vmalloc: walk vmap_areas by sorted list instead of rb_next()
[linux/fpc-iii.git] / arch / tile / mm / fault.c
blob84ce7abbf5afb80c5d82648244349bf7d746a9c0
1 /*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
14 * From i386 code copyright (C) 1995 Linus Torvalds
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/errno.h>
21 #include <linux/string.h>
22 #include <linux/types.h>
23 #include <linux/ptrace.h>
24 #include <linux/mman.h>
25 #include <linux/mm.h>
26 #include <linux/smp.h>
27 #include <linux/interrupt.h>
28 #include <linux/init.h>
29 #include <linux/tty.h>
30 #include <linux/vt_kern.h> /* For unblank_screen() */
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/kprobes.h>
34 #include <linux/hugetlb.h>
35 #include <linux/syscalls.h>
36 #include <linux/uaccess.h>
38 #include <asm/pgalloc.h>
39 #include <asm/sections.h>
40 #include <asm/traps.h>
41 #include <asm/syscalls.h>
43 #include <arch/interrupts.h>
45 static noinline void force_sig_info_fault(const char *type, int si_signo,
46 int si_code, unsigned long address,
47 int fault_num,
48 struct task_struct *tsk,
49 struct pt_regs *regs)
51 siginfo_t info;
53 if (unlikely(tsk->pid < 2)) {
54 panic("Signal %d (code %d) at %#lx sent to %s!",
55 si_signo, si_code & 0xffff, address,
56 is_idle_task(tsk) ? "the idle task" : "init");
59 info.si_signo = si_signo;
60 info.si_errno = 0;
61 info.si_code = si_code;
62 info.si_addr = (void __user *)address;
63 info.si_trapno = fault_num;
64 trace_unhandled_signal(type, regs, address, si_signo);
65 force_sig_info(si_signo, &info, tsk);
68 #ifndef __tilegx__
70 * Synthesize the fault a PL0 process would get by doing a word-load of
71 * an unaligned address or a high kernel address.
73 SYSCALL_DEFINE2(cmpxchg_badaddr, unsigned long, address,
74 struct pt_regs *, regs)
76 if (address >= PAGE_OFFSET)
77 force_sig_info_fault("atomic segfault", SIGSEGV, SEGV_MAPERR,
78 address, INT_DTLB_MISS, current, regs);
79 else
80 force_sig_info_fault("atomic alignment fault", SIGBUS,
81 BUS_ADRALN, address,
82 INT_UNALIGN_DATA, current, regs);
85 * Adjust pc to point at the actual instruction, which is unusual
86 * for syscalls normally, but is appropriate when we are claiming
87 * that a syscall swint1 caused a page fault or bus error.
89 regs->pc -= 8;
92 * Mark this as a caller-save interrupt, like a normal page fault,
93 * so that when we go through the signal handler path we will
94 * properly restore r0, r1, and r2 for the signal handler arguments.
96 regs->flags |= PT_FLAGS_CALLER_SAVES;
98 return 0;
100 #endif
102 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
104 unsigned index = pgd_index(address);
105 pgd_t *pgd_k;
106 pud_t *pud, *pud_k;
107 pmd_t *pmd, *pmd_k;
109 pgd += index;
110 pgd_k = init_mm.pgd + index;
112 if (!pgd_present(*pgd_k))
113 return NULL;
115 pud = pud_offset(pgd, address);
116 pud_k = pud_offset(pgd_k, address);
117 if (!pud_present(*pud_k))
118 return NULL;
120 pmd = pmd_offset(pud, address);
121 pmd_k = pmd_offset(pud_k, address);
122 if (!pmd_present(*pmd_k))
123 return NULL;
124 if (!pmd_present(*pmd)) {
125 set_pmd(pmd, *pmd_k);
126 arch_flush_lazy_mmu_mode();
127 } else
128 BUG_ON(pmd_ptfn(*pmd) != pmd_ptfn(*pmd_k));
129 return pmd_k;
133 * Handle a fault on the vmalloc area.
135 static inline int vmalloc_fault(pgd_t *pgd, unsigned long address)
137 pmd_t *pmd_k;
138 pte_t *pte_k;
140 /* Make sure we are in vmalloc area */
141 if (!(address >= VMALLOC_START && address < VMALLOC_END))
142 return -1;
145 * Synchronize this task's top level page-table
146 * with the 'reference' page table.
148 pmd_k = vmalloc_sync_one(pgd, address);
149 if (!pmd_k)
150 return -1;
151 if (pmd_huge(*pmd_k))
152 return 0; /* support TILE huge_vmap() API */
153 pte_k = pte_offset_kernel(pmd_k, address);
154 if (!pte_present(*pte_k))
155 return -1;
156 return 0;
159 /* Wait until this PTE has completed migration. */
160 static void wait_for_migration(pte_t *pte)
162 if (pte_migrating(*pte)) {
164 * Wait until the migrater fixes up this pte.
165 * We scale the loop count by the clock rate so we'll wait for
166 * a few seconds here.
168 int retries = 0;
169 int bound = get_clock_rate();
170 while (pte_migrating(*pte)) {
171 barrier();
172 if (++retries > bound)
173 panic("Hit migrating PTE (%#llx) and"
174 " page PFN %#lx still migrating",
175 pte->val, pte_pfn(*pte));
181 * It's not generally safe to use "current" to get the page table pointer,
182 * since we might be running an oprofile interrupt in the middle of a
183 * task switch.
185 static pgd_t *get_current_pgd(void)
187 HV_Context ctx = hv_inquire_context();
188 unsigned long pgd_pfn = ctx.page_table >> PAGE_SHIFT;
189 struct page *pgd_page = pfn_to_page(pgd_pfn);
190 BUG_ON(PageHighMem(pgd_page));
191 return (pgd_t *) __va(ctx.page_table);
195 * We can receive a page fault from a migrating PTE at any time.
196 * Handle it by just waiting until the fault resolves.
198 * It's also possible to get a migrating kernel PTE that resolves
199 * itself during the downcall from hypervisor to Linux. We just check
200 * here to see if the PTE seems valid, and if so we retry it.
202 * NOTE! We MUST NOT take any locks for this case. We may be in an
203 * interrupt or a critical region, and must do as little as possible.
204 * Similarly, we can't use atomic ops here, since we may be handling a
205 * fault caused by an atomic op access.
207 * If we find a migrating PTE while we're in an NMI context, and we're
208 * at a PC that has a registered exception handler, we don't wait,
209 * since this thread may (e.g.) have been interrupted while migrating
210 * its own stack, which would then cause us to self-deadlock.
212 static int handle_migrating_pte(pgd_t *pgd, int fault_num,
213 unsigned long address, unsigned long pc,
214 int is_kernel_mode, int write)
216 pud_t *pud;
217 pmd_t *pmd;
218 pte_t *pte;
219 pte_t pteval;
221 if (pgd_addr_invalid(address))
222 return 0;
224 pgd += pgd_index(address);
225 pud = pud_offset(pgd, address);
226 if (!pud || !pud_present(*pud))
227 return 0;
228 pmd = pmd_offset(pud, address);
229 if (!pmd || !pmd_present(*pmd))
230 return 0;
231 pte = pmd_huge_page(*pmd) ? ((pte_t *)pmd) :
232 pte_offset_kernel(pmd, address);
233 pteval = *pte;
234 if (pte_migrating(pteval)) {
235 if (in_nmi() && search_exception_tables(pc))
236 return 0;
237 wait_for_migration(pte);
238 return 1;
241 if (!is_kernel_mode || !pte_present(pteval))
242 return 0;
243 if (fault_num == INT_ITLB_MISS) {
244 if (pte_exec(pteval))
245 return 1;
246 } else if (write) {
247 if (pte_write(pteval))
248 return 1;
249 } else {
250 if (pte_read(pteval))
251 return 1;
254 return 0;
258 * This routine is responsible for faulting in user pages.
259 * It passes the work off to one of the appropriate routines.
260 * It returns true if the fault was successfully handled.
262 static int handle_page_fault(struct pt_regs *regs,
263 int fault_num,
264 int is_page_fault,
265 unsigned long address,
266 int write)
268 struct task_struct *tsk;
269 struct mm_struct *mm;
270 struct vm_area_struct *vma;
271 unsigned long stack_offset;
272 int fault;
273 int si_code;
274 int is_kernel_mode;
275 pgd_t *pgd;
276 unsigned int flags;
278 /* on TILE, protection faults are always writes */
279 if (!is_page_fault)
280 write = 1;
282 flags = (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE |
283 (write ? FAULT_FLAG_WRITE : 0));
285 is_kernel_mode = (EX1_PL(regs->ex1) != USER_PL);
287 tsk = validate_current();
290 * Check to see if we might be overwriting the stack, and bail
291 * out if so. The page fault code is a relatively likely
292 * place to get trapped in an infinite regress, and once we
293 * overwrite the whole stack, it becomes very hard to recover.
295 stack_offset = stack_pointer & (THREAD_SIZE-1);
296 if (stack_offset < THREAD_SIZE / 8) {
297 pr_alert("Potential stack overrun: sp %#lx\n",
298 stack_pointer);
299 show_regs(regs);
300 pr_alert("Killing current process %d/%s\n",
301 tsk->pid, tsk->comm);
302 do_group_exit(SIGKILL);
306 * Early on, we need to check for migrating PTE entries;
307 * see homecache.c. If we find a migrating PTE, we wait until
308 * the backing page claims to be done migrating, then we proceed.
309 * For kernel PTEs, we rewrite the PTE and return and retry.
310 * Otherwise, we treat the fault like a normal "no PTE" fault,
311 * rather than trying to patch up the existing PTE.
313 pgd = get_current_pgd();
314 if (handle_migrating_pte(pgd, fault_num, address, regs->pc,
315 is_kernel_mode, write))
316 return 1;
318 si_code = SEGV_MAPERR;
321 * We fault-in kernel-space virtual memory on-demand. The
322 * 'reference' page table is init_mm.pgd.
324 * NOTE! We MUST NOT take any locks for this case. We may
325 * be in an interrupt or a critical region, and should
326 * only copy the information from the master page table,
327 * nothing more.
329 * This verifies that the fault happens in kernel space
330 * and that the fault was not a protection fault.
332 if (unlikely(address >= TASK_SIZE &&
333 !is_arch_mappable_range(address, 0))) {
334 if (is_kernel_mode && is_page_fault &&
335 vmalloc_fault(pgd, address) >= 0)
336 return 1;
338 * Don't take the mm semaphore here. If we fixup a prefetch
339 * fault we could otherwise deadlock.
341 mm = NULL; /* happy compiler */
342 vma = NULL;
343 goto bad_area_nosemaphore;
347 * If we're trying to touch user-space addresses, we must
348 * be either at PL0, or else with interrupts enabled in the
349 * kernel, so either way we can re-enable interrupts here
350 * unless we are doing atomic access to user space with
351 * interrupts disabled.
353 if (!(regs->flags & PT_FLAGS_DISABLE_IRQ))
354 local_irq_enable();
356 mm = tsk->mm;
359 * If we're in an interrupt, have no user context or are running in an
360 * atomic region then we must not take the fault.
362 if (in_atomic() || !mm) {
363 vma = NULL; /* happy compiler */
364 goto bad_area_nosemaphore;
368 * When running in the kernel we expect faults to occur only to
369 * addresses in user space. All other faults represent errors in the
370 * kernel and should generate an OOPS. Unfortunately, in the case of an
371 * erroneous fault occurring in a code path which already holds mmap_sem
372 * we will deadlock attempting to validate the fault against the
373 * address space. Luckily the kernel only validly references user
374 * space from well defined areas of code, which are listed in the
375 * exceptions table.
377 * As the vast majority of faults will be valid we will only perform
378 * the source reference check when there is a possibility of a deadlock.
379 * Attempt to lock the address space, if we cannot we then validate the
380 * source. If this is invalid we can skip the address space check,
381 * thus avoiding the deadlock.
383 if (!down_read_trylock(&mm->mmap_sem)) {
384 if (is_kernel_mode &&
385 !search_exception_tables(regs->pc)) {
386 vma = NULL; /* happy compiler */
387 goto bad_area_nosemaphore;
390 retry:
391 down_read(&mm->mmap_sem);
394 vma = find_vma(mm, address);
395 if (!vma)
396 goto bad_area;
397 if (vma->vm_start <= address)
398 goto good_area;
399 if (!(vma->vm_flags & VM_GROWSDOWN))
400 goto bad_area;
401 if (regs->sp < PAGE_OFFSET) {
403 * accessing the stack below sp is always a bug.
405 if (address < regs->sp)
406 goto bad_area;
408 if (expand_stack(vma, address))
409 goto bad_area;
412 * Ok, we have a good vm_area for this memory access, so
413 * we can handle it..
415 good_area:
416 si_code = SEGV_ACCERR;
417 if (fault_num == INT_ITLB_MISS) {
418 if (!(vma->vm_flags & VM_EXEC))
419 goto bad_area;
420 } else if (write) {
421 #ifdef TEST_VERIFY_AREA
422 if (!is_page_fault && regs->cs == KERNEL_CS)
423 pr_err("WP fault at "REGFMT"\n", regs->eip);
424 #endif
425 if (!(vma->vm_flags & VM_WRITE))
426 goto bad_area;
427 } else {
428 if (!is_page_fault || !(vma->vm_flags & VM_READ))
429 goto bad_area;
432 survive:
434 * If for any reason at all we couldn't handle the fault,
435 * make sure we exit gracefully rather than endlessly redo
436 * the fault.
438 fault = handle_mm_fault(mm, vma, address, flags);
440 if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
441 return 0;
443 if (unlikely(fault & VM_FAULT_ERROR)) {
444 if (fault & VM_FAULT_OOM)
445 goto out_of_memory;
446 else if (fault & VM_FAULT_SIGBUS)
447 goto do_sigbus;
448 BUG();
450 if (flags & FAULT_FLAG_ALLOW_RETRY) {
451 if (fault & VM_FAULT_MAJOR)
452 tsk->maj_flt++;
453 else
454 tsk->min_flt++;
455 if (fault & VM_FAULT_RETRY) {
456 flags &= ~FAULT_FLAG_ALLOW_RETRY;
459 * No need to up_read(&mm->mmap_sem) as we would
460 * have already released it in __lock_page_or_retry
461 * in mm/filemap.c.
463 goto retry;
467 #if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
469 * If this was an asynchronous fault,
470 * restart the appropriate engine.
472 switch (fault_num) {
473 #if CHIP_HAS_TILE_DMA()
474 case INT_DMATLB_MISS:
475 case INT_DMATLB_MISS_DWNCL:
476 case INT_DMATLB_ACCESS:
477 case INT_DMATLB_ACCESS_DWNCL:
478 __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
479 break;
480 #endif
481 #if CHIP_HAS_SN_PROC()
482 case INT_SNITLB_MISS:
483 case INT_SNITLB_MISS_DWNCL:
484 __insn_mtspr(SPR_SNCTL,
485 __insn_mfspr(SPR_SNCTL) &
486 ~SPR_SNCTL__FRZPROC_MASK);
487 break;
488 #endif
490 #endif
492 up_read(&mm->mmap_sem);
493 return 1;
496 * Something tried to access memory that isn't in our memory map..
497 * Fix it, but check if it's kernel or user first..
499 bad_area:
500 up_read(&mm->mmap_sem);
502 bad_area_nosemaphore:
503 /* User mode accesses just cause a SIGSEGV */
504 if (!is_kernel_mode) {
506 * It's possible to have interrupts off here.
508 local_irq_enable();
510 force_sig_info_fault("segfault", SIGSEGV, si_code, address,
511 fault_num, tsk, regs);
512 return 0;
515 no_context:
516 /* Are we prepared to handle this kernel fault? */
517 if (fixup_exception(regs))
518 return 0;
521 * Oops. The kernel tried to access some bad page. We'll have to
522 * terminate things with extreme prejudice.
525 bust_spinlocks(1);
527 /* FIXME: no lookup_address() yet */
528 #ifdef SUPPORT_LOOKUP_ADDRESS
529 if (fault_num == INT_ITLB_MISS) {
530 pte_t *pte = lookup_address(address);
532 if (pte && pte_present(*pte) && !pte_exec_kernel(*pte))
533 pr_crit("kernel tried to execute"
534 " non-executable page - exploit attempt?"
535 " (uid: %d)\n", current->uid);
537 #endif
538 if (address < PAGE_SIZE)
539 pr_alert("Unable to handle kernel NULL pointer dereference\n");
540 else
541 pr_alert("Unable to handle kernel paging request\n");
542 pr_alert(" at virtual address "REGFMT", pc "REGFMT"\n",
543 address, regs->pc);
545 show_regs(regs);
547 if (unlikely(tsk->pid < 2)) {
548 panic("Kernel page fault running %s!",
549 is_idle_task(tsk) ? "the idle task" : "init");
553 * More FIXME: we should probably copy the i386 here and
554 * implement a generic die() routine. Not today.
556 #ifdef SUPPORT_DIE
557 die("Oops", regs);
558 #endif
559 bust_spinlocks(1);
561 do_group_exit(SIGKILL);
564 * We ran out of memory, or some other thing happened to us that made
565 * us unable to handle the page fault gracefully.
567 out_of_memory:
568 up_read(&mm->mmap_sem);
569 if (is_global_init(tsk)) {
570 yield();
571 down_read(&mm->mmap_sem);
572 goto survive;
574 pr_alert("VM: killing process %s\n", tsk->comm);
575 if (!is_kernel_mode)
576 do_group_exit(SIGKILL);
577 goto no_context;
579 do_sigbus:
580 up_read(&mm->mmap_sem);
582 /* Kernel mode? Handle exceptions or die */
583 if (is_kernel_mode)
584 goto no_context;
586 force_sig_info_fault("bus error", SIGBUS, BUS_ADRERR, address,
587 fault_num, tsk, regs);
588 return 0;
591 #ifndef __tilegx__
593 /* We must release ICS before panicking or we won't get anywhere. */
594 #define ics_panic(fmt, ...) do { \
595 __insn_mtspr(SPR_INTERRUPT_CRITICAL_SECTION, 0); \
596 panic(fmt, __VA_ARGS__); \
597 } while (0)
600 * When we take an ITLB or DTLB fault or access violation in the
601 * supervisor while the critical section bit is set, the hypervisor is
602 * reluctant to write new values into the EX_CONTEXT_K_x registers,
603 * since that might indicate we have not yet squirreled the SPR
604 * contents away and can thus safely take a recursive interrupt.
605 * Accordingly, the hypervisor passes us the PC via SYSTEM_SAVE_K_2.
607 * Note that this routine is called before homecache_tlb_defer_enter(),
608 * which means that we can properly unlock any atomics that might
609 * be used there (good), but also means we must be very sensitive
610 * to not touch any data structures that might be located in memory
611 * that could migrate, as we could be entering the kernel on a dataplane
612 * cpu that has been deferring kernel TLB updates. This means, for
613 * example, that we can't migrate init_mm or its pgd.
615 struct intvec_state do_page_fault_ics(struct pt_regs *regs, int fault_num,
616 unsigned long address,
617 unsigned long info)
619 unsigned long pc = info & ~1;
620 int write = info & 1;
621 pgd_t *pgd = get_current_pgd();
623 /* Retval is 1 at first since we will handle the fault fully. */
624 struct intvec_state state = {
625 do_page_fault, fault_num, address, write, 1
628 /* Validate that we are plausibly in the right routine. */
629 if ((pc & 0x7) != 0 || pc < PAGE_OFFSET ||
630 (fault_num != INT_DTLB_MISS &&
631 fault_num != INT_DTLB_ACCESS)) {
632 unsigned long old_pc = regs->pc;
633 regs->pc = pc;
634 ics_panic("Bad ICS page fault args:"
635 " old PC %#lx, fault %d/%d at %#lx\n",
636 old_pc, fault_num, write, address);
639 /* We might be faulting on a vmalloc page, so check that first. */
640 if (fault_num != INT_DTLB_ACCESS && vmalloc_fault(pgd, address) >= 0)
641 return state;
644 * If we faulted with ICS set in sys_cmpxchg, we are providing
645 * a user syscall service that should generate a signal on
646 * fault. We didn't set up a kernel stack on initial entry to
647 * sys_cmpxchg, but instead had one set up by the fault, which
648 * (because sys_cmpxchg never releases ICS) came to us via the
649 * SYSTEM_SAVE_K_2 mechanism, and thus EX_CONTEXT_K_[01] are
650 * still referencing the original user code. We release the
651 * atomic lock and rewrite pt_regs so that it appears that we
652 * came from user-space directly, and after we finish the
653 * fault we'll go back to user space and re-issue the swint.
654 * This way the backtrace information is correct if we need to
655 * emit a stack dump at any point while handling this.
657 * Must match register use in sys_cmpxchg().
659 if (pc >= (unsigned long) sys_cmpxchg &&
660 pc < (unsigned long) __sys_cmpxchg_end) {
661 #ifdef CONFIG_SMP
662 /* Don't unlock before we could have locked. */
663 if (pc >= (unsigned long)__sys_cmpxchg_grab_lock) {
664 int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]);
665 __atomic_fault_unlock(lock_ptr);
667 #endif
668 regs->sp = regs->regs[27];
672 * We can also fault in the atomic assembly, in which
673 * case we use the exception table to do the first-level fixup.
674 * We may re-fixup again in the real fault handler if it
675 * turns out the faulting address is just bad, and not,
676 * for example, migrating.
678 else if (pc >= (unsigned long) __start_atomic_asm_code &&
679 pc < (unsigned long) __end_atomic_asm_code) {
680 const struct exception_table_entry *fixup;
681 #ifdef CONFIG_SMP
682 /* Unlock the atomic lock. */
683 int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]);
684 __atomic_fault_unlock(lock_ptr);
685 #endif
686 fixup = search_exception_tables(pc);
687 if (!fixup)
688 ics_panic("ICS atomic fault not in table:"
689 " PC %#lx, fault %d", pc, fault_num);
690 regs->pc = fixup->fixup;
691 regs->ex1 = PL_ICS_EX1(KERNEL_PL, 0);
695 * Now that we have released the atomic lock (if necessary),
696 * it's safe to spin if the PTE that caused the fault was migrating.
698 if (fault_num == INT_DTLB_ACCESS)
699 write = 1;
700 if (handle_migrating_pte(pgd, fault_num, address, pc, 1, write))
701 return state;
703 /* Return zero so that we continue on with normal fault handling. */
704 state.retval = 0;
705 return state;
708 #endif /* !__tilegx__ */
711 * This routine handles page faults. It determines the address, and the
712 * problem, and then passes it handle_page_fault() for normal DTLB and
713 * ITLB issues, and for DMA or SN processor faults when we are in user
714 * space. For the latter, if we're in kernel mode, we just save the
715 * interrupt away appropriately and return immediately. We can't do
716 * page faults for user code while in kernel mode.
718 void do_page_fault(struct pt_regs *regs, int fault_num,
719 unsigned long address, unsigned long write)
721 int is_page_fault;
723 /* This case should have been handled by do_page_fault_ics(). */
724 BUG_ON(write & ~1);
726 #if CHIP_HAS_TILE_DMA()
728 * If it's a DMA fault, suspend the transfer while we're
729 * handling the miss; we'll restart after it's handled. If we
730 * don't suspend, it's possible that this process could swap
731 * out and back in, and restart the engine since the DMA is
732 * still 'running'.
734 if (fault_num == INT_DMATLB_MISS ||
735 fault_num == INT_DMATLB_ACCESS ||
736 fault_num == INT_DMATLB_MISS_DWNCL ||
737 fault_num == INT_DMATLB_ACCESS_DWNCL) {
738 __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK);
739 while (__insn_mfspr(SPR_DMA_USER_STATUS) &
740 SPR_DMA_STATUS__BUSY_MASK)
743 #endif
745 /* Validate fault num and decide if this is a first-time page fault. */
746 switch (fault_num) {
747 case INT_ITLB_MISS:
748 case INT_DTLB_MISS:
749 #if CHIP_HAS_TILE_DMA()
750 case INT_DMATLB_MISS:
751 case INT_DMATLB_MISS_DWNCL:
752 #endif
753 #if CHIP_HAS_SN_PROC()
754 case INT_SNITLB_MISS:
755 case INT_SNITLB_MISS_DWNCL:
756 #endif
757 is_page_fault = 1;
758 break;
760 case INT_DTLB_ACCESS:
761 #if CHIP_HAS_TILE_DMA()
762 case INT_DMATLB_ACCESS:
763 case INT_DMATLB_ACCESS_DWNCL:
764 #endif
765 is_page_fault = 0;
766 break;
768 default:
769 panic("Bad fault number %d in do_page_fault", fault_num);
772 #if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
773 if (EX1_PL(regs->ex1) != USER_PL) {
774 struct async_tlb *async;
775 switch (fault_num) {
776 #if CHIP_HAS_TILE_DMA()
777 case INT_DMATLB_MISS:
778 case INT_DMATLB_ACCESS:
779 case INT_DMATLB_MISS_DWNCL:
780 case INT_DMATLB_ACCESS_DWNCL:
781 async = &current->thread.dma_async_tlb;
782 break;
783 #endif
784 #if CHIP_HAS_SN_PROC()
785 case INT_SNITLB_MISS:
786 case INT_SNITLB_MISS_DWNCL:
787 async = &current->thread.sn_async_tlb;
788 break;
789 #endif
790 default:
791 async = NULL;
793 if (async) {
796 * No vmalloc check required, so we can allow
797 * interrupts immediately at this point.
799 local_irq_enable();
801 set_thread_flag(TIF_ASYNC_TLB);
802 if (async->fault_num != 0) {
803 panic("Second async fault %d;"
804 " old fault was %d (%#lx/%ld)",
805 fault_num, async->fault_num,
806 address, write);
808 BUG_ON(fault_num == 0);
809 async->fault_num = fault_num;
810 async->is_fault = is_page_fault;
811 async->is_write = write;
812 async->address = address;
813 return;
816 #endif
818 handle_page_fault(regs, fault_num, is_page_fault, address, write);
822 #if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
824 * Check an async_tlb structure to see if a deferred fault is waiting,
825 * and if so pass it to the page-fault code.
827 static void handle_async_page_fault(struct pt_regs *regs,
828 struct async_tlb *async)
830 if (async->fault_num) {
832 * Clear async->fault_num before calling the page-fault
833 * handler so that if we re-interrupt before returning
834 * from the function we have somewhere to put the
835 * information from the new interrupt.
837 int fault_num = async->fault_num;
838 async->fault_num = 0;
839 handle_page_fault(regs, fault_num, async->is_fault,
840 async->address, async->is_write);
845 * This routine effectively re-issues asynchronous page faults
846 * when we are returning to user space.
848 void do_async_page_fault(struct pt_regs *regs)
851 * Clear thread flag early. If we re-interrupt while processing
852 * code here, we will reset it and recall this routine before
853 * returning to user space.
855 clear_thread_flag(TIF_ASYNC_TLB);
857 #if CHIP_HAS_TILE_DMA()
858 handle_async_page_fault(regs, &current->thread.dma_async_tlb);
859 #endif
860 #if CHIP_HAS_SN_PROC()
861 handle_async_page_fault(regs, &current->thread.sn_async_tlb);
862 #endif
864 #endif /* CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC() */
867 void vmalloc_sync_all(void)
869 #ifdef __tilegx__
870 /* Currently all L1 kernel pmd's are static and shared. */
871 BUG_ON(pgd_index(VMALLOC_END) != pgd_index(VMALLOC_START));
872 #else
874 * Note that races in the updates of insync and start aren't
875 * problematic: insync can only get set bits added, and updates to
876 * start are only improving performance (without affecting correctness
877 * if undone).
879 static DECLARE_BITMAP(insync, PTRS_PER_PGD);
880 static unsigned long start = PAGE_OFFSET;
881 unsigned long address;
883 BUILD_BUG_ON(PAGE_OFFSET & ~PGDIR_MASK);
884 for (address = start; address >= PAGE_OFFSET; address += PGDIR_SIZE) {
885 if (!test_bit(pgd_index(address), insync)) {
886 unsigned long flags;
887 struct list_head *pos;
889 spin_lock_irqsave(&pgd_lock, flags);
890 list_for_each(pos, &pgd_list)
891 if (!vmalloc_sync_one(list_to_pgd(pos),
892 address)) {
893 /* Must be at first entry in list. */
894 BUG_ON(pos != pgd_list.next);
895 break;
897 spin_unlock_irqrestore(&pgd_lock, flags);
898 if (pos != pgd_list.next)
899 set_bit(pgd_index(address), insync);
901 if (address == start && test_bit(pgd_index(address), insync))
902 start = address + PGDIR_SIZE;
904 #endif