2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright 2010 Tilera Corporation. All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation, version 2.
9 * This program is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12 * NON INFRINGEMENT. See the GNU General Public License for
16 #include <linux/module.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/errno.h>
21 #include <linux/string.h>
22 #include <linux/types.h>
23 #include <linux/ptrace.h>
24 #include <linux/mman.h>
26 #include <linux/hugetlb.h>
27 #include <linux/swap.h>
28 #include <linux/smp.h>
29 #include <linux/init.h>
30 #include <linux/highmem.h>
31 #include <linux/pagemap.h>
32 #include <linux/poison.h>
33 #include <linux/bootmem.h>
34 #include <linux/slab.h>
35 #include <linux/proc_fs.h>
36 #include <linux/efi.h>
37 #include <linux/memory_hotplug.h>
38 #include <linux/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/processor.h>
41 #include <asm/pgtable.h>
42 #include <asm/pgalloc.h>
44 #include <asm/fixmap.h>
46 #include <asm/tlbflush.h>
47 #include <asm/sections.h>
48 #include <asm/setup.h>
49 #include <asm/homecache.h>
50 #include <hv/hypervisor.h>
51 #include <arch/chip.h>
55 #define clear_pgd(pmdptr) (*(pmdptr) = hv_pte(0))
58 unsigned long VMALLOC_RESERVE
= CONFIG_VMALLOC_RESERVE
;
59 EXPORT_SYMBOL(VMALLOC_RESERVE
);
62 /* Create an L2 page table */
63 static pte_t
* __init
alloc_pte(void)
65 return __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE
, HV_PAGE_TABLE_ALIGN
, 0);
69 * L2 page tables per controller. We allocate these all at once from
70 * the bootmem allocator and store them here. This saves on kernel L2
71 * page table memory, compared to allocating a full 64K page per L2
72 * page table, and also means that in cases where we use huge pages,
73 * we are guaranteed to later be able to shatter those huge pages and
74 * switch to using these page tables instead, without requiring
75 * further allocation. Each l2_ptes[] entry points to the first page
76 * table for the first hugepage-size piece of memory on the
77 * controller; other page tables are just indexed directly, i.e. the
78 * L2 page tables are contiguous in memory for each controller.
80 static pte_t
*l2_ptes
[MAX_NUMNODES
];
81 static int num_l2_ptes
[MAX_NUMNODES
];
83 static void init_prealloc_ptes(int node
, int pages
)
85 BUG_ON(pages
& (PTRS_PER_PTE
- 1));
87 num_l2_ptes
[node
] = pages
;
88 l2_ptes
[node
] = __alloc_bootmem(pages
* sizeof(pte_t
),
89 HV_PAGE_TABLE_ALIGN
, 0);
93 pte_t
*get_prealloc_pte(unsigned long pfn
)
95 int node
= pfn_to_nid(pfn
);
96 pfn
&= ~(-1UL << (NR_PA_HIGHBIT_SHIFT
- PAGE_SHIFT
));
97 BUG_ON(node
>= MAX_NUMNODES
);
98 BUG_ON(pfn
>= num_l2_ptes
[node
]);
99 return &l2_ptes
[node
][pfn
];
103 * What caching do we expect pages from the heap to have when
104 * they are allocated during bootup? (Once we've installed the
105 * "real" swapper_pg_dir.)
107 static int initial_heap_home(void)
109 #if CHIP_HAS_CBOX_HOME_MAP()
111 return PAGE_HOME_HASH
;
113 return smp_processor_id();
117 * Place a pointer to an L2 page table in a middle page
120 static void __init
assign_pte(pmd_t
*pmd
, pte_t
*page_table
)
122 phys_addr_t pa
= __pa(page_table
);
123 unsigned long l2_ptfn
= pa
>> HV_LOG2_PAGE_TABLE_ALIGN
;
124 pte_t pteval
= hv_pte_set_ptfn(__pgprot(_PAGE_TABLE
), l2_ptfn
);
125 BUG_ON((pa
& (HV_PAGE_TABLE_ALIGN
-1)) != 0);
126 pteval
= pte_set_home(pteval
, initial_heap_home());
127 *(pte_t
*)pmd
= pteval
;
128 if (page_table
!= (pte_t
*)pmd_page_vaddr(*pmd
))
134 static inline pmd_t
*alloc_pmd(void)
136 return __alloc_bootmem(L1_KERNEL_PGTABLE_SIZE
, HV_PAGE_TABLE_ALIGN
, 0);
139 static inline void assign_pmd(pud_t
*pud
, pmd_t
*pmd
)
141 assign_pte((pmd_t
*)pud
, (pte_t
*)pmd
);
144 #endif /* __tilegx__ */
146 /* Replace the given pmd with a full PTE table. */
147 void __init
shatter_pmd(pmd_t
*pmd
)
149 pte_t
*pte
= get_prealloc_pte(pte_pfn(*(pte_t
*)pmd
));
150 assign_pte(pmd
, pte
);
154 static pmd_t
*__init
get_pmd(pgd_t pgtables
[], unsigned long va
)
156 pud_t
*pud
= pud_offset(&pgtables
[pgd_index(va
)], va
);
158 assign_pmd(pud
, alloc_pmd());
159 return pmd_offset(pud
, va
);
162 static pmd_t
*__init
get_pmd(pgd_t pgtables
[], unsigned long va
)
164 return pmd_offset(pud_offset(&pgtables
[pgd_index(va
)], va
), va
);
169 * This function initializes a certain range of kernel virtual memory
170 * with new bootmem page tables, everywhere page tables are missing in
175 * NOTE: The pagetables are allocated contiguous on the physical space
176 * so we can cache the place of the first one and move around without
177 * checking the pgd every time.
179 static void __init
page_table_range_init(unsigned long start
,
180 unsigned long end
, pgd_t
*pgd
)
183 start
= round_down(start
, PMD_SIZE
);
184 end
= round_up(end
, PMD_SIZE
);
185 for (vaddr
= start
; vaddr
< end
; vaddr
+= PMD_SIZE
) {
186 pmd_t
*pmd
= get_pmd(pgd
, vaddr
);
188 assign_pte(pmd
, alloc_pte());
193 #if CHIP_HAS_CBOX_HOME_MAP()
195 static int __initdata ktext_hash
= 1; /* .text pages */
196 static int __initdata kdata_hash
= 1; /* .data and .bss pages */
197 int __write_once hash_default
= 1; /* kernel allocator pages */
198 EXPORT_SYMBOL(hash_default
);
199 int __write_once kstack_hash
= 1; /* if no homecaching, use h4h */
200 #endif /* CHIP_HAS_CBOX_HOME_MAP */
203 * CPUs to use to for striping the pages of kernel data. If hash-for-home
204 * is available, this is only relevant if kcache_hash sets up the
205 * .data and .bss to be page-homed, and we don't want the default mode
206 * of using the full set of kernel cpus for the striping.
208 static __initdata
struct cpumask kdata_mask
;
209 static __initdata
int kdata_arg_seen
;
211 int __write_once kdata_huge
; /* if no homecaching, small pages */
214 /* Combine a generic pgprot_t with cache home to get a cache-aware pgprot. */
215 static pgprot_t __init
construct_pgprot(pgprot_t prot
, int home
)
217 prot
= pte_set_home(prot
, home
);
218 #if CHIP_HAS_CBOX_HOME_MAP()
219 if (home
== PAGE_HOME_IMMUTABLE
) {
221 prot
= hv_pte_set_mode(prot
, HV_PTE_MODE_CACHE_HASH_L3
);
223 prot
= hv_pte_set_mode(prot
, HV_PTE_MODE_CACHE_NO_L3
);
230 * For a given kernel data VA, how should it be cached?
231 * We return the complete pgprot_t with caching bits set.
233 static pgprot_t __init
init_pgprot(ulong address
)
237 enum { CODE_DELTA
= MEM_SV_INTRPT
- PAGE_OFFSET
};
239 #if CHIP_HAS_CBOX_HOME_MAP()
240 /* For kdata=huge, everything is just hash-for-home. */
242 return construct_pgprot(PAGE_KERNEL
, PAGE_HOME_HASH
);
245 /* We map the aliased pages of permanent text inaccessible. */
246 if (address
< (ulong
) _sinittext
- CODE_DELTA
)
250 * We map read-only data non-coherent for performance. We could
251 * use neighborhood caching on TILE64, but it's not clear it's a win.
253 if ((address
>= (ulong
) __start_rodata
&&
254 address
< (ulong
) __end_rodata
) ||
255 address
== (ulong
) empty_zero_page
) {
256 return construct_pgprot(PAGE_KERNEL_RO
, PAGE_HOME_IMMUTABLE
);
260 #if !ATOMIC_LOCKS_FOUND_VIA_TABLE()
261 /* Force the atomic_locks[] array page to be hash-for-home. */
262 if (address
== (ulong
) atomic_locks
)
263 return construct_pgprot(PAGE_KERNEL
, PAGE_HOME_HASH
);
268 * Everything else that isn't data or bss is heap, so mark it
269 * with the initial heap home (hash-for-home, or this cpu). This
270 * includes any addresses after the loaded image and any address before
271 * _einitdata, since we already captured the case of text before
272 * _sinittext, and __pa(einittext) is approximately __pa(sinitdata).
274 * All the LOWMEM pages that we mark this way will get their
275 * struct page homecache properly marked later, in set_page_homes().
276 * The HIGHMEM pages we leave with a default zero for their
277 * homes, but with a zero free_time we don't have to actually
278 * do a flush action the first time we use them, either.
280 if (address
>= (ulong
) _end
|| address
< (ulong
) _einitdata
)
281 return construct_pgprot(PAGE_KERNEL
, initial_heap_home());
283 #if CHIP_HAS_CBOX_HOME_MAP()
284 /* Use hash-for-home if requested for data/bss. */
286 return construct_pgprot(PAGE_KERNEL
, PAGE_HOME_HASH
);
290 * Make the w1data homed like heap to start with, to avoid
291 * making it part of the page-striped data area when we're just
292 * going to convert it to read-only soon anyway.
294 if (address
>= (ulong
)__w1data_begin
&& address
< (ulong
)__w1data_end
)
295 return construct_pgprot(PAGE_KERNEL
, initial_heap_home());
298 * Otherwise we just hand out consecutive cpus. To avoid
299 * requiring this function to hold state, we just walk forward from
300 * _sdata by PAGE_SIZE, skipping the readonly and init data, to reach
301 * the requested address, while walking cpu home around kdata_mask.
302 * This is typically no more than a dozen or so iterations.
304 page
= (((ulong
)__w1data_end
) + PAGE_SIZE
- 1) & PAGE_MASK
;
305 BUG_ON(address
< page
|| address
>= (ulong
)_end
);
306 cpu
= cpumask_first(&kdata_mask
);
307 for (; page
< address
; page
+= PAGE_SIZE
) {
308 if (page
>= (ulong
)&init_thread_union
&&
309 page
< (ulong
)&init_thread_union
+ THREAD_SIZE
)
311 if (page
== (ulong
)empty_zero_page
)
314 #if !ATOMIC_LOCKS_FOUND_VIA_TABLE()
315 if (page
== (ulong
)atomic_locks
)
319 cpu
= cpumask_next(cpu
, &kdata_mask
);
321 cpu
= cpumask_first(&kdata_mask
);
323 return construct_pgprot(PAGE_KERNEL
, cpu
);
327 * This function sets up how we cache the kernel text. If we have
328 * hash-for-home support, normally that is used instead (see the
329 * kcache_hash boot flag for more information). But if we end up
330 * using a page-based caching technique, this option sets up the
331 * details of that. In addition, the "ktext=nocache" option may
332 * always be used to disable local caching of text pages, if desired.
335 static int __initdata ktext_arg_seen
;
336 static int __initdata ktext_small
;
337 static int __initdata ktext_local
;
338 static int __initdata ktext_all
;
339 static int __initdata ktext_nondataplane
;
340 static int __initdata ktext_nocache
;
341 static struct cpumask __initdata ktext_mask
;
343 static int __init
setup_ktext(char *str
)
348 /* If you have a leading "nocache", turn off ktext caching */
349 if (strncmp(str
, "nocache", 7) == 0) {
351 pr_info("ktext: disabling local caching of kernel text\n");
361 /* Default setting on Tile64: use a huge page */
362 if (strcmp(str
, "huge") == 0)
363 pr_info("ktext: using one huge locally cached page\n");
365 /* Pay TLB cost but get no cache benefit: cache small pages locally */
366 else if (strcmp(str
, "local") == 0) {
369 pr_info("ktext: using small pages with local caching\n");
372 /* Neighborhood cache ktext pages on all cpus. */
373 else if (strcmp(str
, "all") == 0) {
376 pr_info("ktext: using maximal caching neighborhood\n");
380 /* Neighborhood ktext pages on specified mask */
381 else if (cpulist_parse(str
, &ktext_mask
) == 0) {
382 char buf
[NR_CPUS
* 5];
383 cpulist_scnprintf(buf
, sizeof(buf
), &ktext_mask
);
384 if (cpumask_weight(&ktext_mask
) > 1) {
386 pr_info("ktext: using caching neighborhood %s "
387 "with small pages\n", buf
);
389 pr_info("ktext: caching on cpu %s with one huge page\n",
400 early_param("ktext", setup_ktext
);
403 static inline pgprot_t
ktext_set_nocache(pgprot_t prot
)
406 prot
= hv_pte_set_nc(prot
);
407 #if CHIP_HAS_NC_AND_NOALLOC_BITS()
409 prot
= hv_pte_set_no_alloc_l2(prot
);
414 /* Temporary page table we use for staging. */
415 static pgd_t pgtables
[PTRS_PER_PGD
]
416 __attribute__((aligned(HV_PAGE_TABLE_ALIGN
)));
419 * This maps the physical memory to kernel virtual address space, a total
420 * of max_low_pfn pages, by creating page tables starting from address
423 * This routine transitions us from using a set of compiled-in large
424 * pages to using some more precise caching, including removing access
425 * to code pages mapped at PAGE_OFFSET (executed only at MEM_SV_START)
426 * marking read-only data as locally cacheable, striping the remaining
427 * .data and .bss across all the available tiles, and removing access
428 * to pages above the top of RAM (thus ensuring a page fault from a bad
429 * virtual address rather than a hypervisor shoot down for accessing
430 * memory outside the assigned limits).
432 static void __init
kernel_physical_mapping_init(pgd_t
*pgd_base
)
434 unsigned long long irqmask
;
435 unsigned long address
, pfn
;
439 const struct cpumask
*my_cpu_mask
= cpumask_of(smp_processor_id());
440 struct cpumask kstripe_mask
;
443 #if CHIP_HAS_CBOX_HOME_MAP()
444 if (ktext_arg_seen
&& ktext_hash
) {
445 pr_warning("warning: \"ktext\" boot argument ignored"
446 " if \"kcache_hash\" sets up text hash-for-home\n");
450 if (kdata_arg_seen
&& kdata_hash
) {
451 pr_warning("warning: \"kdata\" boot argument ignored"
452 " if \"kcache_hash\" sets up data hash-for-home\n");
455 if (kdata_huge
&& !hash_default
) {
456 pr_warning("warning: disabling \"kdata=huge\"; requires"
457 " kcache_hash=all or =allbutstack\n");
463 * Set up a mask for cpus to use for kernel striping.
464 * This is normally all cpus, but minus dataplane cpus if any.
465 * If the dataplane covers the whole chip, we stripe over
466 * the whole chip too.
468 cpumask_copy(&kstripe_mask
, cpu_possible_mask
);
470 kdata_mask
= kstripe_mask
;
472 /* Allocate and fill in L2 page tables */
473 for (i
= 0; i
< MAX_NUMNODES
; ++i
) {
474 #ifdef CONFIG_HIGHMEM
475 unsigned long end_pfn
= node_lowmem_end_pfn
[i
];
477 unsigned long end_pfn
= node_end_pfn
[i
];
479 unsigned long end_huge_pfn
= 0;
481 /* Pre-shatter the last huge page to allow per-cpu pages. */
483 end_huge_pfn
= end_pfn
- (HPAGE_SIZE
>> PAGE_SHIFT
);
485 pfn
= node_start_pfn
[i
];
487 /* Allocate enough memory to hold L2 page tables for node. */
488 init_prealloc_ptes(i
, end_pfn
- pfn
);
490 address
= (unsigned long) pfn_to_kaddr(pfn
);
491 while (pfn
< end_pfn
) {
492 BUG_ON(address
& (HPAGE_SIZE
-1));
493 pmd
= get_pmd(pgtables
, address
);
494 pte
= get_prealloc_pte(pfn
);
495 if (pfn
< end_huge_pfn
) {
496 pgprot_t prot
= init_pgprot(address
);
497 *(pte_t
*)pmd
= pte_mkhuge(pfn_pte(pfn
, prot
));
498 for (pte_ofs
= 0; pte_ofs
< PTRS_PER_PTE
;
499 pfn
++, pte_ofs
++, address
+= PAGE_SIZE
)
500 pte
[pte_ofs
] = pfn_pte(pfn
, prot
);
503 printk(KERN_DEBUG
"pre-shattered huge"
504 " page at %#lx\n", address
);
505 for (pte_ofs
= 0; pte_ofs
< PTRS_PER_PTE
;
506 pfn
++, pte_ofs
++, address
+= PAGE_SIZE
) {
507 pgprot_t prot
= init_pgprot(address
);
508 pte
[pte_ofs
] = pfn_pte(pfn
, prot
);
510 assign_pte(pmd
, pte
);
516 * Set or check ktext_map now that we have cpu_possible_mask
517 * and kstripe_mask to work with.
520 cpumask_copy(&ktext_mask
, cpu_possible_mask
);
521 else if (ktext_nondataplane
)
522 ktext_mask
= kstripe_mask
;
523 else if (!cpumask_empty(&ktext_mask
)) {
524 /* Sanity-check any mask that was requested */
526 cpumask_andnot(&bad
, &ktext_mask
, cpu_possible_mask
);
527 cpumask_and(&ktext_mask
, &ktext_mask
, cpu_possible_mask
);
528 if (!cpumask_empty(&bad
)) {
529 char buf
[NR_CPUS
* 5];
530 cpulist_scnprintf(buf
, sizeof(buf
), &bad
);
531 pr_info("ktext: not using unavailable cpus %s\n", buf
);
533 if (cpumask_empty(&ktext_mask
)) {
534 pr_warning("ktext: no valid cpus; caching on %d.\n",
536 cpumask_copy(&ktext_mask
,
537 cpumask_of(smp_processor_id()));
541 address
= MEM_SV_INTRPT
;
542 pmd
= get_pmd(pgtables
, address
);
543 pfn
= 0; /* code starts at PA 0 */
545 /* Allocate an L2 PTE for the kernel text */
547 pgprot_t prot
= construct_pgprot(PAGE_KERNEL_EXEC
,
548 PAGE_HOME_IMMUTABLE
);
552 prot
= hv_pte_set_mode(prot
,
553 HV_PTE_MODE_UNCACHED
);
555 prot
= hv_pte_set_mode(prot
,
556 HV_PTE_MODE_CACHE_NO_L3
);
558 prot
= hv_pte_set_mode(prot
,
559 HV_PTE_MODE_CACHE_TILE_L3
);
560 cpu
= cpumask_first(&ktext_mask
);
562 prot
= ktext_set_nocache(prot
);
565 BUG_ON(address
!= (unsigned long)_stext
);
567 for (; address
< (unsigned long)_einittext
;
568 pfn
++, address
+= PAGE_SIZE
) {
569 pte_ofs
= pte_index(address
);
572 assign_pte(pmd
++, pte
);
576 prot
= set_remote_cache_cpu(prot
, cpu
);
577 cpu
= cpumask_next(cpu
, &ktext_mask
);
579 cpu
= cpumask_first(&ktext_mask
);
581 pte
[pte_ofs
] = pfn_pte(pfn
, prot
);
584 assign_pte(pmd
, pte
);
586 pte_t pteval
= pfn_pte(0, PAGE_KERNEL_EXEC
);
587 pteval
= pte_mkhuge(pteval
);
588 #if CHIP_HAS_CBOX_HOME_MAP()
590 pteval
= hv_pte_set_mode(pteval
,
591 HV_PTE_MODE_CACHE_HASH_L3
);
592 pteval
= ktext_set_nocache(pteval
);
594 #endif /* CHIP_HAS_CBOX_HOME_MAP() */
595 if (cpumask_weight(&ktext_mask
) == 1) {
596 pteval
= set_remote_cache_cpu(pteval
,
597 cpumask_first(&ktext_mask
));
598 pteval
= hv_pte_set_mode(pteval
,
599 HV_PTE_MODE_CACHE_TILE_L3
);
600 pteval
= ktext_set_nocache(pteval
);
601 } else if (ktext_nocache
)
602 pteval
= hv_pte_set_mode(pteval
,
603 HV_PTE_MODE_UNCACHED
);
605 pteval
= hv_pte_set_mode(pteval
,
606 HV_PTE_MODE_CACHE_NO_L3
);
607 for (; address
< (unsigned long)_einittext
;
608 pfn
+= PFN_DOWN(HPAGE_SIZE
), address
+= HPAGE_SIZE
)
609 *(pte_t
*)(pmd
++) = pfn_pte(pfn
, pteval
);
612 /* Set swapper_pgprot here so it is flushed to memory right away. */
613 swapper_pgprot
= init_pgprot((unsigned long)swapper_pg_dir
);
616 * Since we may be changing the caching of the stack and page
617 * table itself, we invoke an assembly helper to do the
620 * - flush the cache so we start with an empty slate
621 * - install pgtables[] as the real page table
622 * - flush the TLB so the new page table takes effect
624 irqmask
= interrupt_mask_save_mask();
625 interrupt_mask_set_mask(-1ULL);
626 rc
= flush_and_install_context(__pa(pgtables
),
627 init_pgprot((unsigned long)pgtables
),
628 __get_cpu_var(current_asid
),
629 cpumask_bits(my_cpu_mask
));
630 interrupt_mask_restore_mask(irqmask
);
633 /* Copy the page table back to the normal swapper_pg_dir. */
634 memcpy(pgd_base
, pgtables
, sizeof(pgtables
));
635 __install_page_table(pgd_base
, __get_cpu_var(current_asid
),
639 * We just read swapper_pgprot and thus brought it into the cache,
640 * with its new home & caching mode. When we start the other CPUs,
641 * they're going to reference swapper_pgprot via their initial fake
642 * VA-is-PA mappings, which cache everything locally. At that
643 * time, if it's in our cache with a conflicting home, the
644 * simulator's coherence checker will complain. So, flush it out
645 * of our cache; we're not going to ever use it again anyway.
647 __insn_finv(&swapper_pgprot
);
651 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
652 * is valid. The argument is a physical page number.
654 * On Tile, the only valid things for which we can just hand out unchecked
655 * PTEs are the kernel code and data. Anything else might change its
656 * homing with time, and we wouldn't know to adjust the /dev/mem PTEs.
657 * Note that init_thread_union is released to heap soon after boot,
658 * so we include it in the init data.
660 * For TILE-Gx, we might want to consider allowing access to PA
661 * regions corresponding to PCI space, etc.
663 int devmem_is_allowed(unsigned long pagenr
)
665 return pagenr
< kaddr_to_pfn(_end
) &&
666 !(pagenr
>= kaddr_to_pfn(&init_thread_union
) ||
667 pagenr
< kaddr_to_pfn(_einitdata
)) &&
668 !(pagenr
>= kaddr_to_pfn(_sinittext
) ||
669 pagenr
<= kaddr_to_pfn(_einittext
-1));
672 #ifdef CONFIG_HIGHMEM
673 static void __init
permanent_kmaps_init(pgd_t
*pgd_base
)
682 page_table_range_init(vaddr
, vaddr
+ PAGE_SIZE
*LAST_PKMAP
, pgd_base
);
684 pgd
= swapper_pg_dir
+ pgd_index(vaddr
);
685 pud
= pud_offset(pgd
, vaddr
);
686 pmd
= pmd_offset(pud
, vaddr
);
687 pte
= pte_offset_kernel(pmd
, vaddr
);
688 pkmap_page_table
= pte
;
690 #endif /* CONFIG_HIGHMEM */
694 static void __init
init_free_pfn_range(unsigned long start
, unsigned long end
)
697 struct page
*page
= pfn_to_page(start
);
699 for (pfn
= start
; pfn
< end
; ) {
700 /* Optimize by freeing pages in large batches */
701 int order
= __ffs(pfn
);
705 if (order
>= MAX_ORDER
)
708 while (pfn
+ count
> end
) {
712 for (p
= page
, i
= 0; i
< count
; ++i
, ++p
) {
713 __ClearPageReserved(p
);
715 * Hacky direct set to avoid unnecessary
716 * lock take/release for EVERY page here.
718 p
->_count
.counter
= 0;
719 p
->_mapcount
.counter
= -1;
721 init_page_count(page
);
722 __free_pages(page
, order
);
723 totalram_pages
+= count
;
730 static void __init
set_non_bootmem_pages_init(void)
734 unsigned long start
, end
;
735 int nid
= z
->zone_pgdat
->node_id
;
736 #ifdef CONFIG_HIGHMEM
737 int idx
= zone_idx(z
);
740 start
= z
->zone_start_pfn
;
741 end
= start
+ z
->spanned_pages
;
742 start
= max(start
, node_free_pfn
[nid
]);
743 start
= max(start
, max_low_pfn
);
745 #ifdef CONFIG_HIGHMEM
746 if (idx
== ZONE_HIGHMEM
)
747 totalhigh_pages
+= z
->spanned_pages
;
750 unsigned long percpu_pfn
= node_percpu_pfn
[nid
];
751 if (start
< percpu_pfn
&& end
> percpu_pfn
)
755 if (start
<= pci_reserve_start_pfn
&&
756 end
> pci_reserve_start_pfn
) {
757 if (end
> pci_reserve_end_pfn
)
758 init_free_pfn_range(pci_reserve_end_pfn
, end
);
759 end
= pci_reserve_start_pfn
;
762 init_free_pfn_range(start
, end
);
768 * paging_init() sets up the page tables - note that all of lowmem is
769 * already mapped by head.S.
771 void __init
paging_init(void)
776 pgd_t
*pgd_base
= swapper_pg_dir
;
778 kernel_physical_mapping_init(pgd_base
);
781 * Fixed mappings, only the page table structure has to be
782 * created - mappings will be set by set_fixmap():
784 page_table_range_init(fix_to_virt(__end_of_fixed_addresses
- 1),
785 FIXADDR_TOP
, pgd_base
);
787 #ifdef CONFIG_HIGHMEM
788 permanent_kmaps_init(pgd_base
);
793 * Since GX allocates just one pmd_t array worth of vmalloc space,
794 * we go ahead and allocate it statically here, then share it
795 * globally. As a result we don't have to worry about any task
796 * changing init_mm once we get up and running, and there's no
797 * need for e.g. vmalloc_sync_all().
799 BUILD_BUG_ON(pgd_index(VMALLOC_START
) != pgd_index(VMALLOC_END
- 1));
800 pud
= pud_offset(pgd_base
+ pgd_index(VMALLOC_START
), VMALLOC_START
);
801 assign_pmd(pud
, alloc_pmd());
807 * Walk the kernel page tables and derive the page_home() from
808 * the PTEs, so that set_pte() can properly validate the caching
809 * of all PTEs it sees.
811 void __init
set_page_homes(void)
815 static void __init
set_max_mapnr_init(void)
817 #ifdef CONFIG_FLATMEM
818 max_mapnr
= max_low_pfn
;
822 void __init
mem_init(void)
824 int codesize
, datasize
, initsize
;
830 #ifdef CONFIG_FLATMEM
834 #ifdef CONFIG_HIGHMEM
835 /* check that fixmap and pkmap do not overlap */
836 if (PKMAP_ADDR(LAST_PKMAP
-1) >= FIXADDR_START
) {
837 pr_err("fixmap and kmap areas overlap"
838 " - this will crash\n");
839 pr_err("pkstart: %lxh pkend: %lxh fixstart %lxh\n",
840 PKMAP_BASE
, PKMAP_ADDR(LAST_PKMAP
-1),
846 set_max_mapnr_init();
848 /* this will put all bootmem onto the freelists */
849 totalram_pages
+= free_all_bootmem();
852 /* count all remaining LOWMEM and give all HIGHMEM to page allocator */
853 set_non_bootmem_pages_init();
856 codesize
= (unsigned long)&_etext
- (unsigned long)&_text
;
857 datasize
= (unsigned long)&_end
- (unsigned long)&_sdata
;
858 initsize
= (unsigned long)&_einittext
- (unsigned long)&_sinittext
;
859 initsize
+= (unsigned long)&_einitdata
- (unsigned long)&_sinitdata
;
861 pr_info("Memory: %luk/%luk available (%dk kernel code, %dk data, %dk init, %ldk highmem)\n",
862 (unsigned long) nr_free_pages() << (PAGE_SHIFT
-10),
863 num_physpages
<< (PAGE_SHIFT
-10),
867 (unsigned long) (totalhigh_pages
<< (PAGE_SHIFT
-10))
871 * In debug mode, dump some interesting memory mappings.
873 #ifdef CONFIG_HIGHMEM
874 printk(KERN_DEBUG
" KMAP %#lx - %#lx\n",
875 FIXADDR_START
, FIXADDR_TOP
+ PAGE_SIZE
- 1);
876 printk(KERN_DEBUG
" PKMAP %#lx - %#lx\n",
877 PKMAP_BASE
, PKMAP_ADDR(LAST_PKMAP
) - 1);
879 #ifdef CONFIG_HUGEVMAP
880 printk(KERN_DEBUG
" HUGEMAP %#lx - %#lx\n",
881 HUGE_VMAP_BASE
, HUGE_VMAP_END
- 1);
883 printk(KERN_DEBUG
" VMALLOC %#lx - %#lx\n",
884 _VMALLOC_START
, _VMALLOC_END
- 1);
886 for (i
= MAX_NUMNODES
-1; i
>= 0; --i
) {
887 struct pglist_data
*node
= &node_data
[i
];
888 if (node
->node_present_pages
) {
889 unsigned long start
= (unsigned long)
890 pfn_to_kaddr(node
->node_start_pfn
);
891 unsigned long end
= start
+
892 (node
->node_present_pages
<< PAGE_SHIFT
);
893 printk(KERN_DEBUG
" MEM%d %#lx - %#lx\n",
899 for (i
= MAX_NUMNODES
-1; i
>= 0; --i
) {
900 if ((unsigned long)vbase_map
[i
] != -1UL) {
901 printk(KERN_DEBUG
" LOWMEM%d %#lx - %#lx\n",
902 i
, (unsigned long) (vbase_map
[i
]),
903 (unsigned long) (last
-1));
911 * Convert from using one lock for all atomic operations to
914 __init_atomic_per_cpu();
919 * this is for the non-NUMA, single node SMP system case.
920 * Specifically, in the case of x86, we will always add
921 * memory to the highmem for now.
923 #ifndef CONFIG_NEED_MULTIPLE_NODES
924 int arch_add_memory(u64 start
, u64 size
)
926 struct pglist_data
*pgdata
= &contig_page_data
;
927 struct zone
*zone
= pgdata
->node_zones
+ MAX_NR_ZONES
-1;
928 unsigned long start_pfn
= start
>> PAGE_SHIFT
;
929 unsigned long nr_pages
= size
>> PAGE_SHIFT
;
931 return __add_pages(zone
, start_pfn
, nr_pages
);
934 int remove_memory(u64 start
, u64 size
)
940 struct kmem_cache
*pgd_cache
;
942 void __init
pgtable_cache_init(void)
944 pgd_cache
= kmem_cache_create("pgd", SIZEOF_PGD
, SIZEOF_PGD
, 0, NULL
);
946 panic("pgtable_cache_init(): Cannot create pgd cache");
949 #if !CHIP_HAS_COHERENT_LOCAL_CACHE()
951 * The __w1data area holds data that is only written during initialization,
952 * and is read-only and thus freely cacheable thereafter. Fix the page
953 * table entries that cover that region accordingly.
955 static void mark_w1data_ro(void)
957 /* Loop over page table entries */
958 unsigned long addr
= (unsigned long)__w1data_begin
;
959 BUG_ON((addr
& (PAGE_SIZE
-1)) != 0);
960 for (; addr
<= (unsigned long)__w1data_end
- 1; addr
+= PAGE_SIZE
) {
961 unsigned long pfn
= kaddr_to_pfn((void *)addr
);
962 pte_t
*ptep
= virt_to_pte(NULL
, addr
);
963 BUG_ON(pte_huge(*ptep
)); /* not relevant for kdata_huge */
964 set_pte_at(&init_mm
, addr
, ptep
, pfn_pte(pfn
, PAGE_KERNEL_RO
));
969 #ifdef CONFIG_DEBUG_PAGEALLOC
970 static long __write_once initfree
;
972 static long __write_once initfree
= 1;
975 /* Select whether to free (1) or mark unusable (0) the __init pages. */
976 static int __init
set_initfree(char *str
)
979 if (strict_strtol(str
, 0, &val
) == 0) {
981 pr_info("initfree: %s free init pages\n",
982 initfree
? "will" : "won't");
986 __setup("initfree=", set_initfree
);
988 static void free_init_pages(char *what
, unsigned long begin
, unsigned long end
)
990 unsigned long addr
= (unsigned long) begin
;
992 if (kdata_huge
&& !initfree
) {
993 pr_warning("Warning: ignoring initfree=0:"
994 " incompatible with kdata=huge\n");
997 end
= (end
+ PAGE_SIZE
- 1) & PAGE_MASK
;
998 local_flush_tlb_pages(NULL
, begin
, PAGE_SIZE
, end
- begin
);
999 for (addr
= begin
; addr
< end
; addr
+= PAGE_SIZE
) {
1001 * Note we just reset the home here directly in the
1002 * page table. We know this is safe because our caller
1003 * just flushed the caches on all the other cpus,
1004 * and they won't be touching any of these pages.
1006 int pfn
= kaddr_to_pfn((void *)addr
);
1007 struct page
*page
= pfn_to_page(pfn
);
1008 pte_t
*ptep
= virt_to_pte(NULL
, addr
);
1011 * If debugging page accesses then do not free
1012 * this memory but mark them not present - any
1013 * buggy init-section access will create a
1014 * kernel page fault:
1016 pte_clear(&init_mm
, addr
, ptep
);
1019 __ClearPageReserved(page
);
1020 init_page_count(page
);
1021 if (pte_huge(*ptep
))
1022 BUG_ON(!kdata_huge
);
1024 set_pte_at(&init_mm
, addr
, ptep
,
1025 pfn_pte(pfn
, PAGE_KERNEL
));
1026 memset((void *)addr
, POISON_FREE_INITMEM
, PAGE_SIZE
);
1030 pr_info("Freeing %s: %ldk freed\n", what
, (end
- begin
) >> 10);
1033 void free_initmem(void)
1035 const unsigned long text_delta
= MEM_SV_INTRPT
- PAGE_OFFSET
;
1038 * Evict the dirty initdata on the boot cpu, evict the w1data
1039 * wherever it's homed, and evict all the init code everywhere.
1040 * We are guaranteed that no one will touch the init pages any
1041 * more, and although other cpus may be touching the w1data,
1042 * we only actually change the caching on tile64, which won't
1043 * be keeping local copies in the other tiles' caches anyway.
1045 homecache_evict(&cpu_cacheable_map
);
1047 /* Free the data pages that we won't use again after init. */
1048 free_init_pages("unused kernel data",
1049 (unsigned long)_sinitdata
,
1050 (unsigned long)_einitdata
);
1053 * Free the pages mapped from 0xc0000000 that correspond to code
1054 * pages from MEM_SV_INTRPT that we won't use again after init.
1056 free_init_pages("unused kernel text",
1057 (unsigned long)_sinittext
- text_delta
,
1058 (unsigned long)_einittext
- text_delta
);
1060 #if !CHIP_HAS_COHERENT_LOCAL_CACHE()
1062 * Upgrade the .w1data section to globally cached.
1063 * We don't do this on tilepro, since the cache architecture
1064 * pretty much makes it irrelevant, and in any case we end
1065 * up having racing issues with other tiles that may touch
1066 * the data after we flush the cache but before we update
1067 * the PTEs and flush the TLBs, causing sharer shootdowns
1068 * later. Even though this is to clean data, it seems like
1069 * an unnecessary complication.
1074 /* Do a global TLB flush so everyone sees the changes. */