2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
41 #include "ext4_jbd2.h"
46 #include <trace/events/ext4.h>
48 #define MPAGE_DA_EXTENT_TAIL 0x01
50 static __u32
ext4_inode_csum(struct inode
*inode
, struct ext4_inode
*raw
,
51 struct ext4_inode_info
*ei
)
53 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
58 csum_lo
= le16_to_cpu(raw
->i_checksum_lo
);
59 raw
->i_checksum_lo
= 0;
60 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
61 EXT4_FITS_IN_INODE(raw
, ei
, i_checksum_hi
)) {
62 csum_hi
= le16_to_cpu(raw
->i_checksum_hi
);
63 raw
->i_checksum_hi
= 0;
66 csum
= ext4_chksum(sbi
, ei
->i_csum_seed
, (__u8
*)raw
,
67 EXT4_INODE_SIZE(inode
->i_sb
));
69 raw
->i_checksum_lo
= cpu_to_le16(csum_lo
);
70 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
71 EXT4_FITS_IN_INODE(raw
, ei
, i_checksum_hi
))
72 raw
->i_checksum_hi
= cpu_to_le16(csum_hi
);
77 static int ext4_inode_csum_verify(struct inode
*inode
, struct ext4_inode
*raw
,
78 struct ext4_inode_info
*ei
)
80 __u32 provided
, calculated
;
82 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
83 cpu_to_le32(EXT4_OS_LINUX
) ||
84 !ext4_has_metadata_csum(inode
->i_sb
))
87 provided
= le16_to_cpu(raw
->i_checksum_lo
);
88 calculated
= ext4_inode_csum(inode
, raw
, ei
);
89 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
90 EXT4_FITS_IN_INODE(raw
, ei
, i_checksum_hi
))
91 provided
|= ((__u32
)le16_to_cpu(raw
->i_checksum_hi
)) << 16;
95 return provided
== calculated
;
98 static void ext4_inode_csum_set(struct inode
*inode
, struct ext4_inode
*raw
,
99 struct ext4_inode_info
*ei
)
103 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
104 cpu_to_le32(EXT4_OS_LINUX
) ||
105 !ext4_has_metadata_csum(inode
->i_sb
))
108 csum
= ext4_inode_csum(inode
, raw
, ei
);
109 raw
->i_checksum_lo
= cpu_to_le16(csum
& 0xFFFF);
110 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
111 EXT4_FITS_IN_INODE(raw
, ei
, i_checksum_hi
))
112 raw
->i_checksum_hi
= cpu_to_le16(csum
>> 16);
115 static inline int ext4_begin_ordered_truncate(struct inode
*inode
,
118 trace_ext4_begin_ordered_truncate(inode
, new_size
);
120 * If jinode is zero, then we never opened the file for
121 * writing, so there's no need to call
122 * jbd2_journal_begin_ordered_truncate() since there's no
123 * outstanding writes we need to flush.
125 if (!EXT4_I(inode
)->jinode
)
127 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode
),
128 EXT4_I(inode
)->jinode
,
132 static void ext4_invalidatepage(struct page
*page
, unsigned int offset
,
133 unsigned int length
);
134 static int __ext4_journalled_writepage(struct page
*page
, unsigned int len
);
135 static int ext4_bh_delay_or_unwritten(handle_t
*handle
, struct buffer_head
*bh
);
136 static int ext4_meta_trans_blocks(struct inode
*inode
, int lblocks
,
140 * Test whether an inode is a fast symlink.
142 int ext4_inode_is_fast_symlink(struct inode
*inode
)
144 int ea_blocks
= EXT4_I(inode
)->i_file_acl
?
145 EXT4_CLUSTER_SIZE(inode
->i_sb
) >> 9 : 0;
147 if (ext4_has_inline_data(inode
))
150 return (S_ISLNK(inode
->i_mode
) && inode
->i_blocks
- ea_blocks
== 0);
154 * Restart the transaction associated with *handle. This does a commit,
155 * so before we call here everything must be consistently dirtied against
158 int ext4_truncate_restart_trans(handle_t
*handle
, struct inode
*inode
,
164 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
165 * moment, get_block can be called only for blocks inside i_size since
166 * page cache has been already dropped and writes are blocked by
167 * i_mutex. So we can safely drop the i_data_sem here.
169 BUG_ON(EXT4_JOURNAL(inode
) == NULL
);
170 jbd_debug(2, "restarting handle %p\n", handle
);
171 up_write(&EXT4_I(inode
)->i_data_sem
);
172 ret
= ext4_journal_restart(handle
, nblocks
);
173 down_write(&EXT4_I(inode
)->i_data_sem
);
174 ext4_discard_preallocations(inode
);
180 * Called at the last iput() if i_nlink is zero.
182 void ext4_evict_inode(struct inode
*inode
)
187 trace_ext4_evict_inode(inode
);
189 if (inode
->i_nlink
) {
191 * When journalling data dirty buffers are tracked only in the
192 * journal. So although mm thinks everything is clean and
193 * ready for reaping the inode might still have some pages to
194 * write in the running transaction or waiting to be
195 * checkpointed. Thus calling jbd2_journal_invalidatepage()
196 * (via truncate_inode_pages()) to discard these buffers can
197 * cause data loss. Also even if we did not discard these
198 * buffers, we would have no way to find them after the inode
199 * is reaped and thus user could see stale data if he tries to
200 * read them before the transaction is checkpointed. So be
201 * careful and force everything to disk here... We use
202 * ei->i_datasync_tid to store the newest transaction
203 * containing inode's data.
205 * Note that directories do not have this problem because they
206 * don't use page cache.
208 if (ext4_should_journal_data(inode
) &&
209 (S_ISLNK(inode
->i_mode
) || S_ISREG(inode
->i_mode
)) &&
210 inode
->i_ino
!= EXT4_JOURNAL_INO
) {
211 journal_t
*journal
= EXT4_SB(inode
->i_sb
)->s_journal
;
212 tid_t commit_tid
= EXT4_I(inode
)->i_datasync_tid
;
214 jbd2_complete_transaction(journal
, commit_tid
);
215 filemap_write_and_wait(&inode
->i_data
);
217 truncate_inode_pages_final(&inode
->i_data
);
222 if (is_bad_inode(inode
))
224 dquot_initialize(inode
);
226 if (ext4_should_order_data(inode
))
227 ext4_begin_ordered_truncate(inode
, 0);
228 truncate_inode_pages_final(&inode
->i_data
);
231 * Protect us against freezing - iput() caller didn't have to have any
232 * protection against it
234 sb_start_intwrite(inode
->i_sb
);
235 handle
= ext4_journal_start(inode
, EXT4_HT_TRUNCATE
,
236 ext4_blocks_for_truncate(inode
)+3);
237 if (IS_ERR(handle
)) {
238 ext4_std_error(inode
->i_sb
, PTR_ERR(handle
));
240 * If we're going to skip the normal cleanup, we still need to
241 * make sure that the in-core orphan linked list is properly
244 ext4_orphan_del(NULL
, inode
);
245 sb_end_intwrite(inode
->i_sb
);
250 ext4_handle_sync(handle
);
252 err
= ext4_mark_inode_dirty(handle
, inode
);
254 ext4_warning(inode
->i_sb
,
255 "couldn't mark inode dirty (err %d)", err
);
259 ext4_truncate(inode
);
262 * ext4_ext_truncate() doesn't reserve any slop when it
263 * restarts journal transactions; therefore there may not be
264 * enough credits left in the handle to remove the inode from
265 * the orphan list and set the dtime field.
267 if (!ext4_handle_has_enough_credits(handle
, 3)) {
268 err
= ext4_journal_extend(handle
, 3);
270 err
= ext4_journal_restart(handle
, 3);
272 ext4_warning(inode
->i_sb
,
273 "couldn't extend journal (err %d)", err
);
275 ext4_journal_stop(handle
);
276 ext4_orphan_del(NULL
, inode
);
277 sb_end_intwrite(inode
->i_sb
);
283 * Kill off the orphan record which ext4_truncate created.
284 * AKPM: I think this can be inside the above `if'.
285 * Note that ext4_orphan_del() has to be able to cope with the
286 * deletion of a non-existent orphan - this is because we don't
287 * know if ext4_truncate() actually created an orphan record.
288 * (Well, we could do this if we need to, but heck - it works)
290 ext4_orphan_del(handle
, inode
);
291 EXT4_I(inode
)->i_dtime
= get_seconds();
294 * One subtle ordering requirement: if anything has gone wrong
295 * (transaction abort, IO errors, whatever), then we can still
296 * do these next steps (the fs will already have been marked as
297 * having errors), but we can't free the inode if the mark_dirty
300 if (ext4_mark_inode_dirty(handle
, inode
))
301 /* If that failed, just do the required in-core inode clear. */
302 ext4_clear_inode(inode
);
304 ext4_free_inode(handle
, inode
);
305 ext4_journal_stop(handle
);
306 sb_end_intwrite(inode
->i_sb
);
309 ext4_clear_inode(inode
); /* We must guarantee clearing of inode... */
313 qsize_t
*ext4_get_reserved_space(struct inode
*inode
)
315 return &EXT4_I(inode
)->i_reserved_quota
;
320 * Called with i_data_sem down, which is important since we can call
321 * ext4_discard_preallocations() from here.
323 void ext4_da_update_reserve_space(struct inode
*inode
,
324 int used
, int quota_claim
)
326 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
327 struct ext4_inode_info
*ei
= EXT4_I(inode
);
329 spin_lock(&ei
->i_block_reservation_lock
);
330 trace_ext4_da_update_reserve_space(inode
, used
, quota_claim
);
331 if (unlikely(used
> ei
->i_reserved_data_blocks
)) {
332 ext4_warning(inode
->i_sb
, "%s: ino %lu, used %d "
333 "with only %d reserved data blocks",
334 __func__
, inode
->i_ino
, used
,
335 ei
->i_reserved_data_blocks
);
337 used
= ei
->i_reserved_data_blocks
;
340 /* Update per-inode reservations */
341 ei
->i_reserved_data_blocks
-= used
;
342 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
, used
);
344 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
346 /* Update quota subsystem for data blocks */
348 dquot_claim_block(inode
, EXT4_C2B(sbi
, used
));
351 * We did fallocate with an offset that is already delayed
352 * allocated. So on delayed allocated writeback we should
353 * not re-claim the quota for fallocated blocks.
355 dquot_release_reservation_block(inode
, EXT4_C2B(sbi
, used
));
359 * If we have done all the pending block allocations and if
360 * there aren't any writers on the inode, we can discard the
361 * inode's preallocations.
363 if ((ei
->i_reserved_data_blocks
== 0) &&
364 (atomic_read(&inode
->i_writecount
) == 0))
365 ext4_discard_preallocations(inode
);
368 static int __check_block_validity(struct inode
*inode
, const char *func
,
370 struct ext4_map_blocks
*map
)
372 if (!ext4_data_block_valid(EXT4_SB(inode
->i_sb
), map
->m_pblk
,
374 ext4_error_inode(inode
, func
, line
, map
->m_pblk
,
375 "lblock %lu mapped to illegal pblock "
376 "(length %d)", (unsigned long) map
->m_lblk
,
378 return -EFSCORRUPTED
;
383 int ext4_issue_zeroout(struct inode
*inode
, ext4_lblk_t lblk
, ext4_fsblk_t pblk
,
388 if (ext4_encrypted_inode(inode
))
389 return ext4_encrypted_zeroout(inode
, lblk
, pblk
, len
);
391 ret
= sb_issue_zeroout(inode
->i_sb
, pblk
, len
, GFP_NOFS
);
398 #define check_block_validity(inode, map) \
399 __check_block_validity((inode), __func__, __LINE__, (map))
401 #ifdef ES_AGGRESSIVE_TEST
402 static void ext4_map_blocks_es_recheck(handle_t
*handle
,
404 struct ext4_map_blocks
*es_map
,
405 struct ext4_map_blocks
*map
,
412 * There is a race window that the result is not the same.
413 * e.g. xfstests #223 when dioread_nolock enables. The reason
414 * is that we lookup a block mapping in extent status tree with
415 * out taking i_data_sem. So at the time the unwritten extent
416 * could be converted.
418 down_read(&EXT4_I(inode
)->i_data_sem
);
419 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
420 retval
= ext4_ext_map_blocks(handle
, inode
, map
, flags
&
421 EXT4_GET_BLOCKS_KEEP_SIZE
);
423 retval
= ext4_ind_map_blocks(handle
, inode
, map
, flags
&
424 EXT4_GET_BLOCKS_KEEP_SIZE
);
426 up_read((&EXT4_I(inode
)->i_data_sem
));
429 * We don't check m_len because extent will be collpased in status
430 * tree. So the m_len might not equal.
432 if (es_map
->m_lblk
!= map
->m_lblk
||
433 es_map
->m_flags
!= map
->m_flags
||
434 es_map
->m_pblk
!= map
->m_pblk
) {
435 printk("ES cache assertion failed for inode: %lu "
436 "es_cached ex [%d/%d/%llu/%x] != "
437 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
438 inode
->i_ino
, es_map
->m_lblk
, es_map
->m_len
,
439 es_map
->m_pblk
, es_map
->m_flags
, map
->m_lblk
,
440 map
->m_len
, map
->m_pblk
, map
->m_flags
,
444 #endif /* ES_AGGRESSIVE_TEST */
447 * The ext4_map_blocks() function tries to look up the requested blocks,
448 * and returns if the blocks are already mapped.
450 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
451 * and store the allocated blocks in the result buffer head and mark it
454 * If file type is extents based, it will call ext4_ext_map_blocks(),
455 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
458 * On success, it returns the number of blocks being mapped or allocated. if
459 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
460 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
462 * It returns 0 if plain look up failed (blocks have not been allocated), in
463 * that case, @map is returned as unmapped but we still do fill map->m_len to
464 * indicate the length of a hole starting at map->m_lblk.
466 * It returns the error in case of allocation failure.
468 int ext4_map_blocks(handle_t
*handle
, struct inode
*inode
,
469 struct ext4_map_blocks
*map
, int flags
)
471 struct extent_status es
;
474 #ifdef ES_AGGRESSIVE_TEST
475 struct ext4_map_blocks orig_map
;
477 memcpy(&orig_map
, map
, sizeof(*map
));
481 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
482 "logical block %lu\n", inode
->i_ino
, flags
, map
->m_len
,
483 (unsigned long) map
->m_lblk
);
486 * ext4_map_blocks returns an int, and m_len is an unsigned int
488 if (unlikely(map
->m_len
> INT_MAX
))
489 map
->m_len
= INT_MAX
;
491 /* We can handle the block number less than EXT_MAX_BLOCKS */
492 if (unlikely(map
->m_lblk
>= EXT_MAX_BLOCKS
))
493 return -EFSCORRUPTED
;
495 /* Lookup extent status tree firstly */
496 if (ext4_es_lookup_extent(inode
, map
->m_lblk
, &es
)) {
497 if (ext4_es_is_written(&es
) || ext4_es_is_unwritten(&es
)) {
498 map
->m_pblk
= ext4_es_pblock(&es
) +
499 map
->m_lblk
- es
.es_lblk
;
500 map
->m_flags
|= ext4_es_is_written(&es
) ?
501 EXT4_MAP_MAPPED
: EXT4_MAP_UNWRITTEN
;
502 retval
= es
.es_len
- (map
->m_lblk
- es
.es_lblk
);
503 if (retval
> map
->m_len
)
506 } else if (ext4_es_is_delayed(&es
) || ext4_es_is_hole(&es
)) {
508 retval
= es
.es_len
- (map
->m_lblk
- es
.es_lblk
);
509 if (retval
> map
->m_len
)
516 #ifdef ES_AGGRESSIVE_TEST
517 ext4_map_blocks_es_recheck(handle
, inode
, map
,
524 * Try to see if we can get the block without requesting a new
527 down_read(&EXT4_I(inode
)->i_data_sem
);
528 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
529 retval
= ext4_ext_map_blocks(handle
, inode
, map
, flags
&
530 EXT4_GET_BLOCKS_KEEP_SIZE
);
532 retval
= ext4_ind_map_blocks(handle
, inode
, map
, flags
&
533 EXT4_GET_BLOCKS_KEEP_SIZE
);
538 if (unlikely(retval
!= map
->m_len
)) {
539 ext4_warning(inode
->i_sb
,
540 "ES len assertion failed for inode "
541 "%lu: retval %d != map->m_len %d",
542 inode
->i_ino
, retval
, map
->m_len
);
546 status
= map
->m_flags
& EXT4_MAP_UNWRITTEN
?
547 EXTENT_STATUS_UNWRITTEN
: EXTENT_STATUS_WRITTEN
;
548 if (!(flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
) &&
549 !(status
& EXTENT_STATUS_WRITTEN
) &&
550 ext4_find_delalloc_range(inode
, map
->m_lblk
,
551 map
->m_lblk
+ map
->m_len
- 1))
552 status
|= EXTENT_STATUS_DELAYED
;
553 ret
= ext4_es_insert_extent(inode
, map
->m_lblk
,
554 map
->m_len
, map
->m_pblk
, status
);
558 up_read((&EXT4_I(inode
)->i_data_sem
));
561 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
) {
562 ret
= check_block_validity(inode
, map
);
567 /* If it is only a block(s) look up */
568 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0)
572 * Returns if the blocks have already allocated
574 * Note that if blocks have been preallocated
575 * ext4_ext_get_block() returns the create = 0
576 * with buffer head unmapped.
578 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
)
580 * If we need to convert extent to unwritten
581 * we continue and do the actual work in
582 * ext4_ext_map_blocks()
584 if (!(flags
& EXT4_GET_BLOCKS_CONVERT_UNWRITTEN
))
588 * Here we clear m_flags because after allocating an new extent,
589 * it will be set again.
591 map
->m_flags
&= ~EXT4_MAP_FLAGS
;
594 * New blocks allocate and/or writing to unwritten extent
595 * will possibly result in updating i_data, so we take
596 * the write lock of i_data_sem, and call get_block()
597 * with create == 1 flag.
599 down_write(&EXT4_I(inode
)->i_data_sem
);
602 * We need to check for EXT4 here because migrate
603 * could have changed the inode type in between
605 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
606 retval
= ext4_ext_map_blocks(handle
, inode
, map
, flags
);
608 retval
= ext4_ind_map_blocks(handle
, inode
, map
, flags
);
610 if (retval
> 0 && map
->m_flags
& EXT4_MAP_NEW
) {
612 * We allocated new blocks which will result in
613 * i_data's format changing. Force the migrate
614 * to fail by clearing migrate flags
616 ext4_clear_inode_state(inode
, EXT4_STATE_EXT_MIGRATE
);
620 * Update reserved blocks/metadata blocks after successful
621 * block allocation which had been deferred till now. We don't
622 * support fallocate for non extent files. So we can update
623 * reserve space here.
626 (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
))
627 ext4_da_update_reserve_space(inode
, retval
, 1);
633 if (unlikely(retval
!= map
->m_len
)) {
634 ext4_warning(inode
->i_sb
,
635 "ES len assertion failed for inode "
636 "%lu: retval %d != map->m_len %d",
637 inode
->i_ino
, retval
, map
->m_len
);
642 * We have to zeroout blocks before inserting them into extent
643 * status tree. Otherwise someone could look them up there and
644 * use them before they are really zeroed.
646 if (flags
& EXT4_GET_BLOCKS_ZERO
&&
647 map
->m_flags
& EXT4_MAP_MAPPED
&&
648 map
->m_flags
& EXT4_MAP_NEW
) {
649 ret
= ext4_issue_zeroout(inode
, map
->m_lblk
,
650 map
->m_pblk
, map
->m_len
);
658 * If the extent has been zeroed out, we don't need to update
659 * extent status tree.
661 if ((flags
& EXT4_GET_BLOCKS_PRE_IO
) &&
662 ext4_es_lookup_extent(inode
, map
->m_lblk
, &es
)) {
663 if (ext4_es_is_written(&es
))
666 status
= map
->m_flags
& EXT4_MAP_UNWRITTEN
?
667 EXTENT_STATUS_UNWRITTEN
: EXTENT_STATUS_WRITTEN
;
668 if (!(flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
) &&
669 !(status
& EXTENT_STATUS_WRITTEN
) &&
670 ext4_find_delalloc_range(inode
, map
->m_lblk
,
671 map
->m_lblk
+ map
->m_len
- 1))
672 status
|= EXTENT_STATUS_DELAYED
;
673 ret
= ext4_es_insert_extent(inode
, map
->m_lblk
, map
->m_len
,
674 map
->m_pblk
, status
);
682 up_write((&EXT4_I(inode
)->i_data_sem
));
683 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
) {
684 ret
= check_block_validity(inode
, map
);
692 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
693 * we have to be careful as someone else may be manipulating b_state as well.
695 static void ext4_update_bh_state(struct buffer_head
*bh
, unsigned long flags
)
697 unsigned long old_state
;
698 unsigned long new_state
;
700 flags
&= EXT4_MAP_FLAGS
;
702 /* Dummy buffer_head? Set non-atomically. */
704 bh
->b_state
= (bh
->b_state
& ~EXT4_MAP_FLAGS
) | flags
;
708 * Someone else may be modifying b_state. Be careful! This is ugly but
709 * once we get rid of using bh as a container for mapping information
710 * to pass to / from get_block functions, this can go away.
713 old_state
= READ_ONCE(bh
->b_state
);
714 new_state
= (old_state
& ~EXT4_MAP_FLAGS
) | flags
;
716 cmpxchg(&bh
->b_state
, old_state
, new_state
) != old_state
));
719 static int _ext4_get_block(struct inode
*inode
, sector_t iblock
,
720 struct buffer_head
*bh
, int flags
)
722 struct ext4_map_blocks map
;
725 if (ext4_has_inline_data(inode
))
729 map
.m_len
= bh
->b_size
>> inode
->i_blkbits
;
731 ret
= ext4_map_blocks(ext4_journal_current_handle(), inode
, &map
,
734 map_bh(bh
, inode
->i_sb
, map
.m_pblk
);
735 ext4_update_bh_state(bh
, map
.m_flags
);
736 bh
->b_size
= inode
->i_sb
->s_blocksize
* map
.m_len
;
742 int ext4_get_block(struct inode
*inode
, sector_t iblock
,
743 struct buffer_head
*bh
, int create
)
745 return _ext4_get_block(inode
, iblock
, bh
,
746 create
? EXT4_GET_BLOCKS_CREATE
: 0);
750 * Get block function used when preparing for buffered write if we require
751 * creating an unwritten extent if blocks haven't been allocated. The extent
752 * will be converted to written after the IO is complete.
754 int ext4_get_block_unwritten(struct inode
*inode
, sector_t iblock
,
755 struct buffer_head
*bh_result
, int create
)
757 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
758 inode
->i_ino
, create
);
759 return _ext4_get_block(inode
, iblock
, bh_result
,
760 EXT4_GET_BLOCKS_IO_CREATE_EXT
);
763 /* Maximum number of blocks we map for direct IO at once. */
764 #define DIO_MAX_BLOCKS 4096
767 * Get blocks function for the cases that need to start a transaction -
768 * generally difference cases of direct IO and DAX IO. It also handles retries
771 static int ext4_get_block_trans(struct inode
*inode
, sector_t iblock
,
772 struct buffer_head
*bh_result
, int flags
)
779 /* Trim mapping request to maximum we can map at once for DIO */
780 if (bh_result
->b_size
>> inode
->i_blkbits
> DIO_MAX_BLOCKS
)
781 bh_result
->b_size
= DIO_MAX_BLOCKS
<< inode
->i_blkbits
;
782 dio_credits
= ext4_chunk_trans_blocks(inode
,
783 bh_result
->b_size
>> inode
->i_blkbits
);
785 handle
= ext4_journal_start(inode
, EXT4_HT_MAP_BLOCKS
, dio_credits
);
787 return PTR_ERR(handle
);
789 ret
= _ext4_get_block(inode
, iblock
, bh_result
, flags
);
790 ext4_journal_stop(handle
);
792 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
797 /* Get block function for DIO reads and writes to inodes without extents */
798 int ext4_dio_get_block(struct inode
*inode
, sector_t iblock
,
799 struct buffer_head
*bh
, int create
)
801 /* We don't expect handle for direct IO */
802 WARN_ON_ONCE(ext4_journal_current_handle());
805 return _ext4_get_block(inode
, iblock
, bh
, 0);
806 return ext4_get_block_trans(inode
, iblock
, bh
, EXT4_GET_BLOCKS_CREATE
);
810 * Get block function for AIO DIO writes when we create unwritten extent if
811 * blocks are not allocated yet. The extent will be converted to written
812 * after IO is complete.
814 static int ext4_dio_get_block_unwritten_async(struct inode
*inode
,
815 sector_t iblock
, struct buffer_head
*bh_result
, int create
)
819 /* We don't expect handle for direct IO */
820 WARN_ON_ONCE(ext4_journal_current_handle());
822 ret
= ext4_get_block_trans(inode
, iblock
, bh_result
,
823 EXT4_GET_BLOCKS_IO_CREATE_EXT
);
826 * When doing DIO using unwritten extents, we need io_end to convert
827 * unwritten extents to written on IO completion. We allocate io_end
828 * once we spot unwritten extent and store it in b_private. Generic
829 * DIO code keeps b_private set and furthermore passes the value to
830 * our completion callback in 'private' argument.
832 if (!ret
&& buffer_unwritten(bh_result
)) {
833 if (!bh_result
->b_private
) {
834 ext4_io_end_t
*io_end
;
836 io_end
= ext4_init_io_end(inode
, GFP_KERNEL
);
839 bh_result
->b_private
= io_end
;
840 ext4_set_io_unwritten_flag(inode
, io_end
);
842 set_buffer_defer_completion(bh_result
);
849 * Get block function for non-AIO DIO writes when we create unwritten extent if
850 * blocks are not allocated yet. The extent will be converted to written
851 * after IO is complete from ext4_ext_direct_IO() function.
853 static int ext4_dio_get_block_unwritten_sync(struct inode
*inode
,
854 sector_t iblock
, struct buffer_head
*bh_result
, int create
)
858 /* We don't expect handle for direct IO */
859 WARN_ON_ONCE(ext4_journal_current_handle());
861 ret
= ext4_get_block_trans(inode
, iblock
, bh_result
,
862 EXT4_GET_BLOCKS_IO_CREATE_EXT
);
865 * Mark inode as having pending DIO writes to unwritten extents.
866 * ext4_ext_direct_IO() checks this flag and converts extents to
869 if (!ret
&& buffer_unwritten(bh_result
))
870 ext4_set_inode_state(inode
, EXT4_STATE_DIO_UNWRITTEN
);
875 static int ext4_dio_get_block_overwrite(struct inode
*inode
, sector_t iblock
,
876 struct buffer_head
*bh_result
, int create
)
880 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
881 inode
->i_ino
, create
);
882 /* We don't expect handle for direct IO */
883 WARN_ON_ONCE(ext4_journal_current_handle());
885 ret
= _ext4_get_block(inode
, iblock
, bh_result
, 0);
887 * Blocks should have been preallocated! ext4_file_write_iter() checks
890 WARN_ON_ONCE(!buffer_mapped(bh_result
) || buffer_unwritten(bh_result
));
897 * `handle' can be NULL if create is zero
899 struct buffer_head
*ext4_getblk(handle_t
*handle
, struct inode
*inode
,
900 ext4_lblk_t block
, int map_flags
)
902 struct ext4_map_blocks map
;
903 struct buffer_head
*bh
;
904 int create
= map_flags
& EXT4_GET_BLOCKS_CREATE
;
907 J_ASSERT(handle
!= NULL
|| create
== 0);
911 err
= ext4_map_blocks(handle
, inode
, &map
, map_flags
);
914 return create
? ERR_PTR(-ENOSPC
) : NULL
;
918 bh
= sb_getblk(inode
->i_sb
, map
.m_pblk
);
920 return ERR_PTR(-ENOMEM
);
921 if (map
.m_flags
& EXT4_MAP_NEW
) {
922 J_ASSERT(create
!= 0);
923 J_ASSERT(handle
!= NULL
);
926 * Now that we do not always journal data, we should
927 * keep in mind whether this should always journal the
928 * new buffer as metadata. For now, regular file
929 * writes use ext4_get_block instead, so it's not a
933 BUFFER_TRACE(bh
, "call get_create_access");
934 err
= ext4_journal_get_create_access(handle
, bh
);
939 if (!buffer_uptodate(bh
)) {
940 memset(bh
->b_data
, 0, inode
->i_sb
->s_blocksize
);
941 set_buffer_uptodate(bh
);
944 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
945 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
949 BUFFER_TRACE(bh
, "not a new buffer");
956 struct buffer_head
*ext4_bread(handle_t
*handle
, struct inode
*inode
,
957 ext4_lblk_t block
, int map_flags
)
959 struct buffer_head
*bh
;
961 bh
= ext4_getblk(handle
, inode
, block
, map_flags
);
964 if (!bh
|| buffer_uptodate(bh
))
966 ll_rw_block(READ
| REQ_META
| REQ_PRIO
, 1, &bh
);
968 if (buffer_uptodate(bh
))
971 return ERR_PTR(-EIO
);
974 int ext4_walk_page_buffers(handle_t
*handle
,
975 struct buffer_head
*head
,
979 int (*fn
)(handle_t
*handle
,
980 struct buffer_head
*bh
))
982 struct buffer_head
*bh
;
983 unsigned block_start
, block_end
;
984 unsigned blocksize
= head
->b_size
;
986 struct buffer_head
*next
;
988 for (bh
= head
, block_start
= 0;
989 ret
== 0 && (bh
!= head
|| !block_start
);
990 block_start
= block_end
, bh
= next
) {
991 next
= bh
->b_this_page
;
992 block_end
= block_start
+ blocksize
;
993 if (block_end
<= from
|| block_start
>= to
) {
994 if (partial
&& !buffer_uptodate(bh
))
998 err
= (*fn
)(handle
, bh
);
1006 * To preserve ordering, it is essential that the hole instantiation and
1007 * the data write be encapsulated in a single transaction. We cannot
1008 * close off a transaction and start a new one between the ext4_get_block()
1009 * and the commit_write(). So doing the jbd2_journal_start at the start of
1010 * prepare_write() is the right place.
1012 * Also, this function can nest inside ext4_writepage(). In that case, we
1013 * *know* that ext4_writepage() has generated enough buffer credits to do the
1014 * whole page. So we won't block on the journal in that case, which is good,
1015 * because the caller may be PF_MEMALLOC.
1017 * By accident, ext4 can be reentered when a transaction is open via
1018 * quota file writes. If we were to commit the transaction while thus
1019 * reentered, there can be a deadlock - we would be holding a quota
1020 * lock, and the commit would never complete if another thread had a
1021 * transaction open and was blocking on the quota lock - a ranking
1024 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1025 * will _not_ run commit under these circumstances because handle->h_ref
1026 * is elevated. We'll still have enough credits for the tiny quotafile
1029 int do_journal_get_write_access(handle_t
*handle
,
1030 struct buffer_head
*bh
)
1032 int dirty
= buffer_dirty(bh
);
1035 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1038 * __block_write_begin() could have dirtied some buffers. Clean
1039 * the dirty bit as jbd2_journal_get_write_access() could complain
1040 * otherwise about fs integrity issues. Setting of the dirty bit
1041 * by __block_write_begin() isn't a real problem here as we clear
1042 * the bit before releasing a page lock and thus writeback cannot
1043 * ever write the buffer.
1046 clear_buffer_dirty(bh
);
1047 BUFFER_TRACE(bh
, "get write access");
1048 ret
= ext4_journal_get_write_access(handle
, bh
);
1050 ret
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
1054 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1055 static int ext4_block_write_begin(struct page
*page
, loff_t pos
, unsigned len
,
1056 get_block_t
*get_block
)
1058 unsigned from
= pos
& (PAGE_SIZE
- 1);
1059 unsigned to
= from
+ len
;
1060 struct inode
*inode
= page
->mapping
->host
;
1061 unsigned block_start
, block_end
;
1064 unsigned blocksize
= inode
->i_sb
->s_blocksize
;
1066 struct buffer_head
*bh
, *head
, *wait
[2], **wait_bh
= wait
;
1067 bool decrypt
= false;
1069 BUG_ON(!PageLocked(page
));
1070 BUG_ON(from
> PAGE_SIZE
);
1071 BUG_ON(to
> PAGE_SIZE
);
1074 if (!page_has_buffers(page
))
1075 create_empty_buffers(page
, blocksize
, 0);
1076 head
= page_buffers(page
);
1077 bbits
= ilog2(blocksize
);
1078 block
= (sector_t
)page
->index
<< (PAGE_SHIFT
- bbits
);
1080 for (bh
= head
, block_start
= 0; bh
!= head
|| !block_start
;
1081 block
++, block_start
= block_end
, bh
= bh
->b_this_page
) {
1082 block_end
= block_start
+ blocksize
;
1083 if (block_end
<= from
|| block_start
>= to
) {
1084 if (PageUptodate(page
)) {
1085 if (!buffer_uptodate(bh
))
1086 set_buffer_uptodate(bh
);
1091 clear_buffer_new(bh
);
1092 if (!buffer_mapped(bh
)) {
1093 WARN_ON(bh
->b_size
!= blocksize
);
1094 err
= get_block(inode
, block
, bh
, 1);
1097 if (buffer_new(bh
)) {
1098 unmap_underlying_metadata(bh
->b_bdev
,
1100 if (PageUptodate(page
)) {
1101 clear_buffer_new(bh
);
1102 set_buffer_uptodate(bh
);
1103 mark_buffer_dirty(bh
);
1106 if (block_end
> to
|| block_start
< from
)
1107 zero_user_segments(page
, to
, block_end
,
1112 if (PageUptodate(page
)) {
1113 if (!buffer_uptodate(bh
))
1114 set_buffer_uptodate(bh
);
1117 if (!buffer_uptodate(bh
) && !buffer_delay(bh
) &&
1118 !buffer_unwritten(bh
) &&
1119 (block_start
< from
|| block_end
> to
)) {
1120 ll_rw_block(READ
, 1, &bh
);
1122 decrypt
= ext4_encrypted_inode(inode
) &&
1123 S_ISREG(inode
->i_mode
);
1127 * If we issued read requests, let them complete.
1129 while (wait_bh
> wait
) {
1130 wait_on_buffer(*--wait_bh
);
1131 if (!buffer_uptodate(*wait_bh
))
1135 page_zero_new_buffers(page
, from
, to
);
1137 err
= ext4_decrypt(page
);
1142 static int ext4_write_begin(struct file
*file
, struct address_space
*mapping
,
1143 loff_t pos
, unsigned len
, unsigned flags
,
1144 struct page
**pagep
, void **fsdata
)
1146 struct inode
*inode
= mapping
->host
;
1147 int ret
, needed_blocks
;
1154 trace_ext4_write_begin(inode
, pos
, len
, flags
);
1156 * Reserve one block more for addition to orphan list in case
1157 * we allocate blocks but write fails for some reason
1159 needed_blocks
= ext4_writepage_trans_blocks(inode
) + 1;
1160 index
= pos
>> PAGE_SHIFT
;
1161 from
= pos
& (PAGE_SIZE
- 1);
1164 if (ext4_test_inode_state(inode
, EXT4_STATE_MAY_INLINE_DATA
)) {
1165 ret
= ext4_try_to_write_inline_data(mapping
, inode
, pos
, len
,
1174 * grab_cache_page_write_begin() can take a long time if the
1175 * system is thrashing due to memory pressure, or if the page
1176 * is being written back. So grab it first before we start
1177 * the transaction handle. This also allows us to allocate
1178 * the page (if needed) without using GFP_NOFS.
1181 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
1187 handle
= ext4_journal_start(inode
, EXT4_HT_WRITE_PAGE
, needed_blocks
);
1188 if (IS_ERR(handle
)) {
1190 return PTR_ERR(handle
);
1194 if (page
->mapping
!= mapping
) {
1195 /* The page got truncated from under us */
1198 ext4_journal_stop(handle
);
1201 /* In case writeback began while the page was unlocked */
1202 wait_for_stable_page(page
);
1204 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1205 if (ext4_should_dioread_nolock(inode
))
1206 ret
= ext4_block_write_begin(page
, pos
, len
,
1207 ext4_get_block_unwritten
);
1209 ret
= ext4_block_write_begin(page
, pos
, len
,
1212 if (ext4_should_dioread_nolock(inode
))
1213 ret
= __block_write_begin(page
, pos
, len
,
1214 ext4_get_block_unwritten
);
1216 ret
= __block_write_begin(page
, pos
, len
, ext4_get_block
);
1218 if (!ret
&& ext4_should_journal_data(inode
)) {
1219 ret
= ext4_walk_page_buffers(handle
, page_buffers(page
),
1221 do_journal_get_write_access
);
1227 * __block_write_begin may have instantiated a few blocks
1228 * outside i_size. Trim these off again. Don't need
1229 * i_size_read because we hold i_mutex.
1231 * Add inode to orphan list in case we crash before
1234 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1235 ext4_orphan_add(handle
, inode
);
1237 ext4_journal_stop(handle
);
1238 if (pos
+ len
> inode
->i_size
) {
1239 ext4_truncate_failed_write(inode
);
1241 * If truncate failed early the inode might
1242 * still be on the orphan list; we need to
1243 * make sure the inode is removed from the
1244 * orphan list in that case.
1247 ext4_orphan_del(NULL
, inode
);
1250 if (ret
== -ENOSPC
&&
1251 ext4_should_retry_alloc(inode
->i_sb
, &retries
))
1260 /* For write_end() in data=journal mode */
1261 static int write_end_fn(handle_t
*handle
, struct buffer_head
*bh
)
1264 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1266 set_buffer_uptodate(bh
);
1267 ret
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
1268 clear_buffer_meta(bh
);
1269 clear_buffer_prio(bh
);
1274 * We need to pick up the new inode size which generic_commit_write gave us
1275 * `file' can be NULL - eg, when called from page_symlink().
1277 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1278 * buffers are managed internally.
1280 static int ext4_write_end(struct file
*file
,
1281 struct address_space
*mapping
,
1282 loff_t pos
, unsigned len
, unsigned copied
,
1283 struct page
*page
, void *fsdata
)
1285 handle_t
*handle
= ext4_journal_current_handle();
1286 struct inode
*inode
= mapping
->host
;
1287 loff_t old_size
= inode
->i_size
;
1289 int i_size_changed
= 0;
1291 trace_ext4_write_end(inode
, pos
, len
, copied
);
1292 if (ext4_test_inode_state(inode
, EXT4_STATE_ORDERED_MODE
)) {
1293 ret
= ext4_jbd2_file_inode(handle
, inode
);
1301 if (ext4_has_inline_data(inode
)) {
1302 ret
= ext4_write_inline_data_end(inode
, pos
, len
,
1308 copied
= block_write_end(file
, mapping
, pos
,
1309 len
, copied
, page
, fsdata
);
1311 * it's important to update i_size while still holding page lock:
1312 * page writeout could otherwise come in and zero beyond i_size.
1314 i_size_changed
= ext4_update_inode_size(inode
, pos
+ copied
);
1319 pagecache_isize_extended(inode
, old_size
, pos
);
1321 * Don't mark the inode dirty under page lock. First, it unnecessarily
1322 * makes the holding time of page lock longer. Second, it forces lock
1323 * ordering of page lock and transaction start for journaling
1327 ext4_mark_inode_dirty(handle
, inode
);
1329 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1330 /* if we have allocated more blocks and copied
1331 * less. We will have blocks allocated outside
1332 * inode->i_size. So truncate them
1334 ext4_orphan_add(handle
, inode
);
1336 ret2
= ext4_journal_stop(handle
);
1340 if (pos
+ len
> inode
->i_size
) {
1341 ext4_truncate_failed_write(inode
);
1343 * If truncate failed early the inode might still be
1344 * on the orphan list; we need to make sure the inode
1345 * is removed from the orphan list in that case.
1348 ext4_orphan_del(NULL
, inode
);
1351 return ret
? ret
: copied
;
1355 * This is a private version of page_zero_new_buffers() which doesn't
1356 * set the buffer to be dirty, since in data=journalled mode we need
1357 * to call ext4_handle_dirty_metadata() instead.
1359 static void zero_new_buffers(struct page
*page
, unsigned from
, unsigned to
)
1361 unsigned int block_start
= 0, block_end
;
1362 struct buffer_head
*head
, *bh
;
1364 bh
= head
= page_buffers(page
);
1366 block_end
= block_start
+ bh
->b_size
;
1367 if (buffer_new(bh
)) {
1368 if (block_end
> from
&& block_start
< to
) {
1369 if (!PageUptodate(page
)) {
1370 unsigned start
, size
;
1372 start
= max(from
, block_start
);
1373 size
= min(to
, block_end
) - start
;
1375 zero_user(page
, start
, size
);
1376 set_buffer_uptodate(bh
);
1378 clear_buffer_new(bh
);
1381 block_start
= block_end
;
1382 bh
= bh
->b_this_page
;
1383 } while (bh
!= head
);
1386 static int ext4_journalled_write_end(struct file
*file
,
1387 struct address_space
*mapping
,
1388 loff_t pos
, unsigned len
, unsigned copied
,
1389 struct page
*page
, void *fsdata
)
1391 handle_t
*handle
= ext4_journal_current_handle();
1392 struct inode
*inode
= mapping
->host
;
1393 loff_t old_size
= inode
->i_size
;
1397 int size_changed
= 0;
1399 trace_ext4_journalled_write_end(inode
, pos
, len
, copied
);
1400 from
= pos
& (PAGE_SIZE
- 1);
1403 BUG_ON(!ext4_handle_valid(handle
));
1405 if (ext4_has_inline_data(inode
))
1406 copied
= ext4_write_inline_data_end(inode
, pos
, len
,
1410 if (!PageUptodate(page
))
1412 zero_new_buffers(page
, from
+copied
, to
);
1415 ret
= ext4_walk_page_buffers(handle
, page_buffers(page
), from
,
1416 to
, &partial
, write_end_fn
);
1418 SetPageUptodate(page
);
1420 size_changed
= ext4_update_inode_size(inode
, pos
+ copied
);
1421 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
1422 EXT4_I(inode
)->i_datasync_tid
= handle
->h_transaction
->t_tid
;
1427 pagecache_isize_extended(inode
, old_size
, pos
);
1430 ret2
= ext4_mark_inode_dirty(handle
, inode
);
1435 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1436 /* if we have allocated more blocks and copied
1437 * less. We will have blocks allocated outside
1438 * inode->i_size. So truncate them
1440 ext4_orphan_add(handle
, inode
);
1442 ret2
= ext4_journal_stop(handle
);
1445 if (pos
+ len
> inode
->i_size
) {
1446 ext4_truncate_failed_write(inode
);
1448 * If truncate failed early the inode might still be
1449 * on the orphan list; we need to make sure the inode
1450 * is removed from the orphan list in that case.
1453 ext4_orphan_del(NULL
, inode
);
1456 return ret
? ret
: copied
;
1460 * Reserve space for a single cluster
1462 static int ext4_da_reserve_space(struct inode
*inode
)
1464 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1465 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1469 * We will charge metadata quota at writeout time; this saves
1470 * us from metadata over-estimation, though we may go over by
1471 * a small amount in the end. Here we just reserve for data.
1473 ret
= dquot_reserve_block(inode
, EXT4_C2B(sbi
, 1));
1477 spin_lock(&ei
->i_block_reservation_lock
);
1478 if (ext4_claim_free_clusters(sbi
, 1, 0)) {
1479 spin_unlock(&ei
->i_block_reservation_lock
);
1480 dquot_release_reservation_block(inode
, EXT4_C2B(sbi
, 1));
1483 ei
->i_reserved_data_blocks
++;
1484 trace_ext4_da_reserve_space(inode
);
1485 spin_unlock(&ei
->i_block_reservation_lock
);
1487 return 0; /* success */
1490 static void ext4_da_release_space(struct inode
*inode
, int to_free
)
1492 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1493 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1496 return; /* Nothing to release, exit */
1498 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1500 trace_ext4_da_release_space(inode
, to_free
);
1501 if (unlikely(to_free
> ei
->i_reserved_data_blocks
)) {
1503 * if there aren't enough reserved blocks, then the
1504 * counter is messed up somewhere. Since this
1505 * function is called from invalidate page, it's
1506 * harmless to return without any action.
1508 ext4_warning(inode
->i_sb
, "ext4_da_release_space: "
1509 "ino %lu, to_free %d with only %d reserved "
1510 "data blocks", inode
->i_ino
, to_free
,
1511 ei
->i_reserved_data_blocks
);
1513 to_free
= ei
->i_reserved_data_blocks
;
1515 ei
->i_reserved_data_blocks
-= to_free
;
1517 /* update fs dirty data blocks counter */
1518 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
, to_free
);
1520 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1522 dquot_release_reservation_block(inode
, EXT4_C2B(sbi
, to_free
));
1525 static void ext4_da_page_release_reservation(struct page
*page
,
1526 unsigned int offset
,
1527 unsigned int length
)
1529 int to_release
= 0, contiguous_blks
= 0;
1530 struct buffer_head
*head
, *bh
;
1531 unsigned int curr_off
= 0;
1532 struct inode
*inode
= page
->mapping
->host
;
1533 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1534 unsigned int stop
= offset
+ length
;
1538 BUG_ON(stop
> PAGE_SIZE
|| stop
< length
);
1540 head
= page_buffers(page
);
1543 unsigned int next_off
= curr_off
+ bh
->b_size
;
1545 if (next_off
> stop
)
1548 if ((offset
<= curr_off
) && (buffer_delay(bh
))) {
1551 clear_buffer_delay(bh
);
1552 } else if (contiguous_blks
) {
1553 lblk
= page
->index
<<
1554 (PAGE_SHIFT
- inode
->i_blkbits
);
1555 lblk
+= (curr_off
>> inode
->i_blkbits
) -
1557 ext4_es_remove_extent(inode
, lblk
, contiguous_blks
);
1558 contiguous_blks
= 0;
1560 curr_off
= next_off
;
1561 } while ((bh
= bh
->b_this_page
) != head
);
1563 if (contiguous_blks
) {
1564 lblk
= page
->index
<< (PAGE_SHIFT
- inode
->i_blkbits
);
1565 lblk
+= (curr_off
>> inode
->i_blkbits
) - contiguous_blks
;
1566 ext4_es_remove_extent(inode
, lblk
, contiguous_blks
);
1569 /* If we have released all the blocks belonging to a cluster, then we
1570 * need to release the reserved space for that cluster. */
1571 num_clusters
= EXT4_NUM_B2C(sbi
, to_release
);
1572 while (num_clusters
> 0) {
1573 lblk
= (page
->index
<< (PAGE_SHIFT
- inode
->i_blkbits
)) +
1574 ((num_clusters
- 1) << sbi
->s_cluster_bits
);
1575 if (sbi
->s_cluster_ratio
== 1 ||
1576 !ext4_find_delalloc_cluster(inode
, lblk
))
1577 ext4_da_release_space(inode
, 1);
1584 * Delayed allocation stuff
1587 struct mpage_da_data
{
1588 struct inode
*inode
;
1589 struct writeback_control
*wbc
;
1591 pgoff_t first_page
; /* The first page to write */
1592 pgoff_t next_page
; /* Current page to examine */
1593 pgoff_t last_page
; /* Last page to examine */
1595 * Extent to map - this can be after first_page because that can be
1596 * fully mapped. We somewhat abuse m_flags to store whether the extent
1597 * is delalloc or unwritten.
1599 struct ext4_map_blocks map
;
1600 struct ext4_io_submit io_submit
; /* IO submission data */
1603 static void mpage_release_unused_pages(struct mpage_da_data
*mpd
,
1608 struct pagevec pvec
;
1609 struct inode
*inode
= mpd
->inode
;
1610 struct address_space
*mapping
= inode
->i_mapping
;
1612 /* This is necessary when next_page == 0. */
1613 if (mpd
->first_page
>= mpd
->next_page
)
1616 index
= mpd
->first_page
;
1617 end
= mpd
->next_page
- 1;
1619 ext4_lblk_t start
, last
;
1620 start
= index
<< (PAGE_SHIFT
- inode
->i_blkbits
);
1621 last
= end
<< (PAGE_SHIFT
- inode
->i_blkbits
);
1622 ext4_es_remove_extent(inode
, start
, last
- start
+ 1);
1625 pagevec_init(&pvec
, 0);
1626 while (index
<= end
) {
1627 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
1630 for (i
= 0; i
< nr_pages
; i
++) {
1631 struct page
*page
= pvec
.pages
[i
];
1632 if (page
->index
> end
)
1634 BUG_ON(!PageLocked(page
));
1635 BUG_ON(PageWriteback(page
));
1637 block_invalidatepage(page
, 0, PAGE_SIZE
);
1638 ClearPageUptodate(page
);
1642 index
= pvec
.pages
[nr_pages
- 1]->index
+ 1;
1643 pagevec_release(&pvec
);
1647 static void ext4_print_free_blocks(struct inode
*inode
)
1649 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1650 struct super_block
*sb
= inode
->i_sb
;
1651 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1653 ext4_msg(sb
, KERN_CRIT
, "Total free blocks count %lld",
1654 EXT4_C2B(EXT4_SB(inode
->i_sb
),
1655 ext4_count_free_clusters(sb
)));
1656 ext4_msg(sb
, KERN_CRIT
, "Free/Dirty block details");
1657 ext4_msg(sb
, KERN_CRIT
, "free_blocks=%lld",
1658 (long long) EXT4_C2B(EXT4_SB(sb
),
1659 percpu_counter_sum(&sbi
->s_freeclusters_counter
)));
1660 ext4_msg(sb
, KERN_CRIT
, "dirty_blocks=%lld",
1661 (long long) EXT4_C2B(EXT4_SB(sb
),
1662 percpu_counter_sum(&sbi
->s_dirtyclusters_counter
)));
1663 ext4_msg(sb
, KERN_CRIT
, "Block reservation details");
1664 ext4_msg(sb
, KERN_CRIT
, "i_reserved_data_blocks=%u",
1665 ei
->i_reserved_data_blocks
);
1669 static int ext4_bh_delay_or_unwritten(handle_t
*handle
, struct buffer_head
*bh
)
1671 return (buffer_delay(bh
) || buffer_unwritten(bh
)) && buffer_dirty(bh
);
1675 * This function is grabs code from the very beginning of
1676 * ext4_map_blocks, but assumes that the caller is from delayed write
1677 * time. This function looks up the requested blocks and sets the
1678 * buffer delay bit under the protection of i_data_sem.
1680 static int ext4_da_map_blocks(struct inode
*inode
, sector_t iblock
,
1681 struct ext4_map_blocks
*map
,
1682 struct buffer_head
*bh
)
1684 struct extent_status es
;
1686 sector_t invalid_block
= ~((sector_t
) 0xffff);
1687 #ifdef ES_AGGRESSIVE_TEST
1688 struct ext4_map_blocks orig_map
;
1690 memcpy(&orig_map
, map
, sizeof(*map
));
1693 if (invalid_block
< ext4_blocks_count(EXT4_SB(inode
->i_sb
)->s_es
))
1697 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1698 "logical block %lu\n", inode
->i_ino
, map
->m_len
,
1699 (unsigned long) map
->m_lblk
);
1701 /* Lookup extent status tree firstly */
1702 if (ext4_es_lookup_extent(inode
, iblock
, &es
)) {
1703 if (ext4_es_is_hole(&es
)) {
1705 down_read(&EXT4_I(inode
)->i_data_sem
);
1710 * Delayed extent could be allocated by fallocate.
1711 * So we need to check it.
1713 if (ext4_es_is_delayed(&es
) && !ext4_es_is_unwritten(&es
)) {
1714 map_bh(bh
, inode
->i_sb
, invalid_block
);
1716 set_buffer_delay(bh
);
1720 map
->m_pblk
= ext4_es_pblock(&es
) + iblock
- es
.es_lblk
;
1721 retval
= es
.es_len
- (iblock
- es
.es_lblk
);
1722 if (retval
> map
->m_len
)
1723 retval
= map
->m_len
;
1724 map
->m_len
= retval
;
1725 if (ext4_es_is_written(&es
))
1726 map
->m_flags
|= EXT4_MAP_MAPPED
;
1727 else if (ext4_es_is_unwritten(&es
))
1728 map
->m_flags
|= EXT4_MAP_UNWRITTEN
;
1732 #ifdef ES_AGGRESSIVE_TEST
1733 ext4_map_blocks_es_recheck(NULL
, inode
, map
, &orig_map
, 0);
1739 * Try to see if we can get the block without requesting a new
1740 * file system block.
1742 down_read(&EXT4_I(inode
)->i_data_sem
);
1743 if (ext4_has_inline_data(inode
))
1745 else if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
1746 retval
= ext4_ext_map_blocks(NULL
, inode
, map
, 0);
1748 retval
= ext4_ind_map_blocks(NULL
, inode
, map
, 0);
1754 * XXX: __block_prepare_write() unmaps passed block,
1758 * If the block was allocated from previously allocated cluster,
1759 * then we don't need to reserve it again. However we still need
1760 * to reserve metadata for every block we're going to write.
1762 if (EXT4_SB(inode
->i_sb
)->s_cluster_ratio
== 1 ||
1763 !ext4_find_delalloc_cluster(inode
, map
->m_lblk
)) {
1764 ret
= ext4_da_reserve_space(inode
);
1766 /* not enough space to reserve */
1772 ret
= ext4_es_insert_extent(inode
, map
->m_lblk
, map
->m_len
,
1773 ~0, EXTENT_STATUS_DELAYED
);
1779 map_bh(bh
, inode
->i_sb
, invalid_block
);
1781 set_buffer_delay(bh
);
1782 } else if (retval
> 0) {
1784 unsigned int status
;
1786 if (unlikely(retval
!= map
->m_len
)) {
1787 ext4_warning(inode
->i_sb
,
1788 "ES len assertion failed for inode "
1789 "%lu: retval %d != map->m_len %d",
1790 inode
->i_ino
, retval
, map
->m_len
);
1794 status
= map
->m_flags
& EXT4_MAP_UNWRITTEN
?
1795 EXTENT_STATUS_UNWRITTEN
: EXTENT_STATUS_WRITTEN
;
1796 ret
= ext4_es_insert_extent(inode
, map
->m_lblk
, map
->m_len
,
1797 map
->m_pblk
, status
);
1803 up_read((&EXT4_I(inode
)->i_data_sem
));
1809 * This is a special get_block_t callback which is used by
1810 * ext4_da_write_begin(). It will either return mapped block or
1811 * reserve space for a single block.
1813 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1814 * We also have b_blocknr = -1 and b_bdev initialized properly
1816 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1817 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1818 * initialized properly.
1820 int ext4_da_get_block_prep(struct inode
*inode
, sector_t iblock
,
1821 struct buffer_head
*bh
, int create
)
1823 struct ext4_map_blocks map
;
1826 BUG_ON(create
== 0);
1827 BUG_ON(bh
->b_size
!= inode
->i_sb
->s_blocksize
);
1829 map
.m_lblk
= iblock
;
1833 * first, we need to know whether the block is allocated already
1834 * preallocated blocks are unmapped but should treated
1835 * the same as allocated blocks.
1837 ret
= ext4_da_map_blocks(inode
, iblock
, &map
, bh
);
1841 map_bh(bh
, inode
->i_sb
, map
.m_pblk
);
1842 ext4_update_bh_state(bh
, map
.m_flags
);
1844 if (buffer_unwritten(bh
)) {
1845 /* A delayed write to unwritten bh should be marked
1846 * new and mapped. Mapped ensures that we don't do
1847 * get_block multiple times when we write to the same
1848 * offset and new ensures that we do proper zero out
1849 * for partial write.
1852 set_buffer_mapped(bh
);
1857 static int bget_one(handle_t
*handle
, struct buffer_head
*bh
)
1863 static int bput_one(handle_t
*handle
, struct buffer_head
*bh
)
1869 static int __ext4_journalled_writepage(struct page
*page
,
1872 struct address_space
*mapping
= page
->mapping
;
1873 struct inode
*inode
= mapping
->host
;
1874 struct buffer_head
*page_bufs
= NULL
;
1875 handle_t
*handle
= NULL
;
1876 int ret
= 0, err
= 0;
1877 int inline_data
= ext4_has_inline_data(inode
);
1878 struct buffer_head
*inode_bh
= NULL
;
1880 ClearPageChecked(page
);
1883 BUG_ON(page
->index
!= 0);
1884 BUG_ON(len
> ext4_get_max_inline_size(inode
));
1885 inode_bh
= ext4_journalled_write_inline_data(inode
, len
, page
);
1886 if (inode_bh
== NULL
)
1889 page_bufs
= page_buffers(page
);
1894 ext4_walk_page_buffers(handle
, page_bufs
, 0, len
,
1898 * We need to release the page lock before we start the
1899 * journal, so grab a reference so the page won't disappear
1900 * out from under us.
1905 handle
= ext4_journal_start(inode
, EXT4_HT_WRITE_PAGE
,
1906 ext4_writepage_trans_blocks(inode
));
1907 if (IS_ERR(handle
)) {
1908 ret
= PTR_ERR(handle
);
1910 goto out_no_pagelock
;
1912 BUG_ON(!ext4_handle_valid(handle
));
1916 if (page
->mapping
!= mapping
) {
1917 /* The page got truncated from under us */
1918 ext4_journal_stop(handle
);
1924 BUFFER_TRACE(inode_bh
, "get write access");
1925 ret
= ext4_journal_get_write_access(handle
, inode_bh
);
1927 err
= ext4_handle_dirty_metadata(handle
, inode
, inode_bh
);
1930 ret
= ext4_walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
1931 do_journal_get_write_access
);
1933 err
= ext4_walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
1938 EXT4_I(inode
)->i_datasync_tid
= handle
->h_transaction
->t_tid
;
1939 err
= ext4_journal_stop(handle
);
1943 if (!ext4_has_inline_data(inode
))
1944 ext4_walk_page_buffers(NULL
, page_bufs
, 0, len
,
1946 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
1955 * Note that we don't need to start a transaction unless we're journaling data
1956 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1957 * need to file the inode to the transaction's list in ordered mode because if
1958 * we are writing back data added by write(), the inode is already there and if
1959 * we are writing back data modified via mmap(), no one guarantees in which
1960 * transaction the data will hit the disk. In case we are journaling data, we
1961 * cannot start transaction directly because transaction start ranks above page
1962 * lock so we have to do some magic.
1964 * This function can get called via...
1965 * - ext4_writepages after taking page lock (have journal handle)
1966 * - journal_submit_inode_data_buffers (no journal handle)
1967 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1968 * - grab_page_cache when doing write_begin (have journal handle)
1970 * We don't do any block allocation in this function. If we have page with
1971 * multiple blocks we need to write those buffer_heads that are mapped. This
1972 * is important for mmaped based write. So if we do with blocksize 1K
1973 * truncate(f, 1024);
1974 * a = mmap(f, 0, 4096);
1976 * truncate(f, 4096);
1977 * we have in the page first buffer_head mapped via page_mkwrite call back
1978 * but other buffer_heads would be unmapped but dirty (dirty done via the
1979 * do_wp_page). So writepage should write the first block. If we modify
1980 * the mmap area beyond 1024 we will again get a page_fault and the
1981 * page_mkwrite callback will do the block allocation and mark the
1982 * buffer_heads mapped.
1984 * We redirty the page if we have any buffer_heads that is either delay or
1985 * unwritten in the page.
1987 * We can get recursively called as show below.
1989 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1992 * But since we don't do any block allocation we should not deadlock.
1993 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1995 static int ext4_writepage(struct page
*page
,
1996 struct writeback_control
*wbc
)
2001 struct buffer_head
*page_bufs
= NULL
;
2002 struct inode
*inode
= page
->mapping
->host
;
2003 struct ext4_io_submit io_submit
;
2004 bool keep_towrite
= false;
2006 trace_ext4_writepage(page
);
2007 size
= i_size_read(inode
);
2008 if (page
->index
== size
>> PAGE_SHIFT
)
2009 len
= size
& ~PAGE_MASK
;
2013 page_bufs
= page_buffers(page
);
2015 * We cannot do block allocation or other extent handling in this
2016 * function. If there are buffers needing that, we have to redirty
2017 * the page. But we may reach here when we do a journal commit via
2018 * journal_submit_inode_data_buffers() and in that case we must write
2019 * allocated buffers to achieve data=ordered mode guarantees.
2021 * Also, if there is only one buffer per page (the fs block
2022 * size == the page size), if one buffer needs block
2023 * allocation or needs to modify the extent tree to clear the
2024 * unwritten flag, we know that the page can't be written at
2025 * all, so we might as well refuse the write immediately.
2026 * Unfortunately if the block size != page size, we can't as
2027 * easily detect this case using ext4_walk_page_buffers(), but
2028 * for the extremely common case, this is an optimization that
2029 * skips a useless round trip through ext4_bio_write_page().
2031 if (ext4_walk_page_buffers(NULL
, page_bufs
, 0, len
, NULL
,
2032 ext4_bh_delay_or_unwritten
)) {
2033 redirty_page_for_writepage(wbc
, page
);
2034 if ((current
->flags
& PF_MEMALLOC
) ||
2035 (inode
->i_sb
->s_blocksize
== PAGE_SIZE
)) {
2037 * For memory cleaning there's no point in writing only
2038 * some buffers. So just bail out. Warn if we came here
2039 * from direct reclaim.
2041 WARN_ON_ONCE((current
->flags
& (PF_MEMALLOC
|PF_KSWAPD
))
2046 keep_towrite
= true;
2049 if (PageChecked(page
) && ext4_should_journal_data(inode
))
2051 * It's mmapped pagecache. Add buffers and journal it. There
2052 * doesn't seem much point in redirtying the page here.
2054 return __ext4_journalled_writepage(page
, len
);
2056 ext4_io_submit_init(&io_submit
, wbc
);
2057 io_submit
.io_end
= ext4_init_io_end(inode
, GFP_NOFS
);
2058 if (!io_submit
.io_end
) {
2059 redirty_page_for_writepage(wbc
, page
);
2063 ret
= ext4_bio_write_page(&io_submit
, page
, len
, wbc
, keep_towrite
);
2064 ext4_io_submit(&io_submit
);
2065 /* Drop io_end reference we got from init */
2066 ext4_put_io_end_defer(io_submit
.io_end
);
2070 static int mpage_submit_page(struct mpage_da_data
*mpd
, struct page
*page
)
2073 loff_t size
= i_size_read(mpd
->inode
);
2076 BUG_ON(page
->index
!= mpd
->first_page
);
2077 if (page
->index
== size
>> PAGE_SHIFT
)
2078 len
= size
& ~PAGE_MASK
;
2081 clear_page_dirty_for_io(page
);
2082 err
= ext4_bio_write_page(&mpd
->io_submit
, page
, len
, mpd
->wbc
, false);
2084 mpd
->wbc
->nr_to_write
--;
2090 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2093 * mballoc gives us at most this number of blocks...
2094 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2095 * The rest of mballoc seems to handle chunks up to full group size.
2097 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2100 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2102 * @mpd - extent of blocks
2103 * @lblk - logical number of the block in the file
2104 * @bh - buffer head we want to add to the extent
2106 * The function is used to collect contig. blocks in the same state. If the
2107 * buffer doesn't require mapping for writeback and we haven't started the
2108 * extent of buffers to map yet, the function returns 'true' immediately - the
2109 * caller can write the buffer right away. Otherwise the function returns true
2110 * if the block has been added to the extent, false if the block couldn't be
2113 static bool mpage_add_bh_to_extent(struct mpage_da_data
*mpd
, ext4_lblk_t lblk
,
2114 struct buffer_head
*bh
)
2116 struct ext4_map_blocks
*map
= &mpd
->map
;
2118 /* Buffer that doesn't need mapping for writeback? */
2119 if (!buffer_dirty(bh
) || !buffer_mapped(bh
) ||
2120 (!buffer_delay(bh
) && !buffer_unwritten(bh
))) {
2121 /* So far no extent to map => we write the buffer right away */
2122 if (map
->m_len
== 0)
2127 /* First block in the extent? */
2128 if (map
->m_len
== 0) {
2131 map
->m_flags
= bh
->b_state
& BH_FLAGS
;
2135 /* Don't go larger than mballoc is willing to allocate */
2136 if (map
->m_len
>= MAX_WRITEPAGES_EXTENT_LEN
)
2139 /* Can we merge the block to our big extent? */
2140 if (lblk
== map
->m_lblk
+ map
->m_len
&&
2141 (bh
->b_state
& BH_FLAGS
) == map
->m_flags
) {
2149 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2151 * @mpd - extent of blocks for mapping
2152 * @head - the first buffer in the page
2153 * @bh - buffer we should start processing from
2154 * @lblk - logical number of the block in the file corresponding to @bh
2156 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2157 * the page for IO if all buffers in this page were mapped and there's no
2158 * accumulated extent of buffers to map or add buffers in the page to the
2159 * extent of buffers to map. The function returns 1 if the caller can continue
2160 * by processing the next page, 0 if it should stop adding buffers to the
2161 * extent to map because we cannot extend it anymore. It can also return value
2162 * < 0 in case of error during IO submission.
2164 static int mpage_process_page_bufs(struct mpage_da_data
*mpd
,
2165 struct buffer_head
*head
,
2166 struct buffer_head
*bh
,
2169 struct inode
*inode
= mpd
->inode
;
2171 ext4_lblk_t blocks
= (i_size_read(inode
) + (1 << inode
->i_blkbits
) - 1)
2172 >> inode
->i_blkbits
;
2175 BUG_ON(buffer_locked(bh
));
2177 if (lblk
>= blocks
|| !mpage_add_bh_to_extent(mpd
, lblk
, bh
)) {
2178 /* Found extent to map? */
2181 /* Everything mapped so far and we hit EOF */
2184 } while (lblk
++, (bh
= bh
->b_this_page
) != head
);
2185 /* So far everything mapped? Submit the page for IO. */
2186 if (mpd
->map
.m_len
== 0) {
2187 err
= mpage_submit_page(mpd
, head
->b_page
);
2191 return lblk
< blocks
;
2195 * mpage_map_buffers - update buffers corresponding to changed extent and
2196 * submit fully mapped pages for IO
2198 * @mpd - description of extent to map, on return next extent to map
2200 * Scan buffers corresponding to changed extent (we expect corresponding pages
2201 * to be already locked) and update buffer state according to new extent state.
2202 * We map delalloc buffers to their physical location, clear unwritten bits,
2203 * and mark buffers as uninit when we perform writes to unwritten extents
2204 * and do extent conversion after IO is finished. If the last page is not fully
2205 * mapped, we update @map to the next extent in the last page that needs
2206 * mapping. Otherwise we submit the page for IO.
2208 static int mpage_map_and_submit_buffers(struct mpage_da_data
*mpd
)
2210 struct pagevec pvec
;
2212 struct inode
*inode
= mpd
->inode
;
2213 struct buffer_head
*head
, *bh
;
2214 int bpp_bits
= PAGE_SHIFT
- inode
->i_blkbits
;
2220 start
= mpd
->map
.m_lblk
>> bpp_bits
;
2221 end
= (mpd
->map
.m_lblk
+ mpd
->map
.m_len
- 1) >> bpp_bits
;
2222 lblk
= start
<< bpp_bits
;
2223 pblock
= mpd
->map
.m_pblk
;
2225 pagevec_init(&pvec
, 0);
2226 while (start
<= end
) {
2227 nr_pages
= pagevec_lookup(&pvec
, inode
->i_mapping
, start
,
2231 for (i
= 0; i
< nr_pages
; i
++) {
2232 struct page
*page
= pvec
.pages
[i
];
2234 if (page
->index
> end
)
2236 /* Up to 'end' pages must be contiguous */
2237 BUG_ON(page
->index
!= start
);
2238 bh
= head
= page_buffers(page
);
2240 if (lblk
< mpd
->map
.m_lblk
)
2242 if (lblk
>= mpd
->map
.m_lblk
+ mpd
->map
.m_len
) {
2244 * Buffer after end of mapped extent.
2245 * Find next buffer in the page to map.
2248 mpd
->map
.m_flags
= 0;
2250 * FIXME: If dioread_nolock supports
2251 * blocksize < pagesize, we need to make
2252 * sure we add size mapped so far to
2253 * io_end->size as the following call
2254 * can submit the page for IO.
2256 err
= mpage_process_page_bufs(mpd
, head
,
2258 pagevec_release(&pvec
);
2263 if (buffer_delay(bh
)) {
2264 clear_buffer_delay(bh
);
2265 bh
->b_blocknr
= pblock
++;
2267 clear_buffer_unwritten(bh
);
2268 } while (lblk
++, (bh
= bh
->b_this_page
) != head
);
2271 * FIXME: This is going to break if dioread_nolock
2272 * supports blocksize < pagesize as we will try to
2273 * convert potentially unmapped parts of inode.
2275 mpd
->io_submit
.io_end
->size
+= PAGE_SIZE
;
2276 /* Page fully mapped - let IO run! */
2277 err
= mpage_submit_page(mpd
, page
);
2279 pagevec_release(&pvec
);
2284 pagevec_release(&pvec
);
2286 /* Extent fully mapped and matches with page boundary. We are done. */
2288 mpd
->map
.m_flags
= 0;
2292 static int mpage_map_one_extent(handle_t
*handle
, struct mpage_da_data
*mpd
)
2294 struct inode
*inode
= mpd
->inode
;
2295 struct ext4_map_blocks
*map
= &mpd
->map
;
2296 int get_blocks_flags
;
2297 int err
, dioread_nolock
;
2299 trace_ext4_da_write_pages_extent(inode
, map
);
2301 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2302 * to convert an unwritten extent to be initialized (in the case
2303 * where we have written into one or more preallocated blocks). It is
2304 * possible that we're going to need more metadata blocks than
2305 * previously reserved. However we must not fail because we're in
2306 * writeback and there is nothing we can do about it so it might result
2307 * in data loss. So use reserved blocks to allocate metadata if
2310 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2311 * the blocks in question are delalloc blocks. This indicates
2312 * that the blocks and quotas has already been checked when
2313 * the data was copied into the page cache.
2315 get_blocks_flags
= EXT4_GET_BLOCKS_CREATE
|
2316 EXT4_GET_BLOCKS_METADATA_NOFAIL
;
2317 dioread_nolock
= ext4_should_dioread_nolock(inode
);
2319 get_blocks_flags
|= EXT4_GET_BLOCKS_IO_CREATE_EXT
;
2320 if (map
->m_flags
& (1 << BH_Delay
))
2321 get_blocks_flags
|= EXT4_GET_BLOCKS_DELALLOC_RESERVE
;
2323 err
= ext4_map_blocks(handle
, inode
, map
, get_blocks_flags
);
2326 if (dioread_nolock
&& (map
->m_flags
& EXT4_MAP_UNWRITTEN
)) {
2327 if (!mpd
->io_submit
.io_end
->handle
&&
2328 ext4_handle_valid(handle
)) {
2329 mpd
->io_submit
.io_end
->handle
= handle
->h_rsv_handle
;
2330 handle
->h_rsv_handle
= NULL
;
2332 ext4_set_io_unwritten_flag(inode
, mpd
->io_submit
.io_end
);
2335 BUG_ON(map
->m_len
== 0);
2336 if (map
->m_flags
& EXT4_MAP_NEW
) {
2337 struct block_device
*bdev
= inode
->i_sb
->s_bdev
;
2340 for (i
= 0; i
< map
->m_len
; i
++)
2341 unmap_underlying_metadata(bdev
, map
->m_pblk
+ i
);
2347 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2348 * mpd->len and submit pages underlying it for IO
2350 * @handle - handle for journal operations
2351 * @mpd - extent to map
2352 * @give_up_on_write - we set this to true iff there is a fatal error and there
2353 * is no hope of writing the data. The caller should discard
2354 * dirty pages to avoid infinite loops.
2356 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2357 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2358 * them to initialized or split the described range from larger unwritten
2359 * extent. Note that we need not map all the described range since allocation
2360 * can return less blocks or the range is covered by more unwritten extents. We
2361 * cannot map more because we are limited by reserved transaction credits. On
2362 * the other hand we always make sure that the last touched page is fully
2363 * mapped so that it can be written out (and thus forward progress is
2364 * guaranteed). After mapping we submit all mapped pages for IO.
2366 static int mpage_map_and_submit_extent(handle_t
*handle
,
2367 struct mpage_da_data
*mpd
,
2368 bool *give_up_on_write
)
2370 struct inode
*inode
= mpd
->inode
;
2371 struct ext4_map_blocks
*map
= &mpd
->map
;
2376 mpd
->io_submit
.io_end
->offset
=
2377 ((loff_t
)map
->m_lblk
) << inode
->i_blkbits
;
2379 err
= mpage_map_one_extent(handle
, mpd
);
2381 struct super_block
*sb
= inode
->i_sb
;
2383 if (EXT4_SB(sb
)->s_mount_flags
& EXT4_MF_FS_ABORTED
)
2384 goto invalidate_dirty_pages
;
2386 * Let the uper layers retry transient errors.
2387 * In the case of ENOSPC, if ext4_count_free_blocks()
2388 * is non-zero, a commit should free up blocks.
2390 if ((err
== -ENOMEM
) ||
2391 (err
== -ENOSPC
&& ext4_count_free_clusters(sb
))) {
2393 goto update_disksize
;
2396 ext4_msg(sb
, KERN_CRIT
,
2397 "Delayed block allocation failed for "
2398 "inode %lu at logical offset %llu with"
2399 " max blocks %u with error %d",
2401 (unsigned long long)map
->m_lblk
,
2402 (unsigned)map
->m_len
, -err
);
2403 ext4_msg(sb
, KERN_CRIT
,
2404 "This should not happen!! Data will "
2407 ext4_print_free_blocks(inode
);
2408 invalidate_dirty_pages
:
2409 *give_up_on_write
= true;
2414 * Update buffer state, submit mapped pages, and get us new
2417 err
= mpage_map_and_submit_buffers(mpd
);
2419 goto update_disksize
;
2420 } while (map
->m_len
);
2424 * Update on-disk size after IO is submitted. Races with
2425 * truncate are avoided by checking i_size under i_data_sem.
2427 disksize
= ((loff_t
)mpd
->first_page
) << PAGE_SHIFT
;
2428 if (disksize
> EXT4_I(inode
)->i_disksize
) {
2432 down_write(&EXT4_I(inode
)->i_data_sem
);
2433 i_size
= i_size_read(inode
);
2434 if (disksize
> i_size
)
2436 if (disksize
> EXT4_I(inode
)->i_disksize
)
2437 EXT4_I(inode
)->i_disksize
= disksize
;
2438 err2
= ext4_mark_inode_dirty(handle
, inode
);
2439 up_write(&EXT4_I(inode
)->i_data_sem
);
2441 ext4_error(inode
->i_sb
,
2442 "Failed to mark inode %lu dirty",
2451 * Calculate the total number of credits to reserve for one writepages
2452 * iteration. This is called from ext4_writepages(). We map an extent of
2453 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2454 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2455 * bpp - 1 blocks in bpp different extents.
2457 static int ext4_da_writepages_trans_blocks(struct inode
*inode
)
2459 int bpp
= ext4_journal_blocks_per_page(inode
);
2461 return ext4_meta_trans_blocks(inode
,
2462 MAX_WRITEPAGES_EXTENT_LEN
+ bpp
- 1, bpp
);
2466 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2467 * and underlying extent to map
2469 * @mpd - where to look for pages
2471 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2472 * IO immediately. When we find a page which isn't mapped we start accumulating
2473 * extent of buffers underlying these pages that needs mapping (formed by
2474 * either delayed or unwritten buffers). We also lock the pages containing
2475 * these buffers. The extent found is returned in @mpd structure (starting at
2476 * mpd->lblk with length mpd->len blocks).
2478 * Note that this function can attach bios to one io_end structure which are
2479 * neither logically nor physically contiguous. Although it may seem as an
2480 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2481 * case as we need to track IO to all buffers underlying a page in one io_end.
2483 static int mpage_prepare_extent_to_map(struct mpage_da_data
*mpd
)
2485 struct address_space
*mapping
= mpd
->inode
->i_mapping
;
2486 struct pagevec pvec
;
2487 unsigned int nr_pages
;
2488 long left
= mpd
->wbc
->nr_to_write
;
2489 pgoff_t index
= mpd
->first_page
;
2490 pgoff_t end
= mpd
->last_page
;
2493 int blkbits
= mpd
->inode
->i_blkbits
;
2495 struct buffer_head
*head
;
2497 if (mpd
->wbc
->sync_mode
== WB_SYNC_ALL
|| mpd
->wbc
->tagged_writepages
)
2498 tag
= PAGECACHE_TAG_TOWRITE
;
2500 tag
= PAGECACHE_TAG_DIRTY
;
2502 pagevec_init(&pvec
, 0);
2504 mpd
->next_page
= index
;
2505 while (index
<= end
) {
2506 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
, tag
,
2507 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
2511 for (i
= 0; i
< nr_pages
; i
++) {
2512 struct page
*page
= pvec
.pages
[i
];
2515 * At this point, the page may be truncated or
2516 * invalidated (changing page->mapping to NULL), or
2517 * even swizzled back from swapper_space to tmpfs file
2518 * mapping. However, page->index will not change
2519 * because we have a reference on the page.
2521 if (page
->index
> end
)
2525 * Accumulated enough dirty pages? This doesn't apply
2526 * to WB_SYNC_ALL mode. For integrity sync we have to
2527 * keep going because someone may be concurrently
2528 * dirtying pages, and we might have synced a lot of
2529 * newly appeared dirty pages, but have not synced all
2530 * of the old dirty pages.
2532 if (mpd
->wbc
->sync_mode
== WB_SYNC_NONE
&& left
<= 0)
2535 /* If we can't merge this page, we are done. */
2536 if (mpd
->map
.m_len
> 0 && mpd
->next_page
!= page
->index
)
2541 * If the page is no longer dirty, or its mapping no
2542 * longer corresponds to inode we are writing (which
2543 * means it has been truncated or invalidated), or the
2544 * page is already under writeback and we are not doing
2545 * a data integrity writeback, skip the page
2547 if (!PageDirty(page
) ||
2548 (PageWriteback(page
) &&
2549 (mpd
->wbc
->sync_mode
== WB_SYNC_NONE
)) ||
2550 unlikely(page
->mapping
!= mapping
)) {
2555 wait_on_page_writeback(page
);
2556 BUG_ON(PageWriteback(page
));
2558 if (mpd
->map
.m_len
== 0)
2559 mpd
->first_page
= page
->index
;
2560 mpd
->next_page
= page
->index
+ 1;
2561 /* Add all dirty buffers to mpd */
2562 lblk
= ((ext4_lblk_t
)page
->index
) <<
2563 (PAGE_SHIFT
- blkbits
);
2564 head
= page_buffers(page
);
2565 err
= mpage_process_page_bufs(mpd
, head
, head
, lblk
);
2571 pagevec_release(&pvec
);
2576 pagevec_release(&pvec
);
2580 static int __writepage(struct page
*page
, struct writeback_control
*wbc
,
2583 struct address_space
*mapping
= data
;
2584 int ret
= ext4_writepage(page
, wbc
);
2585 mapping_set_error(mapping
, ret
);
2589 static int ext4_writepages(struct address_space
*mapping
,
2590 struct writeback_control
*wbc
)
2592 pgoff_t writeback_index
= 0;
2593 long nr_to_write
= wbc
->nr_to_write
;
2594 int range_whole
= 0;
2596 handle_t
*handle
= NULL
;
2597 struct mpage_da_data mpd
;
2598 struct inode
*inode
= mapping
->host
;
2599 int needed_blocks
, rsv_blocks
= 0, ret
= 0;
2600 struct ext4_sb_info
*sbi
= EXT4_SB(mapping
->host
->i_sb
);
2602 struct blk_plug plug
;
2603 bool give_up_on_write
= false;
2605 trace_ext4_writepages(inode
, wbc
);
2607 if (dax_mapping(mapping
))
2608 return dax_writeback_mapping_range(mapping
, inode
->i_sb
->s_bdev
,
2612 * No pages to write? This is mainly a kludge to avoid starting
2613 * a transaction for special inodes like journal inode on last iput()
2614 * because that could violate lock ordering on umount
2616 if (!mapping
->nrpages
|| !mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
))
2617 goto out_writepages
;
2619 if (ext4_should_journal_data(inode
)) {
2620 struct blk_plug plug
;
2622 blk_start_plug(&plug
);
2623 ret
= write_cache_pages(mapping
, wbc
, __writepage
, mapping
);
2624 blk_finish_plug(&plug
);
2625 goto out_writepages
;
2629 * If the filesystem has aborted, it is read-only, so return
2630 * right away instead of dumping stack traces later on that
2631 * will obscure the real source of the problem. We test
2632 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2633 * the latter could be true if the filesystem is mounted
2634 * read-only, and in that case, ext4_writepages should
2635 * *never* be called, so if that ever happens, we would want
2638 if (unlikely(sbi
->s_mount_flags
& EXT4_MF_FS_ABORTED
)) {
2640 goto out_writepages
;
2643 if (ext4_should_dioread_nolock(inode
)) {
2645 * We may need to convert up to one extent per block in
2646 * the page and we may dirty the inode.
2648 rsv_blocks
= 1 + (PAGE_SIZE
>> inode
->i_blkbits
);
2652 * If we have inline data and arrive here, it means that
2653 * we will soon create the block for the 1st page, so
2654 * we'd better clear the inline data here.
2656 if (ext4_has_inline_data(inode
)) {
2657 /* Just inode will be modified... */
2658 handle
= ext4_journal_start(inode
, EXT4_HT_INODE
, 1);
2659 if (IS_ERR(handle
)) {
2660 ret
= PTR_ERR(handle
);
2661 goto out_writepages
;
2663 BUG_ON(ext4_test_inode_state(inode
,
2664 EXT4_STATE_MAY_INLINE_DATA
));
2665 ext4_destroy_inline_data(handle
, inode
);
2666 ext4_journal_stop(handle
);
2669 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
2672 if (wbc
->range_cyclic
) {
2673 writeback_index
= mapping
->writeback_index
;
2674 if (writeback_index
)
2676 mpd
.first_page
= writeback_index
;
2679 mpd
.first_page
= wbc
->range_start
>> PAGE_SHIFT
;
2680 mpd
.last_page
= wbc
->range_end
>> PAGE_SHIFT
;
2685 ext4_io_submit_init(&mpd
.io_submit
, wbc
);
2687 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
2688 tag_pages_for_writeback(mapping
, mpd
.first_page
, mpd
.last_page
);
2690 blk_start_plug(&plug
);
2691 while (!done
&& mpd
.first_page
<= mpd
.last_page
) {
2692 /* For each extent of pages we use new io_end */
2693 mpd
.io_submit
.io_end
= ext4_init_io_end(inode
, GFP_KERNEL
);
2694 if (!mpd
.io_submit
.io_end
) {
2700 * We have two constraints: We find one extent to map and we
2701 * must always write out whole page (makes a difference when
2702 * blocksize < pagesize) so that we don't block on IO when we
2703 * try to write out the rest of the page. Journalled mode is
2704 * not supported by delalloc.
2706 BUG_ON(ext4_should_journal_data(inode
));
2707 needed_blocks
= ext4_da_writepages_trans_blocks(inode
);
2709 /* start a new transaction */
2710 handle
= ext4_journal_start_with_reserve(inode
,
2711 EXT4_HT_WRITE_PAGE
, needed_blocks
, rsv_blocks
);
2712 if (IS_ERR(handle
)) {
2713 ret
= PTR_ERR(handle
);
2714 ext4_msg(inode
->i_sb
, KERN_CRIT
, "%s: jbd2_start: "
2715 "%ld pages, ino %lu; err %d", __func__
,
2716 wbc
->nr_to_write
, inode
->i_ino
, ret
);
2717 /* Release allocated io_end */
2718 ext4_put_io_end(mpd
.io_submit
.io_end
);
2722 trace_ext4_da_write_pages(inode
, mpd
.first_page
, mpd
.wbc
);
2723 ret
= mpage_prepare_extent_to_map(&mpd
);
2726 ret
= mpage_map_and_submit_extent(handle
, &mpd
,
2730 * We scanned the whole range (or exhausted
2731 * nr_to_write), submitted what was mapped and
2732 * didn't find anything needing mapping. We are
2738 ext4_journal_stop(handle
);
2739 /* Submit prepared bio */
2740 ext4_io_submit(&mpd
.io_submit
);
2741 /* Unlock pages we didn't use */
2742 mpage_release_unused_pages(&mpd
, give_up_on_write
);
2743 /* Drop our io_end reference we got from init */
2744 ext4_put_io_end(mpd
.io_submit
.io_end
);
2746 if (ret
== -ENOSPC
&& sbi
->s_journal
) {
2748 * Commit the transaction which would
2749 * free blocks released in the transaction
2752 jbd2_journal_force_commit_nested(sbi
->s_journal
);
2756 /* Fatal error - ENOMEM, EIO... */
2760 blk_finish_plug(&plug
);
2761 if (!ret
&& !cycled
&& wbc
->nr_to_write
> 0) {
2763 mpd
.last_page
= writeback_index
- 1;
2769 if (wbc
->range_cyclic
|| (range_whole
&& wbc
->nr_to_write
> 0))
2771 * Set the writeback_index so that range_cyclic
2772 * mode will write it back later
2774 mapping
->writeback_index
= mpd
.first_page
;
2777 trace_ext4_writepages_result(inode
, wbc
, ret
,
2778 nr_to_write
- wbc
->nr_to_write
);
2782 static int ext4_nonda_switch(struct super_block
*sb
)
2784 s64 free_clusters
, dirty_clusters
;
2785 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2788 * switch to non delalloc mode if we are running low
2789 * on free block. The free block accounting via percpu
2790 * counters can get slightly wrong with percpu_counter_batch getting
2791 * accumulated on each CPU without updating global counters
2792 * Delalloc need an accurate free block accounting. So switch
2793 * to non delalloc when we are near to error range.
2796 percpu_counter_read_positive(&sbi
->s_freeclusters_counter
);
2798 percpu_counter_read_positive(&sbi
->s_dirtyclusters_counter
);
2800 * Start pushing delalloc when 1/2 of free blocks are dirty.
2802 if (dirty_clusters
&& (free_clusters
< 2 * dirty_clusters
))
2803 try_to_writeback_inodes_sb(sb
, WB_REASON_FS_FREE_SPACE
);
2805 if (2 * free_clusters
< 3 * dirty_clusters
||
2806 free_clusters
< (dirty_clusters
+ EXT4_FREECLUSTERS_WATERMARK
)) {
2808 * free block count is less than 150% of dirty blocks
2809 * or free blocks is less than watermark
2816 /* We always reserve for an inode update; the superblock could be there too */
2817 static int ext4_da_write_credits(struct inode
*inode
, loff_t pos
, unsigned len
)
2819 if (likely(ext4_has_feature_large_file(inode
->i_sb
)))
2822 if (pos
+ len
<= 0x7fffffffULL
)
2825 /* We might need to update the superblock to set LARGE_FILE */
2829 static int ext4_da_write_begin(struct file
*file
, struct address_space
*mapping
,
2830 loff_t pos
, unsigned len
, unsigned flags
,
2831 struct page
**pagep
, void **fsdata
)
2833 int ret
, retries
= 0;
2836 struct inode
*inode
= mapping
->host
;
2839 index
= pos
>> PAGE_SHIFT
;
2841 if (ext4_nonda_switch(inode
->i_sb
)) {
2842 *fsdata
= (void *)FALL_BACK_TO_NONDELALLOC
;
2843 return ext4_write_begin(file
, mapping
, pos
,
2844 len
, flags
, pagep
, fsdata
);
2846 *fsdata
= (void *)0;
2847 trace_ext4_da_write_begin(inode
, pos
, len
, flags
);
2849 if (ext4_test_inode_state(inode
, EXT4_STATE_MAY_INLINE_DATA
)) {
2850 ret
= ext4_da_write_inline_data_begin(mapping
, inode
,
2860 * grab_cache_page_write_begin() can take a long time if the
2861 * system is thrashing due to memory pressure, or if the page
2862 * is being written back. So grab it first before we start
2863 * the transaction handle. This also allows us to allocate
2864 * the page (if needed) without using GFP_NOFS.
2867 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2873 * With delayed allocation, we don't log the i_disksize update
2874 * if there is delayed block allocation. But we still need
2875 * to journalling the i_disksize update if writes to the end
2876 * of file which has an already mapped buffer.
2879 handle
= ext4_journal_start(inode
, EXT4_HT_WRITE_PAGE
,
2880 ext4_da_write_credits(inode
, pos
, len
));
2881 if (IS_ERR(handle
)) {
2883 return PTR_ERR(handle
);
2887 if (page
->mapping
!= mapping
) {
2888 /* The page got truncated from under us */
2891 ext4_journal_stop(handle
);
2894 /* In case writeback began while the page was unlocked */
2895 wait_for_stable_page(page
);
2897 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2898 ret
= ext4_block_write_begin(page
, pos
, len
,
2899 ext4_da_get_block_prep
);
2901 ret
= __block_write_begin(page
, pos
, len
, ext4_da_get_block_prep
);
2905 ext4_journal_stop(handle
);
2907 * block_write_begin may have instantiated a few blocks
2908 * outside i_size. Trim these off again. Don't need
2909 * i_size_read because we hold i_mutex.
2911 if (pos
+ len
> inode
->i_size
)
2912 ext4_truncate_failed_write(inode
);
2914 if (ret
== -ENOSPC
&&
2915 ext4_should_retry_alloc(inode
->i_sb
, &retries
))
2927 * Check if we should update i_disksize
2928 * when write to the end of file but not require block allocation
2930 static int ext4_da_should_update_i_disksize(struct page
*page
,
2931 unsigned long offset
)
2933 struct buffer_head
*bh
;
2934 struct inode
*inode
= page
->mapping
->host
;
2938 bh
= page_buffers(page
);
2939 idx
= offset
>> inode
->i_blkbits
;
2941 for (i
= 0; i
< idx
; i
++)
2942 bh
= bh
->b_this_page
;
2944 if (!buffer_mapped(bh
) || (buffer_delay(bh
)) || buffer_unwritten(bh
))
2949 static int ext4_da_write_end(struct file
*file
,
2950 struct address_space
*mapping
,
2951 loff_t pos
, unsigned len
, unsigned copied
,
2952 struct page
*page
, void *fsdata
)
2954 struct inode
*inode
= mapping
->host
;
2956 handle_t
*handle
= ext4_journal_current_handle();
2958 unsigned long start
, end
;
2959 int write_mode
= (int)(unsigned long)fsdata
;
2961 if (write_mode
== FALL_BACK_TO_NONDELALLOC
)
2962 return ext4_write_end(file
, mapping
, pos
,
2963 len
, copied
, page
, fsdata
);
2965 trace_ext4_da_write_end(inode
, pos
, len
, copied
);
2966 start
= pos
& (PAGE_SIZE
- 1);
2967 end
= start
+ copied
- 1;
2970 * generic_write_end() will run mark_inode_dirty() if i_size
2971 * changes. So let's piggyback the i_disksize mark_inode_dirty
2974 new_i_size
= pos
+ copied
;
2975 if (copied
&& new_i_size
> EXT4_I(inode
)->i_disksize
) {
2976 if (ext4_has_inline_data(inode
) ||
2977 ext4_da_should_update_i_disksize(page
, end
)) {
2978 ext4_update_i_disksize(inode
, new_i_size
);
2979 /* We need to mark inode dirty even if
2980 * new_i_size is less that inode->i_size
2981 * bu greater than i_disksize.(hint delalloc)
2983 ext4_mark_inode_dirty(handle
, inode
);
2987 if (write_mode
!= CONVERT_INLINE_DATA
&&
2988 ext4_test_inode_state(inode
, EXT4_STATE_MAY_INLINE_DATA
) &&
2989 ext4_has_inline_data(inode
))
2990 ret2
= ext4_da_write_inline_data_end(inode
, pos
, len
, copied
,
2993 ret2
= generic_write_end(file
, mapping
, pos
, len
, copied
,
2999 ret2
= ext4_journal_stop(handle
);
3003 return ret
? ret
: copied
;
3006 static void ext4_da_invalidatepage(struct page
*page
, unsigned int offset
,
3007 unsigned int length
)
3010 * Drop reserved blocks
3012 BUG_ON(!PageLocked(page
));
3013 if (!page_has_buffers(page
))
3016 ext4_da_page_release_reservation(page
, offset
, length
);
3019 ext4_invalidatepage(page
, offset
, length
);
3025 * Force all delayed allocation blocks to be allocated for a given inode.
3027 int ext4_alloc_da_blocks(struct inode
*inode
)
3029 trace_ext4_alloc_da_blocks(inode
);
3031 if (!EXT4_I(inode
)->i_reserved_data_blocks
)
3035 * We do something simple for now. The filemap_flush() will
3036 * also start triggering a write of the data blocks, which is
3037 * not strictly speaking necessary (and for users of
3038 * laptop_mode, not even desirable). However, to do otherwise
3039 * would require replicating code paths in:
3041 * ext4_writepages() ->
3042 * write_cache_pages() ---> (via passed in callback function)
3043 * __mpage_da_writepage() -->
3044 * mpage_add_bh_to_extent()
3045 * mpage_da_map_blocks()
3047 * The problem is that write_cache_pages(), located in
3048 * mm/page-writeback.c, marks pages clean in preparation for
3049 * doing I/O, which is not desirable if we're not planning on
3052 * We could call write_cache_pages(), and then redirty all of
3053 * the pages by calling redirty_page_for_writepage() but that
3054 * would be ugly in the extreme. So instead we would need to
3055 * replicate parts of the code in the above functions,
3056 * simplifying them because we wouldn't actually intend to
3057 * write out the pages, but rather only collect contiguous
3058 * logical block extents, call the multi-block allocator, and
3059 * then update the buffer heads with the block allocations.
3061 * For now, though, we'll cheat by calling filemap_flush(),
3062 * which will map the blocks, and start the I/O, but not
3063 * actually wait for the I/O to complete.
3065 return filemap_flush(inode
->i_mapping
);
3069 * bmap() is special. It gets used by applications such as lilo and by
3070 * the swapper to find the on-disk block of a specific piece of data.
3072 * Naturally, this is dangerous if the block concerned is still in the
3073 * journal. If somebody makes a swapfile on an ext4 data-journaling
3074 * filesystem and enables swap, then they may get a nasty shock when the
3075 * data getting swapped to that swapfile suddenly gets overwritten by
3076 * the original zero's written out previously to the journal and
3077 * awaiting writeback in the kernel's buffer cache.
3079 * So, if we see any bmap calls here on a modified, data-journaled file,
3080 * take extra steps to flush any blocks which might be in the cache.
3082 static sector_t
ext4_bmap(struct address_space
*mapping
, sector_t block
)
3084 struct inode
*inode
= mapping
->host
;
3089 * We can get here for an inline file via the FIBMAP ioctl
3091 if (ext4_has_inline_data(inode
))
3094 if (mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
) &&
3095 test_opt(inode
->i_sb
, DELALLOC
)) {
3097 * With delalloc we want to sync the file
3098 * so that we can make sure we allocate
3101 filemap_write_and_wait(mapping
);
3104 if (EXT4_JOURNAL(inode
) &&
3105 ext4_test_inode_state(inode
, EXT4_STATE_JDATA
)) {
3107 * This is a REALLY heavyweight approach, but the use of
3108 * bmap on dirty files is expected to be extremely rare:
3109 * only if we run lilo or swapon on a freshly made file
3110 * do we expect this to happen.
3112 * (bmap requires CAP_SYS_RAWIO so this does not
3113 * represent an unprivileged user DOS attack --- we'd be
3114 * in trouble if mortal users could trigger this path at
3117 * NB. EXT4_STATE_JDATA is not set on files other than
3118 * regular files. If somebody wants to bmap a directory
3119 * or symlink and gets confused because the buffer
3120 * hasn't yet been flushed to disk, they deserve
3121 * everything they get.
3124 ext4_clear_inode_state(inode
, EXT4_STATE_JDATA
);
3125 journal
= EXT4_JOURNAL(inode
);
3126 jbd2_journal_lock_updates(journal
);
3127 err
= jbd2_journal_flush(journal
);
3128 jbd2_journal_unlock_updates(journal
);
3134 return generic_block_bmap(mapping
, block
, ext4_get_block
);
3137 static int ext4_readpage(struct file
*file
, struct page
*page
)
3140 struct inode
*inode
= page
->mapping
->host
;
3142 trace_ext4_readpage(page
);
3144 if (ext4_has_inline_data(inode
))
3145 ret
= ext4_readpage_inline(inode
, page
);
3148 return ext4_mpage_readpages(page
->mapping
, NULL
, page
, 1);
3154 ext4_readpages(struct file
*file
, struct address_space
*mapping
,
3155 struct list_head
*pages
, unsigned nr_pages
)
3157 struct inode
*inode
= mapping
->host
;
3159 /* If the file has inline data, no need to do readpages. */
3160 if (ext4_has_inline_data(inode
))
3163 return ext4_mpage_readpages(mapping
, pages
, NULL
, nr_pages
);
3166 static void ext4_invalidatepage(struct page
*page
, unsigned int offset
,
3167 unsigned int length
)
3169 trace_ext4_invalidatepage(page
, offset
, length
);
3171 /* No journalling happens on data buffers when this function is used */
3172 WARN_ON(page_has_buffers(page
) && buffer_jbd(page_buffers(page
)));
3174 block_invalidatepage(page
, offset
, length
);
3177 static int __ext4_journalled_invalidatepage(struct page
*page
,
3178 unsigned int offset
,
3179 unsigned int length
)
3181 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
3183 trace_ext4_journalled_invalidatepage(page
, offset
, length
);
3186 * If it's a full truncate we just forget about the pending dirtying
3188 if (offset
== 0 && length
== PAGE_SIZE
)
3189 ClearPageChecked(page
);
3191 return jbd2_journal_invalidatepage(journal
, page
, offset
, length
);
3194 /* Wrapper for aops... */
3195 static void ext4_journalled_invalidatepage(struct page
*page
,
3196 unsigned int offset
,
3197 unsigned int length
)
3199 WARN_ON(__ext4_journalled_invalidatepage(page
, offset
, length
) < 0);
3202 static int ext4_releasepage(struct page
*page
, gfp_t wait
)
3204 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
3206 trace_ext4_releasepage(page
);
3208 /* Page has dirty journalled data -> cannot release */
3209 if (PageChecked(page
))
3212 return jbd2_journal_try_to_free_buffers(journal
, page
, wait
);
3214 return try_to_free_buffers(page
);
3217 #ifdef CONFIG_FS_DAX
3218 int ext4_dax_mmap_get_block(struct inode
*inode
, sector_t iblock
,
3219 struct buffer_head
*bh_result
, int create
)
3223 struct ext4_map_blocks map
;
3224 handle_t
*handle
= NULL
;
3227 ext4_debug("ext4_dax_mmap_get_block: inode %lu, create flag %d\n",
3228 inode
->i_ino
, create
);
3229 map
.m_lblk
= iblock
;
3230 map
.m_len
= bh_result
->b_size
>> inode
->i_blkbits
;
3231 credits
= ext4_chunk_trans_blocks(inode
, map
.m_len
);
3233 flags
|= EXT4_GET_BLOCKS_PRE_IO
| EXT4_GET_BLOCKS_CREATE_ZERO
;
3234 handle
= ext4_journal_start(inode
, EXT4_HT_MAP_BLOCKS
, credits
);
3235 if (IS_ERR(handle
)) {
3236 ret
= PTR_ERR(handle
);
3241 ret
= ext4_map_blocks(handle
, inode
, &map
, flags
);
3243 err
= ext4_journal_stop(handle
);
3244 if (ret
>= 0 && err
< 0)
3249 if (map
.m_flags
& EXT4_MAP_UNWRITTEN
) {
3253 * We are protected by i_mmap_sem so we know block cannot go
3254 * away from under us even though we dropped i_data_sem.
3255 * Convert extent to written and write zeros there.
3257 * Note: We may get here even when create == 0.
3259 handle
= ext4_journal_start(inode
, EXT4_HT_MAP_BLOCKS
, credits
);
3260 if (IS_ERR(handle
)) {
3261 ret
= PTR_ERR(handle
);
3265 err
= ext4_map_blocks(handle
, inode
, &map
,
3266 EXT4_GET_BLOCKS_CONVERT
| EXT4_GET_BLOCKS_CREATE_ZERO
);
3269 err2
= ext4_journal_stop(handle
);
3270 if (err2
< 0 && ret
> 0)
3274 WARN_ON_ONCE(ret
== 0 && create
);
3276 map_bh(bh_result
, inode
->i_sb
, map
.m_pblk
);
3278 * At least for now we have to clear BH_New so that DAX code
3279 * doesn't attempt to zero blocks again in a racy way.
3281 map
.m_flags
&= ~EXT4_MAP_NEW
;
3282 ext4_update_bh_state(bh_result
, map
.m_flags
);
3283 bh_result
->b_size
= map
.m_len
<< inode
->i_blkbits
;
3290 static int ext4_end_io_dio(struct kiocb
*iocb
, loff_t offset
,
3291 ssize_t size
, void *private)
3293 ext4_io_end_t
*io_end
= private;
3295 /* if not async direct IO just return */
3299 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3300 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3301 io_end
, io_end
->inode
->i_ino
, iocb
, offset
, size
);
3304 * Error during AIO DIO. We cannot convert unwritten extents as the
3305 * data was not written. Just clear the unwritten flag and drop io_end.
3308 ext4_clear_io_unwritten_flag(io_end
);
3311 io_end
->offset
= offset
;
3312 io_end
->size
= size
;
3313 ext4_put_io_end(io_end
);
3319 * For ext4 extent files, ext4 will do direct-io write to holes,
3320 * preallocated extents, and those write extend the file, no need to
3321 * fall back to buffered IO.
3323 * For holes, we fallocate those blocks, mark them as unwritten
3324 * If those blocks were preallocated, we mark sure they are split, but
3325 * still keep the range to write as unwritten.
3327 * The unwritten extents will be converted to written when DIO is completed.
3328 * For async direct IO, since the IO may still pending when return, we
3329 * set up an end_io call back function, which will do the conversion
3330 * when async direct IO completed.
3332 * If the O_DIRECT write will extend the file then add this inode to the
3333 * orphan list. So recovery will truncate it back to the original size
3334 * if the machine crashes during the write.
3337 static ssize_t
ext4_ext_direct_IO(struct kiocb
*iocb
, struct iov_iter
*iter
,
3340 struct file
*file
= iocb
->ki_filp
;
3341 struct inode
*inode
= file
->f_mapping
->host
;
3343 size_t count
= iov_iter_count(iter
);
3345 get_block_t
*get_block_func
= NULL
;
3347 loff_t final_size
= offset
+ count
;
3349 /* Use the old path for reads and writes beyond i_size. */
3350 if (iov_iter_rw(iter
) != WRITE
|| final_size
> inode
->i_size
)
3351 return ext4_ind_direct_IO(iocb
, iter
, offset
);
3353 BUG_ON(iocb
->private == NULL
);
3356 * Make all waiters for direct IO properly wait also for extent
3357 * conversion. This also disallows race between truncate() and
3358 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3360 if (iov_iter_rw(iter
) == WRITE
)
3361 inode_dio_begin(inode
);
3363 /* If we do a overwrite dio, i_mutex locking can be released */
3364 overwrite
= *((int *)iocb
->private);
3367 inode_unlock(inode
);
3370 * We could direct write to holes and fallocate.
3372 * Allocated blocks to fill the hole are marked as unwritten to prevent
3373 * parallel buffered read to expose the stale data before DIO complete
3376 * As to previously fallocated extents, ext4 get_block will just simply
3377 * mark the buffer mapped but still keep the extents unwritten.
3379 * For non AIO case, we will convert those unwritten extents to written
3380 * after return back from blockdev_direct_IO. That way we save us from
3381 * allocating io_end structure and also the overhead of offloading
3382 * the extent convertion to a workqueue.
3384 * For async DIO, the conversion needs to be deferred when the
3385 * IO is completed. The ext4 end_io callback function will be
3386 * called to take care of the conversion work. Here for async
3387 * case, we allocate an io_end structure to hook to the iocb.
3389 iocb
->private = NULL
;
3391 get_block_func
= ext4_dio_get_block_overwrite
;
3392 else if (is_sync_kiocb(iocb
)) {
3393 get_block_func
= ext4_dio_get_block_unwritten_sync
;
3394 dio_flags
= DIO_LOCKING
;
3396 get_block_func
= ext4_dio_get_block_unwritten_async
;
3397 dio_flags
= DIO_LOCKING
;
3399 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3400 BUG_ON(ext4_encrypted_inode(inode
) && S_ISREG(inode
->i_mode
));
3403 ret
= dax_do_io(iocb
, inode
, iter
, offset
, get_block_func
,
3404 ext4_end_io_dio
, dio_flags
);
3406 ret
= __blockdev_direct_IO(iocb
, inode
,
3407 inode
->i_sb
->s_bdev
, iter
, offset
,
3409 ext4_end_io_dio
, NULL
, dio_flags
);
3411 if (ret
> 0 && !overwrite
&& ext4_test_inode_state(inode
,
3412 EXT4_STATE_DIO_UNWRITTEN
)) {
3415 * for non AIO case, since the IO is already
3416 * completed, we could do the conversion right here
3418 err
= ext4_convert_unwritten_extents(NULL
, inode
,
3422 ext4_clear_inode_state(inode
, EXT4_STATE_DIO_UNWRITTEN
);
3425 if (iov_iter_rw(iter
) == WRITE
)
3426 inode_dio_end(inode
);
3427 /* take i_mutex locking again if we do a ovewrite dio */
3434 static ssize_t
ext4_direct_IO(struct kiocb
*iocb
, struct iov_iter
*iter
,
3437 struct file
*file
= iocb
->ki_filp
;
3438 struct inode
*inode
= file
->f_mapping
->host
;
3439 size_t count
= iov_iter_count(iter
);
3442 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3443 if (ext4_encrypted_inode(inode
) && S_ISREG(inode
->i_mode
))
3448 * If we are doing data journalling we don't support O_DIRECT
3450 if (ext4_should_journal_data(inode
))
3453 /* Let buffer I/O handle the inline data case. */
3454 if (ext4_has_inline_data(inode
))
3457 trace_ext4_direct_IO_enter(inode
, offset
, count
, iov_iter_rw(iter
));
3458 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3459 ret
= ext4_ext_direct_IO(iocb
, iter
, offset
);
3461 ret
= ext4_ind_direct_IO(iocb
, iter
, offset
);
3462 trace_ext4_direct_IO_exit(inode
, offset
, count
, iov_iter_rw(iter
), ret
);
3467 * Pages can be marked dirty completely asynchronously from ext4's journalling
3468 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3469 * much here because ->set_page_dirty is called under VFS locks. The page is
3470 * not necessarily locked.
3472 * We cannot just dirty the page and leave attached buffers clean, because the
3473 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3474 * or jbddirty because all the journalling code will explode.
3476 * So what we do is to mark the page "pending dirty" and next time writepage
3477 * is called, propagate that into the buffers appropriately.
3479 static int ext4_journalled_set_page_dirty(struct page
*page
)
3481 SetPageChecked(page
);
3482 return __set_page_dirty_nobuffers(page
);
3485 static const struct address_space_operations ext4_aops
= {
3486 .readpage
= ext4_readpage
,
3487 .readpages
= ext4_readpages
,
3488 .writepage
= ext4_writepage
,
3489 .writepages
= ext4_writepages
,
3490 .write_begin
= ext4_write_begin
,
3491 .write_end
= ext4_write_end
,
3493 .invalidatepage
= ext4_invalidatepage
,
3494 .releasepage
= ext4_releasepage
,
3495 .direct_IO
= ext4_direct_IO
,
3496 .migratepage
= buffer_migrate_page
,
3497 .is_partially_uptodate
= block_is_partially_uptodate
,
3498 .error_remove_page
= generic_error_remove_page
,
3501 static const struct address_space_operations ext4_journalled_aops
= {
3502 .readpage
= ext4_readpage
,
3503 .readpages
= ext4_readpages
,
3504 .writepage
= ext4_writepage
,
3505 .writepages
= ext4_writepages
,
3506 .write_begin
= ext4_write_begin
,
3507 .write_end
= ext4_journalled_write_end
,
3508 .set_page_dirty
= ext4_journalled_set_page_dirty
,
3510 .invalidatepage
= ext4_journalled_invalidatepage
,
3511 .releasepage
= ext4_releasepage
,
3512 .direct_IO
= ext4_direct_IO
,
3513 .is_partially_uptodate
= block_is_partially_uptodate
,
3514 .error_remove_page
= generic_error_remove_page
,
3517 static const struct address_space_operations ext4_da_aops
= {
3518 .readpage
= ext4_readpage
,
3519 .readpages
= ext4_readpages
,
3520 .writepage
= ext4_writepage
,
3521 .writepages
= ext4_writepages
,
3522 .write_begin
= ext4_da_write_begin
,
3523 .write_end
= ext4_da_write_end
,
3525 .invalidatepage
= ext4_da_invalidatepage
,
3526 .releasepage
= ext4_releasepage
,
3527 .direct_IO
= ext4_direct_IO
,
3528 .migratepage
= buffer_migrate_page
,
3529 .is_partially_uptodate
= block_is_partially_uptodate
,
3530 .error_remove_page
= generic_error_remove_page
,
3533 void ext4_set_aops(struct inode
*inode
)
3535 switch (ext4_inode_journal_mode(inode
)) {
3536 case EXT4_INODE_ORDERED_DATA_MODE
:
3537 ext4_set_inode_state(inode
, EXT4_STATE_ORDERED_MODE
);
3539 case EXT4_INODE_WRITEBACK_DATA_MODE
:
3540 ext4_clear_inode_state(inode
, EXT4_STATE_ORDERED_MODE
);
3542 case EXT4_INODE_JOURNAL_DATA_MODE
:
3543 inode
->i_mapping
->a_ops
= &ext4_journalled_aops
;
3548 if (test_opt(inode
->i_sb
, DELALLOC
))
3549 inode
->i_mapping
->a_ops
= &ext4_da_aops
;
3551 inode
->i_mapping
->a_ops
= &ext4_aops
;
3554 static int __ext4_block_zero_page_range(handle_t
*handle
,
3555 struct address_space
*mapping
, loff_t from
, loff_t length
)
3557 ext4_fsblk_t index
= from
>> PAGE_SHIFT
;
3558 unsigned offset
= from
& (PAGE_SIZE
-1);
3559 unsigned blocksize
, pos
;
3561 struct inode
*inode
= mapping
->host
;
3562 struct buffer_head
*bh
;
3566 page
= find_or_create_page(mapping
, from
>> PAGE_SHIFT
,
3567 mapping_gfp_constraint(mapping
, ~__GFP_FS
));
3571 blocksize
= inode
->i_sb
->s_blocksize
;
3573 iblock
= index
<< (PAGE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
3575 if (!page_has_buffers(page
))
3576 create_empty_buffers(page
, blocksize
, 0);
3578 /* Find the buffer that contains "offset" */
3579 bh
= page_buffers(page
);
3581 while (offset
>= pos
) {
3582 bh
= bh
->b_this_page
;
3586 if (buffer_freed(bh
)) {
3587 BUFFER_TRACE(bh
, "freed: skip");
3590 if (!buffer_mapped(bh
)) {
3591 BUFFER_TRACE(bh
, "unmapped");
3592 ext4_get_block(inode
, iblock
, bh
, 0);
3593 /* unmapped? It's a hole - nothing to do */
3594 if (!buffer_mapped(bh
)) {
3595 BUFFER_TRACE(bh
, "still unmapped");
3600 /* Ok, it's mapped. Make sure it's up-to-date */
3601 if (PageUptodate(page
))
3602 set_buffer_uptodate(bh
);
3604 if (!buffer_uptodate(bh
)) {
3606 ll_rw_block(READ
, 1, &bh
);
3608 /* Uhhuh. Read error. Complain and punt. */
3609 if (!buffer_uptodate(bh
))
3611 if (S_ISREG(inode
->i_mode
) &&
3612 ext4_encrypted_inode(inode
)) {
3613 /* We expect the key to be set. */
3614 BUG_ON(!ext4_has_encryption_key(inode
));
3615 BUG_ON(blocksize
!= PAGE_SIZE
);
3616 WARN_ON_ONCE(ext4_decrypt(page
));
3619 if (ext4_should_journal_data(inode
)) {
3620 BUFFER_TRACE(bh
, "get write access");
3621 err
= ext4_journal_get_write_access(handle
, bh
);
3625 zero_user(page
, offset
, length
);
3626 BUFFER_TRACE(bh
, "zeroed end of block");
3628 if (ext4_should_journal_data(inode
)) {
3629 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
3632 mark_buffer_dirty(bh
);
3633 if (ext4_test_inode_state(inode
, EXT4_STATE_ORDERED_MODE
))
3634 err
= ext4_jbd2_file_inode(handle
, inode
);
3644 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3645 * starting from file offset 'from'. The range to be zero'd must
3646 * be contained with in one block. If the specified range exceeds
3647 * the end of the block it will be shortened to end of the block
3648 * that cooresponds to 'from'
3650 static int ext4_block_zero_page_range(handle_t
*handle
,
3651 struct address_space
*mapping
, loff_t from
, loff_t length
)
3653 struct inode
*inode
= mapping
->host
;
3654 unsigned offset
= from
& (PAGE_SIZE
-1);
3655 unsigned blocksize
= inode
->i_sb
->s_blocksize
;
3656 unsigned max
= blocksize
- (offset
& (blocksize
- 1));
3659 * correct length if it does not fall between
3660 * 'from' and the end of the block
3662 if (length
> max
|| length
< 0)
3666 return dax_zero_page_range(inode
, from
, length
, ext4_get_block
);
3667 return __ext4_block_zero_page_range(handle
, mapping
, from
, length
);
3671 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3672 * up to the end of the block which corresponds to `from'.
3673 * This required during truncate. We need to physically zero the tail end
3674 * of that block so it doesn't yield old data if the file is later grown.
3676 static int ext4_block_truncate_page(handle_t
*handle
,
3677 struct address_space
*mapping
, loff_t from
)
3679 unsigned offset
= from
& (PAGE_SIZE
-1);
3682 struct inode
*inode
= mapping
->host
;
3684 blocksize
= inode
->i_sb
->s_blocksize
;
3685 length
= blocksize
- (offset
& (blocksize
- 1));
3687 return ext4_block_zero_page_range(handle
, mapping
, from
, length
);
3690 int ext4_zero_partial_blocks(handle_t
*handle
, struct inode
*inode
,
3691 loff_t lstart
, loff_t length
)
3693 struct super_block
*sb
= inode
->i_sb
;
3694 struct address_space
*mapping
= inode
->i_mapping
;
3695 unsigned partial_start
, partial_end
;
3696 ext4_fsblk_t start
, end
;
3697 loff_t byte_end
= (lstart
+ length
- 1);
3700 partial_start
= lstart
& (sb
->s_blocksize
- 1);
3701 partial_end
= byte_end
& (sb
->s_blocksize
- 1);
3703 start
= lstart
>> sb
->s_blocksize_bits
;
3704 end
= byte_end
>> sb
->s_blocksize_bits
;
3706 /* Handle partial zero within the single block */
3708 (partial_start
|| (partial_end
!= sb
->s_blocksize
- 1))) {
3709 err
= ext4_block_zero_page_range(handle
, mapping
,
3713 /* Handle partial zero out on the start of the range */
3714 if (partial_start
) {
3715 err
= ext4_block_zero_page_range(handle
, mapping
,
3716 lstart
, sb
->s_blocksize
);
3720 /* Handle partial zero out on the end of the range */
3721 if (partial_end
!= sb
->s_blocksize
- 1)
3722 err
= ext4_block_zero_page_range(handle
, mapping
,
3723 byte_end
- partial_end
,
3728 int ext4_can_truncate(struct inode
*inode
)
3730 if (S_ISREG(inode
->i_mode
))
3732 if (S_ISDIR(inode
->i_mode
))
3734 if (S_ISLNK(inode
->i_mode
))
3735 return !ext4_inode_is_fast_symlink(inode
);
3740 * We have to make sure i_disksize gets properly updated before we truncate
3741 * page cache due to hole punching or zero range. Otherwise i_disksize update
3742 * can get lost as it may have been postponed to submission of writeback but
3743 * that will never happen after we truncate page cache.
3745 int ext4_update_disksize_before_punch(struct inode
*inode
, loff_t offset
,
3749 loff_t size
= i_size_read(inode
);
3751 WARN_ON(!inode_is_locked(inode
));
3752 if (offset
> size
|| offset
+ len
< size
)
3755 if (EXT4_I(inode
)->i_disksize
>= size
)
3758 handle
= ext4_journal_start(inode
, EXT4_HT_MISC
, 1);
3760 return PTR_ERR(handle
);
3761 ext4_update_i_disksize(inode
, size
);
3762 ext4_mark_inode_dirty(handle
, inode
);
3763 ext4_journal_stop(handle
);
3769 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3770 * associated with the given offset and length
3772 * @inode: File inode
3773 * @offset: The offset where the hole will begin
3774 * @len: The length of the hole
3776 * Returns: 0 on success or negative on failure
3779 int ext4_punch_hole(struct inode
*inode
, loff_t offset
, loff_t length
)
3781 struct super_block
*sb
= inode
->i_sb
;
3782 ext4_lblk_t first_block
, stop_block
;
3783 struct address_space
*mapping
= inode
->i_mapping
;
3784 loff_t first_block_offset
, last_block_offset
;
3786 unsigned int credits
;
3789 if (!S_ISREG(inode
->i_mode
))
3792 trace_ext4_punch_hole(inode
, offset
, length
, 0);
3795 * Write out all dirty pages to avoid race conditions
3796 * Then release them.
3798 if (mapping
->nrpages
&& mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
)) {
3799 ret
= filemap_write_and_wait_range(mapping
, offset
,
3800 offset
+ length
- 1);
3807 /* No need to punch hole beyond i_size */
3808 if (offset
>= inode
->i_size
)
3812 * If the hole extends beyond i_size, set the hole
3813 * to end after the page that contains i_size
3815 if (offset
+ length
> inode
->i_size
) {
3816 length
= inode
->i_size
+
3817 PAGE_SIZE
- (inode
->i_size
& (PAGE_SIZE
- 1)) -
3821 if (offset
& (sb
->s_blocksize
- 1) ||
3822 (offset
+ length
) & (sb
->s_blocksize
- 1)) {
3824 * Attach jinode to inode for jbd2 if we do any zeroing of
3827 ret
= ext4_inode_attach_jinode(inode
);
3833 /* Wait all existing dio workers, newcomers will block on i_mutex */
3834 ext4_inode_block_unlocked_dio(inode
);
3835 inode_dio_wait(inode
);
3838 * Prevent page faults from reinstantiating pages we have released from
3841 down_write(&EXT4_I(inode
)->i_mmap_sem
);
3842 first_block_offset
= round_up(offset
, sb
->s_blocksize
);
3843 last_block_offset
= round_down((offset
+ length
), sb
->s_blocksize
) - 1;
3845 /* Now release the pages and zero block aligned part of pages*/
3846 if (last_block_offset
> first_block_offset
) {
3847 ret
= ext4_update_disksize_before_punch(inode
, offset
, length
);
3850 truncate_pagecache_range(inode
, first_block_offset
,
3854 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3855 credits
= ext4_writepage_trans_blocks(inode
);
3857 credits
= ext4_blocks_for_truncate(inode
);
3858 handle
= ext4_journal_start(inode
, EXT4_HT_TRUNCATE
, credits
);
3859 if (IS_ERR(handle
)) {
3860 ret
= PTR_ERR(handle
);
3861 ext4_std_error(sb
, ret
);
3865 ret
= ext4_zero_partial_blocks(handle
, inode
, offset
,
3870 first_block
= (offset
+ sb
->s_blocksize
- 1) >>
3871 EXT4_BLOCK_SIZE_BITS(sb
);
3872 stop_block
= (offset
+ length
) >> EXT4_BLOCK_SIZE_BITS(sb
);
3874 /* If there are no blocks to remove, return now */
3875 if (first_block
>= stop_block
)
3878 down_write(&EXT4_I(inode
)->i_data_sem
);
3879 ext4_discard_preallocations(inode
);
3881 ret
= ext4_es_remove_extent(inode
, first_block
,
3882 stop_block
- first_block
);
3884 up_write(&EXT4_I(inode
)->i_data_sem
);
3888 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3889 ret
= ext4_ext_remove_space(inode
, first_block
,
3892 ret
= ext4_ind_remove_space(handle
, inode
, first_block
,
3895 up_write(&EXT4_I(inode
)->i_data_sem
);
3897 ext4_handle_sync(handle
);
3899 inode
->i_mtime
= inode
->i_ctime
= ext4_current_time(inode
);
3900 ext4_mark_inode_dirty(handle
, inode
);
3902 ext4_journal_stop(handle
);
3904 up_write(&EXT4_I(inode
)->i_mmap_sem
);
3905 ext4_inode_resume_unlocked_dio(inode
);
3907 inode_unlock(inode
);
3911 int ext4_inode_attach_jinode(struct inode
*inode
)
3913 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3914 struct jbd2_inode
*jinode
;
3916 if (ei
->jinode
|| !EXT4_SB(inode
->i_sb
)->s_journal
)
3919 jinode
= jbd2_alloc_inode(GFP_KERNEL
);
3920 spin_lock(&inode
->i_lock
);
3923 spin_unlock(&inode
->i_lock
);
3926 ei
->jinode
= jinode
;
3927 jbd2_journal_init_jbd_inode(ei
->jinode
, inode
);
3930 spin_unlock(&inode
->i_lock
);
3931 if (unlikely(jinode
!= NULL
))
3932 jbd2_free_inode(jinode
);
3939 * We block out ext4_get_block() block instantiations across the entire
3940 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3941 * simultaneously on behalf of the same inode.
3943 * As we work through the truncate and commit bits of it to the journal there
3944 * is one core, guiding principle: the file's tree must always be consistent on
3945 * disk. We must be able to restart the truncate after a crash.
3947 * The file's tree may be transiently inconsistent in memory (although it
3948 * probably isn't), but whenever we close off and commit a journal transaction,
3949 * the contents of (the filesystem + the journal) must be consistent and
3950 * restartable. It's pretty simple, really: bottom up, right to left (although
3951 * left-to-right works OK too).
3953 * Note that at recovery time, journal replay occurs *before* the restart of
3954 * truncate against the orphan inode list.
3956 * The committed inode has the new, desired i_size (which is the same as
3957 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3958 * that this inode's truncate did not complete and it will again call
3959 * ext4_truncate() to have another go. So there will be instantiated blocks
3960 * to the right of the truncation point in a crashed ext4 filesystem. But
3961 * that's fine - as long as they are linked from the inode, the post-crash
3962 * ext4_truncate() run will find them and release them.
3964 void ext4_truncate(struct inode
*inode
)
3966 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3967 unsigned int credits
;
3969 struct address_space
*mapping
= inode
->i_mapping
;
3972 * There is a possibility that we're either freeing the inode
3973 * or it's a completely new inode. In those cases we might not
3974 * have i_mutex locked because it's not necessary.
3976 if (!(inode
->i_state
& (I_NEW
|I_FREEING
)))
3977 WARN_ON(!inode_is_locked(inode
));
3978 trace_ext4_truncate_enter(inode
);
3980 if (!ext4_can_truncate(inode
))
3983 ext4_clear_inode_flag(inode
, EXT4_INODE_EOFBLOCKS
);
3985 if (inode
->i_size
== 0 && !test_opt(inode
->i_sb
, NO_AUTO_DA_ALLOC
))
3986 ext4_set_inode_state(inode
, EXT4_STATE_DA_ALLOC_CLOSE
);
3988 if (ext4_has_inline_data(inode
)) {
3991 ext4_inline_data_truncate(inode
, &has_inline
);
3996 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3997 if (inode
->i_size
& (inode
->i_sb
->s_blocksize
- 1)) {
3998 if (ext4_inode_attach_jinode(inode
) < 0)
4002 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
4003 credits
= ext4_writepage_trans_blocks(inode
);
4005 credits
= ext4_blocks_for_truncate(inode
);
4007 handle
= ext4_journal_start(inode
, EXT4_HT_TRUNCATE
, credits
);
4008 if (IS_ERR(handle
)) {
4009 ext4_std_error(inode
->i_sb
, PTR_ERR(handle
));
4013 if (inode
->i_size
& (inode
->i_sb
->s_blocksize
- 1))
4014 ext4_block_truncate_page(handle
, mapping
, inode
->i_size
);
4017 * We add the inode to the orphan list, so that if this
4018 * truncate spans multiple transactions, and we crash, we will
4019 * resume the truncate when the filesystem recovers. It also
4020 * marks the inode dirty, to catch the new size.
4022 * Implication: the file must always be in a sane, consistent
4023 * truncatable state while each transaction commits.
4025 if (ext4_orphan_add(handle
, inode
))
4028 down_write(&EXT4_I(inode
)->i_data_sem
);
4030 ext4_discard_preallocations(inode
);
4032 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
4033 ext4_ext_truncate(handle
, inode
);
4035 ext4_ind_truncate(handle
, inode
);
4037 up_write(&ei
->i_data_sem
);
4040 ext4_handle_sync(handle
);
4044 * If this was a simple ftruncate() and the file will remain alive,
4045 * then we need to clear up the orphan record which we created above.
4046 * However, if this was a real unlink then we were called by
4047 * ext4_evict_inode(), and we allow that function to clean up the
4048 * orphan info for us.
4051 ext4_orphan_del(handle
, inode
);
4053 inode
->i_mtime
= inode
->i_ctime
= ext4_current_time(inode
);
4054 ext4_mark_inode_dirty(handle
, inode
);
4055 ext4_journal_stop(handle
);
4057 trace_ext4_truncate_exit(inode
);
4061 * ext4_get_inode_loc returns with an extra refcount against the inode's
4062 * underlying buffer_head on success. If 'in_mem' is true, we have all
4063 * data in memory that is needed to recreate the on-disk version of this
4066 static int __ext4_get_inode_loc(struct inode
*inode
,
4067 struct ext4_iloc
*iloc
, int in_mem
)
4069 struct ext4_group_desc
*gdp
;
4070 struct buffer_head
*bh
;
4071 struct super_block
*sb
= inode
->i_sb
;
4073 int inodes_per_block
, inode_offset
;
4076 if (!ext4_valid_inum(sb
, inode
->i_ino
))
4077 return -EFSCORRUPTED
;
4079 iloc
->block_group
= (inode
->i_ino
- 1) / EXT4_INODES_PER_GROUP(sb
);
4080 gdp
= ext4_get_group_desc(sb
, iloc
->block_group
, NULL
);
4085 * Figure out the offset within the block group inode table
4087 inodes_per_block
= EXT4_SB(sb
)->s_inodes_per_block
;
4088 inode_offset
= ((inode
->i_ino
- 1) %
4089 EXT4_INODES_PER_GROUP(sb
));
4090 block
= ext4_inode_table(sb
, gdp
) + (inode_offset
/ inodes_per_block
);
4091 iloc
->offset
= (inode_offset
% inodes_per_block
) * EXT4_INODE_SIZE(sb
);
4093 bh
= sb_getblk(sb
, block
);
4096 if (!buffer_uptodate(bh
)) {
4100 * If the buffer has the write error flag, we have failed
4101 * to write out another inode in the same block. In this
4102 * case, we don't have to read the block because we may
4103 * read the old inode data successfully.
4105 if (buffer_write_io_error(bh
) && !buffer_uptodate(bh
))
4106 set_buffer_uptodate(bh
);
4108 if (buffer_uptodate(bh
)) {
4109 /* someone brought it uptodate while we waited */
4115 * If we have all information of the inode in memory and this
4116 * is the only valid inode in the block, we need not read the
4120 struct buffer_head
*bitmap_bh
;
4123 start
= inode_offset
& ~(inodes_per_block
- 1);
4125 /* Is the inode bitmap in cache? */
4126 bitmap_bh
= sb_getblk(sb
, ext4_inode_bitmap(sb
, gdp
));
4127 if (unlikely(!bitmap_bh
))
4131 * If the inode bitmap isn't in cache then the
4132 * optimisation may end up performing two reads instead
4133 * of one, so skip it.
4135 if (!buffer_uptodate(bitmap_bh
)) {
4139 for (i
= start
; i
< start
+ inodes_per_block
; i
++) {
4140 if (i
== inode_offset
)
4142 if (ext4_test_bit(i
, bitmap_bh
->b_data
))
4146 if (i
== start
+ inodes_per_block
) {
4147 /* all other inodes are free, so skip I/O */
4148 memset(bh
->b_data
, 0, bh
->b_size
);
4149 set_buffer_uptodate(bh
);
4157 * If we need to do any I/O, try to pre-readahead extra
4158 * blocks from the inode table.
4160 if (EXT4_SB(sb
)->s_inode_readahead_blks
) {
4161 ext4_fsblk_t b
, end
, table
;
4163 __u32 ra_blks
= EXT4_SB(sb
)->s_inode_readahead_blks
;
4165 table
= ext4_inode_table(sb
, gdp
);
4166 /* s_inode_readahead_blks is always a power of 2 */
4167 b
= block
& ~((ext4_fsblk_t
) ra_blks
- 1);
4171 num
= EXT4_INODES_PER_GROUP(sb
);
4172 if (ext4_has_group_desc_csum(sb
))
4173 num
-= ext4_itable_unused_count(sb
, gdp
);
4174 table
+= num
/ inodes_per_block
;
4178 sb_breadahead(sb
, b
++);
4182 * There are other valid inodes in the buffer, this inode
4183 * has in-inode xattrs, or we don't have this inode in memory.
4184 * Read the block from disk.
4186 trace_ext4_load_inode(inode
);
4188 bh
->b_end_io
= end_buffer_read_sync
;
4189 submit_bh(READ
| REQ_META
| REQ_PRIO
, bh
);
4191 if (!buffer_uptodate(bh
)) {
4192 EXT4_ERROR_INODE_BLOCK(inode
, block
,
4193 "unable to read itable block");
4203 int ext4_get_inode_loc(struct inode
*inode
, struct ext4_iloc
*iloc
)
4205 /* We have all inode data except xattrs in memory here. */
4206 return __ext4_get_inode_loc(inode
, iloc
,
4207 !ext4_test_inode_state(inode
, EXT4_STATE_XATTR
));
4210 void ext4_set_inode_flags(struct inode
*inode
)
4212 unsigned int flags
= EXT4_I(inode
)->i_flags
;
4213 unsigned int new_fl
= 0;
4215 if (flags
& EXT4_SYNC_FL
)
4217 if (flags
& EXT4_APPEND_FL
)
4219 if (flags
& EXT4_IMMUTABLE_FL
)
4220 new_fl
|= S_IMMUTABLE
;
4221 if (flags
& EXT4_NOATIME_FL
)
4222 new_fl
|= S_NOATIME
;
4223 if (flags
& EXT4_DIRSYNC_FL
)
4224 new_fl
|= S_DIRSYNC
;
4225 if (test_opt(inode
->i_sb
, DAX
) && S_ISREG(inode
->i_mode
))
4227 inode_set_flags(inode
, new_fl
,
4228 S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
|S_DAX
);
4231 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4232 void ext4_get_inode_flags(struct ext4_inode_info
*ei
)
4234 unsigned int vfs_fl
;
4235 unsigned long old_fl
, new_fl
;
4238 vfs_fl
= ei
->vfs_inode
.i_flags
;
4239 old_fl
= ei
->i_flags
;
4240 new_fl
= old_fl
& ~(EXT4_SYNC_FL
|EXT4_APPEND_FL
|
4241 EXT4_IMMUTABLE_FL
|EXT4_NOATIME_FL
|
4243 if (vfs_fl
& S_SYNC
)
4244 new_fl
|= EXT4_SYNC_FL
;
4245 if (vfs_fl
& S_APPEND
)
4246 new_fl
|= EXT4_APPEND_FL
;
4247 if (vfs_fl
& S_IMMUTABLE
)
4248 new_fl
|= EXT4_IMMUTABLE_FL
;
4249 if (vfs_fl
& S_NOATIME
)
4250 new_fl
|= EXT4_NOATIME_FL
;
4251 if (vfs_fl
& S_DIRSYNC
)
4252 new_fl
|= EXT4_DIRSYNC_FL
;
4253 } while (cmpxchg(&ei
->i_flags
, old_fl
, new_fl
) != old_fl
);
4256 static blkcnt_t
ext4_inode_blocks(struct ext4_inode
*raw_inode
,
4257 struct ext4_inode_info
*ei
)
4260 struct inode
*inode
= &(ei
->vfs_inode
);
4261 struct super_block
*sb
= inode
->i_sb
;
4263 if (ext4_has_feature_huge_file(sb
)) {
4264 /* we are using combined 48 bit field */
4265 i_blocks
= ((u64
)le16_to_cpu(raw_inode
->i_blocks_high
)) << 32 |
4266 le32_to_cpu(raw_inode
->i_blocks_lo
);
4267 if (ext4_test_inode_flag(inode
, EXT4_INODE_HUGE_FILE
)) {
4268 /* i_blocks represent file system block size */
4269 return i_blocks
<< (inode
->i_blkbits
- 9);
4274 return le32_to_cpu(raw_inode
->i_blocks_lo
);
4278 static inline void ext4_iget_extra_inode(struct inode
*inode
,
4279 struct ext4_inode
*raw_inode
,
4280 struct ext4_inode_info
*ei
)
4282 __le32
*magic
= (void *)raw_inode
+
4283 EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
;
4284 if (*magic
== cpu_to_le32(EXT4_XATTR_MAGIC
)) {
4285 ext4_set_inode_state(inode
, EXT4_STATE_XATTR
);
4286 ext4_find_inline_data_nolock(inode
);
4288 EXT4_I(inode
)->i_inline_off
= 0;
4291 int ext4_get_projid(struct inode
*inode
, kprojid_t
*projid
)
4293 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode
->i_sb
, EXT4_FEATURE_RO_COMPAT_PROJECT
))
4295 *projid
= EXT4_I(inode
)->i_projid
;
4299 struct inode
*ext4_iget(struct super_block
*sb
, unsigned long ino
)
4301 struct ext4_iloc iloc
;
4302 struct ext4_inode
*raw_inode
;
4303 struct ext4_inode_info
*ei
;
4304 struct inode
*inode
;
4305 journal_t
*journal
= EXT4_SB(sb
)->s_journal
;
4312 inode
= iget_locked(sb
, ino
);
4314 return ERR_PTR(-ENOMEM
);
4315 if (!(inode
->i_state
& I_NEW
))
4321 ret
= __ext4_get_inode_loc(inode
, &iloc
, 0);
4324 raw_inode
= ext4_raw_inode(&iloc
);
4326 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4327 ei
->i_extra_isize
= le16_to_cpu(raw_inode
->i_extra_isize
);
4328 if (EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
>
4329 EXT4_INODE_SIZE(inode
->i_sb
)) {
4330 EXT4_ERROR_INODE(inode
, "bad extra_isize (%u != %u)",
4331 EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
,
4332 EXT4_INODE_SIZE(inode
->i_sb
));
4333 ret
= -EFSCORRUPTED
;
4337 ei
->i_extra_isize
= 0;
4339 /* Precompute checksum seed for inode metadata */
4340 if (ext4_has_metadata_csum(sb
)) {
4341 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
4343 __le32 inum
= cpu_to_le32(inode
->i_ino
);
4344 __le32 gen
= raw_inode
->i_generation
;
4345 csum
= ext4_chksum(sbi
, sbi
->s_csum_seed
, (__u8
*)&inum
,
4347 ei
->i_csum_seed
= ext4_chksum(sbi
, csum
, (__u8
*)&gen
,
4351 if (!ext4_inode_csum_verify(inode
, raw_inode
, ei
)) {
4352 EXT4_ERROR_INODE(inode
, "checksum invalid");
4357 inode
->i_mode
= le16_to_cpu(raw_inode
->i_mode
);
4358 i_uid
= (uid_t
)le16_to_cpu(raw_inode
->i_uid_low
);
4359 i_gid
= (gid_t
)le16_to_cpu(raw_inode
->i_gid_low
);
4360 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
, EXT4_FEATURE_RO_COMPAT_PROJECT
) &&
4361 EXT4_INODE_SIZE(sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
4362 EXT4_FITS_IN_INODE(raw_inode
, ei
, i_projid
))
4363 i_projid
= (projid_t
)le32_to_cpu(raw_inode
->i_projid
);
4365 i_projid
= EXT4_DEF_PROJID
;
4367 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
4368 i_uid
|= le16_to_cpu(raw_inode
->i_uid_high
) << 16;
4369 i_gid
|= le16_to_cpu(raw_inode
->i_gid_high
) << 16;
4371 i_uid_write(inode
, i_uid
);
4372 i_gid_write(inode
, i_gid
);
4373 ei
->i_projid
= make_kprojid(&init_user_ns
, i_projid
);
4374 set_nlink(inode
, le16_to_cpu(raw_inode
->i_links_count
));
4376 ext4_clear_state_flags(ei
); /* Only relevant on 32-bit archs */
4377 ei
->i_inline_off
= 0;
4378 ei
->i_dir_start_lookup
= 0;
4379 ei
->i_dtime
= le32_to_cpu(raw_inode
->i_dtime
);
4380 /* We now have enough fields to check if the inode was active or not.
4381 * This is needed because nfsd might try to access dead inodes
4382 * the test is that same one that e2fsck uses
4383 * NeilBrown 1999oct15
4385 if (inode
->i_nlink
== 0) {
4386 if ((inode
->i_mode
== 0 ||
4387 !(EXT4_SB(inode
->i_sb
)->s_mount_state
& EXT4_ORPHAN_FS
)) &&
4388 ino
!= EXT4_BOOT_LOADER_INO
) {
4389 /* this inode is deleted */
4393 /* The only unlinked inodes we let through here have
4394 * valid i_mode and are being read by the orphan
4395 * recovery code: that's fine, we're about to complete
4396 * the process of deleting those.
4397 * OR it is the EXT4_BOOT_LOADER_INO which is
4398 * not initialized on a new filesystem. */
4400 ei
->i_flags
= le32_to_cpu(raw_inode
->i_flags
);
4401 inode
->i_blocks
= ext4_inode_blocks(raw_inode
, ei
);
4402 ei
->i_file_acl
= le32_to_cpu(raw_inode
->i_file_acl_lo
);
4403 if (ext4_has_feature_64bit(sb
))
4405 ((__u64
)le16_to_cpu(raw_inode
->i_file_acl_high
)) << 32;
4406 inode
->i_size
= ext4_isize(raw_inode
);
4407 ei
->i_disksize
= inode
->i_size
;
4409 ei
->i_reserved_quota
= 0;
4411 inode
->i_generation
= le32_to_cpu(raw_inode
->i_generation
);
4412 ei
->i_block_group
= iloc
.block_group
;
4413 ei
->i_last_alloc_group
= ~0;
4415 * NOTE! The in-memory inode i_data array is in little-endian order
4416 * even on big-endian machines: we do NOT byteswap the block numbers!
4418 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
4419 ei
->i_data
[block
] = raw_inode
->i_block
[block
];
4420 INIT_LIST_HEAD(&ei
->i_orphan
);
4423 * Set transaction id's of transactions that have to be committed
4424 * to finish f[data]sync. We set them to currently running transaction
4425 * as we cannot be sure that the inode or some of its metadata isn't
4426 * part of the transaction - the inode could have been reclaimed and
4427 * now it is reread from disk.
4430 transaction_t
*transaction
;
4433 read_lock(&journal
->j_state_lock
);
4434 if (journal
->j_running_transaction
)
4435 transaction
= journal
->j_running_transaction
;
4437 transaction
= journal
->j_committing_transaction
;
4439 tid
= transaction
->t_tid
;
4441 tid
= journal
->j_commit_sequence
;
4442 read_unlock(&journal
->j_state_lock
);
4443 ei
->i_sync_tid
= tid
;
4444 ei
->i_datasync_tid
= tid
;
4447 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4448 if (ei
->i_extra_isize
== 0) {
4449 /* The extra space is currently unused. Use it. */
4450 ei
->i_extra_isize
= sizeof(struct ext4_inode
) -
4451 EXT4_GOOD_OLD_INODE_SIZE
;
4453 ext4_iget_extra_inode(inode
, raw_inode
, ei
);
4457 EXT4_INODE_GET_XTIME(i_ctime
, inode
, raw_inode
);
4458 EXT4_INODE_GET_XTIME(i_mtime
, inode
, raw_inode
);
4459 EXT4_INODE_GET_XTIME(i_atime
, inode
, raw_inode
);
4460 EXT4_EINODE_GET_XTIME(i_crtime
, ei
, raw_inode
);
4462 if (likely(!test_opt2(inode
->i_sb
, HURD_COMPAT
))) {
4463 inode
->i_version
= le32_to_cpu(raw_inode
->i_disk_version
);
4464 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4465 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
4467 (__u64
)(le32_to_cpu(raw_inode
->i_version_hi
)) << 32;
4472 if (ei
->i_file_acl
&&
4473 !ext4_data_block_valid(EXT4_SB(sb
), ei
->i_file_acl
, 1)) {
4474 EXT4_ERROR_INODE(inode
, "bad extended attribute block %llu",
4476 ret
= -EFSCORRUPTED
;
4478 } else if (!ext4_has_inline_data(inode
)) {
4479 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
4480 if ((S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
4481 (S_ISLNK(inode
->i_mode
) &&
4482 !ext4_inode_is_fast_symlink(inode
))))
4483 /* Validate extent which is part of inode */
4484 ret
= ext4_ext_check_inode(inode
);
4485 } else if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
4486 (S_ISLNK(inode
->i_mode
) &&
4487 !ext4_inode_is_fast_symlink(inode
))) {
4488 /* Validate block references which are part of inode */
4489 ret
= ext4_ind_check_inode(inode
);
4495 if (S_ISREG(inode
->i_mode
)) {
4496 inode
->i_op
= &ext4_file_inode_operations
;
4497 inode
->i_fop
= &ext4_file_operations
;
4498 ext4_set_aops(inode
);
4499 } else if (S_ISDIR(inode
->i_mode
)) {
4500 inode
->i_op
= &ext4_dir_inode_operations
;
4501 inode
->i_fop
= &ext4_dir_operations
;
4502 } else if (S_ISLNK(inode
->i_mode
)) {
4503 if (ext4_encrypted_inode(inode
)) {
4504 inode
->i_op
= &ext4_encrypted_symlink_inode_operations
;
4505 ext4_set_aops(inode
);
4506 } else if (ext4_inode_is_fast_symlink(inode
)) {
4507 inode
->i_link
= (char *)ei
->i_data
;
4508 inode
->i_op
= &ext4_fast_symlink_inode_operations
;
4509 nd_terminate_link(ei
->i_data
, inode
->i_size
,
4510 sizeof(ei
->i_data
) - 1);
4512 inode
->i_op
= &ext4_symlink_inode_operations
;
4513 ext4_set_aops(inode
);
4515 inode_nohighmem(inode
);
4516 } else if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
) ||
4517 S_ISFIFO(inode
->i_mode
) || S_ISSOCK(inode
->i_mode
)) {
4518 inode
->i_op
= &ext4_special_inode_operations
;
4519 if (raw_inode
->i_block
[0])
4520 init_special_inode(inode
, inode
->i_mode
,
4521 old_decode_dev(le32_to_cpu(raw_inode
->i_block
[0])));
4523 init_special_inode(inode
, inode
->i_mode
,
4524 new_decode_dev(le32_to_cpu(raw_inode
->i_block
[1])));
4525 } else if (ino
== EXT4_BOOT_LOADER_INO
) {
4526 make_bad_inode(inode
);
4528 ret
= -EFSCORRUPTED
;
4529 EXT4_ERROR_INODE(inode
, "bogus i_mode (%o)", inode
->i_mode
);
4533 ext4_set_inode_flags(inode
);
4534 unlock_new_inode(inode
);
4540 return ERR_PTR(ret
);
4543 struct inode
*ext4_iget_normal(struct super_block
*sb
, unsigned long ino
)
4545 if (ino
< EXT4_FIRST_INO(sb
) && ino
!= EXT4_ROOT_INO
)
4546 return ERR_PTR(-EFSCORRUPTED
);
4547 return ext4_iget(sb
, ino
);
4550 static int ext4_inode_blocks_set(handle_t
*handle
,
4551 struct ext4_inode
*raw_inode
,
4552 struct ext4_inode_info
*ei
)
4554 struct inode
*inode
= &(ei
->vfs_inode
);
4555 u64 i_blocks
= inode
->i_blocks
;
4556 struct super_block
*sb
= inode
->i_sb
;
4558 if (i_blocks
<= ~0U) {
4560 * i_blocks can be represented in a 32 bit variable
4561 * as multiple of 512 bytes
4563 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
4564 raw_inode
->i_blocks_high
= 0;
4565 ext4_clear_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
4568 if (!ext4_has_feature_huge_file(sb
))
4571 if (i_blocks
<= 0xffffffffffffULL
) {
4573 * i_blocks can be represented in a 48 bit variable
4574 * as multiple of 512 bytes
4576 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
4577 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
4578 ext4_clear_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
4580 ext4_set_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
4581 /* i_block is stored in file system block size */
4582 i_blocks
= i_blocks
>> (inode
->i_blkbits
- 9);
4583 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
4584 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
4589 struct other_inode
{
4590 unsigned long orig_ino
;
4591 struct ext4_inode
*raw_inode
;
4594 static int other_inode_match(struct inode
* inode
, unsigned long ino
,
4597 struct other_inode
*oi
= (struct other_inode
*) data
;
4599 if ((inode
->i_ino
!= ino
) ||
4600 (inode
->i_state
& (I_FREEING
| I_WILL_FREE
| I_NEW
|
4601 I_DIRTY_SYNC
| I_DIRTY_DATASYNC
)) ||
4602 ((inode
->i_state
& I_DIRTY_TIME
) == 0))
4604 spin_lock(&inode
->i_lock
);
4605 if (((inode
->i_state
& (I_FREEING
| I_WILL_FREE
| I_NEW
|
4606 I_DIRTY_SYNC
| I_DIRTY_DATASYNC
)) == 0) &&
4607 (inode
->i_state
& I_DIRTY_TIME
)) {
4608 struct ext4_inode_info
*ei
= EXT4_I(inode
);
4610 inode
->i_state
&= ~(I_DIRTY_TIME
| I_DIRTY_TIME_EXPIRED
);
4611 spin_unlock(&inode
->i_lock
);
4613 spin_lock(&ei
->i_raw_lock
);
4614 EXT4_INODE_SET_XTIME(i_ctime
, inode
, oi
->raw_inode
);
4615 EXT4_INODE_SET_XTIME(i_mtime
, inode
, oi
->raw_inode
);
4616 EXT4_INODE_SET_XTIME(i_atime
, inode
, oi
->raw_inode
);
4617 ext4_inode_csum_set(inode
, oi
->raw_inode
, ei
);
4618 spin_unlock(&ei
->i_raw_lock
);
4619 trace_ext4_other_inode_update_time(inode
, oi
->orig_ino
);
4622 spin_unlock(&inode
->i_lock
);
4627 * Opportunistically update the other time fields for other inodes in
4628 * the same inode table block.
4630 static void ext4_update_other_inodes_time(struct super_block
*sb
,
4631 unsigned long orig_ino
, char *buf
)
4633 struct other_inode oi
;
4635 int i
, inodes_per_block
= EXT4_SB(sb
)->s_inodes_per_block
;
4636 int inode_size
= EXT4_INODE_SIZE(sb
);
4638 oi
.orig_ino
= orig_ino
;
4640 * Calculate the first inode in the inode table block. Inode
4641 * numbers are one-based. That is, the first inode in a block
4642 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4644 ino
= ((orig_ino
- 1) & ~(inodes_per_block
- 1)) + 1;
4645 for (i
= 0; i
< inodes_per_block
; i
++, ino
++, buf
+= inode_size
) {
4646 if (ino
== orig_ino
)
4648 oi
.raw_inode
= (struct ext4_inode
*) buf
;
4649 (void) find_inode_nowait(sb
, ino
, other_inode_match
, &oi
);
4654 * Post the struct inode info into an on-disk inode location in the
4655 * buffer-cache. This gobbles the caller's reference to the
4656 * buffer_head in the inode location struct.
4658 * The caller must have write access to iloc->bh.
4660 static int ext4_do_update_inode(handle_t
*handle
,
4661 struct inode
*inode
,
4662 struct ext4_iloc
*iloc
)
4664 struct ext4_inode
*raw_inode
= ext4_raw_inode(iloc
);
4665 struct ext4_inode_info
*ei
= EXT4_I(inode
);
4666 struct buffer_head
*bh
= iloc
->bh
;
4667 struct super_block
*sb
= inode
->i_sb
;
4668 int err
= 0, rc
, block
;
4669 int need_datasync
= 0, set_large_file
= 0;
4674 spin_lock(&ei
->i_raw_lock
);
4676 /* For fields not tracked in the in-memory inode,
4677 * initialise them to zero for new inodes. */
4678 if (ext4_test_inode_state(inode
, EXT4_STATE_NEW
))
4679 memset(raw_inode
, 0, EXT4_SB(inode
->i_sb
)->s_inode_size
);
4681 ext4_get_inode_flags(ei
);
4682 raw_inode
->i_mode
= cpu_to_le16(inode
->i_mode
);
4683 i_uid
= i_uid_read(inode
);
4684 i_gid
= i_gid_read(inode
);
4685 i_projid
= from_kprojid(&init_user_ns
, ei
->i_projid
);
4686 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
4687 raw_inode
->i_uid_low
= cpu_to_le16(low_16_bits(i_uid
));
4688 raw_inode
->i_gid_low
= cpu_to_le16(low_16_bits(i_gid
));
4690 * Fix up interoperability with old kernels. Otherwise, old inodes get
4691 * re-used with the upper 16 bits of the uid/gid intact
4694 raw_inode
->i_uid_high
=
4695 cpu_to_le16(high_16_bits(i_uid
));
4696 raw_inode
->i_gid_high
=
4697 cpu_to_le16(high_16_bits(i_gid
));
4699 raw_inode
->i_uid_high
= 0;
4700 raw_inode
->i_gid_high
= 0;
4703 raw_inode
->i_uid_low
= cpu_to_le16(fs_high2lowuid(i_uid
));
4704 raw_inode
->i_gid_low
= cpu_to_le16(fs_high2lowgid(i_gid
));
4705 raw_inode
->i_uid_high
= 0;
4706 raw_inode
->i_gid_high
= 0;
4708 raw_inode
->i_links_count
= cpu_to_le16(inode
->i_nlink
);
4710 EXT4_INODE_SET_XTIME(i_ctime
, inode
, raw_inode
);
4711 EXT4_INODE_SET_XTIME(i_mtime
, inode
, raw_inode
);
4712 EXT4_INODE_SET_XTIME(i_atime
, inode
, raw_inode
);
4713 EXT4_EINODE_SET_XTIME(i_crtime
, ei
, raw_inode
);
4715 err
= ext4_inode_blocks_set(handle
, raw_inode
, ei
);
4717 spin_unlock(&ei
->i_raw_lock
);
4720 raw_inode
->i_dtime
= cpu_to_le32(ei
->i_dtime
);
4721 raw_inode
->i_flags
= cpu_to_le32(ei
->i_flags
& 0xFFFFFFFF);
4722 if (likely(!test_opt2(inode
->i_sb
, HURD_COMPAT
)))
4723 raw_inode
->i_file_acl_high
=
4724 cpu_to_le16(ei
->i_file_acl
>> 32);
4725 raw_inode
->i_file_acl_lo
= cpu_to_le32(ei
->i_file_acl
);
4726 if (ei
->i_disksize
!= ext4_isize(raw_inode
)) {
4727 ext4_isize_set(raw_inode
, ei
->i_disksize
);
4730 if (ei
->i_disksize
> 0x7fffffffULL
) {
4731 if (!ext4_has_feature_large_file(sb
) ||
4732 EXT4_SB(sb
)->s_es
->s_rev_level
==
4733 cpu_to_le32(EXT4_GOOD_OLD_REV
))
4736 raw_inode
->i_generation
= cpu_to_le32(inode
->i_generation
);
4737 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
4738 if (old_valid_dev(inode
->i_rdev
)) {
4739 raw_inode
->i_block
[0] =
4740 cpu_to_le32(old_encode_dev(inode
->i_rdev
));
4741 raw_inode
->i_block
[1] = 0;
4743 raw_inode
->i_block
[0] = 0;
4744 raw_inode
->i_block
[1] =
4745 cpu_to_le32(new_encode_dev(inode
->i_rdev
));
4746 raw_inode
->i_block
[2] = 0;
4748 } else if (!ext4_has_inline_data(inode
)) {
4749 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
4750 raw_inode
->i_block
[block
] = ei
->i_data
[block
];
4753 if (likely(!test_opt2(inode
->i_sb
, HURD_COMPAT
))) {
4754 raw_inode
->i_disk_version
= cpu_to_le32(inode
->i_version
);
4755 if (ei
->i_extra_isize
) {
4756 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
4757 raw_inode
->i_version_hi
=
4758 cpu_to_le32(inode
->i_version
>> 32);
4759 raw_inode
->i_extra_isize
=
4760 cpu_to_le16(ei
->i_extra_isize
);
4764 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(inode
->i_sb
,
4765 EXT4_FEATURE_RO_COMPAT_PROJECT
) &&
4766 i_projid
!= EXT4_DEF_PROJID
);
4768 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
4769 EXT4_FITS_IN_INODE(raw_inode
, ei
, i_projid
))
4770 raw_inode
->i_projid
= cpu_to_le32(i_projid
);
4772 ext4_inode_csum_set(inode
, raw_inode
, ei
);
4773 spin_unlock(&ei
->i_raw_lock
);
4774 if (inode
->i_sb
->s_flags
& MS_LAZYTIME
)
4775 ext4_update_other_inodes_time(inode
->i_sb
, inode
->i_ino
,
4778 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
4779 rc
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
4782 ext4_clear_inode_state(inode
, EXT4_STATE_NEW
);
4783 if (set_large_file
) {
4784 BUFFER_TRACE(EXT4_SB(sb
)->s_sbh
, "get write access");
4785 err
= ext4_journal_get_write_access(handle
, EXT4_SB(sb
)->s_sbh
);
4788 ext4_update_dynamic_rev(sb
);
4789 ext4_set_feature_large_file(sb
);
4790 ext4_handle_sync(handle
);
4791 err
= ext4_handle_dirty_super(handle
, sb
);
4793 ext4_update_inode_fsync_trans(handle
, inode
, need_datasync
);
4796 ext4_std_error(inode
->i_sb
, err
);
4801 * ext4_write_inode()
4803 * We are called from a few places:
4805 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4806 * Here, there will be no transaction running. We wait for any running
4807 * transaction to commit.
4809 * - Within flush work (sys_sync(), kupdate and such).
4810 * We wait on commit, if told to.
4812 * - Within iput_final() -> write_inode_now()
4813 * We wait on commit, if told to.
4815 * In all cases it is actually safe for us to return without doing anything,
4816 * because the inode has been copied into a raw inode buffer in
4817 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
4820 * Note that we are absolutely dependent upon all inode dirtiers doing the
4821 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4822 * which we are interested.
4824 * It would be a bug for them to not do this. The code:
4826 * mark_inode_dirty(inode)
4828 * inode->i_size = expr;
4830 * is in error because write_inode() could occur while `stuff()' is running,
4831 * and the new i_size will be lost. Plus the inode will no longer be on the
4832 * superblock's dirty inode list.
4834 int ext4_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
4838 if (WARN_ON_ONCE(current
->flags
& PF_MEMALLOC
))
4841 if (EXT4_SB(inode
->i_sb
)->s_journal
) {
4842 if (ext4_journal_current_handle()) {
4843 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4849 * No need to force transaction in WB_SYNC_NONE mode. Also
4850 * ext4_sync_fs() will force the commit after everything is
4853 if (wbc
->sync_mode
!= WB_SYNC_ALL
|| wbc
->for_sync
)
4856 err
= ext4_force_commit(inode
->i_sb
);
4858 struct ext4_iloc iloc
;
4860 err
= __ext4_get_inode_loc(inode
, &iloc
, 0);
4864 * sync(2) will flush the whole buffer cache. No need to do
4865 * it here separately for each inode.
4867 if (wbc
->sync_mode
== WB_SYNC_ALL
&& !wbc
->for_sync
)
4868 sync_dirty_buffer(iloc
.bh
);
4869 if (buffer_req(iloc
.bh
) && !buffer_uptodate(iloc
.bh
)) {
4870 EXT4_ERROR_INODE_BLOCK(inode
, iloc
.bh
->b_blocknr
,
4871 "IO error syncing inode");
4880 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4881 * buffers that are attached to a page stradding i_size and are undergoing
4882 * commit. In that case we have to wait for commit to finish and try again.
4884 static void ext4_wait_for_tail_page_commit(struct inode
*inode
)
4888 journal_t
*journal
= EXT4_SB(inode
->i_sb
)->s_journal
;
4889 tid_t commit_tid
= 0;
4892 offset
= inode
->i_size
& (PAGE_SIZE
- 1);
4894 * All buffers in the last page remain valid? Then there's nothing to
4895 * do. We do the check mainly to optimize the common PAGE_SIZE ==
4898 if (offset
> PAGE_SIZE
- (1 << inode
->i_blkbits
))
4901 page
= find_lock_page(inode
->i_mapping
,
4902 inode
->i_size
>> PAGE_SHIFT
);
4905 ret
= __ext4_journalled_invalidatepage(page
, offset
,
4906 PAGE_SIZE
- offset
);
4912 read_lock(&journal
->j_state_lock
);
4913 if (journal
->j_committing_transaction
)
4914 commit_tid
= journal
->j_committing_transaction
->t_tid
;
4915 read_unlock(&journal
->j_state_lock
);
4917 jbd2_log_wait_commit(journal
, commit_tid
);
4924 * Called from notify_change.
4926 * We want to trap VFS attempts to truncate the file as soon as
4927 * possible. In particular, we want to make sure that when the VFS
4928 * shrinks i_size, we put the inode on the orphan list and modify
4929 * i_disksize immediately, so that during the subsequent flushing of
4930 * dirty pages and freeing of disk blocks, we can guarantee that any
4931 * commit will leave the blocks being flushed in an unused state on
4932 * disk. (On recovery, the inode will get truncated and the blocks will
4933 * be freed, so we have a strong guarantee that no future commit will
4934 * leave these blocks visible to the user.)
4936 * Another thing we have to assure is that if we are in ordered mode
4937 * and inode is still attached to the committing transaction, we must
4938 * we start writeout of all the dirty pages which are being truncated.
4939 * This way we are sure that all the data written in the previous
4940 * transaction are already on disk (truncate waits for pages under
4943 * Called with inode->i_mutex down.
4945 int ext4_setattr(struct dentry
*dentry
, struct iattr
*attr
)
4947 struct inode
*inode
= d_inode(dentry
);
4950 const unsigned int ia_valid
= attr
->ia_valid
;
4952 error
= inode_change_ok(inode
, attr
);
4956 if (is_quota_modification(inode
, attr
)) {
4957 error
= dquot_initialize(inode
);
4961 if ((ia_valid
& ATTR_UID
&& !uid_eq(attr
->ia_uid
, inode
->i_uid
)) ||
4962 (ia_valid
& ATTR_GID
&& !gid_eq(attr
->ia_gid
, inode
->i_gid
))) {
4965 /* (user+group)*(old+new) structure, inode write (sb,
4966 * inode block, ? - but truncate inode update has it) */
4967 handle
= ext4_journal_start(inode
, EXT4_HT_QUOTA
,
4968 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode
->i_sb
) +
4969 EXT4_MAXQUOTAS_DEL_BLOCKS(inode
->i_sb
)) + 3);
4970 if (IS_ERR(handle
)) {
4971 error
= PTR_ERR(handle
);
4974 error
= dquot_transfer(inode
, attr
);
4976 ext4_journal_stop(handle
);
4979 /* Update corresponding info in inode so that everything is in
4980 * one transaction */
4981 if (attr
->ia_valid
& ATTR_UID
)
4982 inode
->i_uid
= attr
->ia_uid
;
4983 if (attr
->ia_valid
& ATTR_GID
)
4984 inode
->i_gid
= attr
->ia_gid
;
4985 error
= ext4_mark_inode_dirty(handle
, inode
);
4986 ext4_journal_stop(handle
);
4989 if (attr
->ia_valid
& ATTR_SIZE
) {
4991 loff_t oldsize
= inode
->i_size
;
4992 int shrink
= (attr
->ia_size
<= inode
->i_size
);
4994 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))) {
4995 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
4997 if (attr
->ia_size
> sbi
->s_bitmap_maxbytes
)
5000 if (!S_ISREG(inode
->i_mode
))
5003 if (IS_I_VERSION(inode
) && attr
->ia_size
!= inode
->i_size
)
5004 inode_inc_iversion(inode
);
5006 if (ext4_should_order_data(inode
) &&
5007 (attr
->ia_size
< inode
->i_size
)) {
5008 error
= ext4_begin_ordered_truncate(inode
,
5013 if (attr
->ia_size
!= inode
->i_size
) {
5014 handle
= ext4_journal_start(inode
, EXT4_HT_INODE
, 3);
5015 if (IS_ERR(handle
)) {
5016 error
= PTR_ERR(handle
);
5019 if (ext4_handle_valid(handle
) && shrink
) {
5020 error
= ext4_orphan_add(handle
, inode
);
5024 * Update c/mtime on truncate up, ext4_truncate() will
5025 * update c/mtime in shrink case below
5028 inode
->i_mtime
= ext4_current_time(inode
);
5029 inode
->i_ctime
= inode
->i_mtime
;
5031 down_write(&EXT4_I(inode
)->i_data_sem
);
5032 EXT4_I(inode
)->i_disksize
= attr
->ia_size
;
5033 rc
= ext4_mark_inode_dirty(handle
, inode
);
5037 * We have to update i_size under i_data_sem together
5038 * with i_disksize to avoid races with writeback code
5039 * running ext4_wb_update_i_disksize().
5042 i_size_write(inode
, attr
->ia_size
);
5043 up_write(&EXT4_I(inode
)->i_data_sem
);
5044 ext4_journal_stop(handle
);
5047 ext4_orphan_del(NULL
, inode
);
5052 pagecache_isize_extended(inode
, oldsize
, inode
->i_size
);
5055 * Blocks are going to be removed from the inode. Wait
5056 * for dio in flight. Temporarily disable
5057 * dioread_nolock to prevent livelock.
5060 if (!ext4_should_journal_data(inode
)) {
5061 ext4_inode_block_unlocked_dio(inode
);
5062 inode_dio_wait(inode
);
5063 ext4_inode_resume_unlocked_dio(inode
);
5065 ext4_wait_for_tail_page_commit(inode
);
5067 down_write(&EXT4_I(inode
)->i_mmap_sem
);
5069 * Truncate pagecache after we've waited for commit
5070 * in data=journal mode to make pages freeable.
5072 truncate_pagecache(inode
, inode
->i_size
);
5074 ext4_truncate(inode
);
5075 up_write(&EXT4_I(inode
)->i_mmap_sem
);
5079 setattr_copy(inode
, attr
);
5080 mark_inode_dirty(inode
);
5084 * If the call to ext4_truncate failed to get a transaction handle at
5085 * all, we need to clean up the in-core orphan list manually.
5087 if (orphan
&& inode
->i_nlink
)
5088 ext4_orphan_del(NULL
, inode
);
5090 if (!rc
&& (ia_valid
& ATTR_MODE
))
5091 rc
= posix_acl_chmod(inode
, inode
->i_mode
);
5094 ext4_std_error(inode
->i_sb
, error
);
5100 int ext4_getattr(struct vfsmount
*mnt
, struct dentry
*dentry
,
5103 struct inode
*inode
;
5104 unsigned long long delalloc_blocks
;
5106 inode
= d_inode(dentry
);
5107 generic_fillattr(inode
, stat
);
5110 * If there is inline data in the inode, the inode will normally not
5111 * have data blocks allocated (it may have an external xattr block).
5112 * Report at least one sector for such files, so tools like tar, rsync,
5113 * others doen't incorrectly think the file is completely sparse.
5115 if (unlikely(ext4_has_inline_data(inode
)))
5116 stat
->blocks
+= (stat
->size
+ 511) >> 9;
5119 * We can't update i_blocks if the block allocation is delayed
5120 * otherwise in the case of system crash before the real block
5121 * allocation is done, we will have i_blocks inconsistent with
5122 * on-disk file blocks.
5123 * We always keep i_blocks updated together with real
5124 * allocation. But to not confuse with user, stat
5125 * will return the blocks that include the delayed allocation
5126 * blocks for this file.
5128 delalloc_blocks
= EXT4_C2B(EXT4_SB(inode
->i_sb
),
5129 EXT4_I(inode
)->i_reserved_data_blocks
);
5130 stat
->blocks
+= delalloc_blocks
<< (inode
->i_sb
->s_blocksize_bits
- 9);
5134 static int ext4_index_trans_blocks(struct inode
*inode
, int lblocks
,
5137 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)))
5138 return ext4_ind_trans_blocks(inode
, lblocks
);
5139 return ext4_ext_index_trans_blocks(inode
, pextents
);
5143 * Account for index blocks, block groups bitmaps and block group
5144 * descriptor blocks if modify datablocks and index blocks
5145 * worse case, the indexs blocks spread over different block groups
5147 * If datablocks are discontiguous, they are possible to spread over
5148 * different block groups too. If they are contiguous, with flexbg,
5149 * they could still across block group boundary.
5151 * Also account for superblock, inode, quota and xattr blocks
5153 static int ext4_meta_trans_blocks(struct inode
*inode
, int lblocks
,
5156 ext4_group_t groups
, ngroups
= ext4_get_groups_count(inode
->i_sb
);
5162 * How many index blocks need to touch to map @lblocks logical blocks
5163 * to @pextents physical extents?
5165 idxblocks
= ext4_index_trans_blocks(inode
, lblocks
, pextents
);
5170 * Now let's see how many group bitmaps and group descriptors need
5173 groups
= idxblocks
+ pextents
;
5175 if (groups
> ngroups
)
5177 if (groups
> EXT4_SB(inode
->i_sb
)->s_gdb_count
)
5178 gdpblocks
= EXT4_SB(inode
->i_sb
)->s_gdb_count
;
5180 /* bitmaps and block group descriptor blocks */
5181 ret
+= groups
+ gdpblocks
;
5183 /* Blocks for super block, inode, quota and xattr blocks */
5184 ret
+= EXT4_META_TRANS_BLOCKS(inode
->i_sb
);
5190 * Calculate the total number of credits to reserve to fit
5191 * the modification of a single pages into a single transaction,
5192 * which may include multiple chunks of block allocations.
5194 * This could be called via ext4_write_begin()
5196 * We need to consider the worse case, when
5197 * one new block per extent.
5199 int ext4_writepage_trans_blocks(struct inode
*inode
)
5201 int bpp
= ext4_journal_blocks_per_page(inode
);
5204 ret
= ext4_meta_trans_blocks(inode
, bpp
, bpp
);
5206 /* Account for data blocks for journalled mode */
5207 if (ext4_should_journal_data(inode
))
5213 * Calculate the journal credits for a chunk of data modification.
5215 * This is called from DIO, fallocate or whoever calling
5216 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5218 * journal buffers for data blocks are not included here, as DIO
5219 * and fallocate do no need to journal data buffers.
5221 int ext4_chunk_trans_blocks(struct inode
*inode
, int nrblocks
)
5223 return ext4_meta_trans_blocks(inode
, nrblocks
, 1);
5227 * The caller must have previously called ext4_reserve_inode_write().
5228 * Give this, we know that the caller already has write access to iloc->bh.
5230 int ext4_mark_iloc_dirty(handle_t
*handle
,
5231 struct inode
*inode
, struct ext4_iloc
*iloc
)
5235 if (IS_I_VERSION(inode
))
5236 inode_inc_iversion(inode
);
5238 /* the do_update_inode consumes one bh->b_count */
5241 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5242 err
= ext4_do_update_inode(handle
, inode
, iloc
);
5248 * On success, We end up with an outstanding reference count against
5249 * iloc->bh. This _must_ be cleaned up later.
5253 ext4_reserve_inode_write(handle_t
*handle
, struct inode
*inode
,
5254 struct ext4_iloc
*iloc
)
5258 err
= ext4_get_inode_loc(inode
, iloc
);
5260 BUFFER_TRACE(iloc
->bh
, "get_write_access");
5261 err
= ext4_journal_get_write_access(handle
, iloc
->bh
);
5267 ext4_std_error(inode
->i_sb
, err
);
5272 * Expand an inode by new_extra_isize bytes.
5273 * Returns 0 on success or negative error number on failure.
5275 static int ext4_expand_extra_isize(struct inode
*inode
,
5276 unsigned int new_extra_isize
,
5277 struct ext4_iloc iloc
,
5280 struct ext4_inode
*raw_inode
;
5281 struct ext4_xattr_ibody_header
*header
;
5283 if (EXT4_I(inode
)->i_extra_isize
>= new_extra_isize
)
5286 raw_inode
= ext4_raw_inode(&iloc
);
5288 header
= IHDR(inode
, raw_inode
);
5290 /* No extended attributes present */
5291 if (!ext4_test_inode_state(inode
, EXT4_STATE_XATTR
) ||
5292 header
->h_magic
!= cpu_to_le32(EXT4_XATTR_MAGIC
)) {
5293 memset((void *)raw_inode
+ EXT4_GOOD_OLD_INODE_SIZE
, 0,
5295 EXT4_I(inode
)->i_extra_isize
= new_extra_isize
;
5299 /* try to expand with EAs present */
5300 return ext4_expand_extra_isize_ea(inode
, new_extra_isize
,
5305 * What we do here is to mark the in-core inode as clean with respect to inode
5306 * dirtiness (it may still be data-dirty).
5307 * This means that the in-core inode may be reaped by prune_icache
5308 * without having to perform any I/O. This is a very good thing,
5309 * because *any* task may call prune_icache - even ones which
5310 * have a transaction open against a different journal.
5312 * Is this cheating? Not really. Sure, we haven't written the
5313 * inode out, but prune_icache isn't a user-visible syncing function.
5314 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5315 * we start and wait on commits.
5317 int ext4_mark_inode_dirty(handle_t
*handle
, struct inode
*inode
)
5319 struct ext4_iloc iloc
;
5320 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
5321 static unsigned int mnt_count
;
5325 trace_ext4_mark_inode_dirty(inode
, _RET_IP_
);
5326 err
= ext4_reserve_inode_write(handle
, inode
, &iloc
);
5329 if (ext4_handle_valid(handle
) &&
5330 EXT4_I(inode
)->i_extra_isize
< sbi
->s_want_extra_isize
&&
5331 !ext4_test_inode_state(inode
, EXT4_STATE_NO_EXPAND
)) {
5333 * We need extra buffer credits since we may write into EA block
5334 * with this same handle. If journal_extend fails, then it will
5335 * only result in a minor loss of functionality for that inode.
5336 * If this is felt to be critical, then e2fsck should be run to
5337 * force a large enough s_min_extra_isize.
5339 if ((jbd2_journal_extend(handle
,
5340 EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
))) == 0) {
5341 ret
= ext4_expand_extra_isize(inode
,
5342 sbi
->s_want_extra_isize
,
5345 ext4_set_inode_state(inode
,
5346 EXT4_STATE_NO_EXPAND
);
5348 le16_to_cpu(sbi
->s_es
->s_mnt_count
)) {
5349 ext4_warning(inode
->i_sb
,
5350 "Unable to expand inode %lu. Delete"
5351 " some EAs or run e2fsck.",
5354 le16_to_cpu(sbi
->s_es
->s_mnt_count
);
5359 return ext4_mark_iloc_dirty(handle
, inode
, &iloc
);
5363 * ext4_dirty_inode() is called from __mark_inode_dirty()
5365 * We're really interested in the case where a file is being extended.
5366 * i_size has been changed by generic_commit_write() and we thus need
5367 * to include the updated inode in the current transaction.
5369 * Also, dquot_alloc_block() will always dirty the inode when blocks
5370 * are allocated to the file.
5372 * If the inode is marked synchronous, we don't honour that here - doing
5373 * so would cause a commit on atime updates, which we don't bother doing.
5374 * We handle synchronous inodes at the highest possible level.
5376 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5377 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5378 * to copy into the on-disk inode structure are the timestamp files.
5380 void ext4_dirty_inode(struct inode
*inode
, int flags
)
5384 if (flags
== I_DIRTY_TIME
)
5386 handle
= ext4_journal_start(inode
, EXT4_HT_INODE
, 2);
5390 ext4_mark_inode_dirty(handle
, inode
);
5392 ext4_journal_stop(handle
);
5399 * Bind an inode's backing buffer_head into this transaction, to prevent
5400 * it from being flushed to disk early. Unlike
5401 * ext4_reserve_inode_write, this leaves behind no bh reference and
5402 * returns no iloc structure, so the caller needs to repeat the iloc
5403 * lookup to mark the inode dirty later.
5405 static int ext4_pin_inode(handle_t
*handle
, struct inode
*inode
)
5407 struct ext4_iloc iloc
;
5411 err
= ext4_get_inode_loc(inode
, &iloc
);
5413 BUFFER_TRACE(iloc
.bh
, "get_write_access");
5414 err
= jbd2_journal_get_write_access(handle
, iloc
.bh
);
5416 err
= ext4_handle_dirty_metadata(handle
,
5422 ext4_std_error(inode
->i_sb
, err
);
5427 int ext4_change_inode_journal_flag(struct inode
*inode
, int val
)
5434 * We have to be very careful here: changing a data block's
5435 * journaling status dynamically is dangerous. If we write a
5436 * data block to the journal, change the status and then delete
5437 * that block, we risk forgetting to revoke the old log record
5438 * from the journal and so a subsequent replay can corrupt data.
5439 * So, first we make sure that the journal is empty and that
5440 * nobody is changing anything.
5443 journal
= EXT4_JOURNAL(inode
);
5446 if (is_journal_aborted(journal
))
5448 /* We have to allocate physical blocks for delalloc blocks
5449 * before flushing journal. otherwise delalloc blocks can not
5450 * be allocated any more. even more truncate on delalloc blocks
5451 * could trigger BUG by flushing delalloc blocks in journal.
5452 * There is no delalloc block in non-journal data mode.
5454 if (val
&& test_opt(inode
->i_sb
, DELALLOC
)) {
5455 err
= ext4_alloc_da_blocks(inode
);
5460 /* Wait for all existing dio workers */
5461 ext4_inode_block_unlocked_dio(inode
);
5462 inode_dio_wait(inode
);
5464 jbd2_journal_lock_updates(journal
);
5467 * OK, there are no updates running now, and all cached data is
5468 * synced to disk. We are now in a completely consistent state
5469 * which doesn't have anything in the journal, and we know that
5470 * no filesystem updates are running, so it is safe to modify
5471 * the inode's in-core data-journaling state flag now.
5475 ext4_set_inode_flag(inode
, EXT4_INODE_JOURNAL_DATA
);
5477 err
= jbd2_journal_flush(journal
);
5479 jbd2_journal_unlock_updates(journal
);
5480 ext4_inode_resume_unlocked_dio(inode
);
5483 ext4_clear_inode_flag(inode
, EXT4_INODE_JOURNAL_DATA
);
5485 ext4_set_aops(inode
);
5487 jbd2_journal_unlock_updates(journal
);
5488 ext4_inode_resume_unlocked_dio(inode
);
5490 /* Finally we can mark the inode as dirty. */
5492 handle
= ext4_journal_start(inode
, EXT4_HT_INODE
, 1);
5494 return PTR_ERR(handle
);
5496 err
= ext4_mark_inode_dirty(handle
, inode
);
5497 ext4_handle_sync(handle
);
5498 ext4_journal_stop(handle
);
5499 ext4_std_error(inode
->i_sb
, err
);
5504 static int ext4_bh_unmapped(handle_t
*handle
, struct buffer_head
*bh
)
5506 return !buffer_mapped(bh
);
5509 int ext4_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
5511 struct page
*page
= vmf
->page
;
5515 struct file
*file
= vma
->vm_file
;
5516 struct inode
*inode
= file_inode(file
);
5517 struct address_space
*mapping
= inode
->i_mapping
;
5519 get_block_t
*get_block
;
5522 sb_start_pagefault(inode
->i_sb
);
5523 file_update_time(vma
->vm_file
);
5525 down_read(&EXT4_I(inode
)->i_mmap_sem
);
5526 /* Delalloc case is easy... */
5527 if (test_opt(inode
->i_sb
, DELALLOC
) &&
5528 !ext4_should_journal_data(inode
) &&
5529 !ext4_nonda_switch(inode
->i_sb
)) {
5531 ret
= block_page_mkwrite(vma
, vmf
,
5532 ext4_da_get_block_prep
);
5533 } while (ret
== -ENOSPC
&&
5534 ext4_should_retry_alloc(inode
->i_sb
, &retries
));
5539 size
= i_size_read(inode
);
5540 /* Page got truncated from under us? */
5541 if (page
->mapping
!= mapping
|| page_offset(page
) > size
) {
5543 ret
= VM_FAULT_NOPAGE
;
5547 if (page
->index
== size
>> PAGE_SHIFT
)
5548 len
= size
& ~PAGE_MASK
;
5552 * Return if we have all the buffers mapped. This avoids the need to do
5553 * journal_start/journal_stop which can block and take a long time
5555 if (page_has_buffers(page
)) {
5556 if (!ext4_walk_page_buffers(NULL
, page_buffers(page
),
5558 ext4_bh_unmapped
)) {
5559 /* Wait so that we don't change page under IO */
5560 wait_for_stable_page(page
);
5561 ret
= VM_FAULT_LOCKED
;
5566 /* OK, we need to fill the hole... */
5567 if (ext4_should_dioread_nolock(inode
))
5568 get_block
= ext4_get_block_unwritten
;
5570 get_block
= ext4_get_block
;
5572 handle
= ext4_journal_start(inode
, EXT4_HT_WRITE_PAGE
,
5573 ext4_writepage_trans_blocks(inode
));
5574 if (IS_ERR(handle
)) {
5575 ret
= VM_FAULT_SIGBUS
;
5578 ret
= block_page_mkwrite(vma
, vmf
, get_block
);
5579 if (!ret
&& ext4_should_journal_data(inode
)) {
5580 if (ext4_walk_page_buffers(handle
, page_buffers(page
), 0,
5581 PAGE_SIZE
, NULL
, do_journal_get_write_access
)) {
5583 ret
= VM_FAULT_SIGBUS
;
5584 ext4_journal_stop(handle
);
5587 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
5589 ext4_journal_stop(handle
);
5590 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
5593 ret
= block_page_mkwrite_return(ret
);
5595 up_read(&EXT4_I(inode
)->i_mmap_sem
);
5596 sb_end_pagefault(inode
->i_sb
);
5600 int ext4_filemap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
5602 struct inode
*inode
= file_inode(vma
->vm_file
);
5605 down_read(&EXT4_I(inode
)->i_mmap_sem
);
5606 err
= filemap_fault(vma
, vmf
);
5607 up_read(&EXT4_I(inode
)->i_mmap_sem
);
5613 * Find the first extent at or after @lblk in an inode that is not a hole.
5614 * Search for @map_len blocks at most. The extent is returned in @result.
5616 * The function returns 1 if we found an extent. The function returns 0 in
5617 * case there is no extent at or after @lblk and in that case also sets
5618 * @result->es_len to 0. In case of error, the error code is returned.
5620 int ext4_get_next_extent(struct inode
*inode
, ext4_lblk_t lblk
,
5621 unsigned int map_len
, struct extent_status
*result
)
5623 struct ext4_map_blocks map
;
5624 struct extent_status es
= {};
5628 map
.m_len
= map_len
;
5631 * For non-extent based files this loop may iterate several times since
5632 * we do not determine full hole size.
5634 while (map
.m_len
> 0) {
5635 ret
= ext4_map_blocks(NULL
, inode
, &map
, 0);
5638 /* There's extent covering m_lblk? Just return it. */
5642 ext4_es_store_pblock(result
, map
.m_pblk
);
5643 result
->es_lblk
= map
.m_lblk
;
5644 result
->es_len
= map
.m_len
;
5645 if (map
.m_flags
& EXT4_MAP_UNWRITTEN
)
5646 status
= EXTENT_STATUS_UNWRITTEN
;
5648 status
= EXTENT_STATUS_WRITTEN
;
5649 ext4_es_store_status(result
, status
);
5652 ext4_es_find_delayed_extent_range(inode
, map
.m_lblk
,
5653 map
.m_lblk
+ map
.m_len
- 1,
5655 /* Is delalloc data before next block in extent tree? */
5656 if (es
.es_len
&& es
.es_lblk
< map
.m_lblk
+ map
.m_len
) {
5657 ext4_lblk_t offset
= 0;
5659 if (es
.es_lblk
< lblk
)
5660 offset
= lblk
- es
.es_lblk
;
5661 result
->es_lblk
= es
.es_lblk
+ offset
;
5662 ext4_es_store_pblock(result
,
5663 ext4_es_pblock(&es
) + offset
);
5664 result
->es_len
= es
.es_len
- offset
;
5665 ext4_es_store_status(result
, ext4_es_status(&es
));
5669 /* There's a hole at m_lblk, advance us after it */
5670 map
.m_lblk
+= map
.m_len
;
5671 map_len
-= map
.m_len
;
5672 map
.m_len
= map_len
;