5 #include "util/evlist.h"
6 #include "util/cache.h"
7 #include "util/evsel.h"
8 #include "util/symbol.h"
9 #include "util/thread.h"
10 #include "util/header.h"
11 #include "util/session.h"
12 #include "util/tool.h"
14 #include "util/parse-options.h"
15 #include "util/trace-event.h"
17 #include "util/debug.h"
19 #include <sys/prctl.h>
20 #include <sys/resource.h>
22 #include <semaphore.h>
26 #define PR_SET_NAME 15 /* Set process name */
39 unsigned long nr_events
;
40 unsigned long curr_event
;
41 struct sched_atom
**atoms
;
52 enum sched_event_type
{
56 SCHED_EVENT_MIGRATION
,
60 enum sched_event_type type
;
66 struct task_desc
*wakee
;
69 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
79 struct list_head list
;
80 enum thread_state state
;
88 struct list_head work_list
;
89 struct thread
*thread
;
98 typedef int (*sort_fn_t
)(struct work_atoms
*, struct work_atoms
*);
102 struct trace_sched_handler
{
103 int (*switch_event
)(struct perf_sched
*sched
, struct perf_evsel
*evsel
,
104 struct perf_sample
*sample
, struct machine
*machine
);
106 int (*runtime_event
)(struct perf_sched
*sched
, struct perf_evsel
*evsel
,
107 struct perf_sample
*sample
, struct machine
*machine
);
109 int (*wakeup_event
)(struct perf_sched
*sched
, struct perf_evsel
*evsel
,
110 struct perf_sample
*sample
, struct machine
*machine
);
112 /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
113 int (*fork_event
)(struct perf_sched
*sched
, union perf_event
*event
,
114 struct machine
*machine
);
116 int (*migrate_task_event
)(struct perf_sched
*sched
,
117 struct perf_evsel
*evsel
,
118 struct perf_sample
*sample
,
119 struct machine
*machine
);
123 struct perf_tool tool
;
124 const char *sort_order
;
125 unsigned long nr_tasks
;
126 struct task_desc
*pid_to_task
[MAX_PID
];
127 struct task_desc
**tasks
;
128 const struct trace_sched_handler
*tp_handler
;
129 pthread_mutex_t start_work_mutex
;
130 pthread_mutex_t work_done_wait_mutex
;
133 * Track the current task - that way we can know whether there's any
134 * weird events, such as a task being switched away that is not current.
137 u32 curr_pid
[MAX_CPUS
];
138 struct thread
*curr_thread
[MAX_CPUS
];
139 char next_shortname1
;
140 char next_shortname2
;
141 unsigned int replay_repeat
;
142 unsigned long nr_run_events
;
143 unsigned long nr_sleep_events
;
144 unsigned long nr_wakeup_events
;
145 unsigned long nr_sleep_corrections
;
146 unsigned long nr_run_events_optimized
;
147 unsigned long targetless_wakeups
;
148 unsigned long multitarget_wakeups
;
149 unsigned long nr_runs
;
150 unsigned long nr_timestamps
;
151 unsigned long nr_unordered_timestamps
;
152 unsigned long nr_state_machine_bugs
;
153 unsigned long nr_context_switch_bugs
;
154 unsigned long nr_events
;
155 unsigned long nr_lost_chunks
;
156 unsigned long nr_lost_events
;
157 u64 run_measurement_overhead
;
158 u64 sleep_measurement_overhead
;
161 u64 runavg_cpu_usage
;
162 u64 parent_cpu_usage
;
163 u64 runavg_parent_cpu_usage
;
169 u64 cpu_last_switched
[MAX_CPUS
];
170 struct rb_root atom_root
, sorted_atom_root
;
171 struct list_head sort_list
, cmp_pid
;
174 static u64
get_nsecs(void)
178 clock_gettime(CLOCK_MONOTONIC
, &ts
);
180 return ts
.tv_sec
* 1000000000ULL + ts
.tv_nsec
;
183 static void burn_nsecs(struct perf_sched
*sched
, u64 nsecs
)
185 u64 T0
= get_nsecs(), T1
;
189 } while (T1
+ sched
->run_measurement_overhead
< T0
+ nsecs
);
192 static void sleep_nsecs(u64 nsecs
)
196 ts
.tv_nsec
= nsecs
% 999999999;
197 ts
.tv_sec
= nsecs
/ 999999999;
199 nanosleep(&ts
, NULL
);
202 static void calibrate_run_measurement_overhead(struct perf_sched
*sched
)
204 u64 T0
, T1
, delta
, min_delta
= 1000000000ULL;
207 for (i
= 0; i
< 10; i
++) {
209 burn_nsecs(sched
, 0);
212 min_delta
= min(min_delta
, delta
);
214 sched
->run_measurement_overhead
= min_delta
;
216 printf("run measurement overhead: %" PRIu64
" nsecs\n", min_delta
);
219 static void calibrate_sleep_measurement_overhead(struct perf_sched
*sched
)
221 u64 T0
, T1
, delta
, min_delta
= 1000000000ULL;
224 for (i
= 0; i
< 10; i
++) {
229 min_delta
= min(min_delta
, delta
);
232 sched
->sleep_measurement_overhead
= min_delta
;
234 printf("sleep measurement overhead: %" PRIu64
" nsecs\n", min_delta
);
237 static struct sched_atom
*
238 get_new_event(struct task_desc
*task
, u64 timestamp
)
240 struct sched_atom
*event
= zalloc(sizeof(*event
));
241 unsigned long idx
= task
->nr_events
;
244 event
->timestamp
= timestamp
;
248 size
= sizeof(struct sched_atom
*) * task
->nr_events
;
249 task
->atoms
= realloc(task
->atoms
, size
);
250 BUG_ON(!task
->atoms
);
252 task
->atoms
[idx
] = event
;
257 static struct sched_atom
*last_event(struct task_desc
*task
)
259 if (!task
->nr_events
)
262 return task
->atoms
[task
->nr_events
- 1];
265 static void add_sched_event_run(struct perf_sched
*sched
, struct task_desc
*task
,
266 u64 timestamp
, u64 duration
)
268 struct sched_atom
*event
, *curr_event
= last_event(task
);
271 * optimize an existing RUN event by merging this one
274 if (curr_event
&& curr_event
->type
== SCHED_EVENT_RUN
) {
275 sched
->nr_run_events_optimized
++;
276 curr_event
->duration
+= duration
;
280 event
= get_new_event(task
, timestamp
);
282 event
->type
= SCHED_EVENT_RUN
;
283 event
->duration
= duration
;
285 sched
->nr_run_events
++;
288 static void add_sched_event_wakeup(struct perf_sched
*sched
, struct task_desc
*task
,
289 u64 timestamp
, struct task_desc
*wakee
)
291 struct sched_atom
*event
, *wakee_event
;
293 event
= get_new_event(task
, timestamp
);
294 event
->type
= SCHED_EVENT_WAKEUP
;
295 event
->wakee
= wakee
;
297 wakee_event
= last_event(wakee
);
298 if (!wakee_event
|| wakee_event
->type
!= SCHED_EVENT_SLEEP
) {
299 sched
->targetless_wakeups
++;
302 if (wakee_event
->wait_sem
) {
303 sched
->multitarget_wakeups
++;
307 wakee_event
->wait_sem
= zalloc(sizeof(*wakee_event
->wait_sem
));
308 sem_init(wakee_event
->wait_sem
, 0, 0);
309 wakee_event
->specific_wait
= 1;
310 event
->wait_sem
= wakee_event
->wait_sem
;
312 sched
->nr_wakeup_events
++;
315 static void add_sched_event_sleep(struct perf_sched
*sched
, struct task_desc
*task
,
316 u64 timestamp
, u64 task_state __maybe_unused
)
318 struct sched_atom
*event
= get_new_event(task
, timestamp
);
320 event
->type
= SCHED_EVENT_SLEEP
;
322 sched
->nr_sleep_events
++;
325 static struct task_desc
*register_pid(struct perf_sched
*sched
,
326 unsigned long pid
, const char *comm
)
328 struct task_desc
*task
;
330 BUG_ON(pid
>= MAX_PID
);
332 task
= sched
->pid_to_task
[pid
];
337 task
= zalloc(sizeof(*task
));
339 task
->nr
= sched
->nr_tasks
;
340 strcpy(task
->comm
, comm
);
342 * every task starts in sleeping state - this gets ignored
343 * if there's no wakeup pointing to this sleep state:
345 add_sched_event_sleep(sched
, task
, 0, 0);
347 sched
->pid_to_task
[pid
] = task
;
349 sched
->tasks
= realloc(sched
->tasks
, sched
->nr_tasks
* sizeof(struct task_task
*));
350 BUG_ON(!sched
->tasks
);
351 sched
->tasks
[task
->nr
] = task
;
354 printf("registered task #%ld, PID %ld (%s)\n", sched
->nr_tasks
, pid
, comm
);
360 static void print_task_traces(struct perf_sched
*sched
)
362 struct task_desc
*task
;
365 for (i
= 0; i
< sched
->nr_tasks
; i
++) {
366 task
= sched
->tasks
[i
];
367 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
368 task
->nr
, task
->comm
, task
->pid
, task
->nr_events
);
372 static void add_cross_task_wakeups(struct perf_sched
*sched
)
374 struct task_desc
*task1
, *task2
;
377 for (i
= 0; i
< sched
->nr_tasks
; i
++) {
378 task1
= sched
->tasks
[i
];
380 if (j
== sched
->nr_tasks
)
382 task2
= sched
->tasks
[j
];
383 add_sched_event_wakeup(sched
, task1
, 0, task2
);
387 static void perf_sched__process_event(struct perf_sched
*sched
,
388 struct sched_atom
*atom
)
392 switch (atom
->type
) {
393 case SCHED_EVENT_RUN
:
394 burn_nsecs(sched
, atom
->duration
);
396 case SCHED_EVENT_SLEEP
:
398 ret
= sem_wait(atom
->wait_sem
);
401 case SCHED_EVENT_WAKEUP
:
403 ret
= sem_post(atom
->wait_sem
);
406 case SCHED_EVENT_MIGRATION
:
413 static u64
get_cpu_usage_nsec_parent(void)
419 err
= getrusage(RUSAGE_SELF
, &ru
);
422 sum
= ru
.ru_utime
.tv_sec
*1e9
+ ru
.ru_utime
.tv_usec
*1e3
;
423 sum
+= ru
.ru_stime
.tv_sec
*1e9
+ ru
.ru_stime
.tv_usec
*1e3
;
428 static int self_open_counters(void)
430 struct perf_event_attr attr
;
433 memset(&attr
, 0, sizeof(attr
));
435 attr
.type
= PERF_TYPE_SOFTWARE
;
436 attr
.config
= PERF_COUNT_SW_TASK_CLOCK
;
438 fd
= sys_perf_event_open(&attr
, 0, -1, -1, 0);
441 pr_err("Error: sys_perf_event_open() syscall returned "
442 "with %d (%s)\n", fd
, strerror(errno
));
446 static u64
get_cpu_usage_nsec_self(int fd
)
451 ret
= read(fd
, &runtime
, sizeof(runtime
));
452 BUG_ON(ret
!= sizeof(runtime
));
457 struct sched_thread_parms
{
458 struct task_desc
*task
;
459 struct perf_sched
*sched
;
462 static void *thread_func(void *ctx
)
464 struct sched_thread_parms
*parms
= ctx
;
465 struct task_desc
*this_task
= parms
->task
;
466 struct perf_sched
*sched
= parms
->sched
;
467 u64 cpu_usage_0
, cpu_usage_1
;
468 unsigned long i
, ret
;
474 sprintf(comm2
, ":%s", this_task
->comm
);
475 prctl(PR_SET_NAME
, comm2
);
476 fd
= self_open_counters();
480 ret
= sem_post(&this_task
->ready_for_work
);
482 ret
= pthread_mutex_lock(&sched
->start_work_mutex
);
484 ret
= pthread_mutex_unlock(&sched
->start_work_mutex
);
487 cpu_usage_0
= get_cpu_usage_nsec_self(fd
);
489 for (i
= 0; i
< this_task
->nr_events
; i
++) {
490 this_task
->curr_event
= i
;
491 perf_sched__process_event(sched
, this_task
->atoms
[i
]);
494 cpu_usage_1
= get_cpu_usage_nsec_self(fd
);
495 this_task
->cpu_usage
= cpu_usage_1
- cpu_usage_0
;
496 ret
= sem_post(&this_task
->work_done_sem
);
499 ret
= pthread_mutex_lock(&sched
->work_done_wait_mutex
);
501 ret
= pthread_mutex_unlock(&sched
->work_done_wait_mutex
);
507 static void create_tasks(struct perf_sched
*sched
)
509 struct task_desc
*task
;
514 err
= pthread_attr_init(&attr
);
516 err
= pthread_attr_setstacksize(&attr
,
517 (size_t) max(16 * 1024, PTHREAD_STACK_MIN
));
519 err
= pthread_mutex_lock(&sched
->start_work_mutex
);
521 err
= pthread_mutex_lock(&sched
->work_done_wait_mutex
);
523 for (i
= 0; i
< sched
->nr_tasks
; i
++) {
524 struct sched_thread_parms
*parms
= malloc(sizeof(*parms
));
525 BUG_ON(parms
== NULL
);
526 parms
->task
= task
= sched
->tasks
[i
];
527 parms
->sched
= sched
;
528 sem_init(&task
->sleep_sem
, 0, 0);
529 sem_init(&task
->ready_for_work
, 0, 0);
530 sem_init(&task
->work_done_sem
, 0, 0);
531 task
->curr_event
= 0;
532 err
= pthread_create(&task
->thread
, &attr
, thread_func
, parms
);
537 static void wait_for_tasks(struct perf_sched
*sched
)
539 u64 cpu_usage_0
, cpu_usage_1
;
540 struct task_desc
*task
;
541 unsigned long i
, ret
;
543 sched
->start_time
= get_nsecs();
544 sched
->cpu_usage
= 0;
545 pthread_mutex_unlock(&sched
->work_done_wait_mutex
);
547 for (i
= 0; i
< sched
->nr_tasks
; i
++) {
548 task
= sched
->tasks
[i
];
549 ret
= sem_wait(&task
->ready_for_work
);
551 sem_init(&task
->ready_for_work
, 0, 0);
553 ret
= pthread_mutex_lock(&sched
->work_done_wait_mutex
);
556 cpu_usage_0
= get_cpu_usage_nsec_parent();
558 pthread_mutex_unlock(&sched
->start_work_mutex
);
560 for (i
= 0; i
< sched
->nr_tasks
; i
++) {
561 task
= sched
->tasks
[i
];
562 ret
= sem_wait(&task
->work_done_sem
);
564 sem_init(&task
->work_done_sem
, 0, 0);
565 sched
->cpu_usage
+= task
->cpu_usage
;
569 cpu_usage_1
= get_cpu_usage_nsec_parent();
570 if (!sched
->runavg_cpu_usage
)
571 sched
->runavg_cpu_usage
= sched
->cpu_usage
;
572 sched
->runavg_cpu_usage
= (sched
->runavg_cpu_usage
* 9 + sched
->cpu_usage
) / 10;
574 sched
->parent_cpu_usage
= cpu_usage_1
- cpu_usage_0
;
575 if (!sched
->runavg_parent_cpu_usage
)
576 sched
->runavg_parent_cpu_usage
= sched
->parent_cpu_usage
;
577 sched
->runavg_parent_cpu_usage
= (sched
->runavg_parent_cpu_usage
* 9 +
578 sched
->parent_cpu_usage
)/10;
580 ret
= pthread_mutex_lock(&sched
->start_work_mutex
);
583 for (i
= 0; i
< sched
->nr_tasks
; i
++) {
584 task
= sched
->tasks
[i
];
585 sem_init(&task
->sleep_sem
, 0, 0);
586 task
->curr_event
= 0;
590 static void run_one_test(struct perf_sched
*sched
)
592 u64 T0
, T1
, delta
, avg_delta
, fluct
;
595 wait_for_tasks(sched
);
599 sched
->sum_runtime
+= delta
;
602 avg_delta
= sched
->sum_runtime
/ sched
->nr_runs
;
603 if (delta
< avg_delta
)
604 fluct
= avg_delta
- delta
;
606 fluct
= delta
- avg_delta
;
607 sched
->sum_fluct
+= fluct
;
609 sched
->run_avg
= delta
;
610 sched
->run_avg
= (sched
->run_avg
* 9 + delta
) / 10;
612 printf("#%-3ld: %0.3f, ", sched
->nr_runs
, (double)delta
/ 1000000.0);
614 printf("ravg: %0.2f, ", (double)sched
->run_avg
/ 1e6
);
616 printf("cpu: %0.2f / %0.2f",
617 (double)sched
->cpu_usage
/ 1e6
, (double)sched
->runavg_cpu_usage
/ 1e6
);
621 * rusage statistics done by the parent, these are less
622 * accurate than the sched->sum_exec_runtime based statistics:
624 printf(" [%0.2f / %0.2f]",
625 (double)sched
->parent_cpu_usage
/1e6
,
626 (double)sched
->runavg_parent_cpu_usage
/1e6
);
631 if (sched
->nr_sleep_corrections
)
632 printf(" (%ld sleep corrections)\n", sched
->nr_sleep_corrections
);
633 sched
->nr_sleep_corrections
= 0;
636 static void test_calibrations(struct perf_sched
*sched
)
641 burn_nsecs(sched
, 1e6
);
644 printf("the run test took %" PRIu64
" nsecs\n", T1
- T0
);
650 printf("the sleep test took %" PRIu64
" nsecs\n", T1
- T0
);
654 replay_wakeup_event(struct perf_sched
*sched
,
655 struct perf_evsel
*evsel
, struct perf_sample
*sample
,
656 struct machine
*machine __maybe_unused
)
658 const char *comm
= perf_evsel__strval(evsel
, sample
, "comm");
659 const u32 pid
= perf_evsel__intval(evsel
, sample
, "pid");
660 struct task_desc
*waker
, *wakee
;
663 printf("sched_wakeup event %p\n", evsel
);
665 printf(" ... pid %d woke up %s/%d\n", sample
->tid
, comm
, pid
);
668 waker
= register_pid(sched
, sample
->tid
, "<unknown>");
669 wakee
= register_pid(sched
, pid
, comm
);
671 add_sched_event_wakeup(sched
, waker
, sample
->time
, wakee
);
675 static int replay_switch_event(struct perf_sched
*sched
,
676 struct perf_evsel
*evsel
,
677 struct perf_sample
*sample
,
678 struct machine
*machine __maybe_unused
)
680 const char *prev_comm
= perf_evsel__strval(evsel
, sample
, "prev_comm"),
681 *next_comm
= perf_evsel__strval(evsel
, sample
, "next_comm");
682 const u32 prev_pid
= perf_evsel__intval(evsel
, sample
, "prev_pid"),
683 next_pid
= perf_evsel__intval(evsel
, sample
, "next_pid");
684 const u64 prev_state
= perf_evsel__intval(evsel
, sample
, "prev_state");
685 struct task_desc
*prev
, __maybe_unused
*next
;
686 u64 timestamp0
, timestamp
= sample
->time
;
687 int cpu
= sample
->cpu
;
691 printf("sched_switch event %p\n", evsel
);
693 if (cpu
>= MAX_CPUS
|| cpu
< 0)
696 timestamp0
= sched
->cpu_last_switched
[cpu
];
698 delta
= timestamp
- timestamp0
;
703 pr_err("hm, delta: %" PRIu64
" < 0 ?\n", delta
);
707 pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64
" nsecs]\n",
708 prev_comm
, prev_pid
, next_comm
, next_pid
, delta
);
710 prev
= register_pid(sched
, prev_pid
, prev_comm
);
711 next
= register_pid(sched
, next_pid
, next_comm
);
713 sched
->cpu_last_switched
[cpu
] = timestamp
;
715 add_sched_event_run(sched
, prev
, timestamp
, delta
);
716 add_sched_event_sleep(sched
, prev
, timestamp
, prev_state
);
721 static int replay_fork_event(struct perf_sched
*sched
,
722 union perf_event
*event
,
723 struct machine
*machine
)
725 struct thread
*child
, *parent
;
727 child
= machine__findnew_thread(machine
, event
->fork
.pid
,
729 parent
= machine__findnew_thread(machine
, event
->fork
.ppid
,
732 if (child
== NULL
|| parent
== NULL
) {
733 pr_debug("thread does not exist on fork event: child %p, parent %p\n",
739 printf("fork event\n");
740 printf("... parent: %s/%d\n", thread__comm_str(parent
), parent
->tid
);
741 printf("... child: %s/%d\n", thread__comm_str(child
), child
->tid
);
744 register_pid(sched
, parent
->tid
, thread__comm_str(parent
));
745 register_pid(sched
, child
->tid
, thread__comm_str(child
));
749 struct sort_dimension
{
752 struct list_head list
;
756 thread_lat_cmp(struct list_head
*list
, struct work_atoms
*l
, struct work_atoms
*r
)
758 struct sort_dimension
*sort
;
761 BUG_ON(list_empty(list
));
763 list_for_each_entry(sort
, list
, list
) {
764 ret
= sort
->cmp(l
, r
);
772 static struct work_atoms
*
773 thread_atoms_search(struct rb_root
*root
, struct thread
*thread
,
774 struct list_head
*sort_list
)
776 struct rb_node
*node
= root
->rb_node
;
777 struct work_atoms key
= { .thread
= thread
};
780 struct work_atoms
*atoms
;
783 atoms
= container_of(node
, struct work_atoms
, node
);
785 cmp
= thread_lat_cmp(sort_list
, &key
, atoms
);
787 node
= node
->rb_left
;
789 node
= node
->rb_right
;
791 BUG_ON(thread
!= atoms
->thread
);
799 __thread_latency_insert(struct rb_root
*root
, struct work_atoms
*data
,
800 struct list_head
*sort_list
)
802 struct rb_node
**new = &(root
->rb_node
), *parent
= NULL
;
805 struct work_atoms
*this;
808 this = container_of(*new, struct work_atoms
, node
);
811 cmp
= thread_lat_cmp(sort_list
, data
, this);
814 new = &((*new)->rb_left
);
816 new = &((*new)->rb_right
);
819 rb_link_node(&data
->node
, parent
, new);
820 rb_insert_color(&data
->node
, root
);
823 static int thread_atoms_insert(struct perf_sched
*sched
, struct thread
*thread
)
825 struct work_atoms
*atoms
= zalloc(sizeof(*atoms
));
827 pr_err("No memory at %s\n", __func__
);
831 atoms
->thread
= thread
;
832 INIT_LIST_HEAD(&atoms
->work_list
);
833 __thread_latency_insert(&sched
->atom_root
, atoms
, &sched
->cmp_pid
);
837 static char sched_out_state(u64 prev_state
)
839 const char *str
= TASK_STATE_TO_CHAR_STR
;
841 return str
[prev_state
];
845 add_sched_out_event(struct work_atoms
*atoms
,
849 struct work_atom
*atom
= zalloc(sizeof(*atom
));
851 pr_err("Non memory at %s", __func__
);
855 atom
->sched_out_time
= timestamp
;
857 if (run_state
== 'R') {
858 atom
->state
= THREAD_WAIT_CPU
;
859 atom
->wake_up_time
= atom
->sched_out_time
;
862 list_add_tail(&atom
->list
, &atoms
->work_list
);
867 add_runtime_event(struct work_atoms
*atoms
, u64 delta
,
868 u64 timestamp __maybe_unused
)
870 struct work_atom
*atom
;
872 BUG_ON(list_empty(&atoms
->work_list
));
874 atom
= list_entry(atoms
->work_list
.prev
, struct work_atom
, list
);
876 atom
->runtime
+= delta
;
877 atoms
->total_runtime
+= delta
;
881 add_sched_in_event(struct work_atoms
*atoms
, u64 timestamp
)
883 struct work_atom
*atom
;
886 if (list_empty(&atoms
->work_list
))
889 atom
= list_entry(atoms
->work_list
.prev
, struct work_atom
, list
);
891 if (atom
->state
!= THREAD_WAIT_CPU
)
894 if (timestamp
< atom
->wake_up_time
) {
895 atom
->state
= THREAD_IGNORE
;
899 atom
->state
= THREAD_SCHED_IN
;
900 atom
->sched_in_time
= timestamp
;
902 delta
= atom
->sched_in_time
- atom
->wake_up_time
;
903 atoms
->total_lat
+= delta
;
904 if (delta
> atoms
->max_lat
) {
905 atoms
->max_lat
= delta
;
906 atoms
->max_lat_at
= timestamp
;
911 static int latency_switch_event(struct perf_sched
*sched
,
912 struct perf_evsel
*evsel
,
913 struct perf_sample
*sample
,
914 struct machine
*machine
)
916 const u32 prev_pid
= perf_evsel__intval(evsel
, sample
, "prev_pid"),
917 next_pid
= perf_evsel__intval(evsel
, sample
, "next_pid");
918 const u64 prev_state
= perf_evsel__intval(evsel
, sample
, "prev_state");
919 struct work_atoms
*out_events
, *in_events
;
920 struct thread
*sched_out
, *sched_in
;
921 u64 timestamp0
, timestamp
= sample
->time
;
922 int cpu
= sample
->cpu
;
925 BUG_ON(cpu
>= MAX_CPUS
|| cpu
< 0);
927 timestamp0
= sched
->cpu_last_switched
[cpu
];
928 sched
->cpu_last_switched
[cpu
] = timestamp
;
930 delta
= timestamp
- timestamp0
;
935 pr_err("hm, delta: %" PRIu64
" < 0 ?\n", delta
);
939 sched_out
= machine__findnew_thread(machine
, 0, prev_pid
);
940 sched_in
= machine__findnew_thread(machine
, 0, next_pid
);
942 out_events
= thread_atoms_search(&sched
->atom_root
, sched_out
, &sched
->cmp_pid
);
944 if (thread_atoms_insert(sched
, sched_out
))
946 out_events
= thread_atoms_search(&sched
->atom_root
, sched_out
, &sched
->cmp_pid
);
948 pr_err("out-event: Internal tree error");
952 if (add_sched_out_event(out_events
, sched_out_state(prev_state
), timestamp
))
955 in_events
= thread_atoms_search(&sched
->atom_root
, sched_in
, &sched
->cmp_pid
);
957 if (thread_atoms_insert(sched
, sched_in
))
959 in_events
= thread_atoms_search(&sched
->atom_root
, sched_in
, &sched
->cmp_pid
);
961 pr_err("in-event: Internal tree error");
965 * Take came in we have not heard about yet,
966 * add in an initial atom in runnable state:
968 if (add_sched_out_event(in_events
, 'R', timestamp
))
971 add_sched_in_event(in_events
, timestamp
);
976 static int latency_runtime_event(struct perf_sched
*sched
,
977 struct perf_evsel
*evsel
,
978 struct perf_sample
*sample
,
979 struct machine
*machine
)
981 const u32 pid
= perf_evsel__intval(evsel
, sample
, "pid");
982 const u64 runtime
= perf_evsel__intval(evsel
, sample
, "runtime");
983 struct thread
*thread
= machine__findnew_thread(machine
, 0, pid
);
984 struct work_atoms
*atoms
= thread_atoms_search(&sched
->atom_root
, thread
, &sched
->cmp_pid
);
985 u64 timestamp
= sample
->time
;
986 int cpu
= sample
->cpu
;
988 BUG_ON(cpu
>= MAX_CPUS
|| cpu
< 0);
990 if (thread_atoms_insert(sched
, thread
))
992 atoms
= thread_atoms_search(&sched
->atom_root
, thread
, &sched
->cmp_pid
);
994 pr_err("in-event: Internal tree error");
997 if (add_sched_out_event(atoms
, 'R', timestamp
))
1001 add_runtime_event(atoms
, runtime
, timestamp
);
1005 static int latency_wakeup_event(struct perf_sched
*sched
,
1006 struct perf_evsel
*evsel
,
1007 struct perf_sample
*sample
,
1008 struct machine
*machine
)
1010 const u32 pid
= perf_evsel__intval(evsel
, sample
, "pid"),
1011 success
= perf_evsel__intval(evsel
, sample
, "success");
1012 struct work_atoms
*atoms
;
1013 struct work_atom
*atom
;
1014 struct thread
*wakee
;
1015 u64 timestamp
= sample
->time
;
1017 /* Note for later, it may be interesting to observe the failing cases */
1021 wakee
= machine__findnew_thread(machine
, 0, pid
);
1022 atoms
= thread_atoms_search(&sched
->atom_root
, wakee
, &sched
->cmp_pid
);
1024 if (thread_atoms_insert(sched
, wakee
))
1026 atoms
= thread_atoms_search(&sched
->atom_root
, wakee
, &sched
->cmp_pid
);
1028 pr_err("wakeup-event: Internal tree error");
1031 if (add_sched_out_event(atoms
, 'S', timestamp
))
1035 BUG_ON(list_empty(&atoms
->work_list
));
1037 atom
= list_entry(atoms
->work_list
.prev
, struct work_atom
, list
);
1040 * You WILL be missing events if you've recorded only
1041 * one CPU, or are only looking at only one, so don't
1042 * make useless noise.
1044 if (sched
->profile_cpu
== -1 && atom
->state
!= THREAD_SLEEPING
)
1045 sched
->nr_state_machine_bugs
++;
1047 sched
->nr_timestamps
++;
1048 if (atom
->sched_out_time
> timestamp
) {
1049 sched
->nr_unordered_timestamps
++;
1053 atom
->state
= THREAD_WAIT_CPU
;
1054 atom
->wake_up_time
= timestamp
;
1058 static int latency_migrate_task_event(struct perf_sched
*sched
,
1059 struct perf_evsel
*evsel
,
1060 struct perf_sample
*sample
,
1061 struct machine
*machine
)
1063 const u32 pid
= perf_evsel__intval(evsel
, sample
, "pid");
1064 u64 timestamp
= sample
->time
;
1065 struct work_atoms
*atoms
;
1066 struct work_atom
*atom
;
1067 struct thread
*migrant
;
1070 * Only need to worry about migration when profiling one CPU.
1072 if (sched
->profile_cpu
== -1)
1075 migrant
= machine__findnew_thread(machine
, 0, pid
);
1076 atoms
= thread_atoms_search(&sched
->atom_root
, migrant
, &sched
->cmp_pid
);
1078 if (thread_atoms_insert(sched
, migrant
))
1080 register_pid(sched
, migrant
->tid
, thread__comm_str(migrant
));
1081 atoms
= thread_atoms_search(&sched
->atom_root
, migrant
, &sched
->cmp_pid
);
1083 pr_err("migration-event: Internal tree error");
1086 if (add_sched_out_event(atoms
, 'R', timestamp
))
1090 BUG_ON(list_empty(&atoms
->work_list
));
1092 atom
= list_entry(atoms
->work_list
.prev
, struct work_atom
, list
);
1093 atom
->sched_in_time
= atom
->sched_out_time
= atom
->wake_up_time
= timestamp
;
1095 sched
->nr_timestamps
++;
1097 if (atom
->sched_out_time
> timestamp
)
1098 sched
->nr_unordered_timestamps
++;
1103 static void output_lat_thread(struct perf_sched
*sched
, struct work_atoms
*work_list
)
1109 if (!work_list
->nb_atoms
)
1112 * Ignore idle threads:
1114 if (!strcmp(thread__comm_str(work_list
->thread
), "swapper"))
1117 sched
->all_runtime
+= work_list
->total_runtime
;
1118 sched
->all_count
+= work_list
->nb_atoms
;
1120 ret
= printf(" %s:%d ", thread__comm_str(work_list
->thread
), work_list
->thread
->tid
);
1122 for (i
= 0; i
< 24 - ret
; i
++)
1125 avg
= work_list
->total_lat
/ work_list
->nb_atoms
;
1127 printf("|%11.3f ms |%9" PRIu64
" | avg:%9.3f ms | max:%9.3f ms | max at: %13.6f s\n",
1128 (double)work_list
->total_runtime
/ 1e6
,
1129 work_list
->nb_atoms
, (double)avg
/ 1e6
,
1130 (double)work_list
->max_lat
/ 1e6
,
1131 (double)work_list
->max_lat_at
/ 1e9
);
1134 static int pid_cmp(struct work_atoms
*l
, struct work_atoms
*r
)
1136 if (l
->thread
->tid
< r
->thread
->tid
)
1138 if (l
->thread
->tid
> r
->thread
->tid
)
1144 static int avg_cmp(struct work_atoms
*l
, struct work_atoms
*r
)
1154 avgl
= l
->total_lat
/ l
->nb_atoms
;
1155 avgr
= r
->total_lat
/ r
->nb_atoms
;
1165 static int max_cmp(struct work_atoms
*l
, struct work_atoms
*r
)
1167 if (l
->max_lat
< r
->max_lat
)
1169 if (l
->max_lat
> r
->max_lat
)
1175 static int switch_cmp(struct work_atoms
*l
, struct work_atoms
*r
)
1177 if (l
->nb_atoms
< r
->nb_atoms
)
1179 if (l
->nb_atoms
> r
->nb_atoms
)
1185 static int runtime_cmp(struct work_atoms
*l
, struct work_atoms
*r
)
1187 if (l
->total_runtime
< r
->total_runtime
)
1189 if (l
->total_runtime
> r
->total_runtime
)
1195 static int sort_dimension__add(const char *tok
, struct list_head
*list
)
1198 static struct sort_dimension avg_sort_dimension
= {
1202 static struct sort_dimension max_sort_dimension
= {
1206 static struct sort_dimension pid_sort_dimension
= {
1210 static struct sort_dimension runtime_sort_dimension
= {
1214 static struct sort_dimension switch_sort_dimension
= {
1218 struct sort_dimension
*available_sorts
[] = {
1219 &pid_sort_dimension
,
1220 &avg_sort_dimension
,
1221 &max_sort_dimension
,
1222 &switch_sort_dimension
,
1223 &runtime_sort_dimension
,
1226 for (i
= 0; i
< ARRAY_SIZE(available_sorts
); i
++) {
1227 if (!strcmp(available_sorts
[i
]->name
, tok
)) {
1228 list_add_tail(&available_sorts
[i
]->list
, list
);
1237 static void perf_sched__sort_lat(struct perf_sched
*sched
)
1239 struct rb_node
*node
;
1242 struct work_atoms
*data
;
1243 node
= rb_first(&sched
->atom_root
);
1247 rb_erase(node
, &sched
->atom_root
);
1248 data
= rb_entry(node
, struct work_atoms
, node
);
1249 __thread_latency_insert(&sched
->sorted_atom_root
, data
, &sched
->sort_list
);
1253 static int process_sched_wakeup_event(struct perf_tool
*tool
,
1254 struct perf_evsel
*evsel
,
1255 struct perf_sample
*sample
,
1256 struct machine
*machine
)
1258 struct perf_sched
*sched
= container_of(tool
, struct perf_sched
, tool
);
1260 if (sched
->tp_handler
->wakeup_event
)
1261 return sched
->tp_handler
->wakeup_event(sched
, evsel
, sample
, machine
);
1266 static int map_switch_event(struct perf_sched
*sched
, struct perf_evsel
*evsel
,
1267 struct perf_sample
*sample
, struct machine
*machine
)
1269 const u32 prev_pid
= perf_evsel__intval(evsel
, sample
, "prev_pid"),
1270 next_pid
= perf_evsel__intval(evsel
, sample
, "next_pid");
1271 struct thread
*sched_out __maybe_unused
, *sched_in
;
1273 u64 timestamp0
, timestamp
= sample
->time
;
1275 int cpu
, this_cpu
= sample
->cpu
;
1277 BUG_ON(this_cpu
>= MAX_CPUS
|| this_cpu
< 0);
1279 if (this_cpu
> sched
->max_cpu
)
1280 sched
->max_cpu
= this_cpu
;
1282 timestamp0
= sched
->cpu_last_switched
[this_cpu
];
1283 sched
->cpu_last_switched
[this_cpu
] = timestamp
;
1285 delta
= timestamp
- timestamp0
;
1290 pr_err("hm, delta: %" PRIu64
" < 0 ?\n", delta
);
1294 sched_out
= machine__findnew_thread(machine
, 0, prev_pid
);
1295 sched_in
= machine__findnew_thread(machine
, 0, next_pid
);
1297 sched
->curr_thread
[this_cpu
] = sched_in
;
1302 if (!sched_in
->shortname
[0]) {
1303 sched_in
->shortname
[0] = sched
->next_shortname1
;
1304 sched_in
->shortname
[1] = sched
->next_shortname2
;
1306 if (sched
->next_shortname1
< 'Z') {
1307 sched
->next_shortname1
++;
1309 sched
->next_shortname1
='A';
1310 if (sched
->next_shortname2
< '9') {
1311 sched
->next_shortname2
++;
1313 sched
->next_shortname2
='0';
1319 for (cpu
= 0; cpu
<= sched
->max_cpu
; cpu
++) {
1320 if (cpu
!= this_cpu
)
1325 if (sched
->curr_thread
[cpu
]) {
1326 if (sched
->curr_thread
[cpu
]->tid
)
1327 printf("%2s ", sched
->curr_thread
[cpu
]->shortname
);
1334 printf(" %12.6f secs ", (double)timestamp
/1e9
);
1335 if (new_shortname
) {
1336 printf("%s => %s:%d\n",
1337 sched_in
->shortname
, thread__comm_str(sched_in
), sched_in
->tid
);
1345 static int process_sched_switch_event(struct perf_tool
*tool
,
1346 struct perf_evsel
*evsel
,
1347 struct perf_sample
*sample
,
1348 struct machine
*machine
)
1350 struct perf_sched
*sched
= container_of(tool
, struct perf_sched
, tool
);
1351 int this_cpu
= sample
->cpu
, err
= 0;
1352 u32 prev_pid
= perf_evsel__intval(evsel
, sample
, "prev_pid"),
1353 next_pid
= perf_evsel__intval(evsel
, sample
, "next_pid");
1355 if (sched
->curr_pid
[this_cpu
] != (u32
)-1) {
1357 * Are we trying to switch away a PID that is
1360 if (sched
->curr_pid
[this_cpu
] != prev_pid
)
1361 sched
->nr_context_switch_bugs
++;
1364 if (sched
->tp_handler
->switch_event
)
1365 err
= sched
->tp_handler
->switch_event(sched
, evsel
, sample
, machine
);
1367 sched
->curr_pid
[this_cpu
] = next_pid
;
1371 static int process_sched_runtime_event(struct perf_tool
*tool
,
1372 struct perf_evsel
*evsel
,
1373 struct perf_sample
*sample
,
1374 struct machine
*machine
)
1376 struct perf_sched
*sched
= container_of(tool
, struct perf_sched
, tool
);
1378 if (sched
->tp_handler
->runtime_event
)
1379 return sched
->tp_handler
->runtime_event(sched
, evsel
, sample
, machine
);
1384 static int perf_sched__process_fork_event(struct perf_tool
*tool
,
1385 union perf_event
*event
,
1386 struct perf_sample
*sample
,
1387 struct machine
*machine
)
1389 struct perf_sched
*sched
= container_of(tool
, struct perf_sched
, tool
);
1391 /* run the fork event through the perf machineruy */
1392 perf_event__process_fork(tool
, event
, sample
, machine
);
1394 /* and then run additional processing needed for this command */
1395 if (sched
->tp_handler
->fork_event
)
1396 return sched
->tp_handler
->fork_event(sched
, event
, machine
);
1401 static int process_sched_migrate_task_event(struct perf_tool
*tool
,
1402 struct perf_evsel
*evsel
,
1403 struct perf_sample
*sample
,
1404 struct machine
*machine
)
1406 struct perf_sched
*sched
= container_of(tool
, struct perf_sched
, tool
);
1408 if (sched
->tp_handler
->migrate_task_event
)
1409 return sched
->tp_handler
->migrate_task_event(sched
, evsel
, sample
, machine
);
1414 typedef int (*tracepoint_handler
)(struct perf_tool
*tool
,
1415 struct perf_evsel
*evsel
,
1416 struct perf_sample
*sample
,
1417 struct machine
*machine
);
1419 static int perf_sched__process_tracepoint_sample(struct perf_tool
*tool __maybe_unused
,
1420 union perf_event
*event __maybe_unused
,
1421 struct perf_sample
*sample
,
1422 struct perf_evsel
*evsel
,
1423 struct machine
*machine
)
1427 evsel
->hists
.stats
.total_period
+= sample
->period
;
1428 hists__inc_nr_events(&evsel
->hists
, PERF_RECORD_SAMPLE
);
1430 if (evsel
->handler
!= NULL
) {
1431 tracepoint_handler f
= evsel
->handler
;
1432 err
= f(tool
, evsel
, sample
, machine
);
1438 static int perf_sched__read_events(struct perf_sched
*sched
,
1439 struct perf_session
**psession
)
1441 const struct perf_evsel_str_handler handlers
[] = {
1442 { "sched:sched_switch", process_sched_switch_event
, },
1443 { "sched:sched_stat_runtime", process_sched_runtime_event
, },
1444 { "sched:sched_wakeup", process_sched_wakeup_event
, },
1445 { "sched:sched_wakeup_new", process_sched_wakeup_event
, },
1446 { "sched:sched_migrate_task", process_sched_migrate_task_event
, },
1448 struct perf_session
*session
;
1449 struct perf_data_file file
= {
1451 .mode
= PERF_DATA_MODE_READ
,
1454 session
= perf_session__new(&file
, false, &sched
->tool
);
1455 if (session
== NULL
) {
1456 pr_debug("No Memory for session\n");
1460 if (perf_session__set_tracepoints_handlers(session
, handlers
))
1463 if (perf_session__has_traces(session
, "record -R")) {
1464 int err
= perf_session__process_events(session
, &sched
->tool
);
1466 pr_err("Failed to process events, error %d", err
);
1470 sched
->nr_events
= session
->stats
.nr_events
[0];
1471 sched
->nr_lost_events
= session
->stats
.total_lost
;
1472 sched
->nr_lost_chunks
= session
->stats
.nr_events
[PERF_RECORD_LOST
];
1476 *psession
= session
;
1478 perf_session__delete(session
);
1483 perf_session__delete(session
);
1487 static void print_bad_events(struct perf_sched
*sched
)
1489 if (sched
->nr_unordered_timestamps
&& sched
->nr_timestamps
) {
1490 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1491 (double)sched
->nr_unordered_timestamps
/(double)sched
->nr_timestamps
*100.0,
1492 sched
->nr_unordered_timestamps
, sched
->nr_timestamps
);
1494 if (sched
->nr_lost_events
&& sched
->nr_events
) {
1495 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1496 (double)sched
->nr_lost_events
/(double)sched
->nr_events
* 100.0,
1497 sched
->nr_lost_events
, sched
->nr_events
, sched
->nr_lost_chunks
);
1499 if (sched
->nr_state_machine_bugs
&& sched
->nr_timestamps
) {
1500 printf(" INFO: %.3f%% state machine bugs (%ld out of %ld)",
1501 (double)sched
->nr_state_machine_bugs
/(double)sched
->nr_timestamps
*100.0,
1502 sched
->nr_state_machine_bugs
, sched
->nr_timestamps
);
1503 if (sched
->nr_lost_events
)
1504 printf(" (due to lost events?)");
1507 if (sched
->nr_context_switch_bugs
&& sched
->nr_timestamps
) {
1508 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
1509 (double)sched
->nr_context_switch_bugs
/(double)sched
->nr_timestamps
*100.0,
1510 sched
->nr_context_switch_bugs
, sched
->nr_timestamps
);
1511 if (sched
->nr_lost_events
)
1512 printf(" (due to lost events?)");
1517 static int perf_sched__lat(struct perf_sched
*sched
)
1519 struct rb_node
*next
;
1520 struct perf_session
*session
;
1524 /* save session -- references to threads are held in work_list */
1525 if (perf_sched__read_events(sched
, &session
))
1528 perf_sched__sort_lat(sched
);
1530 printf("\n -----------------------------------------------------------------------------------------------------------------\n");
1531 printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |\n");
1532 printf(" -----------------------------------------------------------------------------------------------------------------\n");
1534 next
= rb_first(&sched
->sorted_atom_root
);
1537 struct work_atoms
*work_list
;
1539 work_list
= rb_entry(next
, struct work_atoms
, node
);
1540 output_lat_thread(sched
, work_list
);
1541 next
= rb_next(next
);
1544 printf(" -----------------------------------------------------------------------------------------------------------------\n");
1545 printf(" TOTAL: |%11.3f ms |%9" PRIu64
" |\n",
1546 (double)sched
->all_runtime
/ 1e6
, sched
->all_count
);
1548 printf(" ---------------------------------------------------\n");
1550 print_bad_events(sched
);
1553 perf_session__delete(session
);
1557 static int perf_sched__map(struct perf_sched
*sched
)
1559 sched
->max_cpu
= sysconf(_SC_NPROCESSORS_CONF
);
1562 if (perf_sched__read_events(sched
, NULL
))
1564 print_bad_events(sched
);
1568 static int perf_sched__replay(struct perf_sched
*sched
)
1572 calibrate_run_measurement_overhead(sched
);
1573 calibrate_sleep_measurement_overhead(sched
);
1575 test_calibrations(sched
);
1577 if (perf_sched__read_events(sched
, NULL
))
1580 printf("nr_run_events: %ld\n", sched
->nr_run_events
);
1581 printf("nr_sleep_events: %ld\n", sched
->nr_sleep_events
);
1582 printf("nr_wakeup_events: %ld\n", sched
->nr_wakeup_events
);
1584 if (sched
->targetless_wakeups
)
1585 printf("target-less wakeups: %ld\n", sched
->targetless_wakeups
);
1586 if (sched
->multitarget_wakeups
)
1587 printf("multi-target wakeups: %ld\n", sched
->multitarget_wakeups
);
1588 if (sched
->nr_run_events_optimized
)
1589 printf("run atoms optimized: %ld\n",
1590 sched
->nr_run_events_optimized
);
1592 print_task_traces(sched
);
1593 add_cross_task_wakeups(sched
);
1595 create_tasks(sched
);
1596 printf("------------------------------------------------------------\n");
1597 for (i
= 0; i
< sched
->replay_repeat
; i
++)
1598 run_one_test(sched
);
1603 static void setup_sorting(struct perf_sched
*sched
, const struct option
*options
,
1604 const char * const usage_msg
[])
1606 char *tmp
, *tok
, *str
= strdup(sched
->sort_order
);
1608 for (tok
= strtok_r(str
, ", ", &tmp
);
1609 tok
; tok
= strtok_r(NULL
, ", ", &tmp
)) {
1610 if (sort_dimension__add(tok
, &sched
->sort_list
) < 0) {
1611 error("Unknown --sort key: `%s'", tok
);
1612 usage_with_options(usage_msg
, options
);
1618 sort_dimension__add("pid", &sched
->cmp_pid
);
1621 static int __cmd_record(int argc
, const char **argv
)
1623 unsigned int rec_argc
, i
, j
;
1624 const char **rec_argv
;
1625 const char * const record_args
[] = {
1631 "-e", "sched:sched_switch",
1632 "-e", "sched:sched_stat_wait",
1633 "-e", "sched:sched_stat_sleep",
1634 "-e", "sched:sched_stat_iowait",
1635 "-e", "sched:sched_stat_runtime",
1636 "-e", "sched:sched_process_fork",
1637 "-e", "sched:sched_wakeup",
1638 "-e", "sched:sched_migrate_task",
1641 rec_argc
= ARRAY_SIZE(record_args
) + argc
- 1;
1642 rec_argv
= calloc(rec_argc
+ 1, sizeof(char *));
1644 if (rec_argv
== NULL
)
1647 for (i
= 0; i
< ARRAY_SIZE(record_args
); i
++)
1648 rec_argv
[i
] = strdup(record_args
[i
]);
1650 for (j
= 1; j
< (unsigned int)argc
; j
++, i
++)
1651 rec_argv
[i
] = argv
[j
];
1653 BUG_ON(i
!= rec_argc
);
1655 return cmd_record(i
, rec_argv
, NULL
);
1658 int cmd_sched(int argc
, const char **argv
, const char *prefix __maybe_unused
)
1660 const char default_sort_order
[] = "avg, max, switch, runtime";
1661 struct perf_sched sched
= {
1663 .sample
= perf_sched__process_tracepoint_sample
,
1664 .comm
= perf_event__process_comm
,
1665 .lost
= perf_event__process_lost
,
1666 .fork
= perf_sched__process_fork_event
,
1667 .ordered_samples
= true,
1669 .cmp_pid
= LIST_HEAD_INIT(sched
.cmp_pid
),
1670 .sort_list
= LIST_HEAD_INIT(sched
.sort_list
),
1671 .start_work_mutex
= PTHREAD_MUTEX_INITIALIZER
,
1672 .work_done_wait_mutex
= PTHREAD_MUTEX_INITIALIZER
,
1673 .sort_order
= default_sort_order
,
1674 .replay_repeat
= 10,
1676 .next_shortname1
= 'A',
1677 .next_shortname2
= '0',
1679 const struct option latency_options
[] = {
1680 OPT_STRING('s', "sort", &sched
.sort_order
, "key[,key2...]",
1681 "sort by key(s): runtime, switch, avg, max"),
1682 OPT_INCR('v', "verbose", &verbose
,
1683 "be more verbose (show symbol address, etc)"),
1684 OPT_INTEGER('C', "CPU", &sched
.profile_cpu
,
1685 "CPU to profile on"),
1686 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace
,
1687 "dump raw trace in ASCII"),
1690 const struct option replay_options
[] = {
1691 OPT_UINTEGER('r', "repeat", &sched
.replay_repeat
,
1692 "repeat the workload replay N times (-1: infinite)"),
1693 OPT_INCR('v', "verbose", &verbose
,
1694 "be more verbose (show symbol address, etc)"),
1695 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace
,
1696 "dump raw trace in ASCII"),
1699 const struct option sched_options
[] = {
1700 OPT_STRING('i', "input", &input_name
, "file",
1702 OPT_INCR('v', "verbose", &verbose
,
1703 "be more verbose (show symbol address, etc)"),
1704 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace
,
1705 "dump raw trace in ASCII"),
1708 const char * const latency_usage
[] = {
1709 "perf sched latency [<options>]",
1712 const char * const replay_usage
[] = {
1713 "perf sched replay [<options>]",
1716 const char * const sched_usage
[] = {
1717 "perf sched [<options>] {record|latency|map|replay|script}",
1720 struct trace_sched_handler lat_ops
= {
1721 .wakeup_event
= latency_wakeup_event
,
1722 .switch_event
= latency_switch_event
,
1723 .runtime_event
= latency_runtime_event
,
1724 .migrate_task_event
= latency_migrate_task_event
,
1726 struct trace_sched_handler map_ops
= {
1727 .switch_event
= map_switch_event
,
1729 struct trace_sched_handler replay_ops
= {
1730 .wakeup_event
= replay_wakeup_event
,
1731 .switch_event
= replay_switch_event
,
1732 .fork_event
= replay_fork_event
,
1736 for (i
= 0; i
< ARRAY_SIZE(sched
.curr_pid
); i
++)
1737 sched
.curr_pid
[i
] = -1;
1739 argc
= parse_options(argc
, argv
, sched_options
, sched_usage
,
1740 PARSE_OPT_STOP_AT_NON_OPTION
);
1742 usage_with_options(sched_usage
, sched_options
);
1745 * Aliased to 'perf script' for now:
1747 if (!strcmp(argv
[0], "script"))
1748 return cmd_script(argc
, argv
, prefix
);
1751 if (!strncmp(argv
[0], "rec", 3)) {
1752 return __cmd_record(argc
, argv
);
1753 } else if (!strncmp(argv
[0], "lat", 3)) {
1754 sched
.tp_handler
= &lat_ops
;
1756 argc
= parse_options(argc
, argv
, latency_options
, latency_usage
, 0);
1758 usage_with_options(latency_usage
, latency_options
);
1760 setup_sorting(&sched
, latency_options
, latency_usage
);
1761 return perf_sched__lat(&sched
);
1762 } else if (!strcmp(argv
[0], "map")) {
1763 sched
.tp_handler
= &map_ops
;
1764 setup_sorting(&sched
, latency_options
, latency_usage
);
1765 return perf_sched__map(&sched
);
1766 } else if (!strncmp(argv
[0], "rep", 3)) {
1767 sched
.tp_handler
= &replay_ops
;
1769 argc
= parse_options(argc
, argv
, replay_options
, replay_usage
, 0);
1771 usage_with_options(replay_usage
, replay_options
);
1773 return perf_sched__replay(&sched
);
1775 usage_with_options(sched_usage
, sched_options
);