vmalloc: walk vmap_areas by sorted list instead of rb_next()
[linux/fpc-iii.git] / arch / blackfin / kernel / perf_event.c
blobe47d19ae3e0634bc582eff8bf984e76c4b76bab2
1 /*
2 * Blackfin performance counters
4 * Copyright 2011 Analog Devices Inc.
6 * Ripped from SuperH version:
8 * Copyright (C) 2009 Paul Mundt
10 * Heavily based on the x86 and PowerPC implementations.
12 * x86:
13 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
14 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
15 * Copyright (C) 2009 Jaswinder Singh Rajput
16 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
17 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
18 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
20 * ppc:
21 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
23 * Licensed under the GPL-2 or later.
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/init.h>
29 #include <linux/perf_event.h>
30 #include <asm/bfin_pfmon.h>
33 * We have two counters, and each counter can support an event type.
34 * The 'o' is PFCNTx=1 and 's' is PFCNTx=0
36 * 0x04 o pc invariant branches
37 * 0x06 o mispredicted branches
38 * 0x09 o predicted branches taken
39 * 0x0B o EXCPT insn
40 * 0x0C o CSYNC/SSYNC insn
41 * 0x0D o Insns committed
42 * 0x0E o Interrupts taken
43 * 0x0F o Misaligned address exceptions
44 * 0x80 o Code memory fetches stalled due to DMA
45 * 0x83 o 64bit insn fetches delivered
46 * 0x9A o data cache fills (bank a)
47 * 0x9B o data cache fills (bank b)
48 * 0x9C o data cache lines evicted (bank a)
49 * 0x9D o data cache lines evicted (bank b)
50 * 0x9E o data cache high priority fills
51 * 0x9F o data cache low priority fills
52 * 0x00 s loop 0 iterations
53 * 0x01 s loop 1 iterations
54 * 0x0A s CSYNC/SSYNC stalls
55 * 0x10 s DAG read/after write hazards
56 * 0x13 s RAW data hazards
57 * 0x81 s code TAG stalls
58 * 0x82 s code fill stalls
59 * 0x90 s processor to memory stalls
60 * 0x91 s data memory stalls not hidden by 0x90
61 * 0x92 s data store buffer full stalls
62 * 0x93 s data memory write buffer full stalls due to high->low priority
63 * 0x95 s data memory fill buffer stalls
64 * 0x96 s data TAG collision stalls
65 * 0x97 s data collision stalls
66 * 0x98 s data stalls
67 * 0x99 s data stalls sent to processor
70 static const int event_map[] = {
71 /* use CYCLES cpu register */
72 [PERF_COUNT_HW_CPU_CYCLES] = -1,
73 [PERF_COUNT_HW_INSTRUCTIONS] = 0x0D,
74 [PERF_COUNT_HW_CACHE_REFERENCES] = -1,
75 [PERF_COUNT_HW_CACHE_MISSES] = 0x83,
76 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x09,
77 [PERF_COUNT_HW_BRANCH_MISSES] = 0x06,
78 [PERF_COUNT_HW_BUS_CYCLES] = -1,
81 #define C(x) PERF_COUNT_HW_CACHE_##x
83 static const int cache_events[PERF_COUNT_HW_CACHE_MAX]
84 [PERF_COUNT_HW_CACHE_OP_MAX]
85 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
87 [C(L1D)] = { /* Data bank A */
88 [C(OP_READ)] = {
89 [C(RESULT_ACCESS)] = 0,
90 [C(RESULT_MISS) ] = 0x9A,
92 [C(OP_WRITE)] = {
93 [C(RESULT_ACCESS)] = 0,
94 [C(RESULT_MISS) ] = 0,
96 [C(OP_PREFETCH)] = {
97 [C(RESULT_ACCESS)] = 0,
98 [C(RESULT_MISS) ] = 0,
102 [C(L1I)] = {
103 [C(OP_READ)] = {
104 [C(RESULT_ACCESS)] = 0,
105 [C(RESULT_MISS) ] = 0x83,
107 [C(OP_WRITE)] = {
108 [C(RESULT_ACCESS)] = -1,
109 [C(RESULT_MISS) ] = -1,
111 [C(OP_PREFETCH)] = {
112 [C(RESULT_ACCESS)] = 0,
113 [C(RESULT_MISS) ] = 0,
117 [C(LL)] = {
118 [C(OP_READ)] = {
119 [C(RESULT_ACCESS)] = -1,
120 [C(RESULT_MISS) ] = -1,
122 [C(OP_WRITE)] = {
123 [C(RESULT_ACCESS)] = -1,
124 [C(RESULT_MISS) ] = -1,
126 [C(OP_PREFETCH)] = {
127 [C(RESULT_ACCESS)] = -1,
128 [C(RESULT_MISS) ] = -1,
132 [C(DTLB)] = {
133 [C(OP_READ)] = {
134 [C(RESULT_ACCESS)] = -1,
135 [C(RESULT_MISS) ] = -1,
137 [C(OP_WRITE)] = {
138 [C(RESULT_ACCESS)] = -1,
139 [C(RESULT_MISS) ] = -1,
141 [C(OP_PREFETCH)] = {
142 [C(RESULT_ACCESS)] = -1,
143 [C(RESULT_MISS) ] = -1,
147 [C(ITLB)] = {
148 [C(OP_READ)] = {
149 [C(RESULT_ACCESS)] = -1,
150 [C(RESULT_MISS) ] = -1,
152 [C(OP_WRITE)] = {
153 [C(RESULT_ACCESS)] = -1,
154 [C(RESULT_MISS) ] = -1,
156 [C(OP_PREFETCH)] = {
157 [C(RESULT_ACCESS)] = -1,
158 [C(RESULT_MISS) ] = -1,
162 [C(BPU)] = {
163 [C(OP_READ)] = {
164 [C(RESULT_ACCESS)] = -1,
165 [C(RESULT_MISS) ] = -1,
167 [C(OP_WRITE)] = {
168 [C(RESULT_ACCESS)] = -1,
169 [C(RESULT_MISS) ] = -1,
171 [C(OP_PREFETCH)] = {
172 [C(RESULT_ACCESS)] = -1,
173 [C(RESULT_MISS) ] = -1,
178 const char *perf_pmu_name(void)
180 return "bfin";
182 EXPORT_SYMBOL(perf_pmu_name);
184 int perf_num_counters(void)
186 return ARRAY_SIZE(event_map);
188 EXPORT_SYMBOL(perf_num_counters);
190 static u64 bfin_pfmon_read(int idx)
192 return bfin_read32(PFCNTR0 + (idx * 4));
195 static void bfin_pfmon_disable(struct hw_perf_event *hwc, int idx)
197 bfin_write_PFCTL(bfin_read_PFCTL() & ~PFCEN(idx, PFCEN_MASK));
200 static void bfin_pfmon_enable(struct hw_perf_event *hwc, int idx)
202 u32 val, mask;
204 val = PFPWR;
205 if (idx) {
206 mask = ~(PFCNT1 | PFMON1 | PFCEN1 | PEMUSW1);
207 /* The packed config is for event0, so shift it to event1 slots */
208 val |= (hwc->config << (PFMON1_P - PFMON0_P));
209 val |= (hwc->config & PFCNT0) << (PFCNT1_P - PFCNT0_P);
210 bfin_write_PFCNTR1(0);
211 } else {
212 mask = ~(PFCNT0 | PFMON0 | PFCEN0 | PEMUSW0);
213 val |= hwc->config;
214 bfin_write_PFCNTR0(0);
217 bfin_write_PFCTL((bfin_read_PFCTL() & mask) | val);
220 static void bfin_pfmon_disable_all(void)
222 bfin_write_PFCTL(bfin_read_PFCTL() & ~PFPWR);
225 static void bfin_pfmon_enable_all(void)
227 bfin_write_PFCTL(bfin_read_PFCTL() | PFPWR);
230 struct cpu_hw_events {
231 struct perf_event *events[MAX_HWEVENTS];
232 unsigned long used_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
234 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
236 static int hw_perf_cache_event(int config, int *evp)
238 unsigned long type, op, result;
239 int ev;
241 /* unpack config */
242 type = config & 0xff;
243 op = (config >> 8) & 0xff;
244 result = (config >> 16) & 0xff;
246 if (type >= PERF_COUNT_HW_CACHE_MAX ||
247 op >= PERF_COUNT_HW_CACHE_OP_MAX ||
248 result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
249 return -EINVAL;
251 ev = cache_events[type][op][result];
252 if (ev == 0)
253 return -EOPNOTSUPP;
254 if (ev == -1)
255 return -EINVAL;
256 *evp = ev;
257 return 0;
260 static void bfin_perf_event_update(struct perf_event *event,
261 struct hw_perf_event *hwc, int idx)
263 u64 prev_raw_count, new_raw_count;
264 s64 delta;
265 int shift = 0;
268 * Depending on the counter configuration, they may or may not
269 * be chained, in which case the previous counter value can be
270 * updated underneath us if the lower-half overflows.
272 * Our tactic to handle this is to first atomically read and
273 * exchange a new raw count - then add that new-prev delta
274 * count to the generic counter atomically.
276 * As there is no interrupt associated with the overflow events,
277 * this is the simplest approach for maintaining consistency.
279 again:
280 prev_raw_count = local64_read(&hwc->prev_count);
281 new_raw_count = bfin_pfmon_read(idx);
283 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
284 new_raw_count) != prev_raw_count)
285 goto again;
288 * Now we have the new raw value and have updated the prev
289 * timestamp already. We can now calculate the elapsed delta
290 * (counter-)time and add that to the generic counter.
292 * Careful, not all hw sign-extends above the physical width
293 * of the count.
295 delta = (new_raw_count << shift) - (prev_raw_count << shift);
296 delta >>= shift;
298 local64_add(delta, &event->count);
301 static void bfin_pmu_stop(struct perf_event *event, int flags)
303 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
304 struct hw_perf_event *hwc = &event->hw;
305 int idx = hwc->idx;
307 if (!(event->hw.state & PERF_HES_STOPPED)) {
308 bfin_pfmon_disable(hwc, idx);
309 cpuc->events[idx] = NULL;
310 event->hw.state |= PERF_HES_STOPPED;
313 if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) {
314 bfin_perf_event_update(event, &event->hw, idx);
315 event->hw.state |= PERF_HES_UPTODATE;
319 static void bfin_pmu_start(struct perf_event *event, int flags)
321 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
322 struct hw_perf_event *hwc = &event->hw;
323 int idx = hwc->idx;
325 if (WARN_ON_ONCE(idx == -1))
326 return;
328 if (flags & PERF_EF_RELOAD)
329 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
331 cpuc->events[idx] = event;
332 event->hw.state = 0;
333 bfin_pfmon_enable(hwc, idx);
336 static void bfin_pmu_del(struct perf_event *event, int flags)
338 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
340 bfin_pmu_stop(event, PERF_EF_UPDATE);
341 __clear_bit(event->hw.idx, cpuc->used_mask);
343 perf_event_update_userpage(event);
346 static int bfin_pmu_add(struct perf_event *event, int flags)
348 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
349 struct hw_perf_event *hwc = &event->hw;
350 int idx = hwc->idx;
351 int ret = -EAGAIN;
353 perf_pmu_disable(event->pmu);
355 if (__test_and_set_bit(idx, cpuc->used_mask)) {
356 idx = find_first_zero_bit(cpuc->used_mask, MAX_HWEVENTS);
357 if (idx == MAX_HWEVENTS)
358 goto out;
360 __set_bit(idx, cpuc->used_mask);
361 hwc->idx = idx;
364 bfin_pfmon_disable(hwc, idx);
366 event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
367 if (flags & PERF_EF_START)
368 bfin_pmu_start(event, PERF_EF_RELOAD);
370 perf_event_update_userpage(event);
371 ret = 0;
372 out:
373 perf_pmu_enable(event->pmu);
374 return ret;
377 static void bfin_pmu_read(struct perf_event *event)
379 bfin_perf_event_update(event, &event->hw, event->hw.idx);
382 static int bfin_pmu_event_init(struct perf_event *event)
384 struct perf_event_attr *attr = &event->attr;
385 struct hw_perf_event *hwc = &event->hw;
386 int config = -1;
387 int ret;
389 if (attr->exclude_hv || attr->exclude_idle)
390 return -EPERM;
393 * All of the on-chip counters are "limited", in that they have
394 * no interrupts, and are therefore unable to do sampling without
395 * further work and timer assistance.
397 if (hwc->sample_period)
398 return -EINVAL;
400 ret = 0;
401 switch (attr->type) {
402 case PERF_TYPE_RAW:
403 config = PFMON(0, attr->config & PFMON_MASK) |
404 PFCNT(0, !(attr->config & 0x100));
405 break;
406 case PERF_TYPE_HW_CACHE:
407 ret = hw_perf_cache_event(attr->config, &config);
408 break;
409 case PERF_TYPE_HARDWARE:
410 if (attr->config >= ARRAY_SIZE(event_map))
411 return -EINVAL;
413 config = event_map[attr->config];
414 break;
417 if (config == -1)
418 return -EINVAL;
420 if (!attr->exclude_kernel)
421 config |= PFCEN(0, PFCEN_ENABLE_SUPV);
422 if (!attr->exclude_user)
423 config |= PFCEN(0, PFCEN_ENABLE_USER);
425 hwc->config |= config;
427 return ret;
430 static void bfin_pmu_enable(struct pmu *pmu)
432 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
433 struct perf_event *event;
434 struct hw_perf_event *hwc;
435 int i;
437 for (i = 0; i < MAX_HWEVENTS; ++i) {
438 event = cpuc->events[i];
439 if (!event)
440 continue;
441 hwc = &event->hw;
442 bfin_pfmon_enable(hwc, hwc->idx);
445 bfin_pfmon_enable_all();
448 static void bfin_pmu_disable(struct pmu *pmu)
450 bfin_pfmon_disable_all();
453 static struct pmu pmu = {
454 .pmu_enable = bfin_pmu_enable,
455 .pmu_disable = bfin_pmu_disable,
456 .event_init = bfin_pmu_event_init,
457 .add = bfin_pmu_add,
458 .del = bfin_pmu_del,
459 .start = bfin_pmu_start,
460 .stop = bfin_pmu_stop,
461 .read = bfin_pmu_read,
464 static void bfin_pmu_setup(int cpu)
466 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
468 memset(cpuhw, 0, sizeof(struct cpu_hw_events));
471 static int __cpuinit
472 bfin_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
474 unsigned int cpu = (long)hcpu;
476 switch (action & ~CPU_TASKS_FROZEN) {
477 case CPU_UP_PREPARE:
478 bfin_write_PFCTL(0);
479 bfin_pmu_setup(cpu);
480 break;
482 default:
483 break;
486 return NOTIFY_OK;
489 static int __init bfin_pmu_init(void)
491 int ret;
493 ret = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
494 if (!ret)
495 perf_cpu_notifier(bfin_pmu_notifier);
497 return ret;
499 early_initcall(bfin_pmu_init);