kmem: add slab-specific documentation about the kmem controller
[linux/fpc-iii.git] / mm / hugetlb.c
blobe5318c7793ae9f58bc7d21f0d2392d9d71b31a87
1 /*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <asm/tlb.h>
29 #include <linux/io.h>
30 #include <linux/hugetlb.h>
31 #include <linux/hugetlb_cgroup.h>
32 #include <linux/node.h>
33 #include "internal.h"
35 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
36 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
37 unsigned long hugepages_treat_as_movable;
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
41 struct hstate hstates[HUGE_MAX_HSTATE];
43 __initdata LIST_HEAD(huge_boot_pages);
45 /* for command line parsing */
46 static struct hstate * __initdata parsed_hstate;
47 static unsigned long __initdata default_hstate_max_huge_pages;
48 static unsigned long __initdata default_hstate_size;
51 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
53 DEFINE_SPINLOCK(hugetlb_lock);
55 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
57 bool free = (spool->count == 0) && (spool->used_hpages == 0);
59 spin_unlock(&spool->lock);
61 /* If no pages are used, and no other handles to the subpool
62 * remain, free the subpool the subpool remain */
63 if (free)
64 kfree(spool);
67 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
69 struct hugepage_subpool *spool;
71 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
72 if (!spool)
73 return NULL;
75 spin_lock_init(&spool->lock);
76 spool->count = 1;
77 spool->max_hpages = nr_blocks;
78 spool->used_hpages = 0;
80 return spool;
83 void hugepage_put_subpool(struct hugepage_subpool *spool)
85 spin_lock(&spool->lock);
86 BUG_ON(!spool->count);
87 spool->count--;
88 unlock_or_release_subpool(spool);
91 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
92 long delta)
94 int ret = 0;
96 if (!spool)
97 return 0;
99 spin_lock(&spool->lock);
100 if ((spool->used_hpages + delta) <= spool->max_hpages) {
101 spool->used_hpages += delta;
102 } else {
103 ret = -ENOMEM;
105 spin_unlock(&spool->lock);
107 return ret;
110 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
111 long delta)
113 if (!spool)
114 return;
116 spin_lock(&spool->lock);
117 spool->used_hpages -= delta;
118 /* If hugetlbfs_put_super couldn't free spool due to
119 * an outstanding quota reference, free it now. */
120 unlock_or_release_subpool(spool);
123 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
125 return HUGETLBFS_SB(inode->i_sb)->spool;
128 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
130 return subpool_inode(vma->vm_file->f_dentry->d_inode);
134 * Region tracking -- allows tracking of reservations and instantiated pages
135 * across the pages in a mapping.
137 * The region data structures are protected by a combination of the mmap_sem
138 * and the hugetlb_instantion_mutex. To access or modify a region the caller
139 * must either hold the mmap_sem for write, or the mmap_sem for read and
140 * the hugetlb_instantiation mutex:
142 * down_write(&mm->mmap_sem);
143 * or
144 * down_read(&mm->mmap_sem);
145 * mutex_lock(&hugetlb_instantiation_mutex);
147 struct file_region {
148 struct list_head link;
149 long from;
150 long to;
153 static long region_add(struct list_head *head, long f, long t)
155 struct file_region *rg, *nrg, *trg;
157 /* Locate the region we are either in or before. */
158 list_for_each_entry(rg, head, link)
159 if (f <= rg->to)
160 break;
162 /* Round our left edge to the current segment if it encloses us. */
163 if (f > rg->from)
164 f = rg->from;
166 /* Check for and consume any regions we now overlap with. */
167 nrg = rg;
168 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
169 if (&rg->link == head)
170 break;
171 if (rg->from > t)
172 break;
174 /* If this area reaches higher then extend our area to
175 * include it completely. If this is not the first area
176 * which we intend to reuse, free it. */
177 if (rg->to > t)
178 t = rg->to;
179 if (rg != nrg) {
180 list_del(&rg->link);
181 kfree(rg);
184 nrg->from = f;
185 nrg->to = t;
186 return 0;
189 static long region_chg(struct list_head *head, long f, long t)
191 struct file_region *rg, *nrg;
192 long chg = 0;
194 /* Locate the region we are before or in. */
195 list_for_each_entry(rg, head, link)
196 if (f <= rg->to)
197 break;
199 /* If we are below the current region then a new region is required.
200 * Subtle, allocate a new region at the position but make it zero
201 * size such that we can guarantee to record the reservation. */
202 if (&rg->link == head || t < rg->from) {
203 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
204 if (!nrg)
205 return -ENOMEM;
206 nrg->from = f;
207 nrg->to = f;
208 INIT_LIST_HEAD(&nrg->link);
209 list_add(&nrg->link, rg->link.prev);
211 return t - f;
214 /* Round our left edge to the current segment if it encloses us. */
215 if (f > rg->from)
216 f = rg->from;
217 chg = t - f;
219 /* Check for and consume any regions we now overlap with. */
220 list_for_each_entry(rg, rg->link.prev, link) {
221 if (&rg->link == head)
222 break;
223 if (rg->from > t)
224 return chg;
226 /* We overlap with this area, if it extends further than
227 * us then we must extend ourselves. Account for its
228 * existing reservation. */
229 if (rg->to > t) {
230 chg += rg->to - t;
231 t = rg->to;
233 chg -= rg->to - rg->from;
235 return chg;
238 static long region_truncate(struct list_head *head, long end)
240 struct file_region *rg, *trg;
241 long chg = 0;
243 /* Locate the region we are either in or before. */
244 list_for_each_entry(rg, head, link)
245 if (end <= rg->to)
246 break;
247 if (&rg->link == head)
248 return 0;
250 /* If we are in the middle of a region then adjust it. */
251 if (end > rg->from) {
252 chg = rg->to - end;
253 rg->to = end;
254 rg = list_entry(rg->link.next, typeof(*rg), link);
257 /* Drop any remaining regions. */
258 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
259 if (&rg->link == head)
260 break;
261 chg += rg->to - rg->from;
262 list_del(&rg->link);
263 kfree(rg);
265 return chg;
268 static long region_count(struct list_head *head, long f, long t)
270 struct file_region *rg;
271 long chg = 0;
273 /* Locate each segment we overlap with, and count that overlap. */
274 list_for_each_entry(rg, head, link) {
275 long seg_from;
276 long seg_to;
278 if (rg->to <= f)
279 continue;
280 if (rg->from >= t)
281 break;
283 seg_from = max(rg->from, f);
284 seg_to = min(rg->to, t);
286 chg += seg_to - seg_from;
289 return chg;
293 * Convert the address within this vma to the page offset within
294 * the mapping, in pagecache page units; huge pages here.
296 static pgoff_t vma_hugecache_offset(struct hstate *h,
297 struct vm_area_struct *vma, unsigned long address)
299 return ((address - vma->vm_start) >> huge_page_shift(h)) +
300 (vma->vm_pgoff >> huge_page_order(h));
303 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
304 unsigned long address)
306 return vma_hugecache_offset(hstate_vma(vma), vma, address);
310 * Return the size of the pages allocated when backing a VMA. In the majority
311 * cases this will be same size as used by the page table entries.
313 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
315 struct hstate *hstate;
317 if (!is_vm_hugetlb_page(vma))
318 return PAGE_SIZE;
320 hstate = hstate_vma(vma);
322 return 1UL << (hstate->order + PAGE_SHIFT);
324 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
327 * Return the page size being used by the MMU to back a VMA. In the majority
328 * of cases, the page size used by the kernel matches the MMU size. On
329 * architectures where it differs, an architecture-specific version of this
330 * function is required.
332 #ifndef vma_mmu_pagesize
333 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
335 return vma_kernel_pagesize(vma);
337 #endif
340 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
341 * bits of the reservation map pointer, which are always clear due to
342 * alignment.
344 #define HPAGE_RESV_OWNER (1UL << 0)
345 #define HPAGE_RESV_UNMAPPED (1UL << 1)
346 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
349 * These helpers are used to track how many pages are reserved for
350 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
351 * is guaranteed to have their future faults succeed.
353 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
354 * the reserve counters are updated with the hugetlb_lock held. It is safe
355 * to reset the VMA at fork() time as it is not in use yet and there is no
356 * chance of the global counters getting corrupted as a result of the values.
358 * The private mapping reservation is represented in a subtly different
359 * manner to a shared mapping. A shared mapping has a region map associated
360 * with the underlying file, this region map represents the backing file
361 * pages which have ever had a reservation assigned which this persists even
362 * after the page is instantiated. A private mapping has a region map
363 * associated with the original mmap which is attached to all VMAs which
364 * reference it, this region map represents those offsets which have consumed
365 * reservation ie. where pages have been instantiated.
367 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
369 return (unsigned long)vma->vm_private_data;
372 static void set_vma_private_data(struct vm_area_struct *vma,
373 unsigned long value)
375 vma->vm_private_data = (void *)value;
378 struct resv_map {
379 struct kref refs;
380 struct list_head regions;
383 static struct resv_map *resv_map_alloc(void)
385 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
386 if (!resv_map)
387 return NULL;
389 kref_init(&resv_map->refs);
390 INIT_LIST_HEAD(&resv_map->regions);
392 return resv_map;
395 static void resv_map_release(struct kref *ref)
397 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
399 /* Clear out any active regions before we release the map. */
400 region_truncate(&resv_map->regions, 0);
401 kfree(resv_map);
404 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
406 VM_BUG_ON(!is_vm_hugetlb_page(vma));
407 if (!(vma->vm_flags & VM_MAYSHARE))
408 return (struct resv_map *)(get_vma_private_data(vma) &
409 ~HPAGE_RESV_MASK);
410 return NULL;
413 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
415 VM_BUG_ON(!is_vm_hugetlb_page(vma));
416 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
418 set_vma_private_data(vma, (get_vma_private_data(vma) &
419 HPAGE_RESV_MASK) | (unsigned long)map);
422 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
424 VM_BUG_ON(!is_vm_hugetlb_page(vma));
425 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
427 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
430 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
432 VM_BUG_ON(!is_vm_hugetlb_page(vma));
434 return (get_vma_private_data(vma) & flag) != 0;
437 /* Decrement the reserved pages in the hugepage pool by one */
438 static void decrement_hugepage_resv_vma(struct hstate *h,
439 struct vm_area_struct *vma)
441 if (vma->vm_flags & VM_NORESERVE)
442 return;
444 if (vma->vm_flags & VM_MAYSHARE) {
445 /* Shared mappings always use reserves */
446 h->resv_huge_pages--;
447 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
449 * Only the process that called mmap() has reserves for
450 * private mappings.
452 h->resv_huge_pages--;
456 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
457 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
459 VM_BUG_ON(!is_vm_hugetlb_page(vma));
460 if (!(vma->vm_flags & VM_MAYSHARE))
461 vma->vm_private_data = (void *)0;
464 /* Returns true if the VMA has associated reserve pages */
465 static int vma_has_reserves(struct vm_area_struct *vma)
467 if (vma->vm_flags & VM_MAYSHARE)
468 return 1;
469 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
470 return 1;
471 return 0;
474 static void copy_gigantic_page(struct page *dst, struct page *src)
476 int i;
477 struct hstate *h = page_hstate(src);
478 struct page *dst_base = dst;
479 struct page *src_base = src;
481 for (i = 0; i < pages_per_huge_page(h); ) {
482 cond_resched();
483 copy_highpage(dst, src);
485 i++;
486 dst = mem_map_next(dst, dst_base, i);
487 src = mem_map_next(src, src_base, i);
491 void copy_huge_page(struct page *dst, struct page *src)
493 int i;
494 struct hstate *h = page_hstate(src);
496 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
497 copy_gigantic_page(dst, src);
498 return;
501 might_sleep();
502 for (i = 0; i < pages_per_huge_page(h); i++) {
503 cond_resched();
504 copy_highpage(dst + i, src + i);
508 static void enqueue_huge_page(struct hstate *h, struct page *page)
510 int nid = page_to_nid(page);
511 list_move(&page->lru, &h->hugepage_freelists[nid]);
512 h->free_huge_pages++;
513 h->free_huge_pages_node[nid]++;
516 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
518 struct page *page;
520 if (list_empty(&h->hugepage_freelists[nid]))
521 return NULL;
522 page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
523 list_move(&page->lru, &h->hugepage_activelist);
524 set_page_refcounted(page);
525 h->free_huge_pages--;
526 h->free_huge_pages_node[nid]--;
527 return page;
530 static struct page *dequeue_huge_page_vma(struct hstate *h,
531 struct vm_area_struct *vma,
532 unsigned long address, int avoid_reserve)
534 struct page *page = NULL;
535 struct mempolicy *mpol;
536 nodemask_t *nodemask;
537 struct zonelist *zonelist;
538 struct zone *zone;
539 struct zoneref *z;
540 unsigned int cpuset_mems_cookie;
542 retry_cpuset:
543 cpuset_mems_cookie = get_mems_allowed();
544 zonelist = huge_zonelist(vma, address,
545 htlb_alloc_mask, &mpol, &nodemask);
547 * A child process with MAP_PRIVATE mappings created by their parent
548 * have no page reserves. This check ensures that reservations are
549 * not "stolen". The child may still get SIGKILLed
551 if (!vma_has_reserves(vma) &&
552 h->free_huge_pages - h->resv_huge_pages == 0)
553 goto err;
555 /* If reserves cannot be used, ensure enough pages are in the pool */
556 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
557 goto err;
559 for_each_zone_zonelist_nodemask(zone, z, zonelist,
560 MAX_NR_ZONES - 1, nodemask) {
561 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
562 page = dequeue_huge_page_node(h, zone_to_nid(zone));
563 if (page) {
564 if (!avoid_reserve)
565 decrement_hugepage_resv_vma(h, vma);
566 break;
571 mpol_cond_put(mpol);
572 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
573 goto retry_cpuset;
574 return page;
576 err:
577 mpol_cond_put(mpol);
578 return NULL;
581 static void update_and_free_page(struct hstate *h, struct page *page)
583 int i;
585 VM_BUG_ON(h->order >= MAX_ORDER);
587 h->nr_huge_pages--;
588 h->nr_huge_pages_node[page_to_nid(page)]--;
589 for (i = 0; i < pages_per_huge_page(h); i++) {
590 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
591 1 << PG_referenced | 1 << PG_dirty |
592 1 << PG_active | 1 << PG_reserved |
593 1 << PG_private | 1 << PG_writeback);
595 VM_BUG_ON(hugetlb_cgroup_from_page(page));
596 set_compound_page_dtor(page, NULL);
597 set_page_refcounted(page);
598 arch_release_hugepage(page);
599 __free_pages(page, huge_page_order(h));
602 struct hstate *size_to_hstate(unsigned long size)
604 struct hstate *h;
606 for_each_hstate(h) {
607 if (huge_page_size(h) == size)
608 return h;
610 return NULL;
613 static void free_huge_page(struct page *page)
616 * Can't pass hstate in here because it is called from the
617 * compound page destructor.
619 struct hstate *h = page_hstate(page);
620 int nid = page_to_nid(page);
621 struct hugepage_subpool *spool =
622 (struct hugepage_subpool *)page_private(page);
624 set_page_private(page, 0);
625 page->mapping = NULL;
626 BUG_ON(page_count(page));
627 BUG_ON(page_mapcount(page));
629 spin_lock(&hugetlb_lock);
630 hugetlb_cgroup_uncharge_page(hstate_index(h),
631 pages_per_huge_page(h), page);
632 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
633 /* remove the page from active list */
634 list_del(&page->lru);
635 update_and_free_page(h, page);
636 h->surplus_huge_pages--;
637 h->surplus_huge_pages_node[nid]--;
638 } else {
639 arch_clear_hugepage_flags(page);
640 enqueue_huge_page(h, page);
642 spin_unlock(&hugetlb_lock);
643 hugepage_subpool_put_pages(spool, 1);
646 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
648 INIT_LIST_HEAD(&page->lru);
649 set_compound_page_dtor(page, free_huge_page);
650 spin_lock(&hugetlb_lock);
651 set_hugetlb_cgroup(page, NULL);
652 h->nr_huge_pages++;
653 h->nr_huge_pages_node[nid]++;
654 spin_unlock(&hugetlb_lock);
655 put_page(page); /* free it into the hugepage allocator */
658 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
660 int i;
661 int nr_pages = 1 << order;
662 struct page *p = page + 1;
664 /* we rely on prep_new_huge_page to set the destructor */
665 set_compound_order(page, order);
666 __SetPageHead(page);
667 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
668 __SetPageTail(p);
669 set_page_count(p, 0);
670 p->first_page = page;
675 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
676 * transparent huge pages. See the PageTransHuge() documentation for more
677 * details.
679 int PageHuge(struct page *page)
681 compound_page_dtor *dtor;
683 if (!PageCompound(page))
684 return 0;
686 page = compound_head(page);
687 dtor = get_compound_page_dtor(page);
689 return dtor == free_huge_page;
691 EXPORT_SYMBOL_GPL(PageHuge);
693 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
695 struct page *page;
697 if (h->order >= MAX_ORDER)
698 return NULL;
700 page = alloc_pages_exact_node(nid,
701 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
702 __GFP_REPEAT|__GFP_NOWARN,
703 huge_page_order(h));
704 if (page) {
705 if (arch_prepare_hugepage(page)) {
706 __free_pages(page, huge_page_order(h));
707 return NULL;
709 prep_new_huge_page(h, page, nid);
712 return page;
716 * common helper functions for hstate_next_node_to_{alloc|free}.
717 * We may have allocated or freed a huge page based on a different
718 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
719 * be outside of *nodes_allowed. Ensure that we use an allowed
720 * node for alloc or free.
722 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
724 nid = next_node(nid, *nodes_allowed);
725 if (nid == MAX_NUMNODES)
726 nid = first_node(*nodes_allowed);
727 VM_BUG_ON(nid >= MAX_NUMNODES);
729 return nid;
732 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
734 if (!node_isset(nid, *nodes_allowed))
735 nid = next_node_allowed(nid, nodes_allowed);
736 return nid;
740 * returns the previously saved node ["this node"] from which to
741 * allocate a persistent huge page for the pool and advance the
742 * next node from which to allocate, handling wrap at end of node
743 * mask.
745 static int hstate_next_node_to_alloc(struct hstate *h,
746 nodemask_t *nodes_allowed)
748 int nid;
750 VM_BUG_ON(!nodes_allowed);
752 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
753 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
755 return nid;
758 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
760 struct page *page;
761 int start_nid;
762 int next_nid;
763 int ret = 0;
765 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
766 next_nid = start_nid;
768 do {
769 page = alloc_fresh_huge_page_node(h, next_nid);
770 if (page) {
771 ret = 1;
772 break;
774 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
775 } while (next_nid != start_nid);
777 if (ret)
778 count_vm_event(HTLB_BUDDY_PGALLOC);
779 else
780 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
782 return ret;
786 * helper for free_pool_huge_page() - return the previously saved
787 * node ["this node"] from which to free a huge page. Advance the
788 * next node id whether or not we find a free huge page to free so
789 * that the next attempt to free addresses the next node.
791 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
793 int nid;
795 VM_BUG_ON(!nodes_allowed);
797 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
798 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
800 return nid;
804 * Free huge page from pool from next node to free.
805 * Attempt to keep persistent huge pages more or less
806 * balanced over allowed nodes.
807 * Called with hugetlb_lock locked.
809 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
810 bool acct_surplus)
812 int start_nid;
813 int next_nid;
814 int ret = 0;
816 start_nid = hstate_next_node_to_free(h, nodes_allowed);
817 next_nid = start_nid;
819 do {
821 * If we're returning unused surplus pages, only examine
822 * nodes with surplus pages.
824 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
825 !list_empty(&h->hugepage_freelists[next_nid])) {
826 struct page *page =
827 list_entry(h->hugepage_freelists[next_nid].next,
828 struct page, lru);
829 list_del(&page->lru);
830 h->free_huge_pages--;
831 h->free_huge_pages_node[next_nid]--;
832 if (acct_surplus) {
833 h->surplus_huge_pages--;
834 h->surplus_huge_pages_node[next_nid]--;
836 update_and_free_page(h, page);
837 ret = 1;
838 break;
840 next_nid = hstate_next_node_to_free(h, nodes_allowed);
841 } while (next_nid != start_nid);
843 return ret;
846 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
848 struct page *page;
849 unsigned int r_nid;
851 if (h->order >= MAX_ORDER)
852 return NULL;
855 * Assume we will successfully allocate the surplus page to
856 * prevent racing processes from causing the surplus to exceed
857 * overcommit
859 * This however introduces a different race, where a process B
860 * tries to grow the static hugepage pool while alloc_pages() is
861 * called by process A. B will only examine the per-node
862 * counters in determining if surplus huge pages can be
863 * converted to normal huge pages in adjust_pool_surplus(). A
864 * won't be able to increment the per-node counter, until the
865 * lock is dropped by B, but B doesn't drop hugetlb_lock until
866 * no more huge pages can be converted from surplus to normal
867 * state (and doesn't try to convert again). Thus, we have a
868 * case where a surplus huge page exists, the pool is grown, and
869 * the surplus huge page still exists after, even though it
870 * should just have been converted to a normal huge page. This
871 * does not leak memory, though, as the hugepage will be freed
872 * once it is out of use. It also does not allow the counters to
873 * go out of whack in adjust_pool_surplus() as we don't modify
874 * the node values until we've gotten the hugepage and only the
875 * per-node value is checked there.
877 spin_lock(&hugetlb_lock);
878 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
879 spin_unlock(&hugetlb_lock);
880 return NULL;
881 } else {
882 h->nr_huge_pages++;
883 h->surplus_huge_pages++;
885 spin_unlock(&hugetlb_lock);
887 if (nid == NUMA_NO_NODE)
888 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
889 __GFP_REPEAT|__GFP_NOWARN,
890 huge_page_order(h));
891 else
892 page = alloc_pages_exact_node(nid,
893 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
894 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
896 if (page && arch_prepare_hugepage(page)) {
897 __free_pages(page, huge_page_order(h));
898 page = NULL;
901 spin_lock(&hugetlb_lock);
902 if (page) {
903 INIT_LIST_HEAD(&page->lru);
904 r_nid = page_to_nid(page);
905 set_compound_page_dtor(page, free_huge_page);
906 set_hugetlb_cgroup(page, NULL);
908 * We incremented the global counters already
910 h->nr_huge_pages_node[r_nid]++;
911 h->surplus_huge_pages_node[r_nid]++;
912 __count_vm_event(HTLB_BUDDY_PGALLOC);
913 } else {
914 h->nr_huge_pages--;
915 h->surplus_huge_pages--;
916 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
918 spin_unlock(&hugetlb_lock);
920 return page;
924 * This allocation function is useful in the context where vma is irrelevant.
925 * E.g. soft-offlining uses this function because it only cares physical
926 * address of error page.
928 struct page *alloc_huge_page_node(struct hstate *h, int nid)
930 struct page *page;
932 spin_lock(&hugetlb_lock);
933 page = dequeue_huge_page_node(h, nid);
934 spin_unlock(&hugetlb_lock);
936 if (!page)
937 page = alloc_buddy_huge_page(h, nid);
939 return page;
943 * Increase the hugetlb pool such that it can accommodate a reservation
944 * of size 'delta'.
946 static int gather_surplus_pages(struct hstate *h, int delta)
948 struct list_head surplus_list;
949 struct page *page, *tmp;
950 int ret, i;
951 int needed, allocated;
952 bool alloc_ok = true;
954 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
955 if (needed <= 0) {
956 h->resv_huge_pages += delta;
957 return 0;
960 allocated = 0;
961 INIT_LIST_HEAD(&surplus_list);
963 ret = -ENOMEM;
964 retry:
965 spin_unlock(&hugetlb_lock);
966 for (i = 0; i < needed; i++) {
967 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
968 if (!page) {
969 alloc_ok = false;
970 break;
972 list_add(&page->lru, &surplus_list);
974 allocated += i;
977 * After retaking hugetlb_lock, we need to recalculate 'needed'
978 * because either resv_huge_pages or free_huge_pages may have changed.
980 spin_lock(&hugetlb_lock);
981 needed = (h->resv_huge_pages + delta) -
982 (h->free_huge_pages + allocated);
983 if (needed > 0) {
984 if (alloc_ok)
985 goto retry;
987 * We were not able to allocate enough pages to
988 * satisfy the entire reservation so we free what
989 * we've allocated so far.
991 goto free;
994 * The surplus_list now contains _at_least_ the number of extra pages
995 * needed to accommodate the reservation. Add the appropriate number
996 * of pages to the hugetlb pool and free the extras back to the buddy
997 * allocator. Commit the entire reservation here to prevent another
998 * process from stealing the pages as they are added to the pool but
999 * before they are reserved.
1001 needed += allocated;
1002 h->resv_huge_pages += delta;
1003 ret = 0;
1005 /* Free the needed pages to the hugetlb pool */
1006 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1007 if ((--needed) < 0)
1008 break;
1010 * This page is now managed by the hugetlb allocator and has
1011 * no users -- drop the buddy allocator's reference.
1013 put_page_testzero(page);
1014 VM_BUG_ON(page_count(page));
1015 enqueue_huge_page(h, page);
1017 free:
1018 spin_unlock(&hugetlb_lock);
1020 /* Free unnecessary surplus pages to the buddy allocator */
1021 if (!list_empty(&surplus_list)) {
1022 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1023 put_page(page);
1026 spin_lock(&hugetlb_lock);
1028 return ret;
1032 * When releasing a hugetlb pool reservation, any surplus pages that were
1033 * allocated to satisfy the reservation must be explicitly freed if they were
1034 * never used.
1035 * Called with hugetlb_lock held.
1037 static void return_unused_surplus_pages(struct hstate *h,
1038 unsigned long unused_resv_pages)
1040 unsigned long nr_pages;
1042 /* Uncommit the reservation */
1043 h->resv_huge_pages -= unused_resv_pages;
1045 /* Cannot return gigantic pages currently */
1046 if (h->order >= MAX_ORDER)
1047 return;
1049 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1052 * We want to release as many surplus pages as possible, spread
1053 * evenly across all nodes with memory. Iterate across these nodes
1054 * until we can no longer free unreserved surplus pages. This occurs
1055 * when the nodes with surplus pages have no free pages.
1056 * free_pool_huge_page() will balance the the freed pages across the
1057 * on-line nodes with memory and will handle the hstate accounting.
1059 while (nr_pages--) {
1060 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1061 break;
1066 * Determine if the huge page at addr within the vma has an associated
1067 * reservation. Where it does not we will need to logically increase
1068 * reservation and actually increase subpool usage before an allocation
1069 * can occur. Where any new reservation would be required the
1070 * reservation change is prepared, but not committed. Once the page
1071 * has been allocated from the subpool and instantiated the change should
1072 * be committed via vma_commit_reservation. No action is required on
1073 * failure.
1075 static long vma_needs_reservation(struct hstate *h,
1076 struct vm_area_struct *vma, unsigned long addr)
1078 struct address_space *mapping = vma->vm_file->f_mapping;
1079 struct inode *inode = mapping->host;
1081 if (vma->vm_flags & VM_MAYSHARE) {
1082 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1083 return region_chg(&inode->i_mapping->private_list,
1084 idx, idx + 1);
1086 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1087 return 1;
1089 } else {
1090 long err;
1091 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1092 struct resv_map *reservations = vma_resv_map(vma);
1094 err = region_chg(&reservations->regions, idx, idx + 1);
1095 if (err < 0)
1096 return err;
1097 return 0;
1100 static void vma_commit_reservation(struct hstate *h,
1101 struct vm_area_struct *vma, unsigned long addr)
1103 struct address_space *mapping = vma->vm_file->f_mapping;
1104 struct inode *inode = mapping->host;
1106 if (vma->vm_flags & VM_MAYSHARE) {
1107 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1108 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1110 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1111 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1112 struct resv_map *reservations = vma_resv_map(vma);
1114 /* Mark this page used in the map. */
1115 region_add(&reservations->regions, idx, idx + 1);
1119 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1120 unsigned long addr, int avoid_reserve)
1122 struct hugepage_subpool *spool = subpool_vma(vma);
1123 struct hstate *h = hstate_vma(vma);
1124 struct page *page;
1125 long chg;
1126 int ret, idx;
1127 struct hugetlb_cgroup *h_cg;
1129 idx = hstate_index(h);
1131 * Processes that did not create the mapping will have no
1132 * reserves and will not have accounted against subpool
1133 * limit. Check that the subpool limit can be made before
1134 * satisfying the allocation MAP_NORESERVE mappings may also
1135 * need pages and subpool limit allocated allocated if no reserve
1136 * mapping overlaps.
1138 chg = vma_needs_reservation(h, vma, addr);
1139 if (chg < 0)
1140 return ERR_PTR(-ENOMEM);
1141 if (chg)
1142 if (hugepage_subpool_get_pages(spool, chg))
1143 return ERR_PTR(-ENOSPC);
1145 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1146 if (ret) {
1147 hugepage_subpool_put_pages(spool, chg);
1148 return ERR_PTR(-ENOSPC);
1150 spin_lock(&hugetlb_lock);
1151 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1152 if (page) {
1153 /* update page cgroup details */
1154 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h),
1155 h_cg, page);
1156 spin_unlock(&hugetlb_lock);
1157 } else {
1158 spin_unlock(&hugetlb_lock);
1159 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1160 if (!page) {
1161 hugetlb_cgroup_uncharge_cgroup(idx,
1162 pages_per_huge_page(h),
1163 h_cg);
1164 hugepage_subpool_put_pages(spool, chg);
1165 return ERR_PTR(-ENOSPC);
1167 spin_lock(&hugetlb_lock);
1168 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h),
1169 h_cg, page);
1170 list_move(&page->lru, &h->hugepage_activelist);
1171 spin_unlock(&hugetlb_lock);
1174 set_page_private(page, (unsigned long)spool);
1176 vma_commit_reservation(h, vma, addr);
1177 return page;
1180 int __weak alloc_bootmem_huge_page(struct hstate *h)
1182 struct huge_bootmem_page *m;
1183 int nr_nodes = nodes_weight(node_states[N_MEMORY]);
1185 while (nr_nodes) {
1186 void *addr;
1188 addr = __alloc_bootmem_node_nopanic(
1189 NODE_DATA(hstate_next_node_to_alloc(h,
1190 &node_states[N_MEMORY])),
1191 huge_page_size(h), huge_page_size(h), 0);
1193 if (addr) {
1195 * Use the beginning of the huge page to store the
1196 * huge_bootmem_page struct (until gather_bootmem
1197 * puts them into the mem_map).
1199 m = addr;
1200 goto found;
1202 nr_nodes--;
1204 return 0;
1206 found:
1207 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1208 /* Put them into a private list first because mem_map is not up yet */
1209 list_add(&m->list, &huge_boot_pages);
1210 m->hstate = h;
1211 return 1;
1214 static void prep_compound_huge_page(struct page *page, int order)
1216 if (unlikely(order > (MAX_ORDER - 1)))
1217 prep_compound_gigantic_page(page, order);
1218 else
1219 prep_compound_page(page, order);
1222 /* Put bootmem huge pages into the standard lists after mem_map is up */
1223 static void __init gather_bootmem_prealloc(void)
1225 struct huge_bootmem_page *m;
1227 list_for_each_entry(m, &huge_boot_pages, list) {
1228 struct hstate *h = m->hstate;
1229 struct page *page;
1231 #ifdef CONFIG_HIGHMEM
1232 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1233 free_bootmem_late((unsigned long)m,
1234 sizeof(struct huge_bootmem_page));
1235 #else
1236 page = virt_to_page(m);
1237 #endif
1238 __ClearPageReserved(page);
1239 WARN_ON(page_count(page) != 1);
1240 prep_compound_huge_page(page, h->order);
1241 prep_new_huge_page(h, page, page_to_nid(page));
1243 * If we had gigantic hugepages allocated at boot time, we need
1244 * to restore the 'stolen' pages to totalram_pages in order to
1245 * fix confusing memory reports from free(1) and another
1246 * side-effects, like CommitLimit going negative.
1248 if (h->order > (MAX_ORDER - 1))
1249 totalram_pages += 1 << h->order;
1253 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1255 unsigned long i;
1257 for (i = 0; i < h->max_huge_pages; ++i) {
1258 if (h->order >= MAX_ORDER) {
1259 if (!alloc_bootmem_huge_page(h))
1260 break;
1261 } else if (!alloc_fresh_huge_page(h,
1262 &node_states[N_MEMORY]))
1263 break;
1265 h->max_huge_pages = i;
1268 static void __init hugetlb_init_hstates(void)
1270 struct hstate *h;
1272 for_each_hstate(h) {
1273 /* oversize hugepages were init'ed in early boot */
1274 if (h->order < MAX_ORDER)
1275 hugetlb_hstate_alloc_pages(h);
1279 static char * __init memfmt(char *buf, unsigned long n)
1281 if (n >= (1UL << 30))
1282 sprintf(buf, "%lu GB", n >> 30);
1283 else if (n >= (1UL << 20))
1284 sprintf(buf, "%lu MB", n >> 20);
1285 else
1286 sprintf(buf, "%lu KB", n >> 10);
1287 return buf;
1290 static void __init report_hugepages(void)
1292 struct hstate *h;
1294 for_each_hstate(h) {
1295 char buf[32];
1296 printk(KERN_INFO "HugeTLB registered %s page size, "
1297 "pre-allocated %ld pages\n",
1298 memfmt(buf, huge_page_size(h)),
1299 h->free_huge_pages);
1303 #ifdef CONFIG_HIGHMEM
1304 static void try_to_free_low(struct hstate *h, unsigned long count,
1305 nodemask_t *nodes_allowed)
1307 int i;
1309 if (h->order >= MAX_ORDER)
1310 return;
1312 for_each_node_mask(i, *nodes_allowed) {
1313 struct page *page, *next;
1314 struct list_head *freel = &h->hugepage_freelists[i];
1315 list_for_each_entry_safe(page, next, freel, lru) {
1316 if (count >= h->nr_huge_pages)
1317 return;
1318 if (PageHighMem(page))
1319 continue;
1320 list_del(&page->lru);
1321 update_and_free_page(h, page);
1322 h->free_huge_pages--;
1323 h->free_huge_pages_node[page_to_nid(page)]--;
1327 #else
1328 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1329 nodemask_t *nodes_allowed)
1332 #endif
1335 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1336 * balanced by operating on them in a round-robin fashion.
1337 * Returns 1 if an adjustment was made.
1339 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1340 int delta)
1342 int start_nid, next_nid;
1343 int ret = 0;
1345 VM_BUG_ON(delta != -1 && delta != 1);
1347 if (delta < 0)
1348 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1349 else
1350 start_nid = hstate_next_node_to_free(h, nodes_allowed);
1351 next_nid = start_nid;
1353 do {
1354 int nid = next_nid;
1355 if (delta < 0) {
1357 * To shrink on this node, there must be a surplus page
1359 if (!h->surplus_huge_pages_node[nid]) {
1360 next_nid = hstate_next_node_to_alloc(h,
1361 nodes_allowed);
1362 continue;
1365 if (delta > 0) {
1367 * Surplus cannot exceed the total number of pages
1369 if (h->surplus_huge_pages_node[nid] >=
1370 h->nr_huge_pages_node[nid]) {
1371 next_nid = hstate_next_node_to_free(h,
1372 nodes_allowed);
1373 continue;
1377 h->surplus_huge_pages += delta;
1378 h->surplus_huge_pages_node[nid] += delta;
1379 ret = 1;
1380 break;
1381 } while (next_nid != start_nid);
1383 return ret;
1386 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1387 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1388 nodemask_t *nodes_allowed)
1390 unsigned long min_count, ret;
1392 if (h->order >= MAX_ORDER)
1393 return h->max_huge_pages;
1396 * Increase the pool size
1397 * First take pages out of surplus state. Then make up the
1398 * remaining difference by allocating fresh huge pages.
1400 * We might race with alloc_buddy_huge_page() here and be unable
1401 * to convert a surplus huge page to a normal huge page. That is
1402 * not critical, though, it just means the overall size of the
1403 * pool might be one hugepage larger than it needs to be, but
1404 * within all the constraints specified by the sysctls.
1406 spin_lock(&hugetlb_lock);
1407 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1408 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1409 break;
1412 while (count > persistent_huge_pages(h)) {
1414 * If this allocation races such that we no longer need the
1415 * page, free_huge_page will handle it by freeing the page
1416 * and reducing the surplus.
1418 spin_unlock(&hugetlb_lock);
1419 ret = alloc_fresh_huge_page(h, nodes_allowed);
1420 spin_lock(&hugetlb_lock);
1421 if (!ret)
1422 goto out;
1424 /* Bail for signals. Probably ctrl-c from user */
1425 if (signal_pending(current))
1426 goto out;
1430 * Decrease the pool size
1431 * First return free pages to the buddy allocator (being careful
1432 * to keep enough around to satisfy reservations). Then place
1433 * pages into surplus state as needed so the pool will shrink
1434 * to the desired size as pages become free.
1436 * By placing pages into the surplus state independent of the
1437 * overcommit value, we are allowing the surplus pool size to
1438 * exceed overcommit. There are few sane options here. Since
1439 * alloc_buddy_huge_page() is checking the global counter,
1440 * though, we'll note that we're not allowed to exceed surplus
1441 * and won't grow the pool anywhere else. Not until one of the
1442 * sysctls are changed, or the surplus pages go out of use.
1444 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1445 min_count = max(count, min_count);
1446 try_to_free_low(h, min_count, nodes_allowed);
1447 while (min_count < persistent_huge_pages(h)) {
1448 if (!free_pool_huge_page(h, nodes_allowed, 0))
1449 break;
1451 while (count < persistent_huge_pages(h)) {
1452 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1453 break;
1455 out:
1456 ret = persistent_huge_pages(h);
1457 spin_unlock(&hugetlb_lock);
1458 return ret;
1461 #define HSTATE_ATTR_RO(_name) \
1462 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1464 #define HSTATE_ATTR(_name) \
1465 static struct kobj_attribute _name##_attr = \
1466 __ATTR(_name, 0644, _name##_show, _name##_store)
1468 static struct kobject *hugepages_kobj;
1469 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1471 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1473 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1475 int i;
1477 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1478 if (hstate_kobjs[i] == kobj) {
1479 if (nidp)
1480 *nidp = NUMA_NO_NODE;
1481 return &hstates[i];
1484 return kobj_to_node_hstate(kobj, nidp);
1487 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1488 struct kobj_attribute *attr, char *buf)
1490 struct hstate *h;
1491 unsigned long nr_huge_pages;
1492 int nid;
1494 h = kobj_to_hstate(kobj, &nid);
1495 if (nid == NUMA_NO_NODE)
1496 nr_huge_pages = h->nr_huge_pages;
1497 else
1498 nr_huge_pages = h->nr_huge_pages_node[nid];
1500 return sprintf(buf, "%lu\n", nr_huge_pages);
1503 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1504 struct kobject *kobj, struct kobj_attribute *attr,
1505 const char *buf, size_t len)
1507 int err;
1508 int nid;
1509 unsigned long count;
1510 struct hstate *h;
1511 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1513 err = strict_strtoul(buf, 10, &count);
1514 if (err)
1515 goto out;
1517 h = kobj_to_hstate(kobj, &nid);
1518 if (h->order >= MAX_ORDER) {
1519 err = -EINVAL;
1520 goto out;
1523 if (nid == NUMA_NO_NODE) {
1525 * global hstate attribute
1527 if (!(obey_mempolicy &&
1528 init_nodemask_of_mempolicy(nodes_allowed))) {
1529 NODEMASK_FREE(nodes_allowed);
1530 nodes_allowed = &node_states[N_MEMORY];
1532 } else if (nodes_allowed) {
1534 * per node hstate attribute: adjust count to global,
1535 * but restrict alloc/free to the specified node.
1537 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1538 init_nodemask_of_node(nodes_allowed, nid);
1539 } else
1540 nodes_allowed = &node_states[N_MEMORY];
1542 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1544 if (nodes_allowed != &node_states[N_MEMORY])
1545 NODEMASK_FREE(nodes_allowed);
1547 return len;
1548 out:
1549 NODEMASK_FREE(nodes_allowed);
1550 return err;
1553 static ssize_t nr_hugepages_show(struct kobject *kobj,
1554 struct kobj_attribute *attr, char *buf)
1556 return nr_hugepages_show_common(kobj, attr, buf);
1559 static ssize_t nr_hugepages_store(struct kobject *kobj,
1560 struct kobj_attribute *attr, const char *buf, size_t len)
1562 return nr_hugepages_store_common(false, kobj, attr, buf, len);
1564 HSTATE_ATTR(nr_hugepages);
1566 #ifdef CONFIG_NUMA
1569 * hstate attribute for optionally mempolicy-based constraint on persistent
1570 * huge page alloc/free.
1572 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1573 struct kobj_attribute *attr, char *buf)
1575 return nr_hugepages_show_common(kobj, attr, buf);
1578 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1579 struct kobj_attribute *attr, const char *buf, size_t len)
1581 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1583 HSTATE_ATTR(nr_hugepages_mempolicy);
1584 #endif
1587 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1588 struct kobj_attribute *attr, char *buf)
1590 struct hstate *h = kobj_to_hstate(kobj, NULL);
1591 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1594 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1595 struct kobj_attribute *attr, const char *buf, size_t count)
1597 int err;
1598 unsigned long input;
1599 struct hstate *h = kobj_to_hstate(kobj, NULL);
1601 if (h->order >= MAX_ORDER)
1602 return -EINVAL;
1604 err = strict_strtoul(buf, 10, &input);
1605 if (err)
1606 return err;
1608 spin_lock(&hugetlb_lock);
1609 h->nr_overcommit_huge_pages = input;
1610 spin_unlock(&hugetlb_lock);
1612 return count;
1614 HSTATE_ATTR(nr_overcommit_hugepages);
1616 static ssize_t free_hugepages_show(struct kobject *kobj,
1617 struct kobj_attribute *attr, char *buf)
1619 struct hstate *h;
1620 unsigned long free_huge_pages;
1621 int nid;
1623 h = kobj_to_hstate(kobj, &nid);
1624 if (nid == NUMA_NO_NODE)
1625 free_huge_pages = h->free_huge_pages;
1626 else
1627 free_huge_pages = h->free_huge_pages_node[nid];
1629 return sprintf(buf, "%lu\n", free_huge_pages);
1631 HSTATE_ATTR_RO(free_hugepages);
1633 static ssize_t resv_hugepages_show(struct kobject *kobj,
1634 struct kobj_attribute *attr, char *buf)
1636 struct hstate *h = kobj_to_hstate(kobj, NULL);
1637 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1639 HSTATE_ATTR_RO(resv_hugepages);
1641 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1642 struct kobj_attribute *attr, char *buf)
1644 struct hstate *h;
1645 unsigned long surplus_huge_pages;
1646 int nid;
1648 h = kobj_to_hstate(kobj, &nid);
1649 if (nid == NUMA_NO_NODE)
1650 surplus_huge_pages = h->surplus_huge_pages;
1651 else
1652 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1654 return sprintf(buf, "%lu\n", surplus_huge_pages);
1656 HSTATE_ATTR_RO(surplus_hugepages);
1658 static struct attribute *hstate_attrs[] = {
1659 &nr_hugepages_attr.attr,
1660 &nr_overcommit_hugepages_attr.attr,
1661 &free_hugepages_attr.attr,
1662 &resv_hugepages_attr.attr,
1663 &surplus_hugepages_attr.attr,
1664 #ifdef CONFIG_NUMA
1665 &nr_hugepages_mempolicy_attr.attr,
1666 #endif
1667 NULL,
1670 static struct attribute_group hstate_attr_group = {
1671 .attrs = hstate_attrs,
1674 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1675 struct kobject **hstate_kobjs,
1676 struct attribute_group *hstate_attr_group)
1678 int retval;
1679 int hi = hstate_index(h);
1681 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1682 if (!hstate_kobjs[hi])
1683 return -ENOMEM;
1685 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1686 if (retval)
1687 kobject_put(hstate_kobjs[hi]);
1689 return retval;
1692 static void __init hugetlb_sysfs_init(void)
1694 struct hstate *h;
1695 int err;
1697 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1698 if (!hugepages_kobj)
1699 return;
1701 for_each_hstate(h) {
1702 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1703 hstate_kobjs, &hstate_attr_group);
1704 if (err)
1705 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1706 h->name);
1710 #ifdef CONFIG_NUMA
1713 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1714 * with node devices in node_devices[] using a parallel array. The array
1715 * index of a node device or _hstate == node id.
1716 * This is here to avoid any static dependency of the node device driver, in
1717 * the base kernel, on the hugetlb module.
1719 struct node_hstate {
1720 struct kobject *hugepages_kobj;
1721 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1723 struct node_hstate node_hstates[MAX_NUMNODES];
1726 * A subset of global hstate attributes for node devices
1728 static struct attribute *per_node_hstate_attrs[] = {
1729 &nr_hugepages_attr.attr,
1730 &free_hugepages_attr.attr,
1731 &surplus_hugepages_attr.attr,
1732 NULL,
1735 static struct attribute_group per_node_hstate_attr_group = {
1736 .attrs = per_node_hstate_attrs,
1740 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1741 * Returns node id via non-NULL nidp.
1743 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1745 int nid;
1747 for (nid = 0; nid < nr_node_ids; nid++) {
1748 struct node_hstate *nhs = &node_hstates[nid];
1749 int i;
1750 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1751 if (nhs->hstate_kobjs[i] == kobj) {
1752 if (nidp)
1753 *nidp = nid;
1754 return &hstates[i];
1758 BUG();
1759 return NULL;
1763 * Unregister hstate attributes from a single node device.
1764 * No-op if no hstate attributes attached.
1766 void hugetlb_unregister_node(struct node *node)
1768 struct hstate *h;
1769 struct node_hstate *nhs = &node_hstates[node->dev.id];
1771 if (!nhs->hugepages_kobj)
1772 return; /* no hstate attributes */
1774 for_each_hstate(h) {
1775 int idx = hstate_index(h);
1776 if (nhs->hstate_kobjs[idx]) {
1777 kobject_put(nhs->hstate_kobjs[idx]);
1778 nhs->hstate_kobjs[idx] = NULL;
1782 kobject_put(nhs->hugepages_kobj);
1783 nhs->hugepages_kobj = NULL;
1787 * hugetlb module exit: unregister hstate attributes from node devices
1788 * that have them.
1790 static void hugetlb_unregister_all_nodes(void)
1792 int nid;
1795 * disable node device registrations.
1797 register_hugetlbfs_with_node(NULL, NULL);
1800 * remove hstate attributes from any nodes that have them.
1802 for (nid = 0; nid < nr_node_ids; nid++)
1803 hugetlb_unregister_node(node_devices[nid]);
1807 * Register hstate attributes for a single node device.
1808 * No-op if attributes already registered.
1810 void hugetlb_register_node(struct node *node)
1812 struct hstate *h;
1813 struct node_hstate *nhs = &node_hstates[node->dev.id];
1814 int err;
1816 if (nhs->hugepages_kobj)
1817 return; /* already allocated */
1819 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1820 &node->dev.kobj);
1821 if (!nhs->hugepages_kobj)
1822 return;
1824 for_each_hstate(h) {
1825 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1826 nhs->hstate_kobjs,
1827 &per_node_hstate_attr_group);
1828 if (err) {
1829 printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1830 " for node %d\n",
1831 h->name, node->dev.id);
1832 hugetlb_unregister_node(node);
1833 break;
1839 * hugetlb init time: register hstate attributes for all registered node
1840 * devices of nodes that have memory. All on-line nodes should have
1841 * registered their associated device by this time.
1843 static void hugetlb_register_all_nodes(void)
1845 int nid;
1847 for_each_node_state(nid, N_MEMORY) {
1848 struct node *node = node_devices[nid];
1849 if (node->dev.id == nid)
1850 hugetlb_register_node(node);
1854 * Let the node device driver know we're here so it can
1855 * [un]register hstate attributes on node hotplug.
1857 register_hugetlbfs_with_node(hugetlb_register_node,
1858 hugetlb_unregister_node);
1860 #else /* !CONFIG_NUMA */
1862 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1864 BUG();
1865 if (nidp)
1866 *nidp = -1;
1867 return NULL;
1870 static void hugetlb_unregister_all_nodes(void) { }
1872 static void hugetlb_register_all_nodes(void) { }
1874 #endif
1876 static void __exit hugetlb_exit(void)
1878 struct hstate *h;
1880 hugetlb_unregister_all_nodes();
1882 for_each_hstate(h) {
1883 kobject_put(hstate_kobjs[hstate_index(h)]);
1886 kobject_put(hugepages_kobj);
1888 module_exit(hugetlb_exit);
1890 static int __init hugetlb_init(void)
1892 /* Some platform decide whether they support huge pages at boot
1893 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1894 * there is no such support
1896 if (HPAGE_SHIFT == 0)
1897 return 0;
1899 if (!size_to_hstate(default_hstate_size)) {
1900 default_hstate_size = HPAGE_SIZE;
1901 if (!size_to_hstate(default_hstate_size))
1902 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1904 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1905 if (default_hstate_max_huge_pages)
1906 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1908 hugetlb_init_hstates();
1910 gather_bootmem_prealloc();
1912 report_hugepages();
1914 hugetlb_sysfs_init();
1916 hugetlb_register_all_nodes();
1918 return 0;
1920 module_init(hugetlb_init);
1922 /* Should be called on processing a hugepagesz=... option */
1923 void __init hugetlb_add_hstate(unsigned order)
1925 struct hstate *h;
1926 unsigned long i;
1928 if (size_to_hstate(PAGE_SIZE << order)) {
1929 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1930 return;
1932 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1933 BUG_ON(order == 0);
1934 h = &hstates[hugetlb_max_hstate++];
1935 h->order = order;
1936 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1937 h->nr_huge_pages = 0;
1938 h->free_huge_pages = 0;
1939 for (i = 0; i < MAX_NUMNODES; ++i)
1940 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1941 INIT_LIST_HEAD(&h->hugepage_activelist);
1942 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
1943 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
1944 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1945 huge_page_size(h)/1024);
1947 * Add cgroup control files only if the huge page consists
1948 * of more than two normal pages. This is because we use
1949 * page[2].lru.next for storing cgoup details.
1951 if (order >= HUGETLB_CGROUP_MIN_ORDER)
1952 hugetlb_cgroup_file_init(hugetlb_max_hstate - 1);
1954 parsed_hstate = h;
1957 static int __init hugetlb_nrpages_setup(char *s)
1959 unsigned long *mhp;
1960 static unsigned long *last_mhp;
1963 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
1964 * so this hugepages= parameter goes to the "default hstate".
1966 if (!hugetlb_max_hstate)
1967 mhp = &default_hstate_max_huge_pages;
1968 else
1969 mhp = &parsed_hstate->max_huge_pages;
1971 if (mhp == last_mhp) {
1972 printk(KERN_WARNING "hugepages= specified twice without "
1973 "interleaving hugepagesz=, ignoring\n");
1974 return 1;
1977 if (sscanf(s, "%lu", mhp) <= 0)
1978 *mhp = 0;
1981 * Global state is always initialized later in hugetlb_init.
1982 * But we need to allocate >= MAX_ORDER hstates here early to still
1983 * use the bootmem allocator.
1985 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
1986 hugetlb_hstate_alloc_pages(parsed_hstate);
1988 last_mhp = mhp;
1990 return 1;
1992 __setup("hugepages=", hugetlb_nrpages_setup);
1994 static int __init hugetlb_default_setup(char *s)
1996 default_hstate_size = memparse(s, &s);
1997 return 1;
1999 __setup("default_hugepagesz=", hugetlb_default_setup);
2001 static unsigned int cpuset_mems_nr(unsigned int *array)
2003 int node;
2004 unsigned int nr = 0;
2006 for_each_node_mask(node, cpuset_current_mems_allowed)
2007 nr += array[node];
2009 return nr;
2012 #ifdef CONFIG_SYSCTL
2013 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2014 struct ctl_table *table, int write,
2015 void __user *buffer, size_t *length, loff_t *ppos)
2017 struct hstate *h = &default_hstate;
2018 unsigned long tmp;
2019 int ret;
2021 tmp = h->max_huge_pages;
2023 if (write && h->order >= MAX_ORDER)
2024 return -EINVAL;
2026 table->data = &tmp;
2027 table->maxlen = sizeof(unsigned long);
2028 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2029 if (ret)
2030 goto out;
2032 if (write) {
2033 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2034 GFP_KERNEL | __GFP_NORETRY);
2035 if (!(obey_mempolicy &&
2036 init_nodemask_of_mempolicy(nodes_allowed))) {
2037 NODEMASK_FREE(nodes_allowed);
2038 nodes_allowed = &node_states[N_MEMORY];
2040 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2042 if (nodes_allowed != &node_states[N_MEMORY])
2043 NODEMASK_FREE(nodes_allowed);
2045 out:
2046 return ret;
2049 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2050 void __user *buffer, size_t *length, loff_t *ppos)
2053 return hugetlb_sysctl_handler_common(false, table, write,
2054 buffer, length, ppos);
2057 #ifdef CONFIG_NUMA
2058 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2059 void __user *buffer, size_t *length, loff_t *ppos)
2061 return hugetlb_sysctl_handler_common(true, table, write,
2062 buffer, length, ppos);
2064 #endif /* CONFIG_NUMA */
2066 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2067 void __user *buffer,
2068 size_t *length, loff_t *ppos)
2070 proc_dointvec(table, write, buffer, length, ppos);
2071 if (hugepages_treat_as_movable)
2072 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2073 else
2074 htlb_alloc_mask = GFP_HIGHUSER;
2075 return 0;
2078 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2079 void __user *buffer,
2080 size_t *length, loff_t *ppos)
2082 struct hstate *h = &default_hstate;
2083 unsigned long tmp;
2084 int ret;
2086 tmp = h->nr_overcommit_huge_pages;
2088 if (write && h->order >= MAX_ORDER)
2089 return -EINVAL;
2091 table->data = &tmp;
2092 table->maxlen = sizeof(unsigned long);
2093 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2094 if (ret)
2095 goto out;
2097 if (write) {
2098 spin_lock(&hugetlb_lock);
2099 h->nr_overcommit_huge_pages = tmp;
2100 spin_unlock(&hugetlb_lock);
2102 out:
2103 return ret;
2106 #endif /* CONFIG_SYSCTL */
2108 void hugetlb_report_meminfo(struct seq_file *m)
2110 struct hstate *h = &default_hstate;
2111 seq_printf(m,
2112 "HugePages_Total: %5lu\n"
2113 "HugePages_Free: %5lu\n"
2114 "HugePages_Rsvd: %5lu\n"
2115 "HugePages_Surp: %5lu\n"
2116 "Hugepagesize: %8lu kB\n",
2117 h->nr_huge_pages,
2118 h->free_huge_pages,
2119 h->resv_huge_pages,
2120 h->surplus_huge_pages,
2121 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2124 int hugetlb_report_node_meminfo(int nid, char *buf)
2126 struct hstate *h = &default_hstate;
2127 return sprintf(buf,
2128 "Node %d HugePages_Total: %5u\n"
2129 "Node %d HugePages_Free: %5u\n"
2130 "Node %d HugePages_Surp: %5u\n",
2131 nid, h->nr_huge_pages_node[nid],
2132 nid, h->free_huge_pages_node[nid],
2133 nid, h->surplus_huge_pages_node[nid]);
2136 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2137 unsigned long hugetlb_total_pages(void)
2139 struct hstate *h = &default_hstate;
2140 return h->nr_huge_pages * pages_per_huge_page(h);
2143 static int hugetlb_acct_memory(struct hstate *h, long delta)
2145 int ret = -ENOMEM;
2147 spin_lock(&hugetlb_lock);
2149 * When cpuset is configured, it breaks the strict hugetlb page
2150 * reservation as the accounting is done on a global variable. Such
2151 * reservation is completely rubbish in the presence of cpuset because
2152 * the reservation is not checked against page availability for the
2153 * current cpuset. Application can still potentially OOM'ed by kernel
2154 * with lack of free htlb page in cpuset that the task is in.
2155 * Attempt to enforce strict accounting with cpuset is almost
2156 * impossible (or too ugly) because cpuset is too fluid that
2157 * task or memory node can be dynamically moved between cpusets.
2159 * The change of semantics for shared hugetlb mapping with cpuset is
2160 * undesirable. However, in order to preserve some of the semantics,
2161 * we fall back to check against current free page availability as
2162 * a best attempt and hopefully to minimize the impact of changing
2163 * semantics that cpuset has.
2165 if (delta > 0) {
2166 if (gather_surplus_pages(h, delta) < 0)
2167 goto out;
2169 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2170 return_unused_surplus_pages(h, delta);
2171 goto out;
2175 ret = 0;
2176 if (delta < 0)
2177 return_unused_surplus_pages(h, (unsigned long) -delta);
2179 out:
2180 spin_unlock(&hugetlb_lock);
2181 return ret;
2184 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2186 struct resv_map *reservations = vma_resv_map(vma);
2189 * This new VMA should share its siblings reservation map if present.
2190 * The VMA will only ever have a valid reservation map pointer where
2191 * it is being copied for another still existing VMA. As that VMA
2192 * has a reference to the reservation map it cannot disappear until
2193 * after this open call completes. It is therefore safe to take a
2194 * new reference here without additional locking.
2196 if (reservations)
2197 kref_get(&reservations->refs);
2200 static void resv_map_put(struct vm_area_struct *vma)
2202 struct resv_map *reservations = vma_resv_map(vma);
2204 if (!reservations)
2205 return;
2206 kref_put(&reservations->refs, resv_map_release);
2209 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2211 struct hstate *h = hstate_vma(vma);
2212 struct resv_map *reservations = vma_resv_map(vma);
2213 struct hugepage_subpool *spool = subpool_vma(vma);
2214 unsigned long reserve;
2215 unsigned long start;
2216 unsigned long end;
2218 if (reservations) {
2219 start = vma_hugecache_offset(h, vma, vma->vm_start);
2220 end = vma_hugecache_offset(h, vma, vma->vm_end);
2222 reserve = (end - start) -
2223 region_count(&reservations->regions, start, end);
2225 resv_map_put(vma);
2227 if (reserve) {
2228 hugetlb_acct_memory(h, -reserve);
2229 hugepage_subpool_put_pages(spool, reserve);
2235 * We cannot handle pagefaults against hugetlb pages at all. They cause
2236 * handle_mm_fault() to try to instantiate regular-sized pages in the
2237 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2238 * this far.
2240 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2242 BUG();
2243 return 0;
2246 const struct vm_operations_struct hugetlb_vm_ops = {
2247 .fault = hugetlb_vm_op_fault,
2248 .open = hugetlb_vm_op_open,
2249 .close = hugetlb_vm_op_close,
2252 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2253 int writable)
2255 pte_t entry;
2257 if (writable) {
2258 entry =
2259 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2260 } else {
2261 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2263 entry = pte_mkyoung(entry);
2264 entry = pte_mkhuge(entry);
2265 entry = arch_make_huge_pte(entry, vma, page, writable);
2267 return entry;
2270 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2271 unsigned long address, pte_t *ptep)
2273 pte_t entry;
2275 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2276 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2277 update_mmu_cache(vma, address, ptep);
2281 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2282 struct vm_area_struct *vma)
2284 pte_t *src_pte, *dst_pte, entry;
2285 struct page *ptepage;
2286 unsigned long addr;
2287 int cow;
2288 struct hstate *h = hstate_vma(vma);
2289 unsigned long sz = huge_page_size(h);
2291 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2293 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2294 src_pte = huge_pte_offset(src, addr);
2295 if (!src_pte)
2296 continue;
2297 dst_pte = huge_pte_alloc(dst, addr, sz);
2298 if (!dst_pte)
2299 goto nomem;
2301 /* If the pagetables are shared don't copy or take references */
2302 if (dst_pte == src_pte)
2303 continue;
2305 spin_lock(&dst->page_table_lock);
2306 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2307 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2308 if (cow)
2309 huge_ptep_set_wrprotect(src, addr, src_pte);
2310 entry = huge_ptep_get(src_pte);
2311 ptepage = pte_page(entry);
2312 get_page(ptepage);
2313 page_dup_rmap(ptepage);
2314 set_huge_pte_at(dst, addr, dst_pte, entry);
2316 spin_unlock(&src->page_table_lock);
2317 spin_unlock(&dst->page_table_lock);
2319 return 0;
2321 nomem:
2322 return -ENOMEM;
2325 static int is_hugetlb_entry_migration(pte_t pte)
2327 swp_entry_t swp;
2329 if (huge_pte_none(pte) || pte_present(pte))
2330 return 0;
2331 swp = pte_to_swp_entry(pte);
2332 if (non_swap_entry(swp) && is_migration_entry(swp))
2333 return 1;
2334 else
2335 return 0;
2338 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2340 swp_entry_t swp;
2342 if (huge_pte_none(pte) || pte_present(pte))
2343 return 0;
2344 swp = pte_to_swp_entry(pte);
2345 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2346 return 1;
2347 else
2348 return 0;
2351 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2352 unsigned long start, unsigned long end,
2353 struct page *ref_page)
2355 int force_flush = 0;
2356 struct mm_struct *mm = vma->vm_mm;
2357 unsigned long address;
2358 pte_t *ptep;
2359 pte_t pte;
2360 struct page *page;
2361 struct hstate *h = hstate_vma(vma);
2362 unsigned long sz = huge_page_size(h);
2363 const unsigned long mmun_start = start; /* For mmu_notifiers */
2364 const unsigned long mmun_end = end; /* For mmu_notifiers */
2366 WARN_ON(!is_vm_hugetlb_page(vma));
2367 BUG_ON(start & ~huge_page_mask(h));
2368 BUG_ON(end & ~huge_page_mask(h));
2370 tlb_start_vma(tlb, vma);
2371 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2372 again:
2373 spin_lock(&mm->page_table_lock);
2374 for (address = start; address < end; address += sz) {
2375 ptep = huge_pte_offset(mm, address);
2376 if (!ptep)
2377 continue;
2379 if (huge_pmd_unshare(mm, &address, ptep))
2380 continue;
2382 pte = huge_ptep_get(ptep);
2383 if (huge_pte_none(pte))
2384 continue;
2387 * HWPoisoned hugepage is already unmapped and dropped reference
2389 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2390 pte_clear(mm, address, ptep);
2391 continue;
2394 page = pte_page(pte);
2396 * If a reference page is supplied, it is because a specific
2397 * page is being unmapped, not a range. Ensure the page we
2398 * are about to unmap is the actual page of interest.
2400 if (ref_page) {
2401 if (page != ref_page)
2402 continue;
2405 * Mark the VMA as having unmapped its page so that
2406 * future faults in this VMA will fail rather than
2407 * looking like data was lost
2409 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2412 pte = huge_ptep_get_and_clear(mm, address, ptep);
2413 tlb_remove_tlb_entry(tlb, ptep, address);
2414 if (pte_dirty(pte))
2415 set_page_dirty(page);
2417 page_remove_rmap(page);
2418 force_flush = !__tlb_remove_page(tlb, page);
2419 if (force_flush)
2420 break;
2421 /* Bail out after unmapping reference page if supplied */
2422 if (ref_page)
2423 break;
2425 spin_unlock(&mm->page_table_lock);
2427 * mmu_gather ran out of room to batch pages, we break out of
2428 * the PTE lock to avoid doing the potential expensive TLB invalidate
2429 * and page-free while holding it.
2431 if (force_flush) {
2432 force_flush = 0;
2433 tlb_flush_mmu(tlb);
2434 if (address < end && !ref_page)
2435 goto again;
2437 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2438 tlb_end_vma(tlb, vma);
2441 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2442 struct vm_area_struct *vma, unsigned long start,
2443 unsigned long end, struct page *ref_page)
2445 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2448 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2449 * test will fail on a vma being torn down, and not grab a page table
2450 * on its way out. We're lucky that the flag has such an appropriate
2451 * name, and can in fact be safely cleared here. We could clear it
2452 * before the __unmap_hugepage_range above, but all that's necessary
2453 * is to clear it before releasing the i_mmap_mutex. This works
2454 * because in the context this is called, the VMA is about to be
2455 * destroyed and the i_mmap_mutex is held.
2457 vma->vm_flags &= ~VM_MAYSHARE;
2460 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2461 unsigned long end, struct page *ref_page)
2463 struct mm_struct *mm;
2464 struct mmu_gather tlb;
2466 mm = vma->vm_mm;
2468 tlb_gather_mmu(&tlb, mm, 0);
2469 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2470 tlb_finish_mmu(&tlb, start, end);
2474 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2475 * mappping it owns the reserve page for. The intention is to unmap the page
2476 * from other VMAs and let the children be SIGKILLed if they are faulting the
2477 * same region.
2479 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2480 struct page *page, unsigned long address)
2482 struct hstate *h = hstate_vma(vma);
2483 struct vm_area_struct *iter_vma;
2484 struct address_space *mapping;
2485 pgoff_t pgoff;
2488 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2489 * from page cache lookup which is in HPAGE_SIZE units.
2491 address = address & huge_page_mask(h);
2492 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2493 vma->vm_pgoff;
2494 mapping = vma->vm_file->f_dentry->d_inode->i_mapping;
2497 * Take the mapping lock for the duration of the table walk. As
2498 * this mapping should be shared between all the VMAs,
2499 * __unmap_hugepage_range() is called as the lock is already held
2501 mutex_lock(&mapping->i_mmap_mutex);
2502 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2503 /* Do not unmap the current VMA */
2504 if (iter_vma == vma)
2505 continue;
2508 * Unmap the page from other VMAs without their own reserves.
2509 * They get marked to be SIGKILLed if they fault in these
2510 * areas. This is because a future no-page fault on this VMA
2511 * could insert a zeroed page instead of the data existing
2512 * from the time of fork. This would look like data corruption
2514 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2515 unmap_hugepage_range(iter_vma, address,
2516 address + huge_page_size(h), page);
2518 mutex_unlock(&mapping->i_mmap_mutex);
2520 return 1;
2524 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2525 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2526 * cannot race with other handlers or page migration.
2527 * Keep the pte_same checks anyway to make transition from the mutex easier.
2529 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2530 unsigned long address, pte_t *ptep, pte_t pte,
2531 struct page *pagecache_page)
2533 struct hstate *h = hstate_vma(vma);
2534 struct page *old_page, *new_page;
2535 int avoidcopy;
2536 int outside_reserve = 0;
2537 unsigned long mmun_start; /* For mmu_notifiers */
2538 unsigned long mmun_end; /* For mmu_notifiers */
2540 old_page = pte_page(pte);
2542 retry_avoidcopy:
2543 /* If no-one else is actually using this page, avoid the copy
2544 * and just make the page writable */
2545 avoidcopy = (page_mapcount(old_page) == 1);
2546 if (avoidcopy) {
2547 if (PageAnon(old_page))
2548 page_move_anon_rmap(old_page, vma, address);
2549 set_huge_ptep_writable(vma, address, ptep);
2550 return 0;
2554 * If the process that created a MAP_PRIVATE mapping is about to
2555 * perform a COW due to a shared page count, attempt to satisfy
2556 * the allocation without using the existing reserves. The pagecache
2557 * page is used to determine if the reserve at this address was
2558 * consumed or not. If reserves were used, a partial faulted mapping
2559 * at the time of fork() could consume its reserves on COW instead
2560 * of the full address range.
2562 if (!(vma->vm_flags & VM_MAYSHARE) &&
2563 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2564 old_page != pagecache_page)
2565 outside_reserve = 1;
2567 page_cache_get(old_page);
2569 /* Drop page_table_lock as buddy allocator may be called */
2570 spin_unlock(&mm->page_table_lock);
2571 new_page = alloc_huge_page(vma, address, outside_reserve);
2573 if (IS_ERR(new_page)) {
2574 long err = PTR_ERR(new_page);
2575 page_cache_release(old_page);
2578 * If a process owning a MAP_PRIVATE mapping fails to COW,
2579 * it is due to references held by a child and an insufficient
2580 * huge page pool. To guarantee the original mappers
2581 * reliability, unmap the page from child processes. The child
2582 * may get SIGKILLed if it later faults.
2584 if (outside_reserve) {
2585 BUG_ON(huge_pte_none(pte));
2586 if (unmap_ref_private(mm, vma, old_page, address)) {
2587 BUG_ON(huge_pte_none(pte));
2588 spin_lock(&mm->page_table_lock);
2589 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2590 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2591 goto retry_avoidcopy;
2593 * race occurs while re-acquiring page_table_lock, and
2594 * our job is done.
2596 return 0;
2598 WARN_ON_ONCE(1);
2601 /* Caller expects lock to be held */
2602 spin_lock(&mm->page_table_lock);
2603 if (err == -ENOMEM)
2604 return VM_FAULT_OOM;
2605 else
2606 return VM_FAULT_SIGBUS;
2610 * When the original hugepage is shared one, it does not have
2611 * anon_vma prepared.
2613 if (unlikely(anon_vma_prepare(vma))) {
2614 page_cache_release(new_page);
2615 page_cache_release(old_page);
2616 /* Caller expects lock to be held */
2617 spin_lock(&mm->page_table_lock);
2618 return VM_FAULT_OOM;
2621 copy_user_huge_page(new_page, old_page, address, vma,
2622 pages_per_huge_page(h));
2623 __SetPageUptodate(new_page);
2625 mmun_start = address & huge_page_mask(h);
2626 mmun_end = mmun_start + huge_page_size(h);
2627 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2629 * Retake the page_table_lock to check for racing updates
2630 * before the page tables are altered
2632 spin_lock(&mm->page_table_lock);
2633 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2634 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2635 /* Break COW */
2636 huge_ptep_clear_flush(vma, address, ptep);
2637 set_huge_pte_at(mm, address, ptep,
2638 make_huge_pte(vma, new_page, 1));
2639 page_remove_rmap(old_page);
2640 hugepage_add_new_anon_rmap(new_page, vma, address);
2641 /* Make the old page be freed below */
2642 new_page = old_page;
2644 spin_unlock(&mm->page_table_lock);
2645 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2646 /* Caller expects lock to be held */
2647 spin_lock(&mm->page_table_lock);
2648 page_cache_release(new_page);
2649 page_cache_release(old_page);
2650 return 0;
2653 /* Return the pagecache page at a given address within a VMA */
2654 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2655 struct vm_area_struct *vma, unsigned long address)
2657 struct address_space *mapping;
2658 pgoff_t idx;
2660 mapping = vma->vm_file->f_mapping;
2661 idx = vma_hugecache_offset(h, vma, address);
2663 return find_lock_page(mapping, idx);
2667 * Return whether there is a pagecache page to back given address within VMA.
2668 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2670 static bool hugetlbfs_pagecache_present(struct hstate *h,
2671 struct vm_area_struct *vma, unsigned long address)
2673 struct address_space *mapping;
2674 pgoff_t idx;
2675 struct page *page;
2677 mapping = vma->vm_file->f_mapping;
2678 idx = vma_hugecache_offset(h, vma, address);
2680 page = find_get_page(mapping, idx);
2681 if (page)
2682 put_page(page);
2683 return page != NULL;
2686 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2687 unsigned long address, pte_t *ptep, unsigned int flags)
2689 struct hstate *h = hstate_vma(vma);
2690 int ret = VM_FAULT_SIGBUS;
2691 int anon_rmap = 0;
2692 pgoff_t idx;
2693 unsigned long size;
2694 struct page *page;
2695 struct address_space *mapping;
2696 pte_t new_pte;
2699 * Currently, we are forced to kill the process in the event the
2700 * original mapper has unmapped pages from the child due to a failed
2701 * COW. Warn that such a situation has occurred as it may not be obvious
2703 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2704 printk(KERN_WARNING
2705 "PID %d killed due to inadequate hugepage pool\n",
2706 current->pid);
2707 return ret;
2710 mapping = vma->vm_file->f_mapping;
2711 idx = vma_hugecache_offset(h, vma, address);
2714 * Use page lock to guard against racing truncation
2715 * before we get page_table_lock.
2717 retry:
2718 page = find_lock_page(mapping, idx);
2719 if (!page) {
2720 size = i_size_read(mapping->host) >> huge_page_shift(h);
2721 if (idx >= size)
2722 goto out;
2723 page = alloc_huge_page(vma, address, 0);
2724 if (IS_ERR(page)) {
2725 ret = PTR_ERR(page);
2726 if (ret == -ENOMEM)
2727 ret = VM_FAULT_OOM;
2728 else
2729 ret = VM_FAULT_SIGBUS;
2730 goto out;
2732 clear_huge_page(page, address, pages_per_huge_page(h));
2733 __SetPageUptodate(page);
2735 if (vma->vm_flags & VM_MAYSHARE) {
2736 int err;
2737 struct inode *inode = mapping->host;
2739 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2740 if (err) {
2741 put_page(page);
2742 if (err == -EEXIST)
2743 goto retry;
2744 goto out;
2747 spin_lock(&inode->i_lock);
2748 inode->i_blocks += blocks_per_huge_page(h);
2749 spin_unlock(&inode->i_lock);
2750 } else {
2751 lock_page(page);
2752 if (unlikely(anon_vma_prepare(vma))) {
2753 ret = VM_FAULT_OOM;
2754 goto backout_unlocked;
2756 anon_rmap = 1;
2758 } else {
2760 * If memory error occurs between mmap() and fault, some process
2761 * don't have hwpoisoned swap entry for errored virtual address.
2762 * So we need to block hugepage fault by PG_hwpoison bit check.
2764 if (unlikely(PageHWPoison(page))) {
2765 ret = VM_FAULT_HWPOISON |
2766 VM_FAULT_SET_HINDEX(hstate_index(h));
2767 goto backout_unlocked;
2772 * If we are going to COW a private mapping later, we examine the
2773 * pending reservations for this page now. This will ensure that
2774 * any allocations necessary to record that reservation occur outside
2775 * the spinlock.
2777 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2778 if (vma_needs_reservation(h, vma, address) < 0) {
2779 ret = VM_FAULT_OOM;
2780 goto backout_unlocked;
2783 spin_lock(&mm->page_table_lock);
2784 size = i_size_read(mapping->host) >> huge_page_shift(h);
2785 if (idx >= size)
2786 goto backout;
2788 ret = 0;
2789 if (!huge_pte_none(huge_ptep_get(ptep)))
2790 goto backout;
2792 if (anon_rmap)
2793 hugepage_add_new_anon_rmap(page, vma, address);
2794 else
2795 page_dup_rmap(page);
2796 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2797 && (vma->vm_flags & VM_SHARED)));
2798 set_huge_pte_at(mm, address, ptep, new_pte);
2800 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2801 /* Optimization, do the COW without a second fault */
2802 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2805 spin_unlock(&mm->page_table_lock);
2806 unlock_page(page);
2807 out:
2808 return ret;
2810 backout:
2811 spin_unlock(&mm->page_table_lock);
2812 backout_unlocked:
2813 unlock_page(page);
2814 put_page(page);
2815 goto out;
2818 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2819 unsigned long address, unsigned int flags)
2821 pte_t *ptep;
2822 pte_t entry;
2823 int ret;
2824 struct page *page = NULL;
2825 struct page *pagecache_page = NULL;
2826 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2827 struct hstate *h = hstate_vma(vma);
2829 address &= huge_page_mask(h);
2831 ptep = huge_pte_offset(mm, address);
2832 if (ptep) {
2833 entry = huge_ptep_get(ptep);
2834 if (unlikely(is_hugetlb_entry_migration(entry))) {
2835 migration_entry_wait(mm, (pmd_t *)ptep, address);
2836 return 0;
2837 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2838 return VM_FAULT_HWPOISON_LARGE |
2839 VM_FAULT_SET_HINDEX(hstate_index(h));
2842 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2843 if (!ptep)
2844 return VM_FAULT_OOM;
2847 * Serialize hugepage allocation and instantiation, so that we don't
2848 * get spurious allocation failures if two CPUs race to instantiate
2849 * the same page in the page cache.
2851 mutex_lock(&hugetlb_instantiation_mutex);
2852 entry = huge_ptep_get(ptep);
2853 if (huge_pte_none(entry)) {
2854 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2855 goto out_mutex;
2858 ret = 0;
2861 * If we are going to COW the mapping later, we examine the pending
2862 * reservations for this page now. This will ensure that any
2863 * allocations necessary to record that reservation occur outside the
2864 * spinlock. For private mappings, we also lookup the pagecache
2865 * page now as it is used to determine if a reservation has been
2866 * consumed.
2868 if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2869 if (vma_needs_reservation(h, vma, address) < 0) {
2870 ret = VM_FAULT_OOM;
2871 goto out_mutex;
2874 if (!(vma->vm_flags & VM_MAYSHARE))
2875 pagecache_page = hugetlbfs_pagecache_page(h,
2876 vma, address);
2880 * hugetlb_cow() requires page locks of pte_page(entry) and
2881 * pagecache_page, so here we need take the former one
2882 * when page != pagecache_page or !pagecache_page.
2883 * Note that locking order is always pagecache_page -> page,
2884 * so no worry about deadlock.
2886 page = pte_page(entry);
2887 get_page(page);
2888 if (page != pagecache_page)
2889 lock_page(page);
2891 spin_lock(&mm->page_table_lock);
2892 /* Check for a racing update before calling hugetlb_cow */
2893 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2894 goto out_page_table_lock;
2897 if (flags & FAULT_FLAG_WRITE) {
2898 if (!pte_write(entry)) {
2899 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2900 pagecache_page);
2901 goto out_page_table_lock;
2903 entry = pte_mkdirty(entry);
2905 entry = pte_mkyoung(entry);
2906 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2907 flags & FAULT_FLAG_WRITE))
2908 update_mmu_cache(vma, address, ptep);
2910 out_page_table_lock:
2911 spin_unlock(&mm->page_table_lock);
2913 if (pagecache_page) {
2914 unlock_page(pagecache_page);
2915 put_page(pagecache_page);
2917 if (page != pagecache_page)
2918 unlock_page(page);
2919 put_page(page);
2921 out_mutex:
2922 mutex_unlock(&hugetlb_instantiation_mutex);
2924 return ret;
2927 /* Can be overriden by architectures */
2928 __attribute__((weak)) struct page *
2929 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2930 pud_t *pud, int write)
2932 BUG();
2933 return NULL;
2936 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2937 struct page **pages, struct vm_area_struct **vmas,
2938 unsigned long *position, int *length, int i,
2939 unsigned int flags)
2941 unsigned long pfn_offset;
2942 unsigned long vaddr = *position;
2943 int remainder = *length;
2944 struct hstate *h = hstate_vma(vma);
2946 spin_lock(&mm->page_table_lock);
2947 while (vaddr < vma->vm_end && remainder) {
2948 pte_t *pte;
2949 int absent;
2950 struct page *page;
2953 * Some archs (sparc64, sh*) have multiple pte_ts to
2954 * each hugepage. We have to make sure we get the
2955 * first, for the page indexing below to work.
2957 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2958 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2961 * When coredumping, it suits get_dump_page if we just return
2962 * an error where there's an empty slot with no huge pagecache
2963 * to back it. This way, we avoid allocating a hugepage, and
2964 * the sparse dumpfile avoids allocating disk blocks, but its
2965 * huge holes still show up with zeroes where they need to be.
2967 if (absent && (flags & FOLL_DUMP) &&
2968 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2969 remainder = 0;
2970 break;
2973 if (absent ||
2974 ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2975 int ret;
2977 spin_unlock(&mm->page_table_lock);
2978 ret = hugetlb_fault(mm, vma, vaddr,
2979 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2980 spin_lock(&mm->page_table_lock);
2981 if (!(ret & VM_FAULT_ERROR))
2982 continue;
2984 remainder = 0;
2985 break;
2988 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2989 page = pte_page(huge_ptep_get(pte));
2990 same_page:
2991 if (pages) {
2992 pages[i] = mem_map_offset(page, pfn_offset);
2993 get_page(pages[i]);
2996 if (vmas)
2997 vmas[i] = vma;
2999 vaddr += PAGE_SIZE;
3000 ++pfn_offset;
3001 --remainder;
3002 ++i;
3003 if (vaddr < vma->vm_end && remainder &&
3004 pfn_offset < pages_per_huge_page(h)) {
3006 * We use pfn_offset to avoid touching the pageframes
3007 * of this compound page.
3009 goto same_page;
3012 spin_unlock(&mm->page_table_lock);
3013 *length = remainder;
3014 *position = vaddr;
3016 return i ? i : -EFAULT;
3019 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3020 unsigned long address, unsigned long end, pgprot_t newprot)
3022 struct mm_struct *mm = vma->vm_mm;
3023 unsigned long start = address;
3024 pte_t *ptep;
3025 pte_t pte;
3026 struct hstate *h = hstate_vma(vma);
3027 unsigned long pages = 0;
3029 BUG_ON(address >= end);
3030 flush_cache_range(vma, address, end);
3032 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3033 spin_lock(&mm->page_table_lock);
3034 for (; address < end; address += huge_page_size(h)) {
3035 ptep = huge_pte_offset(mm, address);
3036 if (!ptep)
3037 continue;
3038 if (huge_pmd_unshare(mm, &address, ptep)) {
3039 pages++;
3040 continue;
3042 if (!huge_pte_none(huge_ptep_get(ptep))) {
3043 pte = huge_ptep_get_and_clear(mm, address, ptep);
3044 pte = pte_mkhuge(pte_modify(pte, newprot));
3045 set_huge_pte_at(mm, address, ptep, pte);
3046 pages++;
3049 spin_unlock(&mm->page_table_lock);
3051 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3052 * may have cleared our pud entry and done put_page on the page table:
3053 * once we release i_mmap_mutex, another task can do the final put_page
3054 * and that page table be reused and filled with junk.
3056 flush_tlb_range(vma, start, end);
3057 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3059 return pages << h->order;
3062 int hugetlb_reserve_pages(struct inode *inode,
3063 long from, long to,
3064 struct vm_area_struct *vma,
3065 vm_flags_t vm_flags)
3067 long ret, chg;
3068 struct hstate *h = hstate_inode(inode);
3069 struct hugepage_subpool *spool = subpool_inode(inode);
3072 * Only apply hugepage reservation if asked. At fault time, an
3073 * attempt will be made for VM_NORESERVE to allocate a page
3074 * without using reserves
3076 if (vm_flags & VM_NORESERVE)
3077 return 0;
3080 * Shared mappings base their reservation on the number of pages that
3081 * are already allocated on behalf of the file. Private mappings need
3082 * to reserve the full area even if read-only as mprotect() may be
3083 * called to make the mapping read-write. Assume !vma is a shm mapping
3085 if (!vma || vma->vm_flags & VM_MAYSHARE)
3086 chg = region_chg(&inode->i_mapping->private_list, from, to);
3087 else {
3088 struct resv_map *resv_map = resv_map_alloc();
3089 if (!resv_map)
3090 return -ENOMEM;
3092 chg = to - from;
3094 set_vma_resv_map(vma, resv_map);
3095 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3098 if (chg < 0) {
3099 ret = chg;
3100 goto out_err;
3103 /* There must be enough pages in the subpool for the mapping */
3104 if (hugepage_subpool_get_pages(spool, chg)) {
3105 ret = -ENOSPC;
3106 goto out_err;
3110 * Check enough hugepages are available for the reservation.
3111 * Hand the pages back to the subpool if there are not
3113 ret = hugetlb_acct_memory(h, chg);
3114 if (ret < 0) {
3115 hugepage_subpool_put_pages(spool, chg);
3116 goto out_err;
3120 * Account for the reservations made. Shared mappings record regions
3121 * that have reservations as they are shared by multiple VMAs.
3122 * When the last VMA disappears, the region map says how much
3123 * the reservation was and the page cache tells how much of
3124 * the reservation was consumed. Private mappings are per-VMA and
3125 * only the consumed reservations are tracked. When the VMA
3126 * disappears, the original reservation is the VMA size and the
3127 * consumed reservations are stored in the map. Hence, nothing
3128 * else has to be done for private mappings here
3130 if (!vma || vma->vm_flags & VM_MAYSHARE)
3131 region_add(&inode->i_mapping->private_list, from, to);
3132 return 0;
3133 out_err:
3134 if (vma)
3135 resv_map_put(vma);
3136 return ret;
3139 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3141 struct hstate *h = hstate_inode(inode);
3142 long chg = region_truncate(&inode->i_mapping->private_list, offset);
3143 struct hugepage_subpool *spool = subpool_inode(inode);
3145 spin_lock(&inode->i_lock);
3146 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3147 spin_unlock(&inode->i_lock);
3149 hugepage_subpool_put_pages(spool, (chg - freed));
3150 hugetlb_acct_memory(h, -(chg - freed));
3153 #ifdef CONFIG_MEMORY_FAILURE
3155 /* Should be called in hugetlb_lock */
3156 static int is_hugepage_on_freelist(struct page *hpage)
3158 struct page *page;
3159 struct page *tmp;
3160 struct hstate *h = page_hstate(hpage);
3161 int nid = page_to_nid(hpage);
3163 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3164 if (page == hpage)
3165 return 1;
3166 return 0;
3170 * This function is called from memory failure code.
3171 * Assume the caller holds page lock of the head page.
3173 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3175 struct hstate *h = page_hstate(hpage);
3176 int nid = page_to_nid(hpage);
3177 int ret = -EBUSY;
3179 spin_lock(&hugetlb_lock);
3180 if (is_hugepage_on_freelist(hpage)) {
3182 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3183 * but dangling hpage->lru can trigger list-debug warnings
3184 * (this happens when we call unpoison_memory() on it),
3185 * so let it point to itself with list_del_init().
3187 list_del_init(&hpage->lru);
3188 set_page_refcounted(hpage);
3189 h->free_huge_pages--;
3190 h->free_huge_pages_node[nid]--;
3191 ret = 0;
3193 spin_unlock(&hugetlb_lock);
3194 return ret;
3196 #endif