2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kmemcheck.h>
23 #include <linux/cpu.h>
24 #include <linux/cpuset.h>
25 #include <linux/mempolicy.h>
26 #include <linux/ctype.h>
27 #include <linux/debugobjects.h>
28 #include <linux/kallsyms.h>
29 #include <linux/memory.h>
30 #include <linux/math64.h>
31 #include <linux/fault-inject.h>
32 #include <linux/stacktrace.h>
33 #include <linux/prefetch.h>
34 #include <linux/memcontrol.h>
36 #include <trace/events/kmem.h>
42 * 1. slab_mutex (Global Mutex)
44 * 3. slab_lock(page) (Only on some arches and for debugging)
48 * The role of the slab_mutex is to protect the list of all the slabs
49 * and to synchronize major metadata changes to slab cache structures.
51 * The slab_lock is only used for debugging and on arches that do not
52 * have the ability to do a cmpxchg_double. It only protects the second
53 * double word in the page struct. Meaning
54 * A. page->freelist -> List of object free in a page
55 * B. page->counters -> Counters of objects
56 * C. page->frozen -> frozen state
58 * If a slab is frozen then it is exempt from list management. It is not
59 * on any list. The processor that froze the slab is the one who can
60 * perform list operations on the page. Other processors may put objects
61 * onto the freelist but the processor that froze the slab is the only
62 * one that can retrieve the objects from the page's freelist.
64 * The list_lock protects the partial and full list on each node and
65 * the partial slab counter. If taken then no new slabs may be added or
66 * removed from the lists nor make the number of partial slabs be modified.
67 * (Note that the total number of slabs is an atomic value that may be
68 * modified without taking the list lock).
70 * The list_lock is a centralized lock and thus we avoid taking it as
71 * much as possible. As long as SLUB does not have to handle partial
72 * slabs, operations can continue without any centralized lock. F.e.
73 * allocating a long series of objects that fill up slabs does not require
75 * Interrupts are disabled during allocation and deallocation in order to
76 * make the slab allocator safe to use in the context of an irq. In addition
77 * interrupts are disabled to ensure that the processor does not change
78 * while handling per_cpu slabs, due to kernel preemption.
80 * SLUB assigns one slab for allocation to each processor.
81 * Allocations only occur from these slabs called cpu slabs.
83 * Slabs with free elements are kept on a partial list and during regular
84 * operations no list for full slabs is used. If an object in a full slab is
85 * freed then the slab will show up again on the partial lists.
86 * We track full slabs for debugging purposes though because otherwise we
87 * cannot scan all objects.
89 * Slabs are freed when they become empty. Teardown and setup is
90 * minimal so we rely on the page allocators per cpu caches for
91 * fast frees and allocs.
93 * Overloading of page flags that are otherwise used for LRU management.
95 * PageActive The slab is frozen and exempt from list processing.
96 * This means that the slab is dedicated to a purpose
97 * such as satisfying allocations for a specific
98 * processor. Objects may be freed in the slab while
99 * it is frozen but slab_free will then skip the usual
100 * list operations. It is up to the processor holding
101 * the slab to integrate the slab into the slab lists
102 * when the slab is no longer needed.
104 * One use of this flag is to mark slabs that are
105 * used for allocations. Then such a slab becomes a cpu
106 * slab. The cpu slab may be equipped with an additional
107 * freelist that allows lockless access to
108 * free objects in addition to the regular freelist
109 * that requires the slab lock.
111 * PageError Slab requires special handling due to debug
112 * options set. This moves slab handling out of
113 * the fast path and disables lockless freelists.
116 static inline int kmem_cache_debug(struct kmem_cache
*s
)
118 #ifdef CONFIG_SLUB_DEBUG
119 return unlikely(s
->flags
& SLAB_DEBUG_FLAGS
);
126 * Issues still to be resolved:
128 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
130 * - Variable sizing of the per node arrays
133 /* Enable to test recovery from slab corruption on boot */
134 #undef SLUB_RESILIENCY_TEST
136 /* Enable to log cmpxchg failures */
137 #undef SLUB_DEBUG_CMPXCHG
140 * Mininum number of partial slabs. These will be left on the partial
141 * lists even if they are empty. kmem_cache_shrink may reclaim them.
143 #define MIN_PARTIAL 5
146 * Maximum number of desirable partial slabs.
147 * The existence of more partial slabs makes kmem_cache_shrink
148 * sort the partial list by the number of objects in the.
150 #define MAX_PARTIAL 10
152 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
153 SLAB_POISON | SLAB_STORE_USER)
156 * Debugging flags that require metadata to be stored in the slab. These get
157 * disabled when slub_debug=O is used and a cache's min order increases with
160 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
163 * Set of flags that will prevent slab merging
165 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
166 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
169 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
170 SLAB_CACHE_DMA | SLAB_NOTRACK)
173 #define OO_MASK ((1 << OO_SHIFT) - 1)
174 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
176 /* Internal SLUB flags */
177 #define __OBJECT_POISON 0x80000000UL /* Poison object */
178 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
181 static struct notifier_block slab_notifier
;
185 * Tracking user of a slab.
187 #define TRACK_ADDRS_COUNT 16
189 unsigned long addr
; /* Called from address */
190 #ifdef CONFIG_STACKTRACE
191 unsigned long addrs
[TRACK_ADDRS_COUNT
]; /* Called from address */
193 int cpu
; /* Was running on cpu */
194 int pid
; /* Pid context */
195 unsigned long when
; /* When did the operation occur */
198 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
201 static int sysfs_slab_add(struct kmem_cache
*);
202 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
203 static void sysfs_slab_remove(struct kmem_cache
*);
204 static void memcg_propagate_slab_attrs(struct kmem_cache
*s
);
206 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
207 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
209 static inline void sysfs_slab_remove(struct kmem_cache
*s
) { }
211 static inline void memcg_propagate_slab_attrs(struct kmem_cache
*s
) { }
214 static inline void stat(const struct kmem_cache
*s
, enum stat_item si
)
216 #ifdef CONFIG_SLUB_STATS
217 __this_cpu_inc(s
->cpu_slab
->stat
[si
]);
221 /********************************************************************
222 * Core slab cache functions
223 *******************************************************************/
225 static inline struct kmem_cache_node
*get_node(struct kmem_cache
*s
, int node
)
227 return s
->node
[node
];
230 /* Verify that a pointer has an address that is valid within a slab page */
231 static inline int check_valid_pointer(struct kmem_cache
*s
,
232 struct page
*page
, const void *object
)
239 base
= page_address(page
);
240 if (object
< base
|| object
>= base
+ page
->objects
* s
->size
||
241 (object
- base
) % s
->size
) {
248 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
250 return *(void **)(object
+ s
->offset
);
253 static void prefetch_freepointer(const struct kmem_cache
*s
, void *object
)
255 prefetch(object
+ s
->offset
);
258 static inline void *get_freepointer_safe(struct kmem_cache
*s
, void *object
)
262 #ifdef CONFIG_DEBUG_PAGEALLOC
263 probe_kernel_read(&p
, (void **)(object
+ s
->offset
), sizeof(p
));
265 p
= get_freepointer(s
, object
);
270 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
272 *(void **)(object
+ s
->offset
) = fp
;
275 /* Loop over all objects in a slab */
276 #define for_each_object(__p, __s, __addr, __objects) \
277 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
280 /* Determine object index from a given position */
281 static inline int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
283 return (p
- addr
) / s
->size
;
286 static inline size_t slab_ksize(const struct kmem_cache
*s
)
288 #ifdef CONFIG_SLUB_DEBUG
290 * Debugging requires use of the padding between object
291 * and whatever may come after it.
293 if (s
->flags
& (SLAB_RED_ZONE
| SLAB_POISON
))
294 return s
->object_size
;
298 * If we have the need to store the freelist pointer
299 * back there or track user information then we can
300 * only use the space before that information.
302 if (s
->flags
& (SLAB_DESTROY_BY_RCU
| SLAB_STORE_USER
))
305 * Else we can use all the padding etc for the allocation
310 static inline int order_objects(int order
, unsigned long size
, int reserved
)
312 return ((PAGE_SIZE
<< order
) - reserved
) / size
;
315 static inline struct kmem_cache_order_objects
oo_make(int order
,
316 unsigned long size
, int reserved
)
318 struct kmem_cache_order_objects x
= {
319 (order
<< OO_SHIFT
) + order_objects(order
, size
, reserved
)
325 static inline int oo_order(struct kmem_cache_order_objects x
)
327 return x
.x
>> OO_SHIFT
;
330 static inline int oo_objects(struct kmem_cache_order_objects x
)
332 return x
.x
& OO_MASK
;
336 * Per slab locking using the pagelock
338 static __always_inline
void slab_lock(struct page
*page
)
340 bit_spin_lock(PG_locked
, &page
->flags
);
343 static __always_inline
void slab_unlock(struct page
*page
)
345 __bit_spin_unlock(PG_locked
, &page
->flags
);
348 /* Interrupts must be disabled (for the fallback code to work right) */
349 static inline bool __cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
350 void *freelist_old
, unsigned long counters_old
,
351 void *freelist_new
, unsigned long counters_new
,
354 VM_BUG_ON(!irqs_disabled());
355 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
356 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
357 if (s
->flags
& __CMPXCHG_DOUBLE
) {
358 if (cmpxchg_double(&page
->freelist
, &page
->counters
,
359 freelist_old
, counters_old
,
360 freelist_new
, counters_new
))
366 if (page
->freelist
== freelist_old
&& page
->counters
== counters_old
) {
367 page
->freelist
= freelist_new
;
368 page
->counters
= counters_new
;
376 stat(s
, CMPXCHG_DOUBLE_FAIL
);
378 #ifdef SLUB_DEBUG_CMPXCHG
379 printk(KERN_INFO
"%s %s: cmpxchg double redo ", n
, s
->name
);
385 static inline bool cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
386 void *freelist_old
, unsigned long counters_old
,
387 void *freelist_new
, unsigned long counters_new
,
390 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
391 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
392 if (s
->flags
& __CMPXCHG_DOUBLE
) {
393 if (cmpxchg_double(&page
->freelist
, &page
->counters
,
394 freelist_old
, counters_old
,
395 freelist_new
, counters_new
))
402 local_irq_save(flags
);
404 if (page
->freelist
== freelist_old
&& page
->counters
== counters_old
) {
405 page
->freelist
= freelist_new
;
406 page
->counters
= counters_new
;
408 local_irq_restore(flags
);
412 local_irq_restore(flags
);
416 stat(s
, CMPXCHG_DOUBLE_FAIL
);
418 #ifdef SLUB_DEBUG_CMPXCHG
419 printk(KERN_INFO
"%s %s: cmpxchg double redo ", n
, s
->name
);
425 #ifdef CONFIG_SLUB_DEBUG
427 * Determine a map of object in use on a page.
429 * Node listlock must be held to guarantee that the page does
430 * not vanish from under us.
432 static void get_map(struct kmem_cache
*s
, struct page
*page
, unsigned long *map
)
435 void *addr
= page_address(page
);
437 for (p
= page
->freelist
; p
; p
= get_freepointer(s
, p
))
438 set_bit(slab_index(p
, s
, addr
), map
);
444 #ifdef CONFIG_SLUB_DEBUG_ON
445 static int slub_debug
= DEBUG_DEFAULT_FLAGS
;
447 static int slub_debug
;
450 static char *slub_debug_slabs
;
451 static int disable_higher_order_debug
;
456 static void print_section(char *text
, u8
*addr
, unsigned int length
)
458 print_hex_dump(KERN_ERR
, text
, DUMP_PREFIX_ADDRESS
, 16, 1, addr
,
462 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
463 enum track_item alloc
)
468 p
= object
+ s
->offset
+ sizeof(void *);
470 p
= object
+ s
->inuse
;
475 static void set_track(struct kmem_cache
*s
, void *object
,
476 enum track_item alloc
, unsigned long addr
)
478 struct track
*p
= get_track(s
, object
, alloc
);
481 #ifdef CONFIG_STACKTRACE
482 struct stack_trace trace
;
485 trace
.nr_entries
= 0;
486 trace
.max_entries
= TRACK_ADDRS_COUNT
;
487 trace
.entries
= p
->addrs
;
489 save_stack_trace(&trace
);
491 /* See rant in lockdep.c */
492 if (trace
.nr_entries
!= 0 &&
493 trace
.entries
[trace
.nr_entries
- 1] == ULONG_MAX
)
496 for (i
= trace
.nr_entries
; i
< TRACK_ADDRS_COUNT
; i
++)
500 p
->cpu
= smp_processor_id();
501 p
->pid
= current
->pid
;
504 memset(p
, 0, sizeof(struct track
));
507 static void init_tracking(struct kmem_cache
*s
, void *object
)
509 if (!(s
->flags
& SLAB_STORE_USER
))
512 set_track(s
, object
, TRACK_FREE
, 0UL);
513 set_track(s
, object
, TRACK_ALLOC
, 0UL);
516 static void print_track(const char *s
, struct track
*t
)
521 printk(KERN_ERR
"INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
522 s
, (void *)t
->addr
, jiffies
- t
->when
, t
->cpu
, t
->pid
);
523 #ifdef CONFIG_STACKTRACE
526 for (i
= 0; i
< TRACK_ADDRS_COUNT
; i
++)
528 printk(KERN_ERR
"\t%pS\n", (void *)t
->addrs
[i
]);
535 static void print_tracking(struct kmem_cache
*s
, void *object
)
537 if (!(s
->flags
& SLAB_STORE_USER
))
540 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
));
541 print_track("Freed", get_track(s
, object
, TRACK_FREE
));
544 static void print_page_info(struct page
*page
)
546 printk(KERN_ERR
"INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
547 page
, page
->objects
, page
->inuse
, page
->freelist
, page
->flags
);
551 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
557 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
559 printk(KERN_ERR
"========================================"
560 "=====================================\n");
561 printk(KERN_ERR
"BUG %s (%s): %s\n", s
->name
, print_tainted(), buf
);
562 printk(KERN_ERR
"----------------------------------------"
563 "-------------------------------------\n\n");
565 add_taint(TAINT_BAD_PAGE
);
568 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
574 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
576 printk(KERN_ERR
"FIX %s: %s\n", s
->name
, buf
);
579 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
581 unsigned int off
; /* Offset of last byte */
582 u8
*addr
= page_address(page
);
584 print_tracking(s
, p
);
586 print_page_info(page
);
588 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
589 p
, p
- addr
, get_freepointer(s
, p
));
592 print_section("Bytes b4 ", p
- 16, 16);
594 print_section("Object ", p
, min_t(unsigned long, s
->object_size
,
596 if (s
->flags
& SLAB_RED_ZONE
)
597 print_section("Redzone ", p
+ s
->object_size
,
598 s
->inuse
- s
->object_size
);
601 off
= s
->offset
+ sizeof(void *);
605 if (s
->flags
& SLAB_STORE_USER
)
606 off
+= 2 * sizeof(struct track
);
609 /* Beginning of the filler is the free pointer */
610 print_section("Padding ", p
+ off
, s
->size
- off
);
615 static void object_err(struct kmem_cache
*s
, struct page
*page
,
616 u8
*object
, char *reason
)
618 slab_bug(s
, "%s", reason
);
619 print_trailer(s
, page
, object
);
622 static void slab_err(struct kmem_cache
*s
, struct page
*page
, const char *fmt
, ...)
628 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
630 slab_bug(s
, "%s", buf
);
631 print_page_info(page
);
635 static void init_object(struct kmem_cache
*s
, void *object
, u8 val
)
639 if (s
->flags
& __OBJECT_POISON
) {
640 memset(p
, POISON_FREE
, s
->object_size
- 1);
641 p
[s
->object_size
- 1] = POISON_END
;
644 if (s
->flags
& SLAB_RED_ZONE
)
645 memset(p
+ s
->object_size
, val
, s
->inuse
- s
->object_size
);
648 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
649 void *from
, void *to
)
651 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
652 memset(from
, data
, to
- from
);
655 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
656 u8
*object
, char *what
,
657 u8
*start
, unsigned int value
, unsigned int bytes
)
662 fault
= memchr_inv(start
, value
, bytes
);
667 while (end
> fault
&& end
[-1] == value
)
670 slab_bug(s
, "%s overwritten", what
);
671 printk(KERN_ERR
"INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
672 fault
, end
- 1, fault
[0], value
);
673 print_trailer(s
, page
, object
);
675 restore_bytes(s
, what
, value
, fault
, end
);
683 * Bytes of the object to be managed.
684 * If the freepointer may overlay the object then the free
685 * pointer is the first word of the object.
687 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
690 * object + s->object_size
691 * Padding to reach word boundary. This is also used for Redzoning.
692 * Padding is extended by another word if Redzoning is enabled and
693 * object_size == inuse.
695 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
696 * 0xcc (RED_ACTIVE) for objects in use.
699 * Meta data starts here.
701 * A. Free pointer (if we cannot overwrite object on free)
702 * B. Tracking data for SLAB_STORE_USER
703 * C. Padding to reach required alignment boundary or at mininum
704 * one word if debugging is on to be able to detect writes
705 * before the word boundary.
707 * Padding is done using 0x5a (POISON_INUSE)
710 * Nothing is used beyond s->size.
712 * If slabcaches are merged then the object_size and inuse boundaries are mostly
713 * ignored. And therefore no slab options that rely on these boundaries
714 * may be used with merged slabcaches.
717 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
719 unsigned long off
= s
->inuse
; /* The end of info */
722 /* Freepointer is placed after the object. */
723 off
+= sizeof(void *);
725 if (s
->flags
& SLAB_STORE_USER
)
726 /* We also have user information there */
727 off
+= 2 * sizeof(struct track
);
732 return check_bytes_and_report(s
, page
, p
, "Object padding",
733 p
+ off
, POISON_INUSE
, s
->size
- off
);
736 /* Check the pad bytes at the end of a slab page */
737 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
745 if (!(s
->flags
& SLAB_POISON
))
748 start
= page_address(page
);
749 length
= (PAGE_SIZE
<< compound_order(page
)) - s
->reserved
;
750 end
= start
+ length
;
751 remainder
= length
% s
->size
;
755 fault
= memchr_inv(end
- remainder
, POISON_INUSE
, remainder
);
758 while (end
> fault
&& end
[-1] == POISON_INUSE
)
761 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p", fault
, end
- 1);
762 print_section("Padding ", end
- remainder
, remainder
);
764 restore_bytes(s
, "slab padding", POISON_INUSE
, end
- remainder
, end
);
768 static int check_object(struct kmem_cache
*s
, struct page
*page
,
769 void *object
, u8 val
)
772 u8
*endobject
= object
+ s
->object_size
;
774 if (s
->flags
& SLAB_RED_ZONE
) {
775 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
776 endobject
, val
, s
->inuse
- s
->object_size
))
779 if ((s
->flags
& SLAB_POISON
) && s
->object_size
< s
->inuse
) {
780 check_bytes_and_report(s
, page
, p
, "Alignment padding",
781 endobject
, POISON_INUSE
, s
->inuse
- s
->object_size
);
785 if (s
->flags
& SLAB_POISON
) {
786 if (val
!= SLUB_RED_ACTIVE
&& (s
->flags
& __OBJECT_POISON
) &&
787 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
788 POISON_FREE
, s
->object_size
- 1) ||
789 !check_bytes_and_report(s
, page
, p
, "Poison",
790 p
+ s
->object_size
- 1, POISON_END
, 1)))
793 * check_pad_bytes cleans up on its own.
795 check_pad_bytes(s
, page
, p
);
798 if (!s
->offset
&& val
== SLUB_RED_ACTIVE
)
800 * Object and freepointer overlap. Cannot check
801 * freepointer while object is allocated.
805 /* Check free pointer validity */
806 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
807 object_err(s
, page
, p
, "Freepointer corrupt");
809 * No choice but to zap it and thus lose the remainder
810 * of the free objects in this slab. May cause
811 * another error because the object count is now wrong.
813 set_freepointer(s
, p
, NULL
);
819 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
823 VM_BUG_ON(!irqs_disabled());
825 if (!PageSlab(page
)) {
826 slab_err(s
, page
, "Not a valid slab page");
830 maxobj
= order_objects(compound_order(page
), s
->size
, s
->reserved
);
831 if (page
->objects
> maxobj
) {
832 slab_err(s
, page
, "objects %u > max %u",
833 s
->name
, page
->objects
, maxobj
);
836 if (page
->inuse
> page
->objects
) {
837 slab_err(s
, page
, "inuse %u > max %u",
838 s
->name
, page
->inuse
, page
->objects
);
841 /* Slab_pad_check fixes things up after itself */
842 slab_pad_check(s
, page
);
847 * Determine if a certain object on a page is on the freelist. Must hold the
848 * slab lock to guarantee that the chains are in a consistent state.
850 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
855 unsigned long max_objects
;
858 while (fp
&& nr
<= page
->objects
) {
861 if (!check_valid_pointer(s
, page
, fp
)) {
863 object_err(s
, page
, object
,
864 "Freechain corrupt");
865 set_freepointer(s
, object
, NULL
);
868 slab_err(s
, page
, "Freepointer corrupt");
869 page
->freelist
= NULL
;
870 page
->inuse
= page
->objects
;
871 slab_fix(s
, "Freelist cleared");
877 fp
= get_freepointer(s
, object
);
881 max_objects
= order_objects(compound_order(page
), s
->size
, s
->reserved
);
882 if (max_objects
> MAX_OBJS_PER_PAGE
)
883 max_objects
= MAX_OBJS_PER_PAGE
;
885 if (page
->objects
!= max_objects
) {
886 slab_err(s
, page
, "Wrong number of objects. Found %d but "
887 "should be %d", page
->objects
, max_objects
);
888 page
->objects
= max_objects
;
889 slab_fix(s
, "Number of objects adjusted.");
891 if (page
->inuse
!= page
->objects
- nr
) {
892 slab_err(s
, page
, "Wrong object count. Counter is %d but "
893 "counted were %d", page
->inuse
, page
->objects
- nr
);
894 page
->inuse
= page
->objects
- nr
;
895 slab_fix(s
, "Object count adjusted.");
897 return search
== NULL
;
900 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
,
903 if (s
->flags
& SLAB_TRACE
) {
904 printk(KERN_INFO
"TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
906 alloc
? "alloc" : "free",
911 print_section("Object ", (void *)object
, s
->object_size
);
918 * Hooks for other subsystems that check memory allocations. In a typical
919 * production configuration these hooks all should produce no code at all.
921 static inline int slab_pre_alloc_hook(struct kmem_cache
*s
, gfp_t flags
)
923 flags
&= gfp_allowed_mask
;
924 lockdep_trace_alloc(flags
);
925 might_sleep_if(flags
& __GFP_WAIT
);
927 return should_failslab(s
->object_size
, flags
, s
->flags
);
930 static inline void slab_post_alloc_hook(struct kmem_cache
*s
, gfp_t flags
, void *object
)
932 flags
&= gfp_allowed_mask
;
933 kmemcheck_slab_alloc(s
, flags
, object
, slab_ksize(s
));
934 kmemleak_alloc_recursive(object
, s
->object_size
, 1, s
->flags
, flags
);
937 static inline void slab_free_hook(struct kmem_cache
*s
, void *x
)
939 kmemleak_free_recursive(x
, s
->flags
);
942 * Trouble is that we may no longer disable interupts in the fast path
943 * So in order to make the debug calls that expect irqs to be
944 * disabled we need to disable interrupts temporarily.
946 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
950 local_irq_save(flags
);
951 kmemcheck_slab_free(s
, x
, s
->object_size
);
952 debug_check_no_locks_freed(x
, s
->object_size
);
953 local_irq_restore(flags
);
956 if (!(s
->flags
& SLAB_DEBUG_OBJECTS
))
957 debug_check_no_obj_freed(x
, s
->object_size
);
961 * Tracking of fully allocated slabs for debugging purposes.
963 * list_lock must be held.
965 static void add_full(struct kmem_cache
*s
,
966 struct kmem_cache_node
*n
, struct page
*page
)
968 if (!(s
->flags
& SLAB_STORE_USER
))
971 list_add(&page
->lru
, &n
->full
);
975 * list_lock must be held.
977 static void remove_full(struct kmem_cache
*s
, struct page
*page
)
979 if (!(s
->flags
& SLAB_STORE_USER
))
982 list_del(&page
->lru
);
985 /* Tracking of the number of slabs for debugging purposes */
986 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
988 struct kmem_cache_node
*n
= get_node(s
, node
);
990 return atomic_long_read(&n
->nr_slabs
);
993 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
995 return atomic_long_read(&n
->nr_slabs
);
998 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1000 struct kmem_cache_node
*n
= get_node(s
, node
);
1003 * May be called early in order to allocate a slab for the
1004 * kmem_cache_node structure. Solve the chicken-egg
1005 * dilemma by deferring the increment of the count during
1006 * bootstrap (see early_kmem_cache_node_alloc).
1009 atomic_long_inc(&n
->nr_slabs
);
1010 atomic_long_add(objects
, &n
->total_objects
);
1013 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1015 struct kmem_cache_node
*n
= get_node(s
, node
);
1017 atomic_long_dec(&n
->nr_slabs
);
1018 atomic_long_sub(objects
, &n
->total_objects
);
1021 /* Object debug checks for alloc/free paths */
1022 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
1025 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
1028 init_object(s
, object
, SLUB_RED_INACTIVE
);
1029 init_tracking(s
, object
);
1032 static noinline
int alloc_debug_processing(struct kmem_cache
*s
, struct page
*page
,
1033 void *object
, unsigned long addr
)
1035 if (!check_slab(s
, page
))
1038 if (!check_valid_pointer(s
, page
, object
)) {
1039 object_err(s
, page
, object
, "Freelist Pointer check fails");
1043 if (!check_object(s
, page
, object
, SLUB_RED_INACTIVE
))
1046 /* Success perform special debug activities for allocs */
1047 if (s
->flags
& SLAB_STORE_USER
)
1048 set_track(s
, object
, TRACK_ALLOC
, addr
);
1049 trace(s
, page
, object
, 1);
1050 init_object(s
, object
, SLUB_RED_ACTIVE
);
1054 if (PageSlab(page
)) {
1056 * If this is a slab page then lets do the best we can
1057 * to avoid issues in the future. Marking all objects
1058 * as used avoids touching the remaining objects.
1060 slab_fix(s
, "Marking all objects used");
1061 page
->inuse
= page
->objects
;
1062 page
->freelist
= NULL
;
1067 static noinline
struct kmem_cache_node
*free_debug_processing(
1068 struct kmem_cache
*s
, struct page
*page
, void *object
,
1069 unsigned long addr
, unsigned long *flags
)
1071 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1073 spin_lock_irqsave(&n
->list_lock
, *flags
);
1076 if (!check_slab(s
, page
))
1079 if (!check_valid_pointer(s
, page
, object
)) {
1080 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
1084 if (on_freelist(s
, page
, object
)) {
1085 object_err(s
, page
, object
, "Object already free");
1089 if (!check_object(s
, page
, object
, SLUB_RED_ACTIVE
))
1092 if (unlikely(s
!= page
->slab_cache
)) {
1093 if (!PageSlab(page
)) {
1094 slab_err(s
, page
, "Attempt to free object(0x%p) "
1095 "outside of slab", object
);
1096 } else if (!page
->slab_cache
) {
1098 "SLUB <none>: no slab for object 0x%p.\n",
1102 object_err(s
, page
, object
,
1103 "page slab pointer corrupt.");
1107 if (s
->flags
& SLAB_STORE_USER
)
1108 set_track(s
, object
, TRACK_FREE
, addr
);
1109 trace(s
, page
, object
, 0);
1110 init_object(s
, object
, SLUB_RED_INACTIVE
);
1114 * Keep node_lock to preserve integrity
1115 * until the object is actually freed
1121 spin_unlock_irqrestore(&n
->list_lock
, *flags
);
1122 slab_fix(s
, "Object at 0x%p not freed", object
);
1126 static int __init
setup_slub_debug(char *str
)
1128 slub_debug
= DEBUG_DEFAULT_FLAGS
;
1129 if (*str
++ != '=' || !*str
)
1131 * No options specified. Switch on full debugging.
1137 * No options but restriction on slabs. This means full
1138 * debugging for slabs matching a pattern.
1142 if (tolower(*str
) == 'o') {
1144 * Avoid enabling debugging on caches if its minimum order
1145 * would increase as a result.
1147 disable_higher_order_debug
= 1;
1154 * Switch off all debugging measures.
1159 * Determine which debug features should be switched on
1161 for (; *str
&& *str
!= ','; str
++) {
1162 switch (tolower(*str
)) {
1164 slub_debug
|= SLAB_DEBUG_FREE
;
1167 slub_debug
|= SLAB_RED_ZONE
;
1170 slub_debug
|= SLAB_POISON
;
1173 slub_debug
|= SLAB_STORE_USER
;
1176 slub_debug
|= SLAB_TRACE
;
1179 slub_debug
|= SLAB_FAILSLAB
;
1182 printk(KERN_ERR
"slub_debug option '%c' "
1183 "unknown. skipped\n", *str
);
1189 slub_debug_slabs
= str
+ 1;
1194 __setup("slub_debug", setup_slub_debug
);
1196 static unsigned long kmem_cache_flags(unsigned long object_size
,
1197 unsigned long flags
, const char *name
,
1198 void (*ctor
)(void *))
1201 * Enable debugging if selected on the kernel commandline.
1203 if (slub_debug
&& (!slub_debug_slabs
||
1204 !strncmp(slub_debug_slabs
, name
, strlen(slub_debug_slabs
))))
1205 flags
|= slub_debug
;
1210 static inline void setup_object_debug(struct kmem_cache
*s
,
1211 struct page
*page
, void *object
) {}
1213 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1214 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1216 static inline struct kmem_cache_node
*free_debug_processing(
1217 struct kmem_cache
*s
, struct page
*page
, void *object
,
1218 unsigned long addr
, unsigned long *flags
) { return NULL
; }
1220 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1222 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1223 void *object
, u8 val
) { return 1; }
1224 static inline void add_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1225 struct page
*page
) {}
1226 static inline void remove_full(struct kmem_cache
*s
, struct page
*page
) {}
1227 static inline unsigned long kmem_cache_flags(unsigned long object_size
,
1228 unsigned long flags
, const char *name
,
1229 void (*ctor
)(void *))
1233 #define slub_debug 0
1235 #define disable_higher_order_debug 0
1237 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1239 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1241 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
,
1243 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
,
1246 static inline int slab_pre_alloc_hook(struct kmem_cache
*s
, gfp_t flags
)
1249 static inline void slab_post_alloc_hook(struct kmem_cache
*s
, gfp_t flags
,
1252 static inline void slab_free_hook(struct kmem_cache
*s
, void *x
) {}
1254 #endif /* CONFIG_SLUB_DEBUG */
1257 * Slab allocation and freeing
1259 static inline struct page
*alloc_slab_page(gfp_t flags
, int node
,
1260 struct kmem_cache_order_objects oo
)
1262 int order
= oo_order(oo
);
1264 flags
|= __GFP_NOTRACK
;
1266 if (node
== NUMA_NO_NODE
)
1267 return alloc_pages(flags
, order
);
1269 return alloc_pages_exact_node(node
, flags
, order
);
1272 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1275 struct kmem_cache_order_objects oo
= s
->oo
;
1278 flags
&= gfp_allowed_mask
;
1280 if (flags
& __GFP_WAIT
)
1283 flags
|= s
->allocflags
;
1286 * Let the initial higher-order allocation fail under memory pressure
1287 * so we fall-back to the minimum order allocation.
1289 alloc_gfp
= (flags
| __GFP_NOWARN
| __GFP_NORETRY
) & ~__GFP_NOFAIL
;
1291 page
= alloc_slab_page(alloc_gfp
, node
, oo
);
1292 if (unlikely(!page
)) {
1295 * Allocation may have failed due to fragmentation.
1296 * Try a lower order alloc if possible
1298 page
= alloc_slab_page(flags
, node
, oo
);
1301 stat(s
, ORDER_FALLBACK
);
1304 if (kmemcheck_enabled
&& page
1305 && !(s
->flags
& (SLAB_NOTRACK
| DEBUG_DEFAULT_FLAGS
))) {
1306 int pages
= 1 << oo_order(oo
);
1308 kmemcheck_alloc_shadow(page
, oo_order(oo
), flags
, node
);
1311 * Objects from caches that have a constructor don't get
1312 * cleared when they're allocated, so we need to do it here.
1315 kmemcheck_mark_uninitialized_pages(page
, pages
);
1317 kmemcheck_mark_unallocated_pages(page
, pages
);
1320 if (flags
& __GFP_WAIT
)
1321 local_irq_disable();
1325 page
->objects
= oo_objects(oo
);
1326 mod_zone_page_state(page_zone(page
),
1327 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1328 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1334 static void setup_object(struct kmem_cache
*s
, struct page
*page
,
1337 setup_object_debug(s
, page
, object
);
1338 if (unlikely(s
->ctor
))
1342 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1350 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
1352 page
= allocate_slab(s
,
1353 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1357 order
= compound_order(page
);
1358 inc_slabs_node(s
, page_to_nid(page
), page
->objects
);
1359 memcg_bind_pages(s
, order
);
1360 page
->slab_cache
= s
;
1361 __SetPageSlab(page
);
1362 if (page
->pfmemalloc
)
1363 SetPageSlabPfmemalloc(page
);
1365 start
= page_address(page
);
1367 if (unlikely(s
->flags
& SLAB_POISON
))
1368 memset(start
, POISON_INUSE
, PAGE_SIZE
<< order
);
1371 for_each_object(p
, s
, start
, page
->objects
) {
1372 setup_object(s
, page
, last
);
1373 set_freepointer(s
, last
, p
);
1376 setup_object(s
, page
, last
);
1377 set_freepointer(s
, last
, NULL
);
1379 page
->freelist
= start
;
1380 page
->inuse
= page
->objects
;
1386 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1388 int order
= compound_order(page
);
1389 int pages
= 1 << order
;
1391 if (kmem_cache_debug(s
)) {
1394 slab_pad_check(s
, page
);
1395 for_each_object(p
, s
, page_address(page
),
1397 check_object(s
, page
, p
, SLUB_RED_INACTIVE
);
1400 kmemcheck_free_shadow(page
, compound_order(page
));
1402 mod_zone_page_state(page_zone(page
),
1403 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1404 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1407 __ClearPageSlabPfmemalloc(page
);
1408 __ClearPageSlab(page
);
1410 memcg_release_pages(s
, order
);
1411 reset_page_mapcount(page
);
1412 if (current
->reclaim_state
)
1413 current
->reclaim_state
->reclaimed_slab
+= pages
;
1414 __free_memcg_kmem_pages(page
, order
);
1417 #define need_reserve_slab_rcu \
1418 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1420 static void rcu_free_slab(struct rcu_head
*h
)
1424 if (need_reserve_slab_rcu
)
1425 page
= virt_to_head_page(h
);
1427 page
= container_of((struct list_head
*)h
, struct page
, lru
);
1429 __free_slab(page
->slab_cache
, page
);
1432 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1434 if (unlikely(s
->flags
& SLAB_DESTROY_BY_RCU
)) {
1435 struct rcu_head
*head
;
1437 if (need_reserve_slab_rcu
) {
1438 int order
= compound_order(page
);
1439 int offset
= (PAGE_SIZE
<< order
) - s
->reserved
;
1441 VM_BUG_ON(s
->reserved
!= sizeof(*head
));
1442 head
= page_address(page
) + offset
;
1445 * RCU free overloads the RCU head over the LRU
1447 head
= (void *)&page
->lru
;
1450 call_rcu(head
, rcu_free_slab
);
1452 __free_slab(s
, page
);
1455 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1457 dec_slabs_node(s
, page_to_nid(page
), page
->objects
);
1462 * Management of partially allocated slabs.
1464 * list_lock must be held.
1466 static inline void add_partial(struct kmem_cache_node
*n
,
1467 struct page
*page
, int tail
)
1470 if (tail
== DEACTIVATE_TO_TAIL
)
1471 list_add_tail(&page
->lru
, &n
->partial
);
1473 list_add(&page
->lru
, &n
->partial
);
1477 * list_lock must be held.
1479 static inline void remove_partial(struct kmem_cache_node
*n
,
1482 list_del(&page
->lru
);
1487 * Remove slab from the partial list, freeze it and
1488 * return the pointer to the freelist.
1490 * Returns a list of objects or NULL if it fails.
1492 * Must hold list_lock since we modify the partial list.
1494 static inline void *acquire_slab(struct kmem_cache
*s
,
1495 struct kmem_cache_node
*n
, struct page
*page
,
1499 unsigned long counters
;
1503 * Zap the freelist and set the frozen bit.
1504 * The old freelist is the list of objects for the
1505 * per cpu allocation list.
1507 freelist
= page
->freelist
;
1508 counters
= page
->counters
;
1509 new.counters
= counters
;
1511 new.inuse
= page
->objects
;
1512 new.freelist
= NULL
;
1514 new.freelist
= freelist
;
1517 VM_BUG_ON(new.frozen
);
1520 if (!__cmpxchg_double_slab(s
, page
,
1522 new.freelist
, new.counters
,
1526 remove_partial(n
, page
);
1531 static int put_cpu_partial(struct kmem_cache
*s
, struct page
*page
, int drain
);
1532 static inline bool pfmemalloc_match(struct page
*page
, gfp_t gfpflags
);
1535 * Try to allocate a partial slab from a specific node.
1537 static void *get_partial_node(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1538 struct kmem_cache_cpu
*c
, gfp_t flags
)
1540 struct page
*page
, *page2
;
1541 void *object
= NULL
;
1544 * Racy check. If we mistakenly see no partial slabs then we
1545 * just allocate an empty slab. If we mistakenly try to get a
1546 * partial slab and there is none available then get_partials()
1549 if (!n
|| !n
->nr_partial
)
1552 spin_lock(&n
->list_lock
);
1553 list_for_each_entry_safe(page
, page2
, &n
->partial
, lru
) {
1557 if (!pfmemalloc_match(page
, flags
))
1560 t
= acquire_slab(s
, n
, page
, object
== NULL
);
1566 stat(s
, ALLOC_FROM_PARTIAL
);
1568 available
= page
->objects
- page
->inuse
;
1570 available
= put_cpu_partial(s
, page
, 0);
1571 stat(s
, CPU_PARTIAL_NODE
);
1573 if (kmem_cache_debug(s
) || available
> s
->cpu_partial
/ 2)
1577 spin_unlock(&n
->list_lock
);
1582 * Get a page from somewhere. Search in increasing NUMA distances.
1584 static void *get_any_partial(struct kmem_cache
*s
, gfp_t flags
,
1585 struct kmem_cache_cpu
*c
)
1588 struct zonelist
*zonelist
;
1591 enum zone_type high_zoneidx
= gfp_zone(flags
);
1593 unsigned int cpuset_mems_cookie
;
1596 * The defrag ratio allows a configuration of the tradeoffs between
1597 * inter node defragmentation and node local allocations. A lower
1598 * defrag_ratio increases the tendency to do local allocations
1599 * instead of attempting to obtain partial slabs from other nodes.
1601 * If the defrag_ratio is set to 0 then kmalloc() always
1602 * returns node local objects. If the ratio is higher then kmalloc()
1603 * may return off node objects because partial slabs are obtained
1604 * from other nodes and filled up.
1606 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1607 * defrag_ratio = 1000) then every (well almost) allocation will
1608 * first attempt to defrag slab caches on other nodes. This means
1609 * scanning over all nodes to look for partial slabs which may be
1610 * expensive if we do it every time we are trying to find a slab
1611 * with available objects.
1613 if (!s
->remote_node_defrag_ratio
||
1614 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
1618 cpuset_mems_cookie
= get_mems_allowed();
1619 zonelist
= node_zonelist(slab_node(), flags
);
1620 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1621 struct kmem_cache_node
*n
;
1623 n
= get_node(s
, zone_to_nid(zone
));
1625 if (n
&& cpuset_zone_allowed_hardwall(zone
, flags
) &&
1626 n
->nr_partial
> s
->min_partial
) {
1627 object
= get_partial_node(s
, n
, c
, flags
);
1630 * Return the object even if
1631 * put_mems_allowed indicated that
1632 * the cpuset mems_allowed was
1633 * updated in parallel. It's a
1634 * harmless race between the alloc
1635 * and the cpuset update.
1637 put_mems_allowed(cpuset_mems_cookie
);
1642 } while (!put_mems_allowed(cpuset_mems_cookie
));
1648 * Get a partial page, lock it and return it.
1650 static void *get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
,
1651 struct kmem_cache_cpu
*c
)
1654 int searchnode
= (node
== NUMA_NO_NODE
) ? numa_node_id() : node
;
1656 object
= get_partial_node(s
, get_node(s
, searchnode
), c
, flags
);
1657 if (object
|| node
!= NUMA_NO_NODE
)
1660 return get_any_partial(s
, flags
, c
);
1663 #ifdef CONFIG_PREEMPT
1665 * Calculate the next globally unique transaction for disambiguiation
1666 * during cmpxchg. The transactions start with the cpu number and are then
1667 * incremented by CONFIG_NR_CPUS.
1669 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1672 * No preemption supported therefore also no need to check for
1678 static inline unsigned long next_tid(unsigned long tid
)
1680 return tid
+ TID_STEP
;
1683 static inline unsigned int tid_to_cpu(unsigned long tid
)
1685 return tid
% TID_STEP
;
1688 static inline unsigned long tid_to_event(unsigned long tid
)
1690 return tid
/ TID_STEP
;
1693 static inline unsigned int init_tid(int cpu
)
1698 static inline void note_cmpxchg_failure(const char *n
,
1699 const struct kmem_cache
*s
, unsigned long tid
)
1701 #ifdef SLUB_DEBUG_CMPXCHG
1702 unsigned long actual_tid
= __this_cpu_read(s
->cpu_slab
->tid
);
1704 printk(KERN_INFO
"%s %s: cmpxchg redo ", n
, s
->name
);
1706 #ifdef CONFIG_PREEMPT
1707 if (tid_to_cpu(tid
) != tid_to_cpu(actual_tid
))
1708 printk("due to cpu change %d -> %d\n",
1709 tid_to_cpu(tid
), tid_to_cpu(actual_tid
));
1712 if (tid_to_event(tid
) != tid_to_event(actual_tid
))
1713 printk("due to cpu running other code. Event %ld->%ld\n",
1714 tid_to_event(tid
), tid_to_event(actual_tid
));
1716 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1717 actual_tid
, tid
, next_tid(tid
));
1719 stat(s
, CMPXCHG_DOUBLE_CPU_FAIL
);
1722 static void init_kmem_cache_cpus(struct kmem_cache
*s
)
1726 for_each_possible_cpu(cpu
)
1727 per_cpu_ptr(s
->cpu_slab
, cpu
)->tid
= init_tid(cpu
);
1731 * Remove the cpu slab
1733 static void deactivate_slab(struct kmem_cache
*s
, struct page
*page
, void *freelist
)
1735 enum slab_modes
{ M_NONE
, M_PARTIAL
, M_FULL
, M_FREE
};
1736 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1738 enum slab_modes l
= M_NONE
, m
= M_NONE
;
1740 int tail
= DEACTIVATE_TO_HEAD
;
1744 if (page
->freelist
) {
1745 stat(s
, DEACTIVATE_REMOTE_FREES
);
1746 tail
= DEACTIVATE_TO_TAIL
;
1750 * Stage one: Free all available per cpu objects back
1751 * to the page freelist while it is still frozen. Leave the
1754 * There is no need to take the list->lock because the page
1757 while (freelist
&& (nextfree
= get_freepointer(s
, freelist
))) {
1759 unsigned long counters
;
1762 prior
= page
->freelist
;
1763 counters
= page
->counters
;
1764 set_freepointer(s
, freelist
, prior
);
1765 new.counters
= counters
;
1767 VM_BUG_ON(!new.frozen
);
1769 } while (!__cmpxchg_double_slab(s
, page
,
1771 freelist
, new.counters
,
1772 "drain percpu freelist"));
1774 freelist
= nextfree
;
1778 * Stage two: Ensure that the page is unfrozen while the
1779 * list presence reflects the actual number of objects
1782 * We setup the list membership and then perform a cmpxchg
1783 * with the count. If there is a mismatch then the page
1784 * is not unfrozen but the page is on the wrong list.
1786 * Then we restart the process which may have to remove
1787 * the page from the list that we just put it on again
1788 * because the number of objects in the slab may have
1793 old
.freelist
= page
->freelist
;
1794 old
.counters
= page
->counters
;
1795 VM_BUG_ON(!old
.frozen
);
1797 /* Determine target state of the slab */
1798 new.counters
= old
.counters
;
1801 set_freepointer(s
, freelist
, old
.freelist
);
1802 new.freelist
= freelist
;
1804 new.freelist
= old
.freelist
;
1808 if (!new.inuse
&& n
->nr_partial
> s
->min_partial
)
1810 else if (new.freelist
) {
1815 * Taking the spinlock removes the possiblity
1816 * that acquire_slab() will see a slab page that
1819 spin_lock(&n
->list_lock
);
1823 if (kmem_cache_debug(s
) && !lock
) {
1826 * This also ensures that the scanning of full
1827 * slabs from diagnostic functions will not see
1830 spin_lock(&n
->list_lock
);
1838 remove_partial(n
, page
);
1840 else if (l
== M_FULL
)
1842 remove_full(s
, page
);
1844 if (m
== M_PARTIAL
) {
1846 add_partial(n
, page
, tail
);
1849 } else if (m
== M_FULL
) {
1851 stat(s
, DEACTIVATE_FULL
);
1852 add_full(s
, n
, page
);
1858 if (!__cmpxchg_double_slab(s
, page
,
1859 old
.freelist
, old
.counters
,
1860 new.freelist
, new.counters
,
1865 spin_unlock(&n
->list_lock
);
1868 stat(s
, DEACTIVATE_EMPTY
);
1869 discard_slab(s
, page
);
1875 * Unfreeze all the cpu partial slabs.
1877 * This function must be called with interrupts disabled
1878 * for the cpu using c (or some other guarantee must be there
1879 * to guarantee no concurrent accesses).
1881 static void unfreeze_partials(struct kmem_cache
*s
,
1882 struct kmem_cache_cpu
*c
)
1884 struct kmem_cache_node
*n
= NULL
, *n2
= NULL
;
1885 struct page
*page
, *discard_page
= NULL
;
1887 while ((page
= c
->partial
)) {
1891 c
->partial
= page
->next
;
1893 n2
= get_node(s
, page_to_nid(page
));
1896 spin_unlock(&n
->list_lock
);
1899 spin_lock(&n
->list_lock
);
1904 old
.freelist
= page
->freelist
;
1905 old
.counters
= page
->counters
;
1906 VM_BUG_ON(!old
.frozen
);
1908 new.counters
= old
.counters
;
1909 new.freelist
= old
.freelist
;
1913 } while (!__cmpxchg_double_slab(s
, page
,
1914 old
.freelist
, old
.counters
,
1915 new.freelist
, new.counters
,
1916 "unfreezing slab"));
1918 if (unlikely(!new.inuse
&& n
->nr_partial
> s
->min_partial
)) {
1919 page
->next
= discard_page
;
1920 discard_page
= page
;
1922 add_partial(n
, page
, DEACTIVATE_TO_TAIL
);
1923 stat(s
, FREE_ADD_PARTIAL
);
1928 spin_unlock(&n
->list_lock
);
1930 while (discard_page
) {
1931 page
= discard_page
;
1932 discard_page
= discard_page
->next
;
1934 stat(s
, DEACTIVATE_EMPTY
);
1935 discard_slab(s
, page
);
1941 * Put a page that was just frozen (in __slab_free) into a partial page
1942 * slot if available. This is done without interrupts disabled and without
1943 * preemption disabled. The cmpxchg is racy and may put the partial page
1944 * onto a random cpus partial slot.
1946 * If we did not find a slot then simply move all the partials to the
1947 * per node partial list.
1949 static int put_cpu_partial(struct kmem_cache
*s
, struct page
*page
, int drain
)
1951 struct page
*oldpage
;
1958 oldpage
= this_cpu_read(s
->cpu_slab
->partial
);
1961 pobjects
= oldpage
->pobjects
;
1962 pages
= oldpage
->pages
;
1963 if (drain
&& pobjects
> s
->cpu_partial
) {
1964 unsigned long flags
;
1966 * partial array is full. Move the existing
1967 * set to the per node partial list.
1969 local_irq_save(flags
);
1970 unfreeze_partials(s
, this_cpu_ptr(s
->cpu_slab
));
1971 local_irq_restore(flags
);
1975 stat(s
, CPU_PARTIAL_DRAIN
);
1980 pobjects
+= page
->objects
- page
->inuse
;
1982 page
->pages
= pages
;
1983 page
->pobjects
= pobjects
;
1984 page
->next
= oldpage
;
1986 } while (this_cpu_cmpxchg(s
->cpu_slab
->partial
, oldpage
, page
) != oldpage
);
1990 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1992 stat(s
, CPUSLAB_FLUSH
);
1993 deactivate_slab(s
, c
->page
, c
->freelist
);
1995 c
->tid
= next_tid(c
->tid
);
2003 * Called from IPI handler with interrupts disabled.
2005 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
2007 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
2013 unfreeze_partials(s
, c
);
2017 static void flush_cpu_slab(void *d
)
2019 struct kmem_cache
*s
= d
;
2021 __flush_cpu_slab(s
, smp_processor_id());
2024 static bool has_cpu_slab(int cpu
, void *info
)
2026 struct kmem_cache
*s
= info
;
2027 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
2029 return c
->page
|| c
->partial
;
2032 static void flush_all(struct kmem_cache
*s
)
2034 on_each_cpu_cond(has_cpu_slab
, flush_cpu_slab
, s
, 1, GFP_ATOMIC
);
2038 * Check if the objects in a per cpu structure fit numa
2039 * locality expectations.
2041 static inline int node_match(struct page
*page
, int node
)
2044 if (node
!= NUMA_NO_NODE
&& page_to_nid(page
) != node
)
2050 static int count_free(struct page
*page
)
2052 return page
->objects
- page
->inuse
;
2055 static unsigned long count_partial(struct kmem_cache_node
*n
,
2056 int (*get_count
)(struct page
*))
2058 unsigned long flags
;
2059 unsigned long x
= 0;
2062 spin_lock_irqsave(&n
->list_lock
, flags
);
2063 list_for_each_entry(page
, &n
->partial
, lru
)
2064 x
+= get_count(page
);
2065 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2069 static inline unsigned long node_nr_objs(struct kmem_cache_node
*n
)
2071 #ifdef CONFIG_SLUB_DEBUG
2072 return atomic_long_read(&n
->total_objects
);
2078 static noinline
void
2079 slab_out_of_memory(struct kmem_cache
*s
, gfp_t gfpflags
, int nid
)
2084 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2086 printk(KERN_WARNING
" cache: %s, object size: %d, buffer size: %d, "
2087 "default order: %d, min order: %d\n", s
->name
, s
->object_size
,
2088 s
->size
, oo_order(s
->oo
), oo_order(s
->min
));
2090 if (oo_order(s
->min
) > get_order(s
->object_size
))
2091 printk(KERN_WARNING
" %s debugging increased min order, use "
2092 "slub_debug=O to disable.\n", s
->name
);
2094 for_each_online_node(node
) {
2095 struct kmem_cache_node
*n
= get_node(s
, node
);
2096 unsigned long nr_slabs
;
2097 unsigned long nr_objs
;
2098 unsigned long nr_free
;
2103 nr_free
= count_partial(n
, count_free
);
2104 nr_slabs
= node_nr_slabs(n
);
2105 nr_objs
= node_nr_objs(n
);
2108 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2109 node
, nr_slabs
, nr_objs
, nr_free
);
2113 static inline void *new_slab_objects(struct kmem_cache
*s
, gfp_t flags
,
2114 int node
, struct kmem_cache_cpu
**pc
)
2117 struct kmem_cache_cpu
*c
= *pc
;
2120 freelist
= get_partial(s
, flags
, node
, c
);
2125 page
= new_slab(s
, flags
, node
);
2127 c
= __this_cpu_ptr(s
->cpu_slab
);
2132 * No other reference to the page yet so we can
2133 * muck around with it freely without cmpxchg
2135 freelist
= page
->freelist
;
2136 page
->freelist
= NULL
;
2138 stat(s
, ALLOC_SLAB
);
2147 static inline bool pfmemalloc_match(struct page
*page
, gfp_t gfpflags
)
2149 if (unlikely(PageSlabPfmemalloc(page
)))
2150 return gfp_pfmemalloc_allowed(gfpflags
);
2156 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2157 * or deactivate the page.
2159 * The page is still frozen if the return value is not NULL.
2161 * If this function returns NULL then the page has been unfrozen.
2163 * This function must be called with interrupt disabled.
2165 static inline void *get_freelist(struct kmem_cache
*s
, struct page
*page
)
2168 unsigned long counters
;
2172 freelist
= page
->freelist
;
2173 counters
= page
->counters
;
2175 new.counters
= counters
;
2176 VM_BUG_ON(!new.frozen
);
2178 new.inuse
= page
->objects
;
2179 new.frozen
= freelist
!= NULL
;
2181 } while (!__cmpxchg_double_slab(s
, page
,
2190 * Slow path. The lockless freelist is empty or we need to perform
2193 * Processing is still very fast if new objects have been freed to the
2194 * regular freelist. In that case we simply take over the regular freelist
2195 * as the lockless freelist and zap the regular freelist.
2197 * If that is not working then we fall back to the partial lists. We take the
2198 * first element of the freelist as the object to allocate now and move the
2199 * rest of the freelist to the lockless freelist.
2201 * And if we were unable to get a new slab from the partial slab lists then
2202 * we need to allocate a new slab. This is the slowest path since it involves
2203 * a call to the page allocator and the setup of a new slab.
2205 static void *__slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
2206 unsigned long addr
, struct kmem_cache_cpu
*c
)
2210 unsigned long flags
;
2212 local_irq_save(flags
);
2213 #ifdef CONFIG_PREEMPT
2215 * We may have been preempted and rescheduled on a different
2216 * cpu before disabling interrupts. Need to reload cpu area
2219 c
= this_cpu_ptr(s
->cpu_slab
);
2227 if (unlikely(!node_match(page
, node
))) {
2228 stat(s
, ALLOC_NODE_MISMATCH
);
2229 deactivate_slab(s
, page
, c
->freelist
);
2236 * By rights, we should be searching for a slab page that was
2237 * PFMEMALLOC but right now, we are losing the pfmemalloc
2238 * information when the page leaves the per-cpu allocator
2240 if (unlikely(!pfmemalloc_match(page
, gfpflags
))) {
2241 deactivate_slab(s
, page
, c
->freelist
);
2247 /* must check again c->freelist in case of cpu migration or IRQ */
2248 freelist
= c
->freelist
;
2252 stat(s
, ALLOC_SLOWPATH
);
2254 freelist
= get_freelist(s
, page
);
2258 stat(s
, DEACTIVATE_BYPASS
);
2262 stat(s
, ALLOC_REFILL
);
2266 * freelist is pointing to the list of objects to be used.
2267 * page is pointing to the page from which the objects are obtained.
2268 * That page must be frozen for per cpu allocations to work.
2270 VM_BUG_ON(!c
->page
->frozen
);
2271 c
->freelist
= get_freepointer(s
, freelist
);
2272 c
->tid
= next_tid(c
->tid
);
2273 local_irq_restore(flags
);
2279 page
= c
->page
= c
->partial
;
2280 c
->partial
= page
->next
;
2281 stat(s
, CPU_PARTIAL_ALLOC
);
2286 freelist
= new_slab_objects(s
, gfpflags
, node
, &c
);
2288 if (unlikely(!freelist
)) {
2289 if (!(gfpflags
& __GFP_NOWARN
) && printk_ratelimit())
2290 slab_out_of_memory(s
, gfpflags
, node
);
2292 local_irq_restore(flags
);
2297 if (likely(!kmem_cache_debug(s
) && pfmemalloc_match(page
, gfpflags
)))
2300 /* Only entered in the debug case */
2301 if (kmem_cache_debug(s
) && !alloc_debug_processing(s
, page
, freelist
, addr
))
2302 goto new_slab
; /* Slab failed checks. Next slab needed */
2304 deactivate_slab(s
, page
, get_freepointer(s
, freelist
));
2307 local_irq_restore(flags
);
2312 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2313 * have the fastpath folded into their functions. So no function call
2314 * overhead for requests that can be satisfied on the fastpath.
2316 * The fastpath works by first checking if the lockless freelist can be used.
2317 * If not then __slab_alloc is called for slow processing.
2319 * Otherwise we can simply pick the next object from the lockless free list.
2321 static __always_inline
void *slab_alloc_node(struct kmem_cache
*s
,
2322 gfp_t gfpflags
, int node
, unsigned long addr
)
2325 struct kmem_cache_cpu
*c
;
2329 if (slab_pre_alloc_hook(s
, gfpflags
))
2332 s
= memcg_kmem_get_cache(s
, gfpflags
);
2336 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2337 * enabled. We may switch back and forth between cpus while
2338 * reading from one cpu area. That does not matter as long
2339 * as we end up on the original cpu again when doing the cmpxchg.
2341 c
= __this_cpu_ptr(s
->cpu_slab
);
2344 * The transaction ids are globally unique per cpu and per operation on
2345 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2346 * occurs on the right processor and that there was no operation on the
2347 * linked list in between.
2352 object
= c
->freelist
;
2354 if (unlikely(!object
|| !node_match(page
, node
)))
2355 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
2358 void *next_object
= get_freepointer_safe(s
, object
);
2361 * The cmpxchg will only match if there was no additional
2362 * operation and if we are on the right processor.
2364 * The cmpxchg does the following atomically (without lock semantics!)
2365 * 1. Relocate first pointer to the current per cpu area.
2366 * 2. Verify that tid and freelist have not been changed
2367 * 3. If they were not changed replace tid and freelist
2369 * Since this is without lock semantics the protection is only against
2370 * code executing on this cpu *not* from access by other cpus.
2372 if (unlikely(!this_cpu_cmpxchg_double(
2373 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2375 next_object
, next_tid(tid
)))) {
2377 note_cmpxchg_failure("slab_alloc", s
, tid
);
2380 prefetch_freepointer(s
, next_object
);
2381 stat(s
, ALLOC_FASTPATH
);
2384 if (unlikely(gfpflags
& __GFP_ZERO
) && object
)
2385 memset(object
, 0, s
->object_size
);
2387 slab_post_alloc_hook(s
, gfpflags
, object
);
2392 static __always_inline
void *slab_alloc(struct kmem_cache
*s
,
2393 gfp_t gfpflags
, unsigned long addr
)
2395 return slab_alloc_node(s
, gfpflags
, NUMA_NO_NODE
, addr
);
2398 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
2400 void *ret
= slab_alloc(s
, gfpflags
, _RET_IP_
);
2402 trace_kmem_cache_alloc(_RET_IP_
, ret
, s
->object_size
, s
->size
, gfpflags
);
2406 EXPORT_SYMBOL(kmem_cache_alloc
);
2408 #ifdef CONFIG_TRACING
2409 void *kmem_cache_alloc_trace(struct kmem_cache
*s
, gfp_t gfpflags
, size_t size
)
2411 void *ret
= slab_alloc(s
, gfpflags
, _RET_IP_
);
2412 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, gfpflags
);
2415 EXPORT_SYMBOL(kmem_cache_alloc_trace
);
2417 void *kmalloc_order_trace(size_t size
, gfp_t flags
, unsigned int order
)
2419 void *ret
= kmalloc_order(size
, flags
, order
);
2420 trace_kmalloc(_RET_IP_
, ret
, size
, PAGE_SIZE
<< order
, flags
);
2423 EXPORT_SYMBOL(kmalloc_order_trace
);
2427 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
2429 void *ret
= slab_alloc_node(s
, gfpflags
, node
, _RET_IP_
);
2431 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
2432 s
->object_size
, s
->size
, gfpflags
, node
);
2436 EXPORT_SYMBOL(kmem_cache_alloc_node
);
2438 #ifdef CONFIG_TRACING
2439 void *kmem_cache_alloc_node_trace(struct kmem_cache
*s
,
2441 int node
, size_t size
)
2443 void *ret
= slab_alloc_node(s
, gfpflags
, node
, _RET_IP_
);
2445 trace_kmalloc_node(_RET_IP_
, ret
,
2446 size
, s
->size
, gfpflags
, node
);
2449 EXPORT_SYMBOL(kmem_cache_alloc_node_trace
);
2454 * Slow patch handling. This may still be called frequently since objects
2455 * have a longer lifetime than the cpu slabs in most processing loads.
2457 * So we still attempt to reduce cache line usage. Just take the slab
2458 * lock and free the item. If there is no additional partial page
2459 * handling required then we can return immediately.
2461 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
2462 void *x
, unsigned long addr
)
2465 void **object
= (void *)x
;
2468 unsigned long counters
;
2469 struct kmem_cache_node
*n
= NULL
;
2470 unsigned long uninitialized_var(flags
);
2472 stat(s
, FREE_SLOWPATH
);
2474 if (kmem_cache_debug(s
) &&
2475 !(n
= free_debug_processing(s
, page
, x
, addr
, &flags
)))
2480 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2483 prior
= page
->freelist
;
2484 counters
= page
->counters
;
2485 set_freepointer(s
, object
, prior
);
2486 new.counters
= counters
;
2487 was_frozen
= new.frozen
;
2489 if ((!new.inuse
|| !prior
) && !was_frozen
) {
2491 if (!kmem_cache_debug(s
) && !prior
)
2494 * Slab was on no list before and will be partially empty
2495 * We can defer the list move and instead freeze it.
2499 else { /* Needs to be taken off a list */
2501 n
= get_node(s
, page_to_nid(page
));
2503 * Speculatively acquire the list_lock.
2504 * If the cmpxchg does not succeed then we may
2505 * drop the list_lock without any processing.
2507 * Otherwise the list_lock will synchronize with
2508 * other processors updating the list of slabs.
2510 spin_lock_irqsave(&n
->list_lock
, flags
);
2515 } while (!cmpxchg_double_slab(s
, page
,
2517 object
, new.counters
,
2523 * If we just froze the page then put it onto the
2524 * per cpu partial list.
2526 if (new.frozen
&& !was_frozen
) {
2527 put_cpu_partial(s
, page
, 1);
2528 stat(s
, CPU_PARTIAL_FREE
);
2531 * The list lock was not taken therefore no list
2532 * activity can be necessary.
2535 stat(s
, FREE_FROZEN
);
2539 if (unlikely(!new.inuse
&& n
->nr_partial
> s
->min_partial
))
2543 * Objects left in the slab. If it was not on the partial list before
2546 if (kmem_cache_debug(s
) && unlikely(!prior
)) {
2547 remove_full(s
, page
);
2548 add_partial(n
, page
, DEACTIVATE_TO_TAIL
);
2549 stat(s
, FREE_ADD_PARTIAL
);
2551 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2557 * Slab on the partial list.
2559 remove_partial(n
, page
);
2560 stat(s
, FREE_REMOVE_PARTIAL
);
2562 /* Slab must be on the full list */
2563 remove_full(s
, page
);
2565 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2567 discard_slab(s
, page
);
2571 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2572 * can perform fastpath freeing without additional function calls.
2574 * The fastpath is only possible if we are freeing to the current cpu slab
2575 * of this processor. This typically the case if we have just allocated
2578 * If fastpath is not possible then fall back to __slab_free where we deal
2579 * with all sorts of special processing.
2581 static __always_inline
void slab_free(struct kmem_cache
*s
,
2582 struct page
*page
, void *x
, unsigned long addr
)
2584 void **object
= (void *)x
;
2585 struct kmem_cache_cpu
*c
;
2588 slab_free_hook(s
, x
);
2592 * Determine the currently cpus per cpu slab.
2593 * The cpu may change afterward. However that does not matter since
2594 * data is retrieved via this pointer. If we are on the same cpu
2595 * during the cmpxchg then the free will succedd.
2597 c
= __this_cpu_ptr(s
->cpu_slab
);
2602 if (likely(page
== c
->page
)) {
2603 set_freepointer(s
, object
, c
->freelist
);
2605 if (unlikely(!this_cpu_cmpxchg_double(
2606 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2608 object
, next_tid(tid
)))) {
2610 note_cmpxchg_failure("slab_free", s
, tid
);
2613 stat(s
, FREE_FASTPATH
);
2615 __slab_free(s
, page
, x
, addr
);
2619 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
2621 s
= cache_from_obj(s
, x
);
2624 slab_free(s
, virt_to_head_page(x
), x
, _RET_IP_
);
2625 trace_kmem_cache_free(_RET_IP_
, x
);
2627 EXPORT_SYMBOL(kmem_cache_free
);
2630 * Object placement in a slab is made very easy because we always start at
2631 * offset 0. If we tune the size of the object to the alignment then we can
2632 * get the required alignment by putting one properly sized object after
2635 * Notice that the allocation order determines the sizes of the per cpu
2636 * caches. Each processor has always one slab available for allocations.
2637 * Increasing the allocation order reduces the number of times that slabs
2638 * must be moved on and off the partial lists and is therefore a factor in
2643 * Mininum / Maximum order of slab pages. This influences locking overhead
2644 * and slab fragmentation. A higher order reduces the number of partial slabs
2645 * and increases the number of allocations possible without having to
2646 * take the list_lock.
2648 static int slub_min_order
;
2649 static int slub_max_order
= PAGE_ALLOC_COSTLY_ORDER
;
2650 static int slub_min_objects
;
2653 * Merge control. If this is set then no merging of slab caches will occur.
2654 * (Could be removed. This was introduced to pacify the merge skeptics.)
2656 static int slub_nomerge
;
2659 * Calculate the order of allocation given an slab object size.
2661 * The order of allocation has significant impact on performance and other
2662 * system components. Generally order 0 allocations should be preferred since
2663 * order 0 does not cause fragmentation in the page allocator. Larger objects
2664 * be problematic to put into order 0 slabs because there may be too much
2665 * unused space left. We go to a higher order if more than 1/16th of the slab
2668 * In order to reach satisfactory performance we must ensure that a minimum
2669 * number of objects is in one slab. Otherwise we may generate too much
2670 * activity on the partial lists which requires taking the list_lock. This is
2671 * less a concern for large slabs though which are rarely used.
2673 * slub_max_order specifies the order where we begin to stop considering the
2674 * number of objects in a slab as critical. If we reach slub_max_order then
2675 * we try to keep the page order as low as possible. So we accept more waste
2676 * of space in favor of a small page order.
2678 * Higher order allocations also allow the placement of more objects in a
2679 * slab and thereby reduce object handling overhead. If the user has
2680 * requested a higher mininum order then we start with that one instead of
2681 * the smallest order which will fit the object.
2683 static inline int slab_order(int size
, int min_objects
,
2684 int max_order
, int fract_leftover
, int reserved
)
2688 int min_order
= slub_min_order
;
2690 if (order_objects(min_order
, size
, reserved
) > MAX_OBJS_PER_PAGE
)
2691 return get_order(size
* MAX_OBJS_PER_PAGE
) - 1;
2693 for (order
= max(min_order
,
2694 fls(min_objects
* size
- 1) - PAGE_SHIFT
);
2695 order
<= max_order
; order
++) {
2697 unsigned long slab_size
= PAGE_SIZE
<< order
;
2699 if (slab_size
< min_objects
* size
+ reserved
)
2702 rem
= (slab_size
- reserved
) % size
;
2704 if (rem
<= slab_size
/ fract_leftover
)
2712 static inline int calculate_order(int size
, int reserved
)
2720 * Attempt to find best configuration for a slab. This
2721 * works by first attempting to generate a layout with
2722 * the best configuration and backing off gradually.
2724 * First we reduce the acceptable waste in a slab. Then
2725 * we reduce the minimum objects required in a slab.
2727 min_objects
= slub_min_objects
;
2729 min_objects
= 4 * (fls(nr_cpu_ids
) + 1);
2730 max_objects
= order_objects(slub_max_order
, size
, reserved
);
2731 min_objects
= min(min_objects
, max_objects
);
2733 while (min_objects
> 1) {
2735 while (fraction
>= 4) {
2736 order
= slab_order(size
, min_objects
,
2737 slub_max_order
, fraction
, reserved
);
2738 if (order
<= slub_max_order
)
2746 * We were unable to place multiple objects in a slab. Now
2747 * lets see if we can place a single object there.
2749 order
= slab_order(size
, 1, slub_max_order
, 1, reserved
);
2750 if (order
<= slub_max_order
)
2754 * Doh this slab cannot be placed using slub_max_order.
2756 order
= slab_order(size
, 1, MAX_ORDER
, 1, reserved
);
2757 if (order
< MAX_ORDER
)
2763 init_kmem_cache_node(struct kmem_cache_node
*n
)
2766 spin_lock_init(&n
->list_lock
);
2767 INIT_LIST_HEAD(&n
->partial
);
2768 #ifdef CONFIG_SLUB_DEBUG
2769 atomic_long_set(&n
->nr_slabs
, 0);
2770 atomic_long_set(&n
->total_objects
, 0);
2771 INIT_LIST_HEAD(&n
->full
);
2775 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
)
2777 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE
<
2778 SLUB_PAGE_SHIFT
* sizeof(struct kmem_cache_cpu
));
2781 * Must align to double word boundary for the double cmpxchg
2782 * instructions to work; see __pcpu_double_call_return_bool().
2784 s
->cpu_slab
= __alloc_percpu(sizeof(struct kmem_cache_cpu
),
2785 2 * sizeof(void *));
2790 init_kmem_cache_cpus(s
);
2795 static struct kmem_cache
*kmem_cache_node
;
2798 * No kmalloc_node yet so do it by hand. We know that this is the first
2799 * slab on the node for this slabcache. There are no concurrent accesses
2802 * Note that this function only works on the kmalloc_node_cache
2803 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2804 * memory on a fresh node that has no slab structures yet.
2806 static void early_kmem_cache_node_alloc(int node
)
2809 struct kmem_cache_node
*n
;
2811 BUG_ON(kmem_cache_node
->size
< sizeof(struct kmem_cache_node
));
2813 page
= new_slab(kmem_cache_node
, GFP_NOWAIT
, node
);
2816 if (page_to_nid(page
) != node
) {
2817 printk(KERN_ERR
"SLUB: Unable to allocate memory from "
2819 printk(KERN_ERR
"SLUB: Allocating a useless per node structure "
2820 "in order to be able to continue\n");
2825 page
->freelist
= get_freepointer(kmem_cache_node
, n
);
2828 kmem_cache_node
->node
[node
] = n
;
2829 #ifdef CONFIG_SLUB_DEBUG
2830 init_object(kmem_cache_node
, n
, SLUB_RED_ACTIVE
);
2831 init_tracking(kmem_cache_node
, n
);
2833 init_kmem_cache_node(n
);
2834 inc_slabs_node(kmem_cache_node
, node
, page
->objects
);
2836 add_partial(n
, page
, DEACTIVATE_TO_HEAD
);
2839 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2843 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2844 struct kmem_cache_node
*n
= s
->node
[node
];
2847 kmem_cache_free(kmem_cache_node
, n
);
2849 s
->node
[node
] = NULL
;
2853 static int init_kmem_cache_nodes(struct kmem_cache
*s
)
2857 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2858 struct kmem_cache_node
*n
;
2860 if (slab_state
== DOWN
) {
2861 early_kmem_cache_node_alloc(node
);
2864 n
= kmem_cache_alloc_node(kmem_cache_node
,
2868 free_kmem_cache_nodes(s
);
2873 init_kmem_cache_node(n
);
2878 static void set_min_partial(struct kmem_cache
*s
, unsigned long min
)
2880 if (min
< MIN_PARTIAL
)
2882 else if (min
> MAX_PARTIAL
)
2884 s
->min_partial
= min
;
2888 * calculate_sizes() determines the order and the distribution of data within
2891 static int calculate_sizes(struct kmem_cache
*s
, int forced_order
)
2893 unsigned long flags
= s
->flags
;
2894 unsigned long size
= s
->object_size
;
2898 * Round up object size to the next word boundary. We can only
2899 * place the free pointer at word boundaries and this determines
2900 * the possible location of the free pointer.
2902 size
= ALIGN(size
, sizeof(void *));
2904 #ifdef CONFIG_SLUB_DEBUG
2906 * Determine if we can poison the object itself. If the user of
2907 * the slab may touch the object after free or before allocation
2908 * then we should never poison the object itself.
2910 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_DESTROY_BY_RCU
) &&
2912 s
->flags
|= __OBJECT_POISON
;
2914 s
->flags
&= ~__OBJECT_POISON
;
2918 * If we are Redzoning then check if there is some space between the
2919 * end of the object and the free pointer. If not then add an
2920 * additional word to have some bytes to store Redzone information.
2922 if ((flags
& SLAB_RED_ZONE
) && size
== s
->object_size
)
2923 size
+= sizeof(void *);
2927 * With that we have determined the number of bytes in actual use
2928 * by the object. This is the potential offset to the free pointer.
2932 if (((flags
& (SLAB_DESTROY_BY_RCU
| SLAB_POISON
)) ||
2935 * Relocate free pointer after the object if it is not
2936 * permitted to overwrite the first word of the object on
2939 * This is the case if we do RCU, have a constructor or
2940 * destructor or are poisoning the objects.
2943 size
+= sizeof(void *);
2946 #ifdef CONFIG_SLUB_DEBUG
2947 if (flags
& SLAB_STORE_USER
)
2949 * Need to store information about allocs and frees after
2952 size
+= 2 * sizeof(struct track
);
2954 if (flags
& SLAB_RED_ZONE
)
2956 * Add some empty padding so that we can catch
2957 * overwrites from earlier objects rather than let
2958 * tracking information or the free pointer be
2959 * corrupted if a user writes before the start
2962 size
+= sizeof(void *);
2966 * SLUB stores one object immediately after another beginning from
2967 * offset 0. In order to align the objects we have to simply size
2968 * each object to conform to the alignment.
2970 size
= ALIGN(size
, s
->align
);
2972 if (forced_order
>= 0)
2973 order
= forced_order
;
2975 order
= calculate_order(size
, s
->reserved
);
2982 s
->allocflags
|= __GFP_COMP
;
2984 if (s
->flags
& SLAB_CACHE_DMA
)
2985 s
->allocflags
|= SLUB_DMA
;
2987 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
2988 s
->allocflags
|= __GFP_RECLAIMABLE
;
2991 * Determine the number of objects per slab
2993 s
->oo
= oo_make(order
, size
, s
->reserved
);
2994 s
->min
= oo_make(get_order(size
), size
, s
->reserved
);
2995 if (oo_objects(s
->oo
) > oo_objects(s
->max
))
2998 return !!oo_objects(s
->oo
);
3001 static int kmem_cache_open(struct kmem_cache
*s
, unsigned long flags
)
3003 s
->flags
= kmem_cache_flags(s
->size
, flags
, s
->name
, s
->ctor
);
3006 if (need_reserve_slab_rcu
&& (s
->flags
& SLAB_DESTROY_BY_RCU
))
3007 s
->reserved
= sizeof(struct rcu_head
);
3009 if (!calculate_sizes(s
, -1))
3011 if (disable_higher_order_debug
) {
3013 * Disable debugging flags that store metadata if the min slab
3016 if (get_order(s
->size
) > get_order(s
->object_size
)) {
3017 s
->flags
&= ~DEBUG_METADATA_FLAGS
;
3019 if (!calculate_sizes(s
, -1))
3024 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3025 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3026 if (system_has_cmpxchg_double() && (s
->flags
& SLAB_DEBUG_FLAGS
) == 0)
3027 /* Enable fast mode */
3028 s
->flags
|= __CMPXCHG_DOUBLE
;
3032 * The larger the object size is, the more pages we want on the partial
3033 * list to avoid pounding the page allocator excessively.
3035 set_min_partial(s
, ilog2(s
->size
) / 2);
3038 * cpu_partial determined the maximum number of objects kept in the
3039 * per cpu partial lists of a processor.
3041 * Per cpu partial lists mainly contain slabs that just have one
3042 * object freed. If they are used for allocation then they can be
3043 * filled up again with minimal effort. The slab will never hit the
3044 * per node partial lists and therefore no locking will be required.
3046 * This setting also determines
3048 * A) The number of objects from per cpu partial slabs dumped to the
3049 * per node list when we reach the limit.
3050 * B) The number of objects in cpu partial slabs to extract from the
3051 * per node list when we run out of per cpu objects. We only fetch 50%
3052 * to keep some capacity around for frees.
3054 if (kmem_cache_debug(s
))
3056 else if (s
->size
>= PAGE_SIZE
)
3058 else if (s
->size
>= 1024)
3060 else if (s
->size
>= 256)
3061 s
->cpu_partial
= 13;
3063 s
->cpu_partial
= 30;
3066 s
->remote_node_defrag_ratio
= 1000;
3068 if (!init_kmem_cache_nodes(s
))
3071 if (alloc_kmem_cache_cpus(s
))
3074 free_kmem_cache_nodes(s
);
3076 if (flags
& SLAB_PANIC
)
3077 panic("Cannot create slab %s size=%lu realsize=%u "
3078 "order=%u offset=%u flags=%lx\n",
3079 s
->name
, (unsigned long)s
->size
, s
->size
, oo_order(s
->oo
),
3084 static void list_slab_objects(struct kmem_cache
*s
, struct page
*page
,
3087 #ifdef CONFIG_SLUB_DEBUG
3088 void *addr
= page_address(page
);
3090 unsigned long *map
= kzalloc(BITS_TO_LONGS(page
->objects
) *
3091 sizeof(long), GFP_ATOMIC
);
3094 slab_err(s
, page
, text
, s
->name
);
3097 get_map(s
, page
, map
);
3098 for_each_object(p
, s
, addr
, page
->objects
) {
3100 if (!test_bit(slab_index(p
, s
, addr
), map
)) {
3101 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu\n",
3103 print_tracking(s
, p
);
3112 * Attempt to free all partial slabs on a node.
3113 * This is called from kmem_cache_close(). We must be the last thread
3114 * using the cache and therefore we do not need to lock anymore.
3116 static void free_partial(struct kmem_cache
*s
, struct kmem_cache_node
*n
)
3118 struct page
*page
, *h
;
3120 list_for_each_entry_safe(page
, h
, &n
->partial
, lru
) {
3122 remove_partial(n
, page
);
3123 discard_slab(s
, page
);
3125 list_slab_objects(s
, page
,
3126 "Objects remaining in %s on kmem_cache_close()");
3132 * Release all resources used by a slab cache.
3134 static inline int kmem_cache_close(struct kmem_cache
*s
)
3139 /* Attempt to free all objects */
3140 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3141 struct kmem_cache_node
*n
= get_node(s
, node
);
3144 if (n
->nr_partial
|| slabs_node(s
, node
))
3147 free_percpu(s
->cpu_slab
);
3148 free_kmem_cache_nodes(s
);
3152 int __kmem_cache_shutdown(struct kmem_cache
*s
)
3154 int rc
= kmem_cache_close(s
);
3157 sysfs_slab_remove(s
);
3162 /********************************************************************
3164 *******************************************************************/
3166 struct kmem_cache
*kmalloc_caches
[SLUB_PAGE_SHIFT
];
3167 EXPORT_SYMBOL(kmalloc_caches
);
3169 #ifdef CONFIG_ZONE_DMA
3170 static struct kmem_cache
*kmalloc_dma_caches
[SLUB_PAGE_SHIFT
];
3173 static int __init
setup_slub_min_order(char *str
)
3175 get_option(&str
, &slub_min_order
);
3180 __setup("slub_min_order=", setup_slub_min_order
);
3182 static int __init
setup_slub_max_order(char *str
)
3184 get_option(&str
, &slub_max_order
);
3185 slub_max_order
= min(slub_max_order
, MAX_ORDER
- 1);
3190 __setup("slub_max_order=", setup_slub_max_order
);
3192 static int __init
setup_slub_min_objects(char *str
)
3194 get_option(&str
, &slub_min_objects
);
3199 __setup("slub_min_objects=", setup_slub_min_objects
);
3201 static int __init
setup_slub_nomerge(char *str
)
3207 __setup("slub_nomerge", setup_slub_nomerge
);
3210 * Conversion table for small slabs sizes / 8 to the index in the
3211 * kmalloc array. This is necessary for slabs < 192 since we have non power
3212 * of two cache sizes there. The size of larger slabs can be determined using
3215 static s8 size_index
[24] = {
3242 static inline int size_index_elem(size_t bytes
)
3244 return (bytes
- 1) / 8;
3247 static struct kmem_cache
*get_slab(size_t size
, gfp_t flags
)
3253 return ZERO_SIZE_PTR
;
3255 index
= size_index
[size_index_elem(size
)];
3257 index
= fls(size
- 1);
3259 #ifdef CONFIG_ZONE_DMA
3260 if (unlikely((flags
& SLUB_DMA
)))
3261 return kmalloc_dma_caches
[index
];
3264 return kmalloc_caches
[index
];
3267 void *__kmalloc(size_t size
, gfp_t flags
)
3269 struct kmem_cache
*s
;
3272 if (unlikely(size
> SLUB_MAX_SIZE
))
3273 return kmalloc_large(size
, flags
);
3275 s
= get_slab(size
, flags
);
3277 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3280 ret
= slab_alloc(s
, flags
, _RET_IP_
);
3282 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, flags
);
3286 EXPORT_SYMBOL(__kmalloc
);
3289 static void *kmalloc_large_node(size_t size
, gfp_t flags
, int node
)
3294 flags
|= __GFP_COMP
| __GFP_NOTRACK
| __GFP_KMEMCG
;
3295 page
= alloc_pages_node(node
, flags
, get_order(size
));
3297 ptr
= page_address(page
);
3299 kmemleak_alloc(ptr
, size
, 1, flags
);
3303 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3305 struct kmem_cache
*s
;
3308 if (unlikely(size
> SLUB_MAX_SIZE
)) {
3309 ret
= kmalloc_large_node(size
, flags
, node
);
3311 trace_kmalloc_node(_RET_IP_
, ret
,
3312 size
, PAGE_SIZE
<< get_order(size
),
3318 s
= get_slab(size
, flags
);
3320 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3323 ret
= slab_alloc_node(s
, flags
, node
, _RET_IP_
);
3325 trace_kmalloc_node(_RET_IP_
, ret
, size
, s
->size
, flags
, node
);
3329 EXPORT_SYMBOL(__kmalloc_node
);
3332 size_t ksize(const void *object
)
3336 if (unlikely(object
== ZERO_SIZE_PTR
))
3339 page
= virt_to_head_page(object
);
3341 if (unlikely(!PageSlab(page
))) {
3342 WARN_ON(!PageCompound(page
));
3343 return PAGE_SIZE
<< compound_order(page
);
3346 return slab_ksize(page
->slab_cache
);
3348 EXPORT_SYMBOL(ksize
);
3350 #ifdef CONFIG_SLUB_DEBUG
3351 bool verify_mem_not_deleted(const void *x
)
3354 void *object
= (void *)x
;
3355 unsigned long flags
;
3358 if (unlikely(ZERO_OR_NULL_PTR(x
)))
3361 local_irq_save(flags
);
3363 page
= virt_to_head_page(x
);
3364 if (unlikely(!PageSlab(page
))) {
3365 /* maybe it was from stack? */
3371 if (on_freelist(page
->slab_cache
, page
, object
)) {
3372 object_err(page
->slab_cache
, page
, object
, "Object is on free-list");
3380 local_irq_restore(flags
);
3383 EXPORT_SYMBOL(verify_mem_not_deleted
);
3386 void kfree(const void *x
)
3389 void *object
= (void *)x
;
3391 trace_kfree(_RET_IP_
, x
);
3393 if (unlikely(ZERO_OR_NULL_PTR(x
)))
3396 page
= virt_to_head_page(x
);
3397 if (unlikely(!PageSlab(page
))) {
3398 BUG_ON(!PageCompound(page
));
3400 __free_memcg_kmem_pages(page
, compound_order(page
));
3403 slab_free(page
->slab_cache
, page
, object
, _RET_IP_
);
3405 EXPORT_SYMBOL(kfree
);
3408 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3409 * the remaining slabs by the number of items in use. The slabs with the
3410 * most items in use come first. New allocations will then fill those up
3411 * and thus they can be removed from the partial lists.
3413 * The slabs with the least items are placed last. This results in them
3414 * being allocated from last increasing the chance that the last objects
3415 * are freed in them.
3417 int kmem_cache_shrink(struct kmem_cache
*s
)
3421 struct kmem_cache_node
*n
;
3424 int objects
= oo_objects(s
->max
);
3425 struct list_head
*slabs_by_inuse
=
3426 kmalloc(sizeof(struct list_head
) * objects
, GFP_KERNEL
);
3427 unsigned long flags
;
3429 if (!slabs_by_inuse
)
3433 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3434 n
= get_node(s
, node
);
3439 for (i
= 0; i
< objects
; i
++)
3440 INIT_LIST_HEAD(slabs_by_inuse
+ i
);
3442 spin_lock_irqsave(&n
->list_lock
, flags
);
3445 * Build lists indexed by the items in use in each slab.
3447 * Note that concurrent frees may occur while we hold the
3448 * list_lock. page->inuse here is the upper limit.
3450 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
3451 list_move(&page
->lru
, slabs_by_inuse
+ page
->inuse
);
3457 * Rebuild the partial list with the slabs filled up most
3458 * first and the least used slabs at the end.
3460 for (i
= objects
- 1; i
> 0; i
--)
3461 list_splice(slabs_by_inuse
+ i
, n
->partial
.prev
);
3463 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3465 /* Release empty slabs */
3466 list_for_each_entry_safe(page
, t
, slabs_by_inuse
, lru
)
3467 discard_slab(s
, page
);
3470 kfree(slabs_by_inuse
);
3473 EXPORT_SYMBOL(kmem_cache_shrink
);
3475 #if defined(CONFIG_MEMORY_HOTPLUG)
3476 static int slab_mem_going_offline_callback(void *arg
)
3478 struct kmem_cache
*s
;
3480 mutex_lock(&slab_mutex
);
3481 list_for_each_entry(s
, &slab_caches
, list
)
3482 kmem_cache_shrink(s
);
3483 mutex_unlock(&slab_mutex
);
3488 static void slab_mem_offline_callback(void *arg
)
3490 struct kmem_cache_node
*n
;
3491 struct kmem_cache
*s
;
3492 struct memory_notify
*marg
= arg
;
3495 offline_node
= marg
->status_change_nid_normal
;
3498 * If the node still has available memory. we need kmem_cache_node
3501 if (offline_node
< 0)
3504 mutex_lock(&slab_mutex
);
3505 list_for_each_entry(s
, &slab_caches
, list
) {
3506 n
= get_node(s
, offline_node
);
3509 * if n->nr_slabs > 0, slabs still exist on the node
3510 * that is going down. We were unable to free them,
3511 * and offline_pages() function shouldn't call this
3512 * callback. So, we must fail.
3514 BUG_ON(slabs_node(s
, offline_node
));
3516 s
->node
[offline_node
] = NULL
;
3517 kmem_cache_free(kmem_cache_node
, n
);
3520 mutex_unlock(&slab_mutex
);
3523 static int slab_mem_going_online_callback(void *arg
)
3525 struct kmem_cache_node
*n
;
3526 struct kmem_cache
*s
;
3527 struct memory_notify
*marg
= arg
;
3528 int nid
= marg
->status_change_nid_normal
;
3532 * If the node's memory is already available, then kmem_cache_node is
3533 * already created. Nothing to do.
3539 * We are bringing a node online. No memory is available yet. We must
3540 * allocate a kmem_cache_node structure in order to bring the node
3543 mutex_lock(&slab_mutex
);
3544 list_for_each_entry(s
, &slab_caches
, list
) {
3546 * XXX: kmem_cache_alloc_node will fallback to other nodes
3547 * since memory is not yet available from the node that
3550 n
= kmem_cache_alloc(kmem_cache_node
, GFP_KERNEL
);
3555 init_kmem_cache_node(n
);
3559 mutex_unlock(&slab_mutex
);
3563 static int slab_memory_callback(struct notifier_block
*self
,
3564 unsigned long action
, void *arg
)
3569 case MEM_GOING_ONLINE
:
3570 ret
= slab_mem_going_online_callback(arg
);
3572 case MEM_GOING_OFFLINE
:
3573 ret
= slab_mem_going_offline_callback(arg
);
3576 case MEM_CANCEL_ONLINE
:
3577 slab_mem_offline_callback(arg
);
3580 case MEM_CANCEL_OFFLINE
:
3584 ret
= notifier_from_errno(ret
);
3590 #endif /* CONFIG_MEMORY_HOTPLUG */
3592 /********************************************************************
3593 * Basic setup of slabs
3594 *******************************************************************/
3597 * Used for early kmem_cache structures that were allocated using
3598 * the page allocator. Allocate them properly then fix up the pointers
3599 * that may be pointing to the wrong kmem_cache structure.
3602 static struct kmem_cache
* __init
bootstrap(struct kmem_cache
*static_cache
)
3605 struct kmem_cache
*s
= kmem_cache_zalloc(kmem_cache
, GFP_NOWAIT
);
3607 memcpy(s
, static_cache
, kmem_cache
->object_size
);
3609 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3610 struct kmem_cache_node
*n
= get_node(s
, node
);
3614 list_for_each_entry(p
, &n
->partial
, lru
)
3617 #ifdef CONFIG_SLUB_DEBUG
3618 list_for_each_entry(p
, &n
->full
, lru
)
3623 list_add(&s
->list
, &slab_caches
);
3627 void __init
kmem_cache_init(void)
3629 static __initdata
struct kmem_cache boot_kmem_cache
,
3630 boot_kmem_cache_node
;
3634 if (debug_guardpage_minorder())
3637 kmem_cache_node
= &boot_kmem_cache_node
;
3638 kmem_cache
= &boot_kmem_cache
;
3640 create_boot_cache(kmem_cache_node
, "kmem_cache_node",
3641 sizeof(struct kmem_cache_node
), SLAB_HWCACHE_ALIGN
);
3643 hotplug_memory_notifier(slab_memory_callback
, SLAB_CALLBACK_PRI
);
3645 /* Able to allocate the per node structures */
3646 slab_state
= PARTIAL
;
3648 create_boot_cache(kmem_cache
, "kmem_cache",
3649 offsetof(struct kmem_cache
, node
) +
3650 nr_node_ids
* sizeof(struct kmem_cache_node
*),
3651 SLAB_HWCACHE_ALIGN
);
3653 kmem_cache
= bootstrap(&boot_kmem_cache
);
3656 * Allocate kmem_cache_node properly from the kmem_cache slab.
3657 * kmem_cache_node is separately allocated so no need to
3658 * update any list pointers.
3660 kmem_cache_node
= bootstrap(&boot_kmem_cache_node
);
3662 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3665 * Patch up the size_index table if we have strange large alignment
3666 * requirements for the kmalloc array. This is only the case for
3667 * MIPS it seems. The standard arches will not generate any code here.
3669 * Largest permitted alignment is 256 bytes due to the way we
3670 * handle the index determination for the smaller caches.
3672 * Make sure that nothing crazy happens if someone starts tinkering
3673 * around with ARCH_KMALLOC_MINALIGN
3675 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 256 ||
3676 (KMALLOC_MIN_SIZE
& (KMALLOC_MIN_SIZE
- 1)));
3678 for (i
= 8; i
< KMALLOC_MIN_SIZE
; i
+= 8) {
3679 int elem
= size_index_elem(i
);
3680 if (elem
>= ARRAY_SIZE(size_index
))
3682 size_index
[elem
] = KMALLOC_SHIFT_LOW
;
3685 if (KMALLOC_MIN_SIZE
== 64) {
3687 * The 96 byte size cache is not used if the alignment
3690 for (i
= 64 + 8; i
<= 96; i
+= 8)
3691 size_index
[size_index_elem(i
)] = 7;
3692 } else if (KMALLOC_MIN_SIZE
== 128) {
3694 * The 192 byte sized cache is not used if the alignment
3695 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3698 for (i
= 128 + 8; i
<= 192; i
+= 8)
3699 size_index
[size_index_elem(i
)] = 8;
3702 /* Caches that are not of the two-to-the-power-of size */
3703 if (KMALLOC_MIN_SIZE
<= 32) {
3704 kmalloc_caches
[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3708 if (KMALLOC_MIN_SIZE
<= 64) {
3709 kmalloc_caches
[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3713 for (i
= KMALLOC_SHIFT_LOW
; i
< SLUB_PAGE_SHIFT
; i
++) {
3714 kmalloc_caches
[i
] = create_kmalloc_cache("kmalloc", 1 << i
, 0);
3720 /* Provide the correct kmalloc names now that the caches are up */
3721 if (KMALLOC_MIN_SIZE
<= 32) {
3722 kmalloc_caches
[1]->name
= kstrdup(kmalloc_caches
[1]->name
, GFP_NOWAIT
);
3723 BUG_ON(!kmalloc_caches
[1]->name
);
3726 if (KMALLOC_MIN_SIZE
<= 64) {
3727 kmalloc_caches
[2]->name
= kstrdup(kmalloc_caches
[2]->name
, GFP_NOWAIT
);
3728 BUG_ON(!kmalloc_caches
[2]->name
);
3731 for (i
= KMALLOC_SHIFT_LOW
; i
< SLUB_PAGE_SHIFT
; i
++) {
3732 char *s
= kasprintf(GFP_NOWAIT
, "kmalloc-%d", 1 << i
);
3735 kmalloc_caches
[i
]->name
= s
;
3739 register_cpu_notifier(&slab_notifier
);
3742 #ifdef CONFIG_ZONE_DMA
3743 for (i
= 0; i
< SLUB_PAGE_SHIFT
; i
++) {
3744 struct kmem_cache
*s
= kmalloc_caches
[i
];
3747 char *name
= kasprintf(GFP_NOWAIT
,
3748 "dma-kmalloc-%d", s
->object_size
);
3751 kmalloc_dma_caches
[i
] = create_kmalloc_cache(name
,
3752 s
->object_size
, SLAB_CACHE_DMA
);
3757 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3758 " CPUs=%d, Nodes=%d\n",
3759 caches
, cache_line_size(),
3760 slub_min_order
, slub_max_order
, slub_min_objects
,
3761 nr_cpu_ids
, nr_node_ids
);
3764 void __init
kmem_cache_init_late(void)
3769 * Find a mergeable slab cache
3771 static int slab_unmergeable(struct kmem_cache
*s
)
3773 if (slub_nomerge
|| (s
->flags
& SLUB_NEVER_MERGE
))
3780 * We may have set a slab to be unmergeable during bootstrap.
3782 if (s
->refcount
< 0)
3788 static struct kmem_cache
*find_mergeable(struct mem_cgroup
*memcg
, size_t size
,
3789 size_t align
, unsigned long flags
, const char *name
,
3790 void (*ctor
)(void *))
3792 struct kmem_cache
*s
;
3794 if (slub_nomerge
|| (flags
& SLUB_NEVER_MERGE
))
3800 size
= ALIGN(size
, sizeof(void *));
3801 align
= calculate_alignment(flags
, align
, size
);
3802 size
= ALIGN(size
, align
);
3803 flags
= kmem_cache_flags(size
, flags
, name
, NULL
);
3805 list_for_each_entry(s
, &slab_caches
, list
) {
3806 if (slab_unmergeable(s
))
3812 if ((flags
& SLUB_MERGE_SAME
) != (s
->flags
& SLUB_MERGE_SAME
))
3815 * Check if alignment is compatible.
3816 * Courtesy of Adrian Drzewiecki
3818 if ((s
->size
& ~(align
- 1)) != s
->size
)
3821 if (s
->size
- size
>= sizeof(void *))
3824 if (!cache_match_memcg(s
, memcg
))
3833 __kmem_cache_alias(struct mem_cgroup
*memcg
, const char *name
, size_t size
,
3834 size_t align
, unsigned long flags
, void (*ctor
)(void *))
3836 struct kmem_cache
*s
;
3838 s
= find_mergeable(memcg
, size
, align
, flags
, name
, ctor
);
3842 * Adjust the object sizes so that we clear
3843 * the complete object on kzalloc.
3845 s
->object_size
= max(s
->object_size
, (int)size
);
3846 s
->inuse
= max_t(int, s
->inuse
, ALIGN(size
, sizeof(void *)));
3848 if (sysfs_slab_alias(s
, name
)) {
3857 int __kmem_cache_create(struct kmem_cache
*s
, unsigned long flags
)
3861 err
= kmem_cache_open(s
, flags
);
3865 /* Mutex is not taken during early boot */
3866 if (slab_state
<= UP
)
3869 memcg_propagate_slab_attrs(s
);
3870 mutex_unlock(&slab_mutex
);
3871 err
= sysfs_slab_add(s
);
3872 mutex_lock(&slab_mutex
);
3875 kmem_cache_close(s
);
3882 * Use the cpu notifier to insure that the cpu slabs are flushed when
3885 static int __cpuinit
slab_cpuup_callback(struct notifier_block
*nfb
,
3886 unsigned long action
, void *hcpu
)
3888 long cpu
= (long)hcpu
;
3889 struct kmem_cache
*s
;
3890 unsigned long flags
;
3893 case CPU_UP_CANCELED
:
3894 case CPU_UP_CANCELED_FROZEN
:
3896 case CPU_DEAD_FROZEN
:
3897 mutex_lock(&slab_mutex
);
3898 list_for_each_entry(s
, &slab_caches
, list
) {
3899 local_irq_save(flags
);
3900 __flush_cpu_slab(s
, cpu
);
3901 local_irq_restore(flags
);
3903 mutex_unlock(&slab_mutex
);
3911 static struct notifier_block __cpuinitdata slab_notifier
= {
3912 .notifier_call
= slab_cpuup_callback
3917 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, unsigned long caller
)
3919 struct kmem_cache
*s
;
3922 if (unlikely(size
> SLUB_MAX_SIZE
))
3923 return kmalloc_large(size
, gfpflags
);
3925 s
= get_slab(size
, gfpflags
);
3927 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3930 ret
= slab_alloc(s
, gfpflags
, caller
);
3932 /* Honor the call site pointer we received. */
3933 trace_kmalloc(caller
, ret
, size
, s
->size
, gfpflags
);
3939 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
3940 int node
, unsigned long caller
)
3942 struct kmem_cache
*s
;
3945 if (unlikely(size
> SLUB_MAX_SIZE
)) {
3946 ret
= kmalloc_large_node(size
, gfpflags
, node
);
3948 trace_kmalloc_node(caller
, ret
,
3949 size
, PAGE_SIZE
<< get_order(size
),
3955 s
= get_slab(size
, gfpflags
);
3957 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3960 ret
= slab_alloc_node(s
, gfpflags
, node
, caller
);
3962 /* Honor the call site pointer we received. */
3963 trace_kmalloc_node(caller
, ret
, size
, s
->size
, gfpflags
, node
);
3970 static int count_inuse(struct page
*page
)
3975 static int count_total(struct page
*page
)
3977 return page
->objects
;
3981 #ifdef CONFIG_SLUB_DEBUG
3982 static int validate_slab(struct kmem_cache
*s
, struct page
*page
,
3986 void *addr
= page_address(page
);
3988 if (!check_slab(s
, page
) ||
3989 !on_freelist(s
, page
, NULL
))
3992 /* Now we know that a valid freelist exists */
3993 bitmap_zero(map
, page
->objects
);
3995 get_map(s
, page
, map
);
3996 for_each_object(p
, s
, addr
, page
->objects
) {
3997 if (test_bit(slab_index(p
, s
, addr
), map
))
3998 if (!check_object(s
, page
, p
, SLUB_RED_INACTIVE
))
4002 for_each_object(p
, s
, addr
, page
->objects
)
4003 if (!test_bit(slab_index(p
, s
, addr
), map
))
4004 if (!check_object(s
, page
, p
, SLUB_RED_ACTIVE
))
4009 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
,
4013 validate_slab(s
, page
, map
);
4017 static int validate_slab_node(struct kmem_cache
*s
,
4018 struct kmem_cache_node
*n
, unsigned long *map
)
4020 unsigned long count
= 0;
4022 unsigned long flags
;
4024 spin_lock_irqsave(&n
->list_lock
, flags
);
4026 list_for_each_entry(page
, &n
->partial
, lru
) {
4027 validate_slab_slab(s
, page
, map
);
4030 if (count
!= n
->nr_partial
)
4031 printk(KERN_ERR
"SLUB %s: %ld partial slabs counted but "
4032 "counter=%ld\n", s
->name
, count
, n
->nr_partial
);
4034 if (!(s
->flags
& SLAB_STORE_USER
))
4037 list_for_each_entry(page
, &n
->full
, lru
) {
4038 validate_slab_slab(s
, page
, map
);
4041 if (count
!= atomic_long_read(&n
->nr_slabs
))
4042 printk(KERN_ERR
"SLUB: %s %ld slabs counted but "
4043 "counter=%ld\n", s
->name
, count
,
4044 atomic_long_read(&n
->nr_slabs
));
4047 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4051 static long validate_slab_cache(struct kmem_cache
*s
)
4054 unsigned long count
= 0;
4055 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
4056 sizeof(unsigned long), GFP_KERNEL
);
4062 for_each_node_state(node
, N_NORMAL_MEMORY
) {
4063 struct kmem_cache_node
*n
= get_node(s
, node
);
4065 count
+= validate_slab_node(s
, n
, map
);
4071 * Generate lists of code addresses where slabcache objects are allocated
4076 unsigned long count
;
4083 DECLARE_BITMAP(cpus
, NR_CPUS
);
4089 unsigned long count
;
4090 struct location
*loc
;
4093 static void free_loc_track(struct loc_track
*t
)
4096 free_pages((unsigned long)t
->loc
,
4097 get_order(sizeof(struct location
) * t
->max
));
4100 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
4105 order
= get_order(sizeof(struct location
) * max
);
4107 l
= (void *)__get_free_pages(flags
, order
);
4112 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
4120 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
4121 const struct track
*track
)
4123 long start
, end
, pos
;
4125 unsigned long caddr
;
4126 unsigned long age
= jiffies
- track
->when
;
4132 pos
= start
+ (end
- start
+ 1) / 2;
4135 * There is nothing at "end". If we end up there
4136 * we need to add something to before end.
4141 caddr
= t
->loc
[pos
].addr
;
4142 if (track
->addr
== caddr
) {
4148 if (age
< l
->min_time
)
4150 if (age
> l
->max_time
)
4153 if (track
->pid
< l
->min_pid
)
4154 l
->min_pid
= track
->pid
;
4155 if (track
->pid
> l
->max_pid
)
4156 l
->max_pid
= track
->pid
;
4158 cpumask_set_cpu(track
->cpu
,
4159 to_cpumask(l
->cpus
));
4161 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4165 if (track
->addr
< caddr
)
4172 * Not found. Insert new tracking element.
4174 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
4180 (t
->count
- pos
) * sizeof(struct location
));
4183 l
->addr
= track
->addr
;
4187 l
->min_pid
= track
->pid
;
4188 l
->max_pid
= track
->pid
;
4189 cpumask_clear(to_cpumask(l
->cpus
));
4190 cpumask_set_cpu(track
->cpu
, to_cpumask(l
->cpus
));
4191 nodes_clear(l
->nodes
);
4192 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4196 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
4197 struct page
*page
, enum track_item alloc
,
4200 void *addr
= page_address(page
);
4203 bitmap_zero(map
, page
->objects
);
4204 get_map(s
, page
, map
);
4206 for_each_object(p
, s
, addr
, page
->objects
)
4207 if (!test_bit(slab_index(p
, s
, addr
), map
))
4208 add_location(t
, s
, get_track(s
, p
, alloc
));
4211 static int list_locations(struct kmem_cache
*s
, char *buf
,
4212 enum track_item alloc
)
4216 struct loc_track t
= { 0, 0, NULL
};
4218 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
4219 sizeof(unsigned long), GFP_KERNEL
);
4221 if (!map
|| !alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
4224 return sprintf(buf
, "Out of memory\n");
4226 /* Push back cpu slabs */
4229 for_each_node_state(node
, N_NORMAL_MEMORY
) {
4230 struct kmem_cache_node
*n
= get_node(s
, node
);
4231 unsigned long flags
;
4234 if (!atomic_long_read(&n
->nr_slabs
))
4237 spin_lock_irqsave(&n
->list_lock
, flags
);
4238 list_for_each_entry(page
, &n
->partial
, lru
)
4239 process_slab(&t
, s
, page
, alloc
, map
);
4240 list_for_each_entry(page
, &n
->full
, lru
)
4241 process_slab(&t
, s
, page
, alloc
, map
);
4242 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4245 for (i
= 0; i
< t
.count
; i
++) {
4246 struct location
*l
= &t
.loc
[i
];
4248 if (len
> PAGE_SIZE
- KSYM_SYMBOL_LEN
- 100)
4250 len
+= sprintf(buf
+ len
, "%7ld ", l
->count
);
4253 len
+= sprintf(buf
+ len
, "%pS", (void *)l
->addr
);
4255 len
+= sprintf(buf
+ len
, "<not-available>");
4257 if (l
->sum_time
!= l
->min_time
) {
4258 len
+= sprintf(buf
+ len
, " age=%ld/%ld/%ld",
4260 (long)div_u64(l
->sum_time
, l
->count
),
4263 len
+= sprintf(buf
+ len
, " age=%ld",
4266 if (l
->min_pid
!= l
->max_pid
)
4267 len
+= sprintf(buf
+ len
, " pid=%ld-%ld",
4268 l
->min_pid
, l
->max_pid
);
4270 len
+= sprintf(buf
+ len
, " pid=%ld",
4273 if (num_online_cpus() > 1 &&
4274 !cpumask_empty(to_cpumask(l
->cpus
)) &&
4275 len
< PAGE_SIZE
- 60) {
4276 len
+= sprintf(buf
+ len
, " cpus=");
4277 len
+= cpulist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
4278 to_cpumask(l
->cpus
));
4281 if (nr_online_nodes
> 1 && !nodes_empty(l
->nodes
) &&
4282 len
< PAGE_SIZE
- 60) {
4283 len
+= sprintf(buf
+ len
, " nodes=");
4284 len
+= nodelist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
4288 len
+= sprintf(buf
+ len
, "\n");
4294 len
+= sprintf(buf
, "No data\n");
4299 #ifdef SLUB_RESILIENCY_TEST
4300 static void resiliency_test(void)
4304 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 16 || SLUB_PAGE_SHIFT
< 10);
4306 printk(KERN_ERR
"SLUB resiliency testing\n");
4307 printk(KERN_ERR
"-----------------------\n");
4308 printk(KERN_ERR
"A. Corruption after allocation\n");
4310 p
= kzalloc(16, GFP_KERNEL
);
4312 printk(KERN_ERR
"\n1. kmalloc-16: Clobber Redzone/next pointer"
4313 " 0x12->0x%p\n\n", p
+ 16);
4315 validate_slab_cache(kmalloc_caches
[4]);
4317 /* Hmmm... The next two are dangerous */
4318 p
= kzalloc(32, GFP_KERNEL
);
4319 p
[32 + sizeof(void *)] = 0x34;
4320 printk(KERN_ERR
"\n2. kmalloc-32: Clobber next pointer/next slab"
4321 " 0x34 -> -0x%p\n", p
);
4323 "If allocated object is overwritten then not detectable\n\n");
4325 validate_slab_cache(kmalloc_caches
[5]);
4326 p
= kzalloc(64, GFP_KERNEL
);
4327 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
4329 printk(KERN_ERR
"\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4332 "If allocated object is overwritten then not detectable\n\n");
4333 validate_slab_cache(kmalloc_caches
[6]);
4335 printk(KERN_ERR
"\nB. Corruption after free\n");
4336 p
= kzalloc(128, GFP_KERNEL
);
4339 printk(KERN_ERR
"1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
4340 validate_slab_cache(kmalloc_caches
[7]);
4342 p
= kzalloc(256, GFP_KERNEL
);
4345 printk(KERN_ERR
"\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4347 validate_slab_cache(kmalloc_caches
[8]);
4349 p
= kzalloc(512, GFP_KERNEL
);
4352 printk(KERN_ERR
"\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
4353 validate_slab_cache(kmalloc_caches
[9]);
4357 static void resiliency_test(void) {};
4362 enum slab_stat_type
{
4363 SL_ALL
, /* All slabs */
4364 SL_PARTIAL
, /* Only partially allocated slabs */
4365 SL_CPU
, /* Only slabs used for cpu caches */
4366 SL_OBJECTS
, /* Determine allocated objects not slabs */
4367 SL_TOTAL
/* Determine object capacity not slabs */
4370 #define SO_ALL (1 << SL_ALL)
4371 #define SO_PARTIAL (1 << SL_PARTIAL)
4372 #define SO_CPU (1 << SL_CPU)
4373 #define SO_OBJECTS (1 << SL_OBJECTS)
4374 #define SO_TOTAL (1 << SL_TOTAL)
4376 static ssize_t
show_slab_objects(struct kmem_cache
*s
,
4377 char *buf
, unsigned long flags
)
4379 unsigned long total
= 0;
4382 unsigned long *nodes
;
4383 unsigned long *per_cpu
;
4385 nodes
= kzalloc(2 * sizeof(unsigned long) * nr_node_ids
, GFP_KERNEL
);
4388 per_cpu
= nodes
+ nr_node_ids
;
4390 if (flags
& SO_CPU
) {
4393 for_each_possible_cpu(cpu
) {
4394 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
4398 page
= ACCESS_ONCE(c
->page
);
4402 node
= page_to_nid(page
);
4403 if (flags
& SO_TOTAL
)
4405 else if (flags
& SO_OBJECTS
)
4413 page
= ACCESS_ONCE(c
->partial
);
4424 lock_memory_hotplug();
4425 #ifdef CONFIG_SLUB_DEBUG
4426 if (flags
& SO_ALL
) {
4427 for_each_node_state(node
, N_NORMAL_MEMORY
) {
4428 struct kmem_cache_node
*n
= get_node(s
, node
);
4430 if (flags
& SO_TOTAL
)
4431 x
= atomic_long_read(&n
->total_objects
);
4432 else if (flags
& SO_OBJECTS
)
4433 x
= atomic_long_read(&n
->total_objects
) -
4434 count_partial(n
, count_free
);
4437 x
= atomic_long_read(&n
->nr_slabs
);
4444 if (flags
& SO_PARTIAL
) {
4445 for_each_node_state(node
, N_NORMAL_MEMORY
) {
4446 struct kmem_cache_node
*n
= get_node(s
, node
);
4448 if (flags
& SO_TOTAL
)
4449 x
= count_partial(n
, count_total
);
4450 else if (flags
& SO_OBJECTS
)
4451 x
= count_partial(n
, count_inuse
);
4458 x
= sprintf(buf
, "%lu", total
);
4460 for_each_node_state(node
, N_NORMAL_MEMORY
)
4462 x
+= sprintf(buf
+ x
, " N%d=%lu",
4465 unlock_memory_hotplug();
4467 return x
+ sprintf(buf
+ x
, "\n");
4470 #ifdef CONFIG_SLUB_DEBUG
4471 static int any_slab_objects(struct kmem_cache
*s
)
4475 for_each_online_node(node
) {
4476 struct kmem_cache_node
*n
= get_node(s
, node
);
4481 if (atomic_long_read(&n
->total_objects
))
4488 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4489 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4491 struct slab_attribute
{
4492 struct attribute attr
;
4493 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
4494 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
4497 #define SLAB_ATTR_RO(_name) \
4498 static struct slab_attribute _name##_attr = \
4499 __ATTR(_name, 0400, _name##_show, NULL)
4501 #define SLAB_ATTR(_name) \
4502 static struct slab_attribute _name##_attr = \
4503 __ATTR(_name, 0600, _name##_show, _name##_store)
4505 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
4507 return sprintf(buf
, "%d\n", s
->size
);
4509 SLAB_ATTR_RO(slab_size
);
4511 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
4513 return sprintf(buf
, "%d\n", s
->align
);
4515 SLAB_ATTR_RO(align
);
4517 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
4519 return sprintf(buf
, "%d\n", s
->object_size
);
4521 SLAB_ATTR_RO(object_size
);
4523 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
4525 return sprintf(buf
, "%d\n", oo_objects(s
->oo
));
4527 SLAB_ATTR_RO(objs_per_slab
);
4529 static ssize_t
order_store(struct kmem_cache
*s
,
4530 const char *buf
, size_t length
)
4532 unsigned long order
;
4535 err
= strict_strtoul(buf
, 10, &order
);
4539 if (order
> slub_max_order
|| order
< slub_min_order
)
4542 calculate_sizes(s
, order
);
4546 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
4548 return sprintf(buf
, "%d\n", oo_order(s
->oo
));
4552 static ssize_t
min_partial_show(struct kmem_cache
*s
, char *buf
)
4554 return sprintf(buf
, "%lu\n", s
->min_partial
);
4557 static ssize_t
min_partial_store(struct kmem_cache
*s
, const char *buf
,
4563 err
= strict_strtoul(buf
, 10, &min
);
4567 set_min_partial(s
, min
);
4570 SLAB_ATTR(min_partial
);
4572 static ssize_t
cpu_partial_show(struct kmem_cache
*s
, char *buf
)
4574 return sprintf(buf
, "%u\n", s
->cpu_partial
);
4577 static ssize_t
cpu_partial_store(struct kmem_cache
*s
, const char *buf
,
4580 unsigned long objects
;
4583 err
= strict_strtoul(buf
, 10, &objects
);
4586 if (objects
&& kmem_cache_debug(s
))
4589 s
->cpu_partial
= objects
;
4593 SLAB_ATTR(cpu_partial
);
4595 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
4599 return sprintf(buf
, "%pS\n", s
->ctor
);
4603 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
4605 return sprintf(buf
, "%d\n", s
->refcount
- 1);
4607 SLAB_ATTR_RO(aliases
);
4609 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
4611 return show_slab_objects(s
, buf
, SO_PARTIAL
);
4613 SLAB_ATTR_RO(partial
);
4615 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
4617 return show_slab_objects(s
, buf
, SO_CPU
);
4619 SLAB_ATTR_RO(cpu_slabs
);
4621 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
4623 return show_slab_objects(s
, buf
, SO_ALL
|SO_OBJECTS
);
4625 SLAB_ATTR_RO(objects
);
4627 static ssize_t
objects_partial_show(struct kmem_cache
*s
, char *buf
)
4629 return show_slab_objects(s
, buf
, SO_PARTIAL
|SO_OBJECTS
);
4631 SLAB_ATTR_RO(objects_partial
);
4633 static ssize_t
slabs_cpu_partial_show(struct kmem_cache
*s
, char *buf
)
4640 for_each_online_cpu(cpu
) {
4641 struct page
*page
= per_cpu_ptr(s
->cpu_slab
, cpu
)->partial
;
4644 pages
+= page
->pages
;
4645 objects
+= page
->pobjects
;
4649 len
= sprintf(buf
, "%d(%d)", objects
, pages
);
4652 for_each_online_cpu(cpu
) {
4653 struct page
*page
= per_cpu_ptr(s
->cpu_slab
, cpu
) ->partial
;
4655 if (page
&& len
< PAGE_SIZE
- 20)
4656 len
+= sprintf(buf
+ len
, " C%d=%d(%d)", cpu
,
4657 page
->pobjects
, page
->pages
);
4660 return len
+ sprintf(buf
+ len
, "\n");
4662 SLAB_ATTR_RO(slabs_cpu_partial
);
4664 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
4666 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
4669 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
4670 const char *buf
, size_t length
)
4672 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
4674 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
4677 SLAB_ATTR(reclaim_account
);
4679 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
4681 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
4683 SLAB_ATTR_RO(hwcache_align
);
4685 #ifdef CONFIG_ZONE_DMA
4686 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
4688 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
4690 SLAB_ATTR_RO(cache_dma
);
4693 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
4695 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DESTROY_BY_RCU
));
4697 SLAB_ATTR_RO(destroy_by_rcu
);
4699 static ssize_t
reserved_show(struct kmem_cache
*s
, char *buf
)
4701 return sprintf(buf
, "%d\n", s
->reserved
);
4703 SLAB_ATTR_RO(reserved
);
4705 #ifdef CONFIG_SLUB_DEBUG
4706 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
4708 return show_slab_objects(s
, buf
, SO_ALL
);
4710 SLAB_ATTR_RO(slabs
);
4712 static ssize_t
total_objects_show(struct kmem_cache
*s
, char *buf
)
4714 return show_slab_objects(s
, buf
, SO_ALL
|SO_TOTAL
);
4716 SLAB_ATTR_RO(total_objects
);
4718 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
4720 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DEBUG_FREE
));
4723 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
4724 const char *buf
, size_t length
)
4726 s
->flags
&= ~SLAB_DEBUG_FREE
;
4727 if (buf
[0] == '1') {
4728 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4729 s
->flags
|= SLAB_DEBUG_FREE
;
4733 SLAB_ATTR(sanity_checks
);
4735 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
4737 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
4740 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
4743 s
->flags
&= ~SLAB_TRACE
;
4744 if (buf
[0] == '1') {
4745 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4746 s
->flags
|= SLAB_TRACE
;
4752 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
4754 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
4757 static ssize_t
red_zone_store(struct kmem_cache
*s
,
4758 const char *buf
, size_t length
)
4760 if (any_slab_objects(s
))
4763 s
->flags
&= ~SLAB_RED_ZONE
;
4764 if (buf
[0] == '1') {
4765 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4766 s
->flags
|= SLAB_RED_ZONE
;
4768 calculate_sizes(s
, -1);
4771 SLAB_ATTR(red_zone
);
4773 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
4775 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
4778 static ssize_t
poison_store(struct kmem_cache
*s
,
4779 const char *buf
, size_t length
)
4781 if (any_slab_objects(s
))
4784 s
->flags
&= ~SLAB_POISON
;
4785 if (buf
[0] == '1') {
4786 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4787 s
->flags
|= SLAB_POISON
;
4789 calculate_sizes(s
, -1);
4794 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
4796 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
4799 static ssize_t
store_user_store(struct kmem_cache
*s
,
4800 const char *buf
, size_t length
)
4802 if (any_slab_objects(s
))
4805 s
->flags
&= ~SLAB_STORE_USER
;
4806 if (buf
[0] == '1') {
4807 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4808 s
->flags
|= SLAB_STORE_USER
;
4810 calculate_sizes(s
, -1);
4813 SLAB_ATTR(store_user
);
4815 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
4820 static ssize_t
validate_store(struct kmem_cache
*s
,
4821 const char *buf
, size_t length
)
4825 if (buf
[0] == '1') {
4826 ret
= validate_slab_cache(s
);
4832 SLAB_ATTR(validate
);
4834 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
4836 if (!(s
->flags
& SLAB_STORE_USER
))
4838 return list_locations(s
, buf
, TRACK_ALLOC
);
4840 SLAB_ATTR_RO(alloc_calls
);
4842 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
4844 if (!(s
->flags
& SLAB_STORE_USER
))
4846 return list_locations(s
, buf
, TRACK_FREE
);
4848 SLAB_ATTR_RO(free_calls
);
4849 #endif /* CONFIG_SLUB_DEBUG */
4851 #ifdef CONFIG_FAILSLAB
4852 static ssize_t
failslab_show(struct kmem_cache
*s
, char *buf
)
4854 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_FAILSLAB
));
4857 static ssize_t
failslab_store(struct kmem_cache
*s
, const char *buf
,
4860 s
->flags
&= ~SLAB_FAILSLAB
;
4862 s
->flags
|= SLAB_FAILSLAB
;
4865 SLAB_ATTR(failslab
);
4868 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
4873 static ssize_t
shrink_store(struct kmem_cache
*s
,
4874 const char *buf
, size_t length
)
4876 if (buf
[0] == '1') {
4877 int rc
= kmem_cache_shrink(s
);
4888 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
4890 return sprintf(buf
, "%d\n", s
->remote_node_defrag_ratio
/ 10);
4893 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
4894 const char *buf
, size_t length
)
4896 unsigned long ratio
;
4899 err
= strict_strtoul(buf
, 10, &ratio
);
4904 s
->remote_node_defrag_ratio
= ratio
* 10;
4908 SLAB_ATTR(remote_node_defrag_ratio
);
4911 #ifdef CONFIG_SLUB_STATS
4912 static int show_stat(struct kmem_cache
*s
, char *buf
, enum stat_item si
)
4914 unsigned long sum
= 0;
4917 int *data
= kmalloc(nr_cpu_ids
* sizeof(int), GFP_KERNEL
);
4922 for_each_online_cpu(cpu
) {
4923 unsigned x
= per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
];
4929 len
= sprintf(buf
, "%lu", sum
);
4932 for_each_online_cpu(cpu
) {
4933 if (data
[cpu
] && len
< PAGE_SIZE
- 20)
4934 len
+= sprintf(buf
+ len
, " C%d=%u", cpu
, data
[cpu
]);
4938 return len
+ sprintf(buf
+ len
, "\n");
4941 static void clear_stat(struct kmem_cache
*s
, enum stat_item si
)
4945 for_each_online_cpu(cpu
)
4946 per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
] = 0;
4949 #define STAT_ATTR(si, text) \
4950 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4952 return show_stat(s, buf, si); \
4954 static ssize_t text##_store(struct kmem_cache *s, \
4955 const char *buf, size_t length) \
4957 if (buf[0] != '0') \
4959 clear_stat(s, si); \
4964 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4965 STAT_ATTR(ALLOC_SLOWPATH
, alloc_slowpath
);
4966 STAT_ATTR(FREE_FASTPATH
, free_fastpath
);
4967 STAT_ATTR(FREE_SLOWPATH
, free_slowpath
);
4968 STAT_ATTR(FREE_FROZEN
, free_frozen
);
4969 STAT_ATTR(FREE_ADD_PARTIAL
, free_add_partial
);
4970 STAT_ATTR(FREE_REMOVE_PARTIAL
, free_remove_partial
);
4971 STAT_ATTR(ALLOC_FROM_PARTIAL
, alloc_from_partial
);
4972 STAT_ATTR(ALLOC_SLAB
, alloc_slab
);
4973 STAT_ATTR(ALLOC_REFILL
, alloc_refill
);
4974 STAT_ATTR(ALLOC_NODE_MISMATCH
, alloc_node_mismatch
);
4975 STAT_ATTR(FREE_SLAB
, free_slab
);
4976 STAT_ATTR(CPUSLAB_FLUSH
, cpuslab_flush
);
4977 STAT_ATTR(DEACTIVATE_FULL
, deactivate_full
);
4978 STAT_ATTR(DEACTIVATE_EMPTY
, deactivate_empty
);
4979 STAT_ATTR(DEACTIVATE_TO_HEAD
, deactivate_to_head
);
4980 STAT_ATTR(DEACTIVATE_TO_TAIL
, deactivate_to_tail
);
4981 STAT_ATTR(DEACTIVATE_REMOTE_FREES
, deactivate_remote_frees
);
4982 STAT_ATTR(DEACTIVATE_BYPASS
, deactivate_bypass
);
4983 STAT_ATTR(ORDER_FALLBACK
, order_fallback
);
4984 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL
, cmpxchg_double_cpu_fail
);
4985 STAT_ATTR(CMPXCHG_DOUBLE_FAIL
, cmpxchg_double_fail
);
4986 STAT_ATTR(CPU_PARTIAL_ALLOC
, cpu_partial_alloc
);
4987 STAT_ATTR(CPU_PARTIAL_FREE
, cpu_partial_free
);
4988 STAT_ATTR(CPU_PARTIAL_NODE
, cpu_partial_node
);
4989 STAT_ATTR(CPU_PARTIAL_DRAIN
, cpu_partial_drain
);
4992 static struct attribute
*slab_attrs
[] = {
4993 &slab_size_attr
.attr
,
4994 &object_size_attr
.attr
,
4995 &objs_per_slab_attr
.attr
,
4997 &min_partial_attr
.attr
,
4998 &cpu_partial_attr
.attr
,
5000 &objects_partial_attr
.attr
,
5002 &cpu_slabs_attr
.attr
,
5006 &hwcache_align_attr
.attr
,
5007 &reclaim_account_attr
.attr
,
5008 &destroy_by_rcu_attr
.attr
,
5010 &reserved_attr
.attr
,
5011 &slabs_cpu_partial_attr
.attr
,
5012 #ifdef CONFIG_SLUB_DEBUG
5013 &total_objects_attr
.attr
,
5015 &sanity_checks_attr
.attr
,
5017 &red_zone_attr
.attr
,
5019 &store_user_attr
.attr
,
5020 &validate_attr
.attr
,
5021 &alloc_calls_attr
.attr
,
5022 &free_calls_attr
.attr
,
5024 #ifdef CONFIG_ZONE_DMA
5025 &cache_dma_attr
.attr
,
5028 &remote_node_defrag_ratio_attr
.attr
,
5030 #ifdef CONFIG_SLUB_STATS
5031 &alloc_fastpath_attr
.attr
,
5032 &alloc_slowpath_attr
.attr
,
5033 &free_fastpath_attr
.attr
,
5034 &free_slowpath_attr
.attr
,
5035 &free_frozen_attr
.attr
,
5036 &free_add_partial_attr
.attr
,
5037 &free_remove_partial_attr
.attr
,
5038 &alloc_from_partial_attr
.attr
,
5039 &alloc_slab_attr
.attr
,
5040 &alloc_refill_attr
.attr
,
5041 &alloc_node_mismatch_attr
.attr
,
5042 &free_slab_attr
.attr
,
5043 &cpuslab_flush_attr
.attr
,
5044 &deactivate_full_attr
.attr
,
5045 &deactivate_empty_attr
.attr
,
5046 &deactivate_to_head_attr
.attr
,
5047 &deactivate_to_tail_attr
.attr
,
5048 &deactivate_remote_frees_attr
.attr
,
5049 &deactivate_bypass_attr
.attr
,
5050 &order_fallback_attr
.attr
,
5051 &cmpxchg_double_fail_attr
.attr
,
5052 &cmpxchg_double_cpu_fail_attr
.attr
,
5053 &cpu_partial_alloc_attr
.attr
,
5054 &cpu_partial_free_attr
.attr
,
5055 &cpu_partial_node_attr
.attr
,
5056 &cpu_partial_drain_attr
.attr
,
5058 #ifdef CONFIG_FAILSLAB
5059 &failslab_attr
.attr
,
5065 static struct attribute_group slab_attr_group
= {
5066 .attrs
= slab_attrs
,
5069 static ssize_t
slab_attr_show(struct kobject
*kobj
,
5070 struct attribute
*attr
,
5073 struct slab_attribute
*attribute
;
5074 struct kmem_cache
*s
;
5077 attribute
= to_slab_attr(attr
);
5080 if (!attribute
->show
)
5083 err
= attribute
->show(s
, buf
);
5088 static ssize_t
slab_attr_store(struct kobject
*kobj
,
5089 struct attribute
*attr
,
5090 const char *buf
, size_t len
)
5092 struct slab_attribute
*attribute
;
5093 struct kmem_cache
*s
;
5096 attribute
= to_slab_attr(attr
);
5099 if (!attribute
->store
)
5102 err
= attribute
->store(s
, buf
, len
);
5103 #ifdef CONFIG_MEMCG_KMEM
5104 if (slab_state
>= FULL
&& err
>= 0 && is_root_cache(s
)) {
5107 mutex_lock(&slab_mutex
);
5108 if (s
->max_attr_size
< len
)
5109 s
->max_attr_size
= len
;
5111 for_each_memcg_cache_index(i
) {
5112 struct kmem_cache
*c
= cache_from_memcg(s
, i
);
5114 * This function's return value is determined by the
5118 attribute
->store(c
, buf
, len
);
5120 mutex_unlock(&slab_mutex
);
5126 static void memcg_propagate_slab_attrs(struct kmem_cache
*s
)
5128 #ifdef CONFIG_MEMCG_KMEM
5130 char *buffer
= NULL
;
5132 if (!is_root_cache(s
))
5136 * This mean this cache had no attribute written. Therefore, no point
5137 * in copying default values around
5139 if (!s
->max_attr_size
)
5142 for (i
= 0; i
< ARRAY_SIZE(slab_attrs
); i
++) {
5145 struct slab_attribute
*attr
= to_slab_attr(slab_attrs
[i
]);
5147 if (!attr
|| !attr
->store
|| !attr
->show
)
5151 * It is really bad that we have to allocate here, so we will
5152 * do it only as a fallback. If we actually allocate, though,
5153 * we can just use the allocated buffer until the end.
5155 * Most of the slub attributes will tend to be very small in
5156 * size, but sysfs allows buffers up to a page, so they can
5157 * theoretically happen.
5161 else if (s
->max_attr_size
< ARRAY_SIZE(mbuf
))
5164 buffer
= (char *) get_zeroed_page(GFP_KERNEL
);
5165 if (WARN_ON(!buffer
))
5170 attr
->show(s
->memcg_params
->root_cache
, buf
);
5171 attr
->store(s
, buf
, strlen(buf
));
5175 free_page((unsigned long)buffer
);
5179 static const struct sysfs_ops slab_sysfs_ops
= {
5180 .show
= slab_attr_show
,
5181 .store
= slab_attr_store
,
5184 static struct kobj_type slab_ktype
= {
5185 .sysfs_ops
= &slab_sysfs_ops
,
5188 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
5190 struct kobj_type
*ktype
= get_ktype(kobj
);
5192 if (ktype
== &slab_ktype
)
5197 static const struct kset_uevent_ops slab_uevent_ops
= {
5198 .filter
= uevent_filter
,
5201 static struct kset
*slab_kset
;
5203 #define ID_STR_LENGTH 64
5205 /* Create a unique string id for a slab cache:
5207 * Format :[flags-]size
5209 static char *create_unique_id(struct kmem_cache
*s
)
5211 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
5218 * First flags affecting slabcache operations. We will only
5219 * get here for aliasable slabs so we do not need to support
5220 * too many flags. The flags here must cover all flags that
5221 * are matched during merging to guarantee that the id is
5224 if (s
->flags
& SLAB_CACHE_DMA
)
5226 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
5228 if (s
->flags
& SLAB_DEBUG_FREE
)
5230 if (!(s
->flags
& SLAB_NOTRACK
))
5234 p
+= sprintf(p
, "%07d", s
->size
);
5236 #ifdef CONFIG_MEMCG_KMEM
5237 if (!is_root_cache(s
))
5238 p
+= sprintf(p
, "-%08d", memcg_cache_id(s
->memcg_params
->memcg
));
5241 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
5245 static int sysfs_slab_add(struct kmem_cache
*s
)
5249 int unmergeable
= slab_unmergeable(s
);
5253 * Slabcache can never be merged so we can use the name proper.
5254 * This is typically the case for debug situations. In that
5255 * case we can catch duplicate names easily.
5257 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
5261 * Create a unique name for the slab as a target
5264 name
= create_unique_id(s
);
5267 s
->kobj
.kset
= slab_kset
;
5268 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, name
);
5270 kobject_put(&s
->kobj
);
5274 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
5276 kobject_del(&s
->kobj
);
5277 kobject_put(&s
->kobj
);
5280 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
5282 /* Setup first alias */
5283 sysfs_slab_alias(s
, s
->name
);
5289 static void sysfs_slab_remove(struct kmem_cache
*s
)
5291 if (slab_state
< FULL
)
5293 * Sysfs has not been setup yet so no need to remove the
5298 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
5299 kobject_del(&s
->kobj
);
5300 kobject_put(&s
->kobj
);
5304 * Need to buffer aliases during bootup until sysfs becomes
5305 * available lest we lose that information.
5307 struct saved_alias
{
5308 struct kmem_cache
*s
;
5310 struct saved_alias
*next
;
5313 static struct saved_alias
*alias_list
;
5315 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
5317 struct saved_alias
*al
;
5319 if (slab_state
== FULL
) {
5321 * If we have a leftover link then remove it.
5323 sysfs_remove_link(&slab_kset
->kobj
, name
);
5324 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
5327 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
5333 al
->next
= alias_list
;
5338 static int __init
slab_sysfs_init(void)
5340 struct kmem_cache
*s
;
5343 mutex_lock(&slab_mutex
);
5345 slab_kset
= kset_create_and_add("slab", &slab_uevent_ops
, kernel_kobj
);
5347 mutex_unlock(&slab_mutex
);
5348 printk(KERN_ERR
"Cannot register slab subsystem.\n");
5354 list_for_each_entry(s
, &slab_caches
, list
) {
5355 err
= sysfs_slab_add(s
);
5357 printk(KERN_ERR
"SLUB: Unable to add boot slab %s"
5358 " to sysfs\n", s
->name
);
5361 while (alias_list
) {
5362 struct saved_alias
*al
= alias_list
;
5364 alias_list
= alias_list
->next
;
5365 err
= sysfs_slab_alias(al
->s
, al
->name
);
5367 printk(KERN_ERR
"SLUB: Unable to add boot slab alias"
5368 " %s to sysfs\n", al
->name
);
5372 mutex_unlock(&slab_mutex
);
5377 __initcall(slab_sysfs_init
);
5378 #endif /* CONFIG_SYSFS */
5381 * The /proc/slabinfo ABI
5383 #ifdef CONFIG_SLABINFO
5384 void get_slabinfo(struct kmem_cache
*s
, struct slabinfo
*sinfo
)
5386 unsigned long nr_partials
= 0;
5387 unsigned long nr_slabs
= 0;
5388 unsigned long nr_objs
= 0;
5389 unsigned long nr_free
= 0;
5392 for_each_online_node(node
) {
5393 struct kmem_cache_node
*n
= get_node(s
, node
);
5398 nr_partials
+= n
->nr_partial
;
5399 nr_slabs
+= atomic_long_read(&n
->nr_slabs
);
5400 nr_objs
+= atomic_long_read(&n
->total_objects
);
5401 nr_free
+= count_partial(n
, count_free
);
5404 sinfo
->active_objs
= nr_objs
- nr_free
;
5405 sinfo
->num_objs
= nr_objs
;
5406 sinfo
->active_slabs
= nr_slabs
;
5407 sinfo
->num_slabs
= nr_slabs
;
5408 sinfo
->objects_per_slab
= oo_objects(s
->oo
);
5409 sinfo
->cache_order
= oo_order(s
->oo
);
5412 void slabinfo_show_stats(struct seq_file
*m
, struct kmem_cache
*s
)
5416 ssize_t
slabinfo_write(struct file
*file
, const char __user
*buffer
,
5417 size_t count
, loff_t
*ppos
)
5421 #endif /* CONFIG_SLABINFO */