * state to ESTABLISHED..."
5422 TCP_ECN_rcv_synack(tp
, th
);
5424 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
5425 tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
5427 /* Ok.. it's good. Set up sequence numbers and
5428 * move to established.
5430 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5431 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5433 /* RFC1323: The window in SYN & SYN/ACK segments is
5436 tp
->snd_wnd
= ntohs(th
->window
);
5437 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
5439 if (!tp
->rx_opt
.wscale_ok
) {
5440 tp
->rx_opt
.snd_wscale
= tp
->rx_opt
.rcv_wscale
= 0;
5441 tp
->window_clamp
= min(tp
->window_clamp
, 65535U);
5444 if (tp
->rx_opt
.saw_tstamp
) {
5445 tp
->rx_opt
.tstamp_ok
= 1;
5446 tp
->tcp_header_len
=
5447 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5448 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5449 tcp_store_ts_recent(tp
);
5451 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5454 if (tcp_is_sack(tp
) && sysctl_tcp_fack
)
5455 tcp_enable_fack(tp
);
5458 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5459 tcp_initialize_rcv_mss(sk
);
5461 /* Remember, tcp_poll() does not lock socket!
5462 * Change state from SYN-SENT only after copied_seq
5463 * is initialized. */
5464 tp
->copied_seq
= tp
->rcv_nxt
;
5466 tcp_set_state(sk
, TCP_ESTABLISHED
);
5468 security_inet_conn_established(sk
, skb
);
5470 /* Make sure socket is routed, for correct metrics. */
5471 icsk
->icsk_af_ops
->rebuild_header(sk
);
5473 tcp_init_metrics(sk
);
5475 tcp_init_congestion_control(sk
);
5477 /* Prevent spurious tcp_cwnd_restart() on first data
5480 tp
->lsndtime
= tcp_time_stamp
;
5482 tcp_init_buffer_space(sk
);
5484 if (sock_flag(sk
, SOCK_KEEPOPEN
))
5485 inet_csk_reset_keepalive_timer(sk
, keepalive_time_when(tp
));
5487 if (!tp
->rx_opt
.snd_wscale
)
5488 __tcp_fast_path_on(tp
, tp
->snd_wnd
);
5492 if (!sock_flag(sk
, SOCK_DEAD
)) {
5493 sk
->sk_state_change(sk
);
5494 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_OUT
);
5497 if (sk
->sk_write_pending
||
5498 icsk
->icsk_accept_queue
.rskq_defer_accept
||
5499 icsk
->icsk_ack
.pingpong
) {
5500 /* Save one ACK. Data will be ready after
5501 * several ticks, if write_pending is set.
5503 * It may be deleted, but with this feature tcpdumps
5504 * look so _wonderfully_ clever, that I was not able
5505 * to stand against the temptation 8) --ANK
5507 inet_csk_schedule_ack(sk
);
5508 icsk
->icsk_ack
.lrcvtime
= tcp_time_stamp
;
5509 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
5510 tcp_incr_quickack(sk
);
5511 tcp_enter_quickack_mode(sk
);
5512 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_DACK
,
5513 TCP_DELACK_MAX
, TCP_RTO_MAX
);
5524 /* No ACK in the segment */
5528 * "If the RST bit is set
5530 * Otherwise (no ACK) drop the segment and return."
5533 goto discard_and_undo
;
5537 if (tp
->rx_opt
.ts_recent_stamp
&& tp
->rx_opt
.saw_tstamp
&&
5538 tcp_paws_reject(&tp
->rx_opt
, 0))
5539 goto discard_and_undo
;
5542 /* We see SYN without ACK. It is attempt of
5543 * simultaneous connect with crossed SYNs.
5544 * Particularly, it can be connect to self.
5546 tcp_set_state(sk
, TCP_SYN_RECV
);
5548 if (tp
->rx_opt
.saw_tstamp
) {
5549 tp
->rx_opt
.tstamp_ok
= 1;
5550 tcp_store_ts_recent(tp
);
5551 tp
->tcp_header_len
=
5552 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5554 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5557 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5558 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5560 /* RFC1323: The window in SYN & SYN/ACK segments is
5563 tp
->snd_wnd
= ntohs(th
->window
);
5564 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
5565 tp
->max_window
= tp
->snd_wnd
;
5567 TCP_ECN_rcv_syn(tp
, th
);
5570 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5571 tcp_initialize_rcv_mss(sk
);
5573 tcp_send_synack(sk
);
5575 /* Note, we could accept data and URG from this segment.
5576 * There are no obstacles to make this.
5578 * However, if we ignore data in ACKless segments sometimes,
5579 * we have no reasons to accept it sometimes.
5580 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5581 * is not flawless. So, discard packet for sanity.
5582 * Uncomment this return to process the data.
5589 /* "fifth, if neither of the SYN or RST bits is set then
5590 * drop the segment and return."
5594 tcp_clear_options(&tp
->rx_opt
);
5595 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5599 tcp_clear_options(&tp
->rx_opt
);
5600 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5605 * This function implements the receiving procedure of RFC 793 for
5606 * all states except ESTABLISHED and TIME_WAIT.
5607 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5608 * address independent.
5611 int tcp_rcv_state_process(struct sock
*sk
, struct sk_buff
*skb
,
5612 struct tcphdr
*th
, unsigned len
)
5614 struct tcp_sock
*tp
= tcp_sk(sk
);
5615 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5619 tp
->rx_opt
.saw_tstamp
= 0;
5621 switch (sk
->sk_state
) {
5633 if (icsk
->icsk_af_ops
->conn_request(sk
, skb
) < 0)
5636 /* Now we have several options: In theory there is
5637 * nothing else in the frame. KA9Q has an option to
5638 * send data with the syn, BSD accepts data with the
5639 * syn up to the [to be] advertised window and
5640 * Solaris 2.1 gives you a protocol error. For now
5641 * we just ignore it, that fits the spec precisely
5642 * and avoids incompatibilities. It would be nice in
5643 * future to drop through and process the data.
5645 * Now that TTCP is starting to be used we ought to
5647 * But, this leaves one open to an easy denial of
5648 * service attack, and SYN cookies can't defend
5649 * against this problem. So, we drop the data
5650 * in the interest of security over speed unless
5651 * it's still in use.
5659 queued
= tcp_rcv_synsent_state_process(sk
, skb
, th
, len
);
5663 /* Do step6 onward by hand. */
5664 tcp_urg(sk
, skb
, th
);
5666 tcp_data_snd_check(sk
);
5670 res
= tcp_validate_incoming(sk
, skb
, th
, 0);
5674 /* step 5: check the ACK field */
5676 int acceptable
= tcp_ack(sk
, skb
, FLAG_SLOWPATH
) > 0;
5678 switch (sk
->sk_state
) {
5681 tp
->copied_seq
= tp
->rcv_nxt
;
5683 tcp_set_state(sk
, TCP_ESTABLISHED
);
5684 sk
->sk_state_change(sk
);
5686 /* Note, that this wakeup is only for marginal
5687 * crossed SYN case. Passively open sockets
5688 * are not waked up, because sk->sk_sleep ==
5689 * NULL and sk->sk_socket == NULL.
5693 SOCK_WAKE_IO
, POLL_OUT
);
5695 tp
->snd_una
= TCP_SKB_CB(skb
)->ack_seq
;
5696 tp
->snd_wnd
= ntohs(th
->window
) <<
5697 tp
->rx_opt
.snd_wscale
;
5698 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
5700 /* tcp_ack considers this ACK as duplicate
5701 * and does not calculate rtt.
5704 tcp_ack_update_rtt(sk
, 0, 0);
5706 if (tp
->rx_opt
.tstamp_ok
)
5707 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5709 /* Make sure socket is routed, for
5712 icsk
->icsk_af_ops
->rebuild_header(sk
);
5714 tcp_init_metrics(sk
);
5716 tcp_init_congestion_control(sk
);
5718 /* Prevent spurious tcp_cwnd_restart() on
5719 * first data packet.
5721 tp
->lsndtime
= tcp_time_stamp
;
5724 tcp_initialize_rcv_mss(sk
);
5725 tcp_init_buffer_space(sk
);
5726 tcp_fast_path_on(tp
);
5733 if (tp
->snd_una
== tp
->write_seq
) {
5734 tcp_set_state(sk
, TCP_FIN_WAIT2
);
5735 sk
->sk_shutdown
|= SEND_SHUTDOWN
;
5736 dst_confirm(sk
->sk_dst_cache
);
5738 if (!sock_flag(sk
, SOCK_DEAD
))
5739 /* Wake up lingering close() */
5740 sk
->sk_state_change(sk
);
5744 if (tp
->linger2
< 0 ||
5745 (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
5746 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
))) {
5748 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
5752 tmo
= tcp_fin_time(sk
);
5753 if (tmo
> TCP_TIMEWAIT_LEN
) {
5754 inet_csk_reset_keepalive_timer(sk
, tmo
- TCP_TIMEWAIT_LEN
);
5755 } else if (th
->fin
|| sock_owned_by_user(sk
)) {
5756 /* Bad case. We could lose such FIN otherwise.
5757 * It is not a big problem, but it looks confusing
5758 * and not so rare event. We still can lose it now,
5759 * if it spins in bh_lock_sock(), but it is really
5762 inet_csk_reset_keepalive_timer(sk
, tmo
);
5764 tcp_time_wait(sk
, TCP_FIN_WAIT2
, tmo
);
5772 if (tp
->snd_una
== tp
->write_seq
) {
5773 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
5779 if (tp
->snd_una
== tp
->write_seq
) {
5780 tcp_update_metrics(sk
);
5789 /* step 6: check the URG bit */
5790 tcp_urg(sk
, skb
, th
);
5792 /* step 7: process the segment text */
5793 switch (sk
->sk_state
) {
5794 case TCP_CLOSE_WAIT
:
5797 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
5801 /* RFC 793 says to queue data in these states,
5802 * RFC 1122 says we MUST send a reset.
5803 * BSD 4.4 also does reset.
5805 if (sk
->sk_shutdown
& RCV_SHUTDOWN
) {
5806 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
5807 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
)) {
5808 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
5814 case TCP_ESTABLISHED
:
5815 tcp_data_queue(sk
, skb
);
5820 /* tcp_data could move socket to TIME-WAIT */
5821 if (sk
->sk_state
!= TCP_CLOSE
) {
5822 tcp_data_snd_check(sk
);
5823 tcp_ack_snd_check(sk
);
5833 EXPORT_SYMBOL(sysctl_tcp_ecn
);
5834 EXPORT_SYMBOL(sysctl_tcp_reordering
);
5835 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale
);
5836 EXPORT_SYMBOL(tcp_parse_options
);
5837 #ifdef CONFIG_TCP_MD5SIG
5838 EXPORT_SYMBOL(tcp_parse_md5sig_option
);
5840 EXPORT_SYMBOL(tcp_rcv_established
);
5841 EXPORT_SYMBOL(tcp_rcv_state_process
);
5842 EXPORT_SYMBOL(tcp_initialize_rcv_mss
);