PCI: Identify Enhanced Allocation (EA) BAR Equivalent resources in sysfs
[linux/fpc-iii.git] / mm / memory-failure.c
blob5a544c6c0717c4908fe23e17a976847fb22981ce
1 /*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11 * failure.
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
16 * Handles page cache pages in various states. The tricky part
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
24 * It can be very tempting to add handling for obscure cases here.
25 * In general any code for handling new cases should only be added iff:
26 * - You know how to test it.
27 * - You have a test that can be added to mce-test
28 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
29 * - The case actually shows up as a frequent (top 10) page state in
30 * tools/vm/page-types when running a real workload.
32 * There are several operations here with exponential complexity because
33 * of unsuitable VM data structures. For example the operation to map back
34 * from RMAP chains to processes has to walk the complete process list and
35 * has non linear complexity with the number. But since memory corruptions
36 * are rare we hope to get away with this. This avoids impacting the core
37 * VM.
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/kernel-page-flags.h>
43 #include <linux/sched.h>
44 #include <linux/ksm.h>
45 #include <linux/rmap.h>
46 #include <linux/export.h>
47 #include <linux/pagemap.h>
48 #include <linux/swap.h>
49 #include <linux/backing-dev.h>
50 #include <linux/migrate.h>
51 #include <linux/page-isolation.h>
52 #include <linux/suspend.h>
53 #include <linux/slab.h>
54 #include <linux/swapops.h>
55 #include <linux/hugetlb.h>
56 #include <linux/memory_hotplug.h>
57 #include <linux/mm_inline.h>
58 #include <linux/kfifo.h>
59 #include <linux/ratelimit.h>
60 #include "internal.h"
61 #include "ras/ras_event.h"
63 int sysctl_memory_failure_early_kill __read_mostly = 0;
65 int sysctl_memory_failure_recovery __read_mostly = 1;
67 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
69 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
71 u32 hwpoison_filter_enable = 0;
72 u32 hwpoison_filter_dev_major = ~0U;
73 u32 hwpoison_filter_dev_minor = ~0U;
74 u64 hwpoison_filter_flags_mask;
75 u64 hwpoison_filter_flags_value;
76 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
77 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
78 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
79 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
80 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
82 static int hwpoison_filter_dev(struct page *p)
84 struct address_space *mapping;
85 dev_t dev;
87 if (hwpoison_filter_dev_major == ~0U &&
88 hwpoison_filter_dev_minor == ~0U)
89 return 0;
92 * page_mapping() does not accept slab pages.
94 if (PageSlab(p))
95 return -EINVAL;
97 mapping = page_mapping(p);
98 if (mapping == NULL || mapping->host == NULL)
99 return -EINVAL;
101 dev = mapping->host->i_sb->s_dev;
102 if (hwpoison_filter_dev_major != ~0U &&
103 hwpoison_filter_dev_major != MAJOR(dev))
104 return -EINVAL;
105 if (hwpoison_filter_dev_minor != ~0U &&
106 hwpoison_filter_dev_minor != MINOR(dev))
107 return -EINVAL;
109 return 0;
112 static int hwpoison_filter_flags(struct page *p)
114 if (!hwpoison_filter_flags_mask)
115 return 0;
117 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
118 hwpoison_filter_flags_value)
119 return 0;
120 else
121 return -EINVAL;
125 * This allows stress tests to limit test scope to a collection of tasks
126 * by putting them under some memcg. This prevents killing unrelated/important
127 * processes such as /sbin/init. Note that the target task may share clean
128 * pages with init (eg. libc text), which is harmless. If the target task
129 * share _dirty_ pages with another task B, the test scheme must make sure B
130 * is also included in the memcg. At last, due to race conditions this filter
131 * can only guarantee that the page either belongs to the memcg tasks, or is
132 * a freed page.
134 #ifdef CONFIG_MEMCG
135 u64 hwpoison_filter_memcg;
136 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
137 static int hwpoison_filter_task(struct page *p)
139 if (!hwpoison_filter_memcg)
140 return 0;
142 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
143 return -EINVAL;
145 return 0;
147 #else
148 static int hwpoison_filter_task(struct page *p) { return 0; }
149 #endif
151 int hwpoison_filter(struct page *p)
153 if (!hwpoison_filter_enable)
154 return 0;
156 if (hwpoison_filter_dev(p))
157 return -EINVAL;
159 if (hwpoison_filter_flags(p))
160 return -EINVAL;
162 if (hwpoison_filter_task(p))
163 return -EINVAL;
165 return 0;
167 #else
168 int hwpoison_filter(struct page *p)
170 return 0;
172 #endif
174 EXPORT_SYMBOL_GPL(hwpoison_filter);
177 * Send all the processes who have the page mapped a signal.
178 * ``action optional'' if they are not immediately affected by the error
179 * ``action required'' if error happened in current execution context
181 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
182 unsigned long pfn, struct page *page, int flags)
184 struct siginfo si;
185 int ret;
187 pr_err("MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
188 pfn, t->comm, t->pid);
189 si.si_signo = SIGBUS;
190 si.si_errno = 0;
191 si.si_addr = (void *)addr;
192 #ifdef __ARCH_SI_TRAPNO
193 si.si_trapno = trapno;
194 #endif
195 si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
197 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
198 si.si_code = BUS_MCEERR_AR;
199 ret = force_sig_info(SIGBUS, &si, current);
200 } else {
202 * Don't use force here, it's convenient if the signal
203 * can be temporarily blocked.
204 * This could cause a loop when the user sets SIGBUS
205 * to SIG_IGN, but hopefully no one will do that?
207 si.si_code = BUS_MCEERR_AO;
208 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
210 if (ret < 0)
211 pr_info("MCE: Error sending signal to %s:%d: %d\n",
212 t->comm, t->pid, ret);
213 return ret;
217 * When a unknown page type is encountered drain as many buffers as possible
218 * in the hope to turn the page into a LRU or free page, which we can handle.
220 void shake_page(struct page *p, int access)
222 if (!PageSlab(p)) {
223 lru_add_drain_all();
224 if (PageLRU(p))
225 return;
226 drain_all_pages(page_zone(p));
227 if (PageLRU(p) || is_free_buddy_page(p))
228 return;
232 * Only call shrink_node_slabs here (which would also shrink
233 * other caches) if access is not potentially fatal.
235 if (access)
236 drop_slab_node(page_to_nid(p));
238 EXPORT_SYMBOL_GPL(shake_page);
241 * Kill all processes that have a poisoned page mapped and then isolate
242 * the page.
244 * General strategy:
245 * Find all processes having the page mapped and kill them.
246 * But we keep a page reference around so that the page is not
247 * actually freed yet.
248 * Then stash the page away
250 * There's no convenient way to get back to mapped processes
251 * from the VMAs. So do a brute-force search over all
252 * running processes.
254 * Remember that machine checks are not common (or rather
255 * if they are common you have other problems), so this shouldn't
256 * be a performance issue.
258 * Also there are some races possible while we get from the
259 * error detection to actually handle it.
262 struct to_kill {
263 struct list_head nd;
264 struct task_struct *tsk;
265 unsigned long addr;
266 char addr_valid;
270 * Failure handling: if we can't find or can't kill a process there's
271 * not much we can do. We just print a message and ignore otherwise.
275 * Schedule a process for later kill.
276 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
277 * TBD would GFP_NOIO be enough?
279 static void add_to_kill(struct task_struct *tsk, struct page *p,
280 struct vm_area_struct *vma,
281 struct list_head *to_kill,
282 struct to_kill **tkc)
284 struct to_kill *tk;
286 if (*tkc) {
287 tk = *tkc;
288 *tkc = NULL;
289 } else {
290 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
291 if (!tk) {
292 pr_err("MCE: Out of memory while machine check handling\n");
293 return;
296 tk->addr = page_address_in_vma(p, vma);
297 tk->addr_valid = 1;
300 * In theory we don't have to kill when the page was
301 * munmaped. But it could be also a mremap. Since that's
302 * likely very rare kill anyways just out of paranoia, but use
303 * a SIGKILL because the error is not contained anymore.
305 if (tk->addr == -EFAULT) {
306 pr_info("MCE: Unable to find user space address %lx in %s\n",
307 page_to_pfn(p), tsk->comm);
308 tk->addr_valid = 0;
310 get_task_struct(tsk);
311 tk->tsk = tsk;
312 list_add_tail(&tk->nd, to_kill);
316 * Kill the processes that have been collected earlier.
318 * Only do anything when DOIT is set, otherwise just free the list
319 * (this is used for clean pages which do not need killing)
320 * Also when FAIL is set do a force kill because something went
321 * wrong earlier.
323 static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
324 int fail, struct page *page, unsigned long pfn,
325 int flags)
327 struct to_kill *tk, *next;
329 list_for_each_entry_safe (tk, next, to_kill, nd) {
330 if (forcekill) {
332 * In case something went wrong with munmapping
333 * make sure the process doesn't catch the
334 * signal and then access the memory. Just kill it.
336 if (fail || tk->addr_valid == 0) {
337 pr_err("MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
338 pfn, tk->tsk->comm, tk->tsk->pid);
339 force_sig(SIGKILL, tk->tsk);
343 * In theory the process could have mapped
344 * something else on the address in-between. We could
345 * check for that, but we need to tell the
346 * process anyways.
348 else if (kill_proc(tk->tsk, tk->addr, trapno,
349 pfn, page, flags) < 0)
350 pr_err("MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
351 pfn, tk->tsk->comm, tk->tsk->pid);
353 put_task_struct(tk->tsk);
354 kfree(tk);
359 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
360 * on behalf of the thread group. Return task_struct of the (first found)
361 * dedicated thread if found, and return NULL otherwise.
363 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
364 * have to call rcu_read_lock/unlock() in this function.
366 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
368 struct task_struct *t;
370 for_each_thread(tsk, t)
371 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
372 return t;
373 return NULL;
377 * Determine whether a given process is "early kill" process which expects
378 * to be signaled when some page under the process is hwpoisoned.
379 * Return task_struct of the dedicated thread (main thread unless explicitly
380 * specified) if the process is "early kill," and otherwise returns NULL.
382 static struct task_struct *task_early_kill(struct task_struct *tsk,
383 int force_early)
385 struct task_struct *t;
386 if (!tsk->mm)
387 return NULL;
388 if (force_early)
389 return tsk;
390 t = find_early_kill_thread(tsk);
391 if (t)
392 return t;
393 if (sysctl_memory_failure_early_kill)
394 return tsk;
395 return NULL;
399 * Collect processes when the error hit an anonymous page.
401 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
402 struct to_kill **tkc, int force_early)
404 struct vm_area_struct *vma;
405 struct task_struct *tsk;
406 struct anon_vma *av;
407 pgoff_t pgoff;
409 av = page_lock_anon_vma_read(page);
410 if (av == NULL) /* Not actually mapped anymore */
411 return;
413 pgoff = page_to_pgoff(page);
414 read_lock(&tasklist_lock);
415 for_each_process (tsk) {
416 struct anon_vma_chain *vmac;
417 struct task_struct *t = task_early_kill(tsk, force_early);
419 if (!t)
420 continue;
421 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
422 pgoff, pgoff) {
423 vma = vmac->vma;
424 if (!page_mapped_in_vma(page, vma))
425 continue;
426 if (vma->vm_mm == t->mm)
427 add_to_kill(t, page, vma, to_kill, tkc);
430 read_unlock(&tasklist_lock);
431 page_unlock_anon_vma_read(av);
435 * Collect processes when the error hit a file mapped page.
437 static void collect_procs_file(struct page *page, struct list_head *to_kill,
438 struct to_kill **tkc, int force_early)
440 struct vm_area_struct *vma;
441 struct task_struct *tsk;
442 struct address_space *mapping = page->mapping;
444 i_mmap_lock_read(mapping);
445 read_lock(&tasklist_lock);
446 for_each_process(tsk) {
447 pgoff_t pgoff = page_to_pgoff(page);
448 struct task_struct *t = task_early_kill(tsk, force_early);
450 if (!t)
451 continue;
452 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
453 pgoff) {
455 * Send early kill signal to tasks where a vma covers
456 * the page but the corrupted page is not necessarily
457 * mapped it in its pte.
458 * Assume applications who requested early kill want
459 * to be informed of all such data corruptions.
461 if (vma->vm_mm == t->mm)
462 add_to_kill(t, page, vma, to_kill, tkc);
465 read_unlock(&tasklist_lock);
466 i_mmap_unlock_read(mapping);
470 * Collect the processes who have the corrupted page mapped to kill.
471 * This is done in two steps for locking reasons.
472 * First preallocate one tokill structure outside the spin locks,
473 * so that we can kill at least one process reasonably reliable.
475 static void collect_procs(struct page *page, struct list_head *tokill,
476 int force_early)
478 struct to_kill *tk;
480 if (!page->mapping)
481 return;
483 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
484 if (!tk)
485 return;
486 if (PageAnon(page))
487 collect_procs_anon(page, tokill, &tk, force_early);
488 else
489 collect_procs_file(page, tokill, &tk, force_early);
490 kfree(tk);
493 static const char *action_name[] = {
494 [MF_IGNORED] = "Ignored",
495 [MF_FAILED] = "Failed",
496 [MF_DELAYED] = "Delayed",
497 [MF_RECOVERED] = "Recovered",
500 static const char * const action_page_types[] = {
501 [MF_MSG_KERNEL] = "reserved kernel page",
502 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
503 [MF_MSG_SLAB] = "kernel slab page",
504 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
505 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned",
506 [MF_MSG_HUGE] = "huge page",
507 [MF_MSG_FREE_HUGE] = "free huge page",
508 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
509 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
510 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
511 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
512 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
513 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
514 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
515 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
516 [MF_MSG_CLEAN_LRU] = "clean LRU page",
517 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
518 [MF_MSG_BUDDY] = "free buddy page",
519 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)",
520 [MF_MSG_UNKNOWN] = "unknown page",
524 * XXX: It is possible that a page is isolated from LRU cache,
525 * and then kept in swap cache or failed to remove from page cache.
526 * The page count will stop it from being freed by unpoison.
527 * Stress tests should be aware of this memory leak problem.
529 static int delete_from_lru_cache(struct page *p)
531 if (!isolate_lru_page(p)) {
533 * Clear sensible page flags, so that the buddy system won't
534 * complain when the page is unpoison-and-freed.
536 ClearPageActive(p);
537 ClearPageUnevictable(p);
539 * drop the page count elevated by isolate_lru_page()
541 page_cache_release(p);
542 return 0;
544 return -EIO;
548 * Error hit kernel page.
549 * Do nothing, try to be lucky and not touch this instead. For a few cases we
550 * could be more sophisticated.
552 static int me_kernel(struct page *p, unsigned long pfn)
554 return MF_IGNORED;
558 * Page in unknown state. Do nothing.
560 static int me_unknown(struct page *p, unsigned long pfn)
562 pr_err("MCE %#lx: Unknown page state\n", pfn);
563 return MF_FAILED;
567 * Clean (or cleaned) page cache page.
569 static int me_pagecache_clean(struct page *p, unsigned long pfn)
571 int err;
572 int ret = MF_FAILED;
573 struct address_space *mapping;
575 delete_from_lru_cache(p);
578 * For anonymous pages we're done the only reference left
579 * should be the one m_f() holds.
581 if (PageAnon(p))
582 return MF_RECOVERED;
585 * Now truncate the page in the page cache. This is really
586 * more like a "temporary hole punch"
587 * Don't do this for block devices when someone else
588 * has a reference, because it could be file system metadata
589 * and that's not safe to truncate.
591 mapping = page_mapping(p);
592 if (!mapping) {
594 * Page has been teared down in the meanwhile
596 return MF_FAILED;
600 * Truncation is a bit tricky. Enable it per file system for now.
602 * Open: to take i_mutex or not for this? Right now we don't.
604 if (mapping->a_ops->error_remove_page) {
605 err = mapping->a_ops->error_remove_page(mapping, p);
606 if (err != 0) {
607 pr_info("MCE %#lx: Failed to punch page: %d\n",
608 pfn, err);
609 } else if (page_has_private(p) &&
610 !try_to_release_page(p, GFP_NOIO)) {
611 pr_info("MCE %#lx: failed to release buffers\n", pfn);
612 } else {
613 ret = MF_RECOVERED;
615 } else {
617 * If the file system doesn't support it just invalidate
618 * This fails on dirty or anything with private pages
620 if (invalidate_inode_page(p))
621 ret = MF_RECOVERED;
622 else
623 pr_info("MCE %#lx: Failed to invalidate\n", pfn);
625 return ret;
629 * Dirty pagecache page
630 * Issues: when the error hit a hole page the error is not properly
631 * propagated.
633 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
635 struct address_space *mapping = page_mapping(p);
637 SetPageError(p);
638 /* TBD: print more information about the file. */
639 if (mapping) {
641 * IO error will be reported by write(), fsync(), etc.
642 * who check the mapping.
643 * This way the application knows that something went
644 * wrong with its dirty file data.
646 * There's one open issue:
648 * The EIO will be only reported on the next IO
649 * operation and then cleared through the IO map.
650 * Normally Linux has two mechanisms to pass IO error
651 * first through the AS_EIO flag in the address space
652 * and then through the PageError flag in the page.
653 * Since we drop pages on memory failure handling the
654 * only mechanism open to use is through AS_AIO.
656 * This has the disadvantage that it gets cleared on
657 * the first operation that returns an error, while
658 * the PageError bit is more sticky and only cleared
659 * when the page is reread or dropped. If an
660 * application assumes it will always get error on
661 * fsync, but does other operations on the fd before
662 * and the page is dropped between then the error
663 * will not be properly reported.
665 * This can already happen even without hwpoisoned
666 * pages: first on metadata IO errors (which only
667 * report through AS_EIO) or when the page is dropped
668 * at the wrong time.
670 * So right now we assume that the application DTRT on
671 * the first EIO, but we're not worse than other parts
672 * of the kernel.
674 mapping_set_error(mapping, EIO);
677 return me_pagecache_clean(p, pfn);
681 * Clean and dirty swap cache.
683 * Dirty swap cache page is tricky to handle. The page could live both in page
684 * cache and swap cache(ie. page is freshly swapped in). So it could be
685 * referenced concurrently by 2 types of PTEs:
686 * normal PTEs and swap PTEs. We try to handle them consistently by calling
687 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
688 * and then
689 * - clear dirty bit to prevent IO
690 * - remove from LRU
691 * - but keep in the swap cache, so that when we return to it on
692 * a later page fault, we know the application is accessing
693 * corrupted data and shall be killed (we installed simple
694 * interception code in do_swap_page to catch it).
696 * Clean swap cache pages can be directly isolated. A later page fault will
697 * bring in the known good data from disk.
699 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
701 ClearPageDirty(p);
702 /* Trigger EIO in shmem: */
703 ClearPageUptodate(p);
705 if (!delete_from_lru_cache(p))
706 return MF_DELAYED;
707 else
708 return MF_FAILED;
711 static int me_swapcache_clean(struct page *p, unsigned long pfn)
713 delete_from_swap_cache(p);
715 if (!delete_from_lru_cache(p))
716 return MF_RECOVERED;
717 else
718 return MF_FAILED;
722 * Huge pages. Needs work.
723 * Issues:
724 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
725 * To narrow down kill region to one page, we need to break up pmd.
727 static int me_huge_page(struct page *p, unsigned long pfn)
729 int res = 0;
730 struct page *hpage = compound_head(p);
732 if (!PageHuge(hpage))
733 return MF_DELAYED;
736 * We can safely recover from error on free or reserved (i.e.
737 * not in-use) hugepage by dequeuing it from freelist.
738 * To check whether a hugepage is in-use or not, we can't use
739 * page->lru because it can be used in other hugepage operations,
740 * such as __unmap_hugepage_range() and gather_surplus_pages().
741 * So instead we use page_mapping() and PageAnon().
742 * We assume that this function is called with page lock held,
743 * so there is no race between isolation and mapping/unmapping.
745 if (!(page_mapping(hpage) || PageAnon(hpage))) {
746 res = dequeue_hwpoisoned_huge_page(hpage);
747 if (!res)
748 return MF_RECOVERED;
750 return MF_DELAYED;
754 * Various page states we can handle.
756 * A page state is defined by its current page->flags bits.
757 * The table matches them in order and calls the right handler.
759 * This is quite tricky because we can access page at any time
760 * in its live cycle, so all accesses have to be extremely careful.
762 * This is not complete. More states could be added.
763 * For any missing state don't attempt recovery.
766 #define dirty (1UL << PG_dirty)
767 #define sc (1UL << PG_swapcache)
768 #define unevict (1UL << PG_unevictable)
769 #define mlock (1UL << PG_mlocked)
770 #define writeback (1UL << PG_writeback)
771 #define lru (1UL << PG_lru)
772 #define swapbacked (1UL << PG_swapbacked)
773 #define head (1UL << PG_head)
774 #define slab (1UL << PG_slab)
775 #define reserved (1UL << PG_reserved)
777 static struct page_state {
778 unsigned long mask;
779 unsigned long res;
780 enum mf_action_page_type type;
781 int (*action)(struct page *p, unsigned long pfn);
782 } error_states[] = {
783 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
785 * free pages are specially detected outside this table:
786 * PG_buddy pages only make a small fraction of all free pages.
790 * Could in theory check if slab page is free or if we can drop
791 * currently unused objects without touching them. But just
792 * treat it as standard kernel for now.
794 { slab, slab, MF_MSG_SLAB, me_kernel },
796 { head, head, MF_MSG_HUGE, me_huge_page },
798 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
799 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
801 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
802 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
804 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
805 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
807 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
808 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
811 * Catchall entry: must be at end.
813 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
816 #undef dirty
817 #undef sc
818 #undef unevict
819 #undef mlock
820 #undef writeback
821 #undef lru
822 #undef swapbacked
823 #undef head
824 #undef slab
825 #undef reserved
828 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
829 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
831 static void action_result(unsigned long pfn, enum mf_action_page_type type,
832 enum mf_result result)
834 trace_memory_failure_event(pfn, type, result);
836 pr_err("MCE %#lx: recovery action for %s: %s\n",
837 pfn, action_page_types[type], action_name[result]);
840 static int page_action(struct page_state *ps, struct page *p,
841 unsigned long pfn)
843 int result;
844 int count;
846 result = ps->action(p, pfn);
848 count = page_count(p) - 1;
849 if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
850 count--;
851 if (count != 0) {
852 pr_err("MCE %#lx: %s still referenced by %d users\n",
853 pfn, action_page_types[ps->type], count);
854 result = MF_FAILED;
856 action_result(pfn, ps->type, result);
858 /* Could do more checks here if page looks ok */
860 * Could adjust zone counters here to correct for the missing page.
863 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
867 * get_hwpoison_page() - Get refcount for memory error handling:
868 * @page: raw error page (hit by memory error)
870 * Return: return 0 if failed to grab the refcount, otherwise true (some
871 * non-zero value.)
873 int get_hwpoison_page(struct page *page)
875 struct page *head = compound_head(page);
877 if (!PageHuge(head) && PageTransHuge(head)) {
879 * Non anonymous thp exists only in allocation/free time. We
880 * can't handle such a case correctly, so let's give it up.
881 * This should be better than triggering BUG_ON when kernel
882 * tries to touch the "partially handled" page.
884 if (!PageAnon(head)) {
885 pr_err("MCE: %#lx: non anonymous thp\n",
886 page_to_pfn(page));
887 return 0;
891 return get_page_unless_zero(head);
893 EXPORT_SYMBOL_GPL(get_hwpoison_page);
896 * Do all that is necessary to remove user space mappings. Unmap
897 * the pages and send SIGBUS to the processes if the data was dirty.
899 static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
900 int trapno, int flags, struct page **hpagep)
902 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
903 struct address_space *mapping;
904 LIST_HEAD(tokill);
905 int ret;
906 int kill = 1, forcekill;
907 struct page *hpage = *hpagep;
910 * Here we are interested only in user-mapped pages, so skip any
911 * other types of pages.
913 if (PageReserved(p) || PageSlab(p))
914 return SWAP_SUCCESS;
915 if (!(PageLRU(hpage) || PageHuge(p)))
916 return SWAP_SUCCESS;
919 * This check implies we don't kill processes if their pages
920 * are in the swap cache early. Those are always late kills.
922 if (!page_mapped(hpage))
923 return SWAP_SUCCESS;
925 if (PageKsm(p)) {
926 pr_err("MCE %#lx: can't handle KSM pages.\n", pfn);
927 return SWAP_FAIL;
930 if (PageSwapCache(p)) {
931 pr_err("MCE %#lx: keeping poisoned page in swap cache\n", pfn);
932 ttu |= TTU_IGNORE_HWPOISON;
936 * Propagate the dirty bit from PTEs to struct page first, because we
937 * need this to decide if we should kill or just drop the page.
938 * XXX: the dirty test could be racy: set_page_dirty() may not always
939 * be called inside page lock (it's recommended but not enforced).
941 mapping = page_mapping(hpage);
942 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
943 mapping_cap_writeback_dirty(mapping)) {
944 if (page_mkclean(hpage)) {
945 SetPageDirty(hpage);
946 } else {
947 kill = 0;
948 ttu |= TTU_IGNORE_HWPOISON;
949 pr_info("MCE %#lx: corrupted page was clean: dropped without side effects\n",
950 pfn);
955 * First collect all the processes that have the page
956 * mapped in dirty form. This has to be done before try_to_unmap,
957 * because ttu takes the rmap data structures down.
959 * Error handling: We ignore errors here because
960 * there's nothing that can be done.
962 if (kill)
963 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
965 ret = try_to_unmap(hpage, ttu);
966 if (ret != SWAP_SUCCESS)
967 pr_err("MCE %#lx: failed to unmap page (mapcount=%d)\n",
968 pfn, page_mapcount(hpage));
971 * Now that the dirty bit has been propagated to the
972 * struct page and all unmaps done we can decide if
973 * killing is needed or not. Only kill when the page
974 * was dirty or the process is not restartable,
975 * otherwise the tokill list is merely
976 * freed. When there was a problem unmapping earlier
977 * use a more force-full uncatchable kill to prevent
978 * any accesses to the poisoned memory.
980 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
981 kill_procs(&tokill, forcekill, trapno,
982 ret != SWAP_SUCCESS, p, pfn, flags);
984 return ret;
987 static void set_page_hwpoison_huge_page(struct page *hpage)
989 int i;
990 int nr_pages = 1 << compound_order(hpage);
991 for (i = 0; i < nr_pages; i++)
992 SetPageHWPoison(hpage + i);
995 static void clear_page_hwpoison_huge_page(struct page *hpage)
997 int i;
998 int nr_pages = 1 << compound_order(hpage);
999 for (i = 0; i < nr_pages; i++)
1000 ClearPageHWPoison(hpage + i);
1004 * memory_failure - Handle memory failure of a page.
1005 * @pfn: Page Number of the corrupted page
1006 * @trapno: Trap number reported in the signal to user space.
1007 * @flags: fine tune action taken
1009 * This function is called by the low level machine check code
1010 * of an architecture when it detects hardware memory corruption
1011 * of a page. It tries its best to recover, which includes
1012 * dropping pages, killing processes etc.
1014 * The function is primarily of use for corruptions that
1015 * happen outside the current execution context (e.g. when
1016 * detected by a background scrubber)
1018 * Must run in process context (e.g. a work queue) with interrupts
1019 * enabled and no spinlocks hold.
1021 int memory_failure(unsigned long pfn, int trapno, int flags)
1023 struct page_state *ps;
1024 struct page *p;
1025 struct page *hpage;
1026 struct page *orig_head;
1027 int res;
1028 unsigned int nr_pages;
1029 unsigned long page_flags;
1031 if (!sysctl_memory_failure_recovery)
1032 panic("Memory failure from trap %d on page %lx", trapno, pfn);
1034 if (!pfn_valid(pfn)) {
1035 pr_err("MCE %#lx: memory outside kernel control\n", pfn);
1036 return -ENXIO;
1039 p = pfn_to_page(pfn);
1040 orig_head = hpage = compound_head(p);
1041 if (TestSetPageHWPoison(p)) {
1042 pr_err("MCE %#lx: already hardware poisoned\n", pfn);
1043 return 0;
1047 * Currently errors on hugetlbfs pages are measured in hugepage units,
1048 * so nr_pages should be 1 << compound_order. OTOH when errors are on
1049 * transparent hugepages, they are supposed to be split and error
1050 * measurement is done in normal page units. So nr_pages should be one
1051 * in this case.
1053 if (PageHuge(p))
1054 nr_pages = 1 << compound_order(hpage);
1055 else /* normal page or thp */
1056 nr_pages = 1;
1057 num_poisoned_pages_add(nr_pages);
1060 * We need/can do nothing about count=0 pages.
1061 * 1) it's a free page, and therefore in safe hand:
1062 * prep_new_page() will be the gate keeper.
1063 * 2) it's a free hugepage, which is also safe:
1064 * an affected hugepage will be dequeued from hugepage freelist,
1065 * so there's no concern about reusing it ever after.
1066 * 3) it's part of a non-compound high order page.
1067 * Implies some kernel user: cannot stop them from
1068 * R/W the page; let's pray that the page has been
1069 * used and will be freed some time later.
1070 * In fact it's dangerous to directly bump up page count from 0,
1071 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1073 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1074 if (is_free_buddy_page(p)) {
1075 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1076 return 0;
1077 } else if (PageHuge(hpage)) {
1079 * Check "filter hit" and "race with other subpage."
1081 lock_page(hpage);
1082 if (PageHWPoison(hpage)) {
1083 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1084 || (p != hpage && TestSetPageHWPoison(hpage))) {
1085 num_poisoned_pages_sub(nr_pages);
1086 unlock_page(hpage);
1087 return 0;
1090 set_page_hwpoison_huge_page(hpage);
1091 res = dequeue_hwpoisoned_huge_page(hpage);
1092 action_result(pfn, MF_MSG_FREE_HUGE,
1093 res ? MF_IGNORED : MF_DELAYED);
1094 unlock_page(hpage);
1095 return res;
1096 } else {
1097 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1098 return -EBUSY;
1102 if (!PageHuge(p) && PageTransHuge(hpage)) {
1103 lock_page(hpage);
1104 if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
1105 unlock_page(hpage);
1106 if (!PageAnon(hpage))
1107 pr_err("MCE: %#lx: non anonymous thp\n", pfn);
1108 else
1109 pr_err("MCE: %#lx: thp split failed\n", pfn);
1110 if (TestClearPageHWPoison(p))
1111 num_poisoned_pages_sub(nr_pages);
1112 put_hwpoison_page(p);
1113 return -EBUSY;
1115 unlock_page(hpage);
1116 get_hwpoison_page(p);
1117 put_hwpoison_page(hpage);
1118 VM_BUG_ON_PAGE(!page_count(p), p);
1119 hpage = compound_head(p);
1123 * We ignore non-LRU pages for good reasons.
1124 * - PG_locked is only well defined for LRU pages and a few others
1125 * - to avoid races with __SetPageLocked()
1126 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1127 * The check (unnecessarily) ignores LRU pages being isolated and
1128 * walked by the page reclaim code, however that's not a big loss.
1130 if (!PageHuge(p)) {
1131 if (!PageLRU(p))
1132 shake_page(p, 0);
1133 if (!PageLRU(p)) {
1135 * shake_page could have turned it free.
1137 if (is_free_buddy_page(p)) {
1138 if (flags & MF_COUNT_INCREASED)
1139 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1140 else
1141 action_result(pfn, MF_MSG_BUDDY_2ND,
1142 MF_DELAYED);
1143 return 0;
1148 lock_page(hpage);
1151 * The page could have changed compound pages during the locking.
1152 * If this happens just bail out.
1154 if (PageCompound(p) && compound_head(p) != orig_head) {
1155 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1156 res = -EBUSY;
1157 goto out;
1161 * We use page flags to determine what action should be taken, but
1162 * the flags can be modified by the error containment action. One
1163 * example is an mlocked page, where PG_mlocked is cleared by
1164 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1165 * correctly, we save a copy of the page flags at this time.
1167 page_flags = p->flags;
1170 * unpoison always clear PG_hwpoison inside page lock
1172 if (!PageHWPoison(p)) {
1173 pr_err("MCE %#lx: just unpoisoned\n", pfn);
1174 num_poisoned_pages_sub(nr_pages);
1175 unlock_page(hpage);
1176 put_hwpoison_page(hpage);
1177 return 0;
1179 if (hwpoison_filter(p)) {
1180 if (TestClearPageHWPoison(p))
1181 num_poisoned_pages_sub(nr_pages);
1182 unlock_page(hpage);
1183 put_hwpoison_page(hpage);
1184 return 0;
1187 if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p))
1188 goto identify_page_state;
1191 * For error on the tail page, we should set PG_hwpoison
1192 * on the head page to show that the hugepage is hwpoisoned
1194 if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1195 action_result(pfn, MF_MSG_POISONED_HUGE, MF_IGNORED);
1196 unlock_page(hpage);
1197 put_hwpoison_page(hpage);
1198 return 0;
1201 * Set PG_hwpoison on all pages in an error hugepage,
1202 * because containment is done in hugepage unit for now.
1203 * Since we have done TestSetPageHWPoison() for the head page with
1204 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1206 if (PageHuge(p))
1207 set_page_hwpoison_huge_page(hpage);
1210 * It's very difficult to mess with pages currently under IO
1211 * and in many cases impossible, so we just avoid it here.
1213 wait_on_page_writeback(p);
1216 * Now take care of user space mappings.
1217 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1219 * When the raw error page is thp tail page, hpage points to the raw
1220 * page after thp split.
1222 if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
1223 != SWAP_SUCCESS) {
1224 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1225 res = -EBUSY;
1226 goto out;
1230 * Torn down by someone else?
1232 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1233 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1234 res = -EBUSY;
1235 goto out;
1238 identify_page_state:
1239 res = -EBUSY;
1241 * The first check uses the current page flags which may not have any
1242 * relevant information. The second check with the saved page flagss is
1243 * carried out only if the first check can't determine the page status.
1245 for (ps = error_states;; ps++)
1246 if ((p->flags & ps->mask) == ps->res)
1247 break;
1249 page_flags |= (p->flags & (1UL << PG_dirty));
1251 if (!ps->mask)
1252 for (ps = error_states;; ps++)
1253 if ((page_flags & ps->mask) == ps->res)
1254 break;
1255 res = page_action(ps, p, pfn);
1256 out:
1257 unlock_page(hpage);
1258 return res;
1260 EXPORT_SYMBOL_GPL(memory_failure);
1262 #define MEMORY_FAILURE_FIFO_ORDER 4
1263 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1265 struct memory_failure_entry {
1266 unsigned long pfn;
1267 int trapno;
1268 int flags;
1271 struct memory_failure_cpu {
1272 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1273 MEMORY_FAILURE_FIFO_SIZE);
1274 spinlock_t lock;
1275 struct work_struct work;
1278 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1281 * memory_failure_queue - Schedule handling memory failure of a page.
1282 * @pfn: Page Number of the corrupted page
1283 * @trapno: Trap number reported in the signal to user space.
1284 * @flags: Flags for memory failure handling
1286 * This function is called by the low level hardware error handler
1287 * when it detects hardware memory corruption of a page. It schedules
1288 * the recovering of error page, including dropping pages, killing
1289 * processes etc.
1291 * The function is primarily of use for corruptions that
1292 * happen outside the current execution context (e.g. when
1293 * detected by a background scrubber)
1295 * Can run in IRQ context.
1297 void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1299 struct memory_failure_cpu *mf_cpu;
1300 unsigned long proc_flags;
1301 struct memory_failure_entry entry = {
1302 .pfn = pfn,
1303 .trapno = trapno,
1304 .flags = flags,
1307 mf_cpu = &get_cpu_var(memory_failure_cpu);
1308 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1309 if (kfifo_put(&mf_cpu->fifo, entry))
1310 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1311 else
1312 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1313 pfn);
1314 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1315 put_cpu_var(memory_failure_cpu);
1317 EXPORT_SYMBOL_GPL(memory_failure_queue);
1319 static void memory_failure_work_func(struct work_struct *work)
1321 struct memory_failure_cpu *mf_cpu;
1322 struct memory_failure_entry entry = { 0, };
1323 unsigned long proc_flags;
1324 int gotten;
1326 mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1327 for (;;) {
1328 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1329 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1330 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1331 if (!gotten)
1332 break;
1333 if (entry.flags & MF_SOFT_OFFLINE)
1334 soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1335 else
1336 memory_failure(entry.pfn, entry.trapno, entry.flags);
1340 static int __init memory_failure_init(void)
1342 struct memory_failure_cpu *mf_cpu;
1343 int cpu;
1345 for_each_possible_cpu(cpu) {
1346 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1347 spin_lock_init(&mf_cpu->lock);
1348 INIT_KFIFO(mf_cpu->fifo);
1349 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1352 return 0;
1354 core_initcall(memory_failure_init);
1356 #define unpoison_pr_info(fmt, pfn, rs) \
1357 ({ \
1358 if (__ratelimit(rs)) \
1359 pr_info(fmt, pfn); \
1363 * unpoison_memory - Unpoison a previously poisoned page
1364 * @pfn: Page number of the to be unpoisoned page
1366 * Software-unpoison a page that has been poisoned by
1367 * memory_failure() earlier.
1369 * This is only done on the software-level, so it only works
1370 * for linux injected failures, not real hardware failures
1372 * Returns 0 for success, otherwise -errno.
1374 int unpoison_memory(unsigned long pfn)
1376 struct page *page;
1377 struct page *p;
1378 int freeit = 0;
1379 unsigned int nr_pages;
1380 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1381 DEFAULT_RATELIMIT_BURST);
1383 if (!pfn_valid(pfn))
1384 return -ENXIO;
1386 p = pfn_to_page(pfn);
1387 page = compound_head(p);
1389 if (!PageHWPoison(p)) {
1390 unpoison_pr_info("MCE: Page was already unpoisoned %#lx\n",
1391 pfn, &unpoison_rs);
1392 return 0;
1395 if (page_count(page) > 1) {
1396 unpoison_pr_info("MCE: Someone grabs the hwpoison page %#lx\n",
1397 pfn, &unpoison_rs);
1398 return 0;
1401 if (page_mapped(page)) {
1402 unpoison_pr_info("MCE: Someone maps the hwpoison page %#lx\n",
1403 pfn, &unpoison_rs);
1404 return 0;
1407 if (page_mapping(page)) {
1408 unpoison_pr_info("MCE: the hwpoison page has non-NULL mapping %#lx\n",
1409 pfn, &unpoison_rs);
1410 return 0;
1414 * unpoison_memory() can encounter thp only when the thp is being
1415 * worked by memory_failure() and the page lock is not held yet.
1416 * In such case, we yield to memory_failure() and make unpoison fail.
1418 if (!PageHuge(page) && PageTransHuge(page)) {
1419 unpoison_pr_info("MCE: Memory failure is now running on %#lx\n",
1420 pfn, &unpoison_rs);
1421 return 0;
1424 nr_pages = 1 << compound_order(page);
1426 if (!get_hwpoison_page(p)) {
1428 * Since HWPoisoned hugepage should have non-zero refcount,
1429 * race between memory failure and unpoison seems to happen.
1430 * In such case unpoison fails and memory failure runs
1431 * to the end.
1433 if (PageHuge(page)) {
1434 unpoison_pr_info("MCE: Memory failure is now running on free hugepage %#lx\n",
1435 pfn, &unpoison_rs);
1436 return 0;
1438 if (TestClearPageHWPoison(p))
1439 num_poisoned_pages_dec();
1440 unpoison_pr_info("MCE: Software-unpoisoned free page %#lx\n",
1441 pfn, &unpoison_rs);
1442 return 0;
1445 lock_page(page);
1447 * This test is racy because PG_hwpoison is set outside of page lock.
1448 * That's acceptable because that won't trigger kernel panic. Instead,
1449 * the PG_hwpoison page will be caught and isolated on the entrance to
1450 * the free buddy page pool.
1452 if (TestClearPageHWPoison(page)) {
1453 unpoison_pr_info("MCE: Software-unpoisoned page %#lx\n",
1454 pfn, &unpoison_rs);
1455 num_poisoned_pages_sub(nr_pages);
1456 freeit = 1;
1457 if (PageHuge(page))
1458 clear_page_hwpoison_huge_page(page);
1460 unlock_page(page);
1462 put_hwpoison_page(page);
1463 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1464 put_hwpoison_page(page);
1466 return 0;
1468 EXPORT_SYMBOL(unpoison_memory);
1470 static struct page *new_page(struct page *p, unsigned long private, int **x)
1472 int nid = page_to_nid(p);
1473 if (PageHuge(p))
1474 return alloc_huge_page_node(page_hstate(compound_head(p)),
1475 nid);
1476 else
1477 return __alloc_pages_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1481 * Safely get reference count of an arbitrary page.
1482 * Returns 0 for a free page, -EIO for a zero refcount page
1483 * that is not free, and 1 for any other page type.
1484 * For 1 the page is returned with increased page count, otherwise not.
1486 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1488 int ret;
1490 if (flags & MF_COUNT_INCREASED)
1491 return 1;
1494 * When the target page is a free hugepage, just remove it
1495 * from free hugepage list.
1497 if (!get_hwpoison_page(p)) {
1498 if (PageHuge(p)) {
1499 pr_info("%s: %#lx free huge page\n", __func__, pfn);
1500 ret = 0;
1501 } else if (is_free_buddy_page(p)) {
1502 pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1503 ret = 0;
1504 } else {
1505 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1506 __func__, pfn, p->flags);
1507 ret = -EIO;
1509 } else {
1510 /* Not a free page */
1511 ret = 1;
1513 return ret;
1516 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1518 int ret = __get_any_page(page, pfn, flags);
1520 if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
1522 * Try to free it.
1524 put_hwpoison_page(page);
1525 shake_page(page, 1);
1528 * Did it turn free?
1530 ret = __get_any_page(page, pfn, 0);
1531 if (ret == 1 && !PageLRU(page)) {
1532 /* Drop page reference which is from __get_any_page() */
1533 put_hwpoison_page(page);
1534 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1535 pfn, page->flags);
1536 return -EIO;
1539 return ret;
1542 static int soft_offline_huge_page(struct page *page, int flags)
1544 int ret;
1545 unsigned long pfn = page_to_pfn(page);
1546 struct page *hpage = compound_head(page);
1547 LIST_HEAD(pagelist);
1550 * This double-check of PageHWPoison is to avoid the race with
1551 * memory_failure(). See also comment in __soft_offline_page().
1553 lock_page(hpage);
1554 if (PageHWPoison(hpage)) {
1555 unlock_page(hpage);
1556 put_hwpoison_page(hpage);
1557 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1558 return -EBUSY;
1560 unlock_page(hpage);
1562 ret = isolate_huge_page(hpage, &pagelist);
1564 * get_any_page() and isolate_huge_page() takes a refcount each,
1565 * so need to drop one here.
1567 put_hwpoison_page(hpage);
1568 if (!ret) {
1569 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1570 return -EBUSY;
1573 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1574 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1575 if (ret) {
1576 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1577 pfn, ret, page->flags);
1579 * We know that soft_offline_huge_page() tries to migrate
1580 * only one hugepage pointed to by hpage, so we need not
1581 * run through the pagelist here.
1583 putback_active_hugepage(hpage);
1584 if (ret > 0)
1585 ret = -EIO;
1586 } else {
1587 /* overcommit hugetlb page will be freed to buddy */
1588 if (PageHuge(page)) {
1589 set_page_hwpoison_huge_page(hpage);
1590 dequeue_hwpoisoned_huge_page(hpage);
1591 num_poisoned_pages_add(1 << compound_order(hpage));
1592 } else {
1593 SetPageHWPoison(page);
1594 num_poisoned_pages_inc();
1597 return ret;
1600 static int __soft_offline_page(struct page *page, int flags)
1602 int ret;
1603 unsigned long pfn = page_to_pfn(page);
1606 * Check PageHWPoison again inside page lock because PageHWPoison
1607 * is set by memory_failure() outside page lock. Note that
1608 * memory_failure() also double-checks PageHWPoison inside page lock,
1609 * so there's no race between soft_offline_page() and memory_failure().
1611 lock_page(page);
1612 wait_on_page_writeback(page);
1613 if (PageHWPoison(page)) {
1614 unlock_page(page);
1615 put_hwpoison_page(page);
1616 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1617 return -EBUSY;
1620 * Try to invalidate first. This should work for
1621 * non dirty unmapped page cache pages.
1623 ret = invalidate_inode_page(page);
1624 unlock_page(page);
1626 * RED-PEN would be better to keep it isolated here, but we
1627 * would need to fix isolation locking first.
1629 if (ret == 1) {
1630 put_hwpoison_page(page);
1631 pr_info("soft_offline: %#lx: invalidated\n", pfn);
1632 SetPageHWPoison(page);
1633 num_poisoned_pages_inc();
1634 return 0;
1638 * Simple invalidation didn't work.
1639 * Try to migrate to a new page instead. migrate.c
1640 * handles a large number of cases for us.
1642 ret = isolate_lru_page(page);
1644 * Drop page reference which is came from get_any_page()
1645 * successful isolate_lru_page() already took another one.
1647 put_hwpoison_page(page);
1648 if (!ret) {
1649 LIST_HEAD(pagelist);
1650 inc_zone_page_state(page, NR_ISOLATED_ANON +
1651 page_is_file_cache(page));
1652 list_add(&page->lru, &pagelist);
1653 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1654 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1655 if (ret) {
1656 if (!list_empty(&pagelist)) {
1657 list_del(&page->lru);
1658 dec_zone_page_state(page, NR_ISOLATED_ANON +
1659 page_is_file_cache(page));
1660 putback_lru_page(page);
1663 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1664 pfn, ret, page->flags);
1665 if (ret > 0)
1666 ret = -EIO;
1668 } else {
1669 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1670 pfn, ret, page_count(page), page->flags);
1672 return ret;
1675 static int soft_offline_in_use_page(struct page *page, int flags)
1677 int ret;
1678 struct page *hpage = compound_head(page);
1680 if (!PageHuge(page) && PageTransHuge(hpage)) {
1681 lock_page(hpage);
1682 if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
1683 unlock_page(hpage);
1684 if (!PageAnon(hpage))
1685 pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1686 else
1687 pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1688 put_hwpoison_page(hpage);
1689 return -EBUSY;
1691 unlock_page(hpage);
1692 get_hwpoison_page(page);
1693 put_hwpoison_page(hpage);
1696 if (PageHuge(page))
1697 ret = soft_offline_huge_page(page, flags);
1698 else
1699 ret = __soft_offline_page(page, flags);
1701 return ret;
1704 static void soft_offline_free_page(struct page *page)
1706 if (PageHuge(page)) {
1707 struct page *hpage = compound_head(page);
1709 set_page_hwpoison_huge_page(hpage);
1710 if (!dequeue_hwpoisoned_huge_page(hpage))
1711 num_poisoned_pages_add(1 << compound_order(hpage));
1712 } else {
1713 if (!TestSetPageHWPoison(page))
1714 num_poisoned_pages_inc();
1719 * soft_offline_page - Soft offline a page.
1720 * @page: page to offline
1721 * @flags: flags. Same as memory_failure().
1723 * Returns 0 on success, otherwise negated errno.
1725 * Soft offline a page, by migration or invalidation,
1726 * without killing anything. This is for the case when
1727 * a page is not corrupted yet (so it's still valid to access),
1728 * but has had a number of corrected errors and is better taken
1729 * out.
1731 * The actual policy on when to do that is maintained by
1732 * user space.
1734 * This should never impact any application or cause data loss,
1735 * however it might take some time.
1737 * This is not a 100% solution for all memory, but tries to be
1738 * ``good enough'' for the majority of memory.
1740 int soft_offline_page(struct page *page, int flags)
1742 int ret;
1743 unsigned long pfn = page_to_pfn(page);
1745 if (PageHWPoison(page)) {
1746 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1747 if (flags & MF_COUNT_INCREASED)
1748 put_hwpoison_page(page);
1749 return -EBUSY;
1752 get_online_mems();
1753 ret = get_any_page(page, pfn, flags);
1754 put_online_mems();
1756 if (ret > 0)
1757 ret = soft_offline_in_use_page(page, flags);
1758 else if (ret == 0)
1759 soft_offline_free_page(page);
1761 return ret;