2 * core.c -- Voltage/Current Regulator framework.
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/err.h>
20 #include <linux/mutex.h>
21 #include <linux/suspend.h>
22 #include <linux/regulator/consumer.h>
23 #include <linux/regulator/driver.h>
24 #include <linux/regulator/machine.h>
26 #define REGULATOR_VERSION "0.5"
28 static DEFINE_MUTEX(regulator_list_mutex
);
29 static LIST_HEAD(regulator_list
);
30 static LIST_HEAD(regulator_map_list
);
31 static int has_full_constraints
;
34 * struct regulator_map
36 * Used to provide symbolic supply names to devices.
38 struct regulator_map
{
39 struct list_head list
;
40 const char *dev_name
; /* The dev_name() for the consumer */
42 struct regulator_dev
*regulator
;
48 * One for each consumer device.
52 struct list_head list
;
57 struct device_attribute dev_attr
;
58 struct regulator_dev
*rdev
;
61 static int _regulator_is_enabled(struct regulator_dev
*rdev
);
62 static int _regulator_disable(struct regulator_dev
*rdev
);
63 static int _regulator_get_voltage(struct regulator_dev
*rdev
);
64 static int _regulator_get_current_limit(struct regulator_dev
*rdev
);
65 static unsigned int _regulator_get_mode(struct regulator_dev
*rdev
);
66 static void _notifier_call_chain(struct regulator_dev
*rdev
,
67 unsigned long event
, void *data
);
69 /* gets the regulator for a given consumer device */
70 static struct regulator
*get_device_regulator(struct device
*dev
)
72 struct regulator
*regulator
= NULL
;
73 struct regulator_dev
*rdev
;
75 mutex_lock(®ulator_list_mutex
);
76 list_for_each_entry(rdev
, ®ulator_list
, list
) {
77 mutex_lock(&rdev
->mutex
);
78 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
) {
79 if (regulator
->dev
== dev
) {
80 mutex_unlock(&rdev
->mutex
);
81 mutex_unlock(®ulator_list_mutex
);
85 mutex_unlock(&rdev
->mutex
);
87 mutex_unlock(®ulator_list_mutex
);
91 /* Platform voltage constraint check */
92 static int regulator_check_voltage(struct regulator_dev
*rdev
,
93 int *min_uV
, int *max_uV
)
95 BUG_ON(*min_uV
> *max_uV
);
97 if (!rdev
->constraints
) {
98 printk(KERN_ERR
"%s: no constraints for %s\n", __func__
,
102 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_VOLTAGE
)) {
103 printk(KERN_ERR
"%s: operation not allowed for %s\n",
104 __func__
, rdev
->desc
->name
);
108 if (*max_uV
> rdev
->constraints
->max_uV
)
109 *max_uV
= rdev
->constraints
->max_uV
;
110 if (*min_uV
< rdev
->constraints
->min_uV
)
111 *min_uV
= rdev
->constraints
->min_uV
;
113 if (*min_uV
> *max_uV
)
119 /* current constraint check */
120 static int regulator_check_current_limit(struct regulator_dev
*rdev
,
121 int *min_uA
, int *max_uA
)
123 BUG_ON(*min_uA
> *max_uA
);
125 if (!rdev
->constraints
) {
126 printk(KERN_ERR
"%s: no constraints for %s\n", __func__
,
130 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_CURRENT
)) {
131 printk(KERN_ERR
"%s: operation not allowed for %s\n",
132 __func__
, rdev
->desc
->name
);
136 if (*max_uA
> rdev
->constraints
->max_uA
)
137 *max_uA
= rdev
->constraints
->max_uA
;
138 if (*min_uA
< rdev
->constraints
->min_uA
)
139 *min_uA
= rdev
->constraints
->min_uA
;
141 if (*min_uA
> *max_uA
)
147 /* operating mode constraint check */
148 static int regulator_check_mode(struct regulator_dev
*rdev
, int mode
)
151 case REGULATOR_MODE_FAST
:
152 case REGULATOR_MODE_NORMAL
:
153 case REGULATOR_MODE_IDLE
:
154 case REGULATOR_MODE_STANDBY
:
160 if (!rdev
->constraints
) {
161 printk(KERN_ERR
"%s: no constraints for %s\n", __func__
,
165 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_MODE
)) {
166 printk(KERN_ERR
"%s: operation not allowed for %s\n",
167 __func__
, rdev
->desc
->name
);
170 if (!(rdev
->constraints
->valid_modes_mask
& mode
)) {
171 printk(KERN_ERR
"%s: invalid mode %x for %s\n",
172 __func__
, mode
, rdev
->desc
->name
);
178 /* dynamic regulator mode switching constraint check */
179 static int regulator_check_drms(struct regulator_dev
*rdev
)
181 if (!rdev
->constraints
) {
182 printk(KERN_ERR
"%s: no constraints for %s\n", __func__
,
186 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_DRMS
)) {
187 printk(KERN_ERR
"%s: operation not allowed for %s\n",
188 __func__
, rdev
->desc
->name
);
194 static ssize_t
device_requested_uA_show(struct device
*dev
,
195 struct device_attribute
*attr
, char *buf
)
197 struct regulator
*regulator
;
199 regulator
= get_device_regulator(dev
);
200 if (regulator
== NULL
)
203 return sprintf(buf
, "%d\n", regulator
->uA_load
);
206 static ssize_t
regulator_uV_show(struct device
*dev
,
207 struct device_attribute
*attr
, char *buf
)
209 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
212 mutex_lock(&rdev
->mutex
);
213 ret
= sprintf(buf
, "%d\n", _regulator_get_voltage(rdev
));
214 mutex_unlock(&rdev
->mutex
);
218 static DEVICE_ATTR(microvolts
, 0444, regulator_uV_show
, NULL
);
220 static ssize_t
regulator_uA_show(struct device
*dev
,
221 struct device_attribute
*attr
, char *buf
)
223 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
225 return sprintf(buf
, "%d\n", _regulator_get_current_limit(rdev
));
227 static DEVICE_ATTR(microamps
, 0444, regulator_uA_show
, NULL
);
229 static ssize_t
regulator_name_show(struct device
*dev
,
230 struct device_attribute
*attr
, char *buf
)
232 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
235 if (rdev
->constraints
&& rdev
->constraints
->name
)
236 name
= rdev
->constraints
->name
;
237 else if (rdev
->desc
->name
)
238 name
= rdev
->desc
->name
;
242 return sprintf(buf
, "%s\n", name
);
245 static ssize_t
regulator_print_opmode(char *buf
, int mode
)
248 case REGULATOR_MODE_FAST
:
249 return sprintf(buf
, "fast\n");
250 case REGULATOR_MODE_NORMAL
:
251 return sprintf(buf
, "normal\n");
252 case REGULATOR_MODE_IDLE
:
253 return sprintf(buf
, "idle\n");
254 case REGULATOR_MODE_STANDBY
:
255 return sprintf(buf
, "standby\n");
257 return sprintf(buf
, "unknown\n");
260 static ssize_t
regulator_opmode_show(struct device
*dev
,
261 struct device_attribute
*attr
, char *buf
)
263 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
265 return regulator_print_opmode(buf
, _regulator_get_mode(rdev
));
267 static DEVICE_ATTR(opmode
, 0444, regulator_opmode_show
, NULL
);
269 static ssize_t
regulator_print_state(char *buf
, int state
)
272 return sprintf(buf
, "enabled\n");
274 return sprintf(buf
, "disabled\n");
276 return sprintf(buf
, "unknown\n");
279 static ssize_t
regulator_state_show(struct device
*dev
,
280 struct device_attribute
*attr
, char *buf
)
282 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
285 mutex_lock(&rdev
->mutex
);
286 ret
= regulator_print_state(buf
, _regulator_is_enabled(rdev
));
287 mutex_unlock(&rdev
->mutex
);
291 static DEVICE_ATTR(state
, 0444, regulator_state_show
, NULL
);
293 static ssize_t
regulator_status_show(struct device
*dev
,
294 struct device_attribute
*attr
, char *buf
)
296 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
300 status
= rdev
->desc
->ops
->get_status(rdev
);
305 case REGULATOR_STATUS_OFF
:
308 case REGULATOR_STATUS_ON
:
311 case REGULATOR_STATUS_ERROR
:
314 case REGULATOR_STATUS_FAST
:
317 case REGULATOR_STATUS_NORMAL
:
320 case REGULATOR_STATUS_IDLE
:
323 case REGULATOR_STATUS_STANDBY
:
330 return sprintf(buf
, "%s\n", label
);
332 static DEVICE_ATTR(status
, 0444, regulator_status_show
, NULL
);
334 static ssize_t
regulator_min_uA_show(struct device
*dev
,
335 struct device_attribute
*attr
, char *buf
)
337 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
339 if (!rdev
->constraints
)
340 return sprintf(buf
, "constraint not defined\n");
342 return sprintf(buf
, "%d\n", rdev
->constraints
->min_uA
);
344 static DEVICE_ATTR(min_microamps
, 0444, regulator_min_uA_show
, NULL
);
346 static ssize_t
regulator_max_uA_show(struct device
*dev
,
347 struct device_attribute
*attr
, char *buf
)
349 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
351 if (!rdev
->constraints
)
352 return sprintf(buf
, "constraint not defined\n");
354 return sprintf(buf
, "%d\n", rdev
->constraints
->max_uA
);
356 static DEVICE_ATTR(max_microamps
, 0444, regulator_max_uA_show
, NULL
);
358 static ssize_t
regulator_min_uV_show(struct device
*dev
,
359 struct device_attribute
*attr
, char *buf
)
361 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
363 if (!rdev
->constraints
)
364 return sprintf(buf
, "constraint not defined\n");
366 return sprintf(buf
, "%d\n", rdev
->constraints
->min_uV
);
368 static DEVICE_ATTR(min_microvolts
, 0444, regulator_min_uV_show
, NULL
);
370 static ssize_t
regulator_max_uV_show(struct device
*dev
,
371 struct device_attribute
*attr
, char *buf
)
373 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
375 if (!rdev
->constraints
)
376 return sprintf(buf
, "constraint not defined\n");
378 return sprintf(buf
, "%d\n", rdev
->constraints
->max_uV
);
380 static DEVICE_ATTR(max_microvolts
, 0444, regulator_max_uV_show
, NULL
);
382 static ssize_t
regulator_total_uA_show(struct device
*dev
,
383 struct device_attribute
*attr
, char *buf
)
385 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
386 struct regulator
*regulator
;
389 mutex_lock(&rdev
->mutex
);
390 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
)
391 uA
+= regulator
->uA_load
;
392 mutex_unlock(&rdev
->mutex
);
393 return sprintf(buf
, "%d\n", uA
);
395 static DEVICE_ATTR(requested_microamps
, 0444, regulator_total_uA_show
, NULL
);
397 static ssize_t
regulator_num_users_show(struct device
*dev
,
398 struct device_attribute
*attr
, char *buf
)
400 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
401 return sprintf(buf
, "%d\n", rdev
->use_count
);
404 static ssize_t
regulator_type_show(struct device
*dev
,
405 struct device_attribute
*attr
, char *buf
)
407 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
409 switch (rdev
->desc
->type
) {
410 case REGULATOR_VOLTAGE
:
411 return sprintf(buf
, "voltage\n");
412 case REGULATOR_CURRENT
:
413 return sprintf(buf
, "current\n");
415 return sprintf(buf
, "unknown\n");
418 static ssize_t
regulator_suspend_mem_uV_show(struct device
*dev
,
419 struct device_attribute
*attr
, char *buf
)
421 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
423 return sprintf(buf
, "%d\n", rdev
->constraints
->state_mem
.uV
);
425 static DEVICE_ATTR(suspend_mem_microvolts
, 0444,
426 regulator_suspend_mem_uV_show
, NULL
);
428 static ssize_t
regulator_suspend_disk_uV_show(struct device
*dev
,
429 struct device_attribute
*attr
, char *buf
)
431 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
433 return sprintf(buf
, "%d\n", rdev
->constraints
->state_disk
.uV
);
435 static DEVICE_ATTR(suspend_disk_microvolts
, 0444,
436 regulator_suspend_disk_uV_show
, NULL
);
438 static ssize_t
regulator_suspend_standby_uV_show(struct device
*dev
,
439 struct device_attribute
*attr
, char *buf
)
441 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
443 return sprintf(buf
, "%d\n", rdev
->constraints
->state_standby
.uV
);
445 static DEVICE_ATTR(suspend_standby_microvolts
, 0444,
446 regulator_suspend_standby_uV_show
, NULL
);
448 static ssize_t
regulator_suspend_mem_mode_show(struct device
*dev
,
449 struct device_attribute
*attr
, char *buf
)
451 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
453 return regulator_print_opmode(buf
,
454 rdev
->constraints
->state_mem
.mode
);
456 static DEVICE_ATTR(suspend_mem_mode
, 0444,
457 regulator_suspend_mem_mode_show
, NULL
);
459 static ssize_t
regulator_suspend_disk_mode_show(struct device
*dev
,
460 struct device_attribute
*attr
, char *buf
)
462 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
464 return regulator_print_opmode(buf
,
465 rdev
->constraints
->state_disk
.mode
);
467 static DEVICE_ATTR(suspend_disk_mode
, 0444,
468 regulator_suspend_disk_mode_show
, NULL
);
470 static ssize_t
regulator_suspend_standby_mode_show(struct device
*dev
,
471 struct device_attribute
*attr
, char *buf
)
473 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
475 return regulator_print_opmode(buf
,
476 rdev
->constraints
->state_standby
.mode
);
478 static DEVICE_ATTR(suspend_standby_mode
, 0444,
479 regulator_suspend_standby_mode_show
, NULL
);
481 static ssize_t
regulator_suspend_mem_state_show(struct device
*dev
,
482 struct device_attribute
*attr
, char *buf
)
484 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
486 return regulator_print_state(buf
,
487 rdev
->constraints
->state_mem
.enabled
);
489 static DEVICE_ATTR(suspend_mem_state
, 0444,
490 regulator_suspend_mem_state_show
, NULL
);
492 static ssize_t
regulator_suspend_disk_state_show(struct device
*dev
,
493 struct device_attribute
*attr
, char *buf
)
495 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
497 return regulator_print_state(buf
,
498 rdev
->constraints
->state_disk
.enabled
);
500 static DEVICE_ATTR(suspend_disk_state
, 0444,
501 regulator_suspend_disk_state_show
, NULL
);
503 static ssize_t
regulator_suspend_standby_state_show(struct device
*dev
,
504 struct device_attribute
*attr
, char *buf
)
506 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
508 return regulator_print_state(buf
,
509 rdev
->constraints
->state_standby
.enabled
);
511 static DEVICE_ATTR(suspend_standby_state
, 0444,
512 regulator_suspend_standby_state_show
, NULL
);
516 * These are the only attributes are present for all regulators.
517 * Other attributes are a function of regulator functionality.
519 static struct device_attribute regulator_dev_attrs
[] = {
520 __ATTR(name
, 0444, regulator_name_show
, NULL
),
521 __ATTR(num_users
, 0444, regulator_num_users_show
, NULL
),
522 __ATTR(type
, 0444, regulator_type_show
, NULL
),
526 static void regulator_dev_release(struct device
*dev
)
528 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
532 static struct class regulator_class
= {
534 .dev_release
= regulator_dev_release
,
535 .dev_attrs
= regulator_dev_attrs
,
538 /* Calculate the new optimum regulator operating mode based on the new total
539 * consumer load. All locks held by caller */
540 static void drms_uA_update(struct regulator_dev
*rdev
)
542 struct regulator
*sibling
;
543 int current_uA
= 0, output_uV
, input_uV
, err
;
546 err
= regulator_check_drms(rdev
);
547 if (err
< 0 || !rdev
->desc
->ops
->get_optimum_mode
||
548 !rdev
->desc
->ops
->get_voltage
|| !rdev
->desc
->ops
->set_mode
)
551 /* get output voltage */
552 output_uV
= rdev
->desc
->ops
->get_voltage(rdev
);
556 /* get input voltage */
557 if (rdev
->supply
&& rdev
->supply
->desc
->ops
->get_voltage
)
558 input_uV
= rdev
->supply
->desc
->ops
->get_voltage(rdev
->supply
);
560 input_uV
= rdev
->constraints
->input_uV
;
564 /* calc total requested load */
565 list_for_each_entry(sibling
, &rdev
->consumer_list
, list
)
566 current_uA
+= sibling
->uA_load
;
568 /* now get the optimum mode for our new total regulator load */
569 mode
= rdev
->desc
->ops
->get_optimum_mode(rdev
, input_uV
,
570 output_uV
, current_uA
);
572 /* check the new mode is allowed */
573 err
= regulator_check_mode(rdev
, mode
);
575 rdev
->desc
->ops
->set_mode(rdev
, mode
);
578 static int suspend_set_state(struct regulator_dev
*rdev
,
579 struct regulator_state
*rstate
)
583 /* enable & disable are mandatory for suspend control */
584 if (!rdev
->desc
->ops
->set_suspend_enable
||
585 !rdev
->desc
->ops
->set_suspend_disable
) {
586 printk(KERN_ERR
"%s: no way to set suspend state\n",
592 ret
= rdev
->desc
->ops
->set_suspend_enable(rdev
);
594 ret
= rdev
->desc
->ops
->set_suspend_disable(rdev
);
596 printk(KERN_ERR
"%s: failed to enabled/disable\n", __func__
);
600 if (rdev
->desc
->ops
->set_suspend_voltage
&& rstate
->uV
> 0) {
601 ret
= rdev
->desc
->ops
->set_suspend_voltage(rdev
, rstate
->uV
);
603 printk(KERN_ERR
"%s: failed to set voltage\n",
609 if (rdev
->desc
->ops
->set_suspend_mode
&& rstate
->mode
> 0) {
610 ret
= rdev
->desc
->ops
->set_suspend_mode(rdev
, rstate
->mode
);
612 printk(KERN_ERR
"%s: failed to set mode\n", __func__
);
619 /* locks held by caller */
620 static int suspend_prepare(struct regulator_dev
*rdev
, suspend_state_t state
)
622 if (!rdev
->constraints
)
626 case PM_SUSPEND_STANDBY
:
627 return suspend_set_state(rdev
,
628 &rdev
->constraints
->state_standby
);
630 return suspend_set_state(rdev
,
631 &rdev
->constraints
->state_mem
);
633 return suspend_set_state(rdev
,
634 &rdev
->constraints
->state_disk
);
640 static void print_constraints(struct regulator_dev
*rdev
)
642 struct regulation_constraints
*constraints
= rdev
->constraints
;
646 if (rdev
->desc
->type
== REGULATOR_VOLTAGE
) {
647 if (constraints
->min_uV
== constraints
->max_uV
)
648 count
= sprintf(buf
, "%d mV ",
649 constraints
->min_uV
/ 1000);
651 count
= sprintf(buf
, "%d <--> %d mV ",
652 constraints
->min_uV
/ 1000,
653 constraints
->max_uV
/ 1000);
655 if (constraints
->min_uA
== constraints
->max_uA
)
656 count
= sprintf(buf
, "%d mA ",
657 constraints
->min_uA
/ 1000);
659 count
= sprintf(buf
, "%d <--> %d mA ",
660 constraints
->min_uA
/ 1000,
661 constraints
->max_uA
/ 1000);
663 if (constraints
->valid_modes_mask
& REGULATOR_MODE_FAST
)
664 count
+= sprintf(buf
+ count
, "fast ");
665 if (constraints
->valid_modes_mask
& REGULATOR_MODE_NORMAL
)
666 count
+= sprintf(buf
+ count
, "normal ");
667 if (constraints
->valid_modes_mask
& REGULATOR_MODE_IDLE
)
668 count
+= sprintf(buf
+ count
, "idle ");
669 if (constraints
->valid_modes_mask
& REGULATOR_MODE_STANDBY
)
670 count
+= sprintf(buf
+ count
, "standby");
672 printk(KERN_INFO
"regulator: %s: %s\n", rdev
->desc
->name
, buf
);
676 * set_machine_constraints - sets regulator constraints
677 * @rdev: regulator source
678 * @constraints: constraints to apply
680 * Allows platform initialisation code to define and constrain
681 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
682 * Constraints *must* be set by platform code in order for some
683 * regulator operations to proceed i.e. set_voltage, set_current_limit,
686 static int set_machine_constraints(struct regulator_dev
*rdev
,
687 struct regulation_constraints
*constraints
)
691 struct regulator_ops
*ops
= rdev
->desc
->ops
;
693 if (constraints
->name
)
694 name
= constraints
->name
;
695 else if (rdev
->desc
->name
)
696 name
= rdev
->desc
->name
;
700 /* constrain machine-level voltage specs to fit
701 * the actual range supported by this regulator.
703 if (ops
->list_voltage
&& rdev
->desc
->n_voltages
) {
704 int count
= rdev
->desc
->n_voltages
;
706 int min_uV
= INT_MAX
;
707 int max_uV
= INT_MIN
;
708 int cmin
= constraints
->min_uV
;
709 int cmax
= constraints
->max_uV
;
711 /* it's safe to autoconfigure fixed-voltage supplies
712 and the constraints are used by list_voltage. */
713 if (count
== 1 && !cmin
) {
716 constraints
->min_uV
= cmin
;
717 constraints
->max_uV
= cmax
;
720 /* voltage constraints are optional */
721 if ((cmin
== 0) && (cmax
== 0))
724 /* else require explicit machine-level constraints */
725 if (cmin
<= 0 || cmax
<= 0 || cmax
< cmin
) {
726 pr_err("%s: %s '%s' voltage constraints\n",
727 __func__
, "invalid", name
);
732 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
733 for (i
= 0; i
< count
; i
++) {
736 value
= ops
->list_voltage(rdev
, i
);
740 /* maybe adjust [min_uV..max_uV] */
741 if (value
>= cmin
&& value
< min_uV
)
743 if (value
<= cmax
&& value
> max_uV
)
747 /* final: [min_uV..max_uV] valid iff constraints valid */
748 if (max_uV
< min_uV
) {
749 pr_err("%s: %s '%s' voltage constraints\n",
750 __func__
, "unsupportable", name
);
755 /* use regulator's subset of machine constraints */
756 if (constraints
->min_uV
< min_uV
) {
757 pr_debug("%s: override '%s' %s, %d -> %d\n",
758 __func__
, name
, "min_uV",
759 constraints
->min_uV
, min_uV
);
760 constraints
->min_uV
= min_uV
;
762 if (constraints
->max_uV
> max_uV
) {
763 pr_debug("%s: override '%s' %s, %d -> %d\n",
764 __func__
, name
, "max_uV",
765 constraints
->max_uV
, max_uV
);
766 constraints
->max_uV
= max_uV
;
770 rdev
->constraints
= constraints
;
772 /* do we need to apply the constraint voltage */
773 if (rdev
->constraints
->apply_uV
&&
774 rdev
->constraints
->min_uV
== rdev
->constraints
->max_uV
&&
776 ret
= ops
->set_voltage(rdev
,
777 rdev
->constraints
->min_uV
, rdev
->constraints
->max_uV
);
779 printk(KERN_ERR
"%s: failed to apply %duV constraint to %s\n",
781 rdev
->constraints
->min_uV
, name
);
782 rdev
->constraints
= NULL
;
787 /* do we need to setup our suspend state */
788 if (constraints
->initial_state
) {
789 ret
= suspend_prepare(rdev
, constraints
->initial_state
);
791 printk(KERN_ERR
"%s: failed to set suspend state for %s\n",
793 rdev
->constraints
= NULL
;
798 if (constraints
->initial_mode
) {
799 if (!ops
->set_mode
) {
800 printk(KERN_ERR
"%s: no set_mode operation for %s\n",
806 ret
= ops
->set_mode(rdev
, constraints
->initial_mode
);
809 "%s: failed to set initial mode for %s: %d\n",
810 __func__
, name
, ret
);
815 /* If the constraints say the regulator should be on at this point
816 * and we have control then make sure it is enabled.
818 if ((constraints
->always_on
|| constraints
->boot_on
) && ops
->enable
) {
819 ret
= ops
->enable(rdev
);
821 printk(KERN_ERR
"%s: failed to enable %s\n",
823 rdev
->constraints
= NULL
;
828 print_constraints(rdev
);
834 * set_supply - set regulator supply regulator
835 * @rdev: regulator name
836 * @supply_rdev: supply regulator name
838 * Called by platform initialisation code to set the supply regulator for this
839 * regulator. This ensures that a regulators supply will also be enabled by the
840 * core if it's child is enabled.
842 static int set_supply(struct regulator_dev
*rdev
,
843 struct regulator_dev
*supply_rdev
)
847 err
= sysfs_create_link(&rdev
->dev
.kobj
, &supply_rdev
->dev
.kobj
,
851 "%s: could not add device link %s err %d\n",
852 __func__
, supply_rdev
->dev
.kobj
.name
, err
);
855 rdev
->supply
= supply_rdev
;
856 list_add(&rdev
->slist
, &supply_rdev
->supply_list
);
862 * set_consumer_device_supply: Bind a regulator to a symbolic supply
863 * @rdev: regulator source
864 * @consumer_dev: device the supply applies to
865 * @consumer_dev_name: dev_name() string for device supply applies to
866 * @supply: symbolic name for supply
868 * Allows platform initialisation code to map physical regulator
869 * sources to symbolic names for supplies for use by devices. Devices
870 * should use these symbolic names to request regulators, avoiding the
871 * need to provide board-specific regulator names as platform data.
873 * Only one of consumer_dev and consumer_dev_name may be specified.
875 static int set_consumer_device_supply(struct regulator_dev
*rdev
,
876 struct device
*consumer_dev
, const char *consumer_dev_name
,
879 struct regulator_map
*node
;
882 if (consumer_dev
&& consumer_dev_name
)
885 if (!consumer_dev_name
&& consumer_dev
)
886 consumer_dev_name
= dev_name(consumer_dev
);
891 if (consumer_dev_name
!= NULL
)
896 list_for_each_entry(node
, ®ulator_map_list
, list
) {
897 if (consumer_dev_name
!= node
->dev_name
)
899 if (strcmp(node
->supply
, supply
) != 0)
902 dev_dbg(consumer_dev
, "%s/%s is '%s' supply; fail %s/%s\n",
903 dev_name(&node
->regulator
->dev
),
904 node
->regulator
->desc
->name
,
906 dev_name(&rdev
->dev
), rdev
->desc
->name
);
910 node
= kzalloc(sizeof(struct regulator_map
), GFP_KERNEL
);
914 node
->regulator
= rdev
;
915 node
->supply
= supply
;
918 node
->dev_name
= kstrdup(consumer_dev_name
, GFP_KERNEL
);
919 if (node
->dev_name
== NULL
) {
925 list_add(&node
->list
, ®ulator_map_list
);
929 static void unset_consumer_device_supply(struct regulator_dev
*rdev
,
930 const char *consumer_dev_name
, struct device
*consumer_dev
)
932 struct regulator_map
*node
, *n
;
934 if (consumer_dev
&& !consumer_dev_name
)
935 consumer_dev_name
= dev_name(consumer_dev
);
937 list_for_each_entry_safe(node
, n
, ®ulator_map_list
, list
) {
938 if (rdev
!= node
->regulator
)
941 if (consumer_dev_name
&& node
->dev_name
&&
942 strcmp(consumer_dev_name
, node
->dev_name
))
945 list_del(&node
->list
);
946 kfree(node
->dev_name
);
952 static void unset_regulator_supplies(struct regulator_dev
*rdev
)
954 struct regulator_map
*node
, *n
;
956 list_for_each_entry_safe(node
, n
, ®ulator_map_list
, list
) {
957 if (rdev
== node
->regulator
) {
958 list_del(&node
->list
);
959 kfree(node
->dev_name
);
966 #define REG_STR_SIZE 32
968 static struct regulator
*create_regulator(struct regulator_dev
*rdev
,
970 const char *supply_name
)
972 struct regulator
*regulator
;
973 char buf
[REG_STR_SIZE
];
976 regulator
= kzalloc(sizeof(*regulator
), GFP_KERNEL
);
977 if (regulator
== NULL
)
980 mutex_lock(&rdev
->mutex
);
981 regulator
->rdev
= rdev
;
982 list_add(®ulator
->list
, &rdev
->consumer_list
);
985 /* create a 'requested_microamps_name' sysfs entry */
986 size
= scnprintf(buf
, REG_STR_SIZE
, "microamps_requested_%s",
988 if (size
>= REG_STR_SIZE
)
991 regulator
->dev
= dev
;
992 regulator
->dev_attr
.attr
.name
= kstrdup(buf
, GFP_KERNEL
);
993 if (regulator
->dev_attr
.attr
.name
== NULL
)
996 regulator
->dev_attr
.attr
.owner
= THIS_MODULE
;
997 regulator
->dev_attr
.attr
.mode
= 0444;
998 regulator
->dev_attr
.show
= device_requested_uA_show
;
999 err
= device_create_file(dev
, ®ulator
->dev_attr
);
1001 printk(KERN_WARNING
"%s: could not add regulator_dev"
1002 " load sysfs\n", __func__
);
1006 /* also add a link to the device sysfs entry */
1007 size
= scnprintf(buf
, REG_STR_SIZE
, "%s-%s",
1008 dev
->kobj
.name
, supply_name
);
1009 if (size
>= REG_STR_SIZE
)
1012 regulator
->supply_name
= kstrdup(buf
, GFP_KERNEL
);
1013 if (regulator
->supply_name
== NULL
)
1016 err
= sysfs_create_link(&rdev
->dev
.kobj
, &dev
->kobj
,
1020 "%s: could not add device link %s err %d\n",
1021 __func__
, dev
->kobj
.name
, err
);
1022 device_remove_file(dev
, ®ulator
->dev_attr
);
1026 mutex_unlock(&rdev
->mutex
);
1029 kfree(regulator
->supply_name
);
1031 device_remove_file(regulator
->dev
, ®ulator
->dev_attr
);
1033 kfree(regulator
->dev_attr
.attr
.name
);
1035 list_del(®ulator
->list
);
1037 mutex_unlock(&rdev
->mutex
);
1041 /* Internal regulator request function */
1042 static struct regulator
*_regulator_get(struct device
*dev
, const char *id
,
1045 struct regulator_dev
*rdev
;
1046 struct regulator_map
*map
;
1047 struct regulator
*regulator
= ERR_PTR(-ENODEV
);
1048 const char *devname
= NULL
;
1052 printk(KERN_ERR
"regulator: get() with no identifier\n");
1057 devname
= dev_name(dev
);
1059 mutex_lock(®ulator_list_mutex
);
1061 list_for_each_entry(map
, ®ulator_map_list
, list
) {
1062 /* If the mapping has a device set up it must match */
1063 if (map
->dev_name
&&
1064 (!devname
|| strcmp(map
->dev_name
, devname
)))
1067 if (strcmp(map
->supply
, id
) == 0) {
1068 rdev
= map
->regulator
;
1072 mutex_unlock(®ulator_list_mutex
);
1076 if (rdev
->exclusive
) {
1077 regulator
= ERR_PTR(-EPERM
);
1081 if (exclusive
&& rdev
->open_count
) {
1082 regulator
= ERR_PTR(-EBUSY
);
1086 if (!try_module_get(rdev
->owner
))
1089 regulator
= create_regulator(rdev
, dev
, id
);
1090 if (regulator
== NULL
) {
1091 regulator
= ERR_PTR(-ENOMEM
);
1092 module_put(rdev
->owner
);
1097 rdev
->exclusive
= 1;
1099 ret
= _regulator_is_enabled(rdev
);
1101 rdev
->use_count
= 1;
1103 rdev
->use_count
= 0;
1107 mutex_unlock(®ulator_list_mutex
);
1113 * regulator_get - lookup and obtain a reference to a regulator.
1114 * @dev: device for regulator "consumer"
1115 * @id: Supply name or regulator ID.
1117 * Returns a struct regulator corresponding to the regulator producer,
1118 * or IS_ERR() condition containing errno.
1120 * Use of supply names configured via regulator_set_device_supply() is
1121 * strongly encouraged. It is recommended that the supply name used
1122 * should match the name used for the supply and/or the relevant
1123 * device pins in the datasheet.
1125 struct regulator
*regulator_get(struct device
*dev
, const char *id
)
1127 return _regulator_get(dev
, id
, 0);
1129 EXPORT_SYMBOL_GPL(regulator_get
);
1132 * regulator_get_exclusive - obtain exclusive access to a regulator.
1133 * @dev: device for regulator "consumer"
1134 * @id: Supply name or regulator ID.
1136 * Returns a struct regulator corresponding to the regulator producer,
1137 * or IS_ERR() condition containing errno. Other consumers will be
1138 * unable to obtain this reference is held and the use count for the
1139 * regulator will be initialised to reflect the current state of the
1142 * This is intended for use by consumers which cannot tolerate shared
1143 * use of the regulator such as those which need to force the
1144 * regulator off for correct operation of the hardware they are
1147 * Use of supply names configured via regulator_set_device_supply() is
1148 * strongly encouraged. It is recommended that the supply name used
1149 * should match the name used for the supply and/or the relevant
1150 * device pins in the datasheet.
1152 struct regulator
*regulator_get_exclusive(struct device
*dev
, const char *id
)
1154 return _regulator_get(dev
, id
, 1);
1156 EXPORT_SYMBOL_GPL(regulator_get_exclusive
);
1159 * regulator_put - "free" the regulator source
1160 * @regulator: regulator source
1162 * Note: drivers must ensure that all regulator_enable calls made on this
1163 * regulator source are balanced by regulator_disable calls prior to calling
1166 void regulator_put(struct regulator
*regulator
)
1168 struct regulator_dev
*rdev
;
1170 if (regulator
== NULL
|| IS_ERR(regulator
))
1173 mutex_lock(®ulator_list_mutex
);
1174 rdev
= regulator
->rdev
;
1176 /* remove any sysfs entries */
1177 if (regulator
->dev
) {
1178 sysfs_remove_link(&rdev
->dev
.kobj
, regulator
->supply_name
);
1179 kfree(regulator
->supply_name
);
1180 device_remove_file(regulator
->dev
, ®ulator
->dev_attr
);
1181 kfree(regulator
->dev_attr
.attr
.name
);
1183 list_del(®ulator
->list
);
1187 rdev
->exclusive
= 0;
1189 module_put(rdev
->owner
);
1190 mutex_unlock(®ulator_list_mutex
);
1192 EXPORT_SYMBOL_GPL(regulator_put
);
1194 /* locks held by regulator_enable() */
1195 static int _regulator_enable(struct regulator_dev
*rdev
)
1199 if (!rdev
->constraints
) {
1200 printk(KERN_ERR
"%s: %s has no constraints\n",
1201 __func__
, rdev
->desc
->name
);
1205 /* do we need to enable the supply regulator first */
1207 ret
= _regulator_enable(rdev
->supply
);
1209 printk(KERN_ERR
"%s: failed to enable %s: %d\n",
1210 __func__
, rdev
->desc
->name
, ret
);
1215 /* check voltage and requested load before enabling */
1216 if (rdev
->desc
->ops
->enable
) {
1218 if (rdev
->constraints
&&
1219 (rdev
->constraints
->valid_ops_mask
&
1220 REGULATOR_CHANGE_DRMS
))
1221 drms_uA_update(rdev
);
1223 ret
= rdev
->desc
->ops
->enable(rdev
);
1225 printk(KERN_ERR
"%s: failed to enable %s: %d\n",
1226 __func__
, rdev
->desc
->name
, ret
);
1237 * regulator_enable - enable regulator output
1238 * @regulator: regulator source
1240 * Request that the regulator be enabled with the regulator output at
1241 * the predefined voltage or current value. Calls to regulator_enable()
1242 * must be balanced with calls to regulator_disable().
1244 * NOTE: the output value can be set by other drivers, boot loader or may be
1245 * hardwired in the regulator.
1247 int regulator_enable(struct regulator
*regulator
)
1249 struct regulator_dev
*rdev
= regulator
->rdev
;
1252 mutex_lock(&rdev
->mutex
);
1253 ret
= _regulator_enable(rdev
);
1254 mutex_unlock(&rdev
->mutex
);
1257 EXPORT_SYMBOL_GPL(regulator_enable
);
1259 /* locks held by regulator_disable() */
1260 static int _regulator_disable(struct regulator_dev
*rdev
)
1264 if (WARN(rdev
->use_count
<= 0,
1265 "unbalanced disables for %s\n",
1269 /* are we the last user and permitted to disable ? */
1270 if (rdev
->use_count
== 1 && !rdev
->constraints
->always_on
) {
1272 /* we are last user */
1273 if (rdev
->desc
->ops
->disable
) {
1274 ret
= rdev
->desc
->ops
->disable(rdev
);
1276 printk(KERN_ERR
"%s: failed to disable %s\n",
1277 __func__
, rdev
->desc
->name
);
1282 /* decrease our supplies ref count and disable if required */
1284 _regulator_disable(rdev
->supply
);
1286 rdev
->use_count
= 0;
1287 } else if (rdev
->use_count
> 1) {
1289 if (rdev
->constraints
&&
1290 (rdev
->constraints
->valid_ops_mask
&
1291 REGULATOR_CHANGE_DRMS
))
1292 drms_uA_update(rdev
);
1300 * regulator_disable - disable regulator output
1301 * @regulator: regulator source
1303 * Disable the regulator output voltage or current. Calls to
1304 * regulator_enable() must be balanced with calls to
1305 * regulator_disable().
1307 * NOTE: this will only disable the regulator output if no other consumer
1308 * devices have it enabled, the regulator device supports disabling and
1309 * machine constraints permit this operation.
1311 int regulator_disable(struct regulator
*regulator
)
1313 struct regulator_dev
*rdev
= regulator
->rdev
;
1316 mutex_lock(&rdev
->mutex
);
1317 ret
= _regulator_disable(rdev
);
1318 mutex_unlock(&rdev
->mutex
);
1321 EXPORT_SYMBOL_GPL(regulator_disable
);
1323 /* locks held by regulator_force_disable() */
1324 static int _regulator_force_disable(struct regulator_dev
*rdev
)
1329 if (rdev
->desc
->ops
->disable
) {
1330 /* ah well, who wants to live forever... */
1331 ret
= rdev
->desc
->ops
->disable(rdev
);
1333 printk(KERN_ERR
"%s: failed to force disable %s\n",
1334 __func__
, rdev
->desc
->name
);
1337 /* notify other consumers that power has been forced off */
1338 _notifier_call_chain(rdev
, REGULATOR_EVENT_FORCE_DISABLE
,
1342 /* decrease our supplies ref count and disable if required */
1344 _regulator_disable(rdev
->supply
);
1346 rdev
->use_count
= 0;
1351 * regulator_force_disable - force disable regulator output
1352 * @regulator: regulator source
1354 * Forcibly disable the regulator output voltage or current.
1355 * NOTE: this *will* disable the regulator output even if other consumer
1356 * devices have it enabled. This should be used for situations when device
1357 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1359 int regulator_force_disable(struct regulator
*regulator
)
1363 mutex_lock(®ulator
->rdev
->mutex
);
1364 regulator
->uA_load
= 0;
1365 ret
= _regulator_force_disable(regulator
->rdev
);
1366 mutex_unlock(®ulator
->rdev
->mutex
);
1369 EXPORT_SYMBOL_GPL(regulator_force_disable
);
1371 static int _regulator_is_enabled(struct regulator_dev
*rdev
)
1374 if (!rdev
->desc
->ops
->is_enabled
)
1377 return rdev
->desc
->ops
->is_enabled(rdev
);
1381 * regulator_is_enabled - is the regulator output enabled
1382 * @regulator: regulator source
1384 * Returns positive if the regulator driver backing the source/client
1385 * has requested that the device be enabled, zero if it hasn't, else a
1386 * negative errno code.
1388 * Note that the device backing this regulator handle can have multiple
1389 * users, so it might be enabled even if regulator_enable() was never
1390 * called for this particular source.
1392 int regulator_is_enabled(struct regulator
*regulator
)
1396 mutex_lock(®ulator
->rdev
->mutex
);
1397 ret
= _regulator_is_enabled(regulator
->rdev
);
1398 mutex_unlock(®ulator
->rdev
->mutex
);
1402 EXPORT_SYMBOL_GPL(regulator_is_enabled
);
1405 * regulator_count_voltages - count regulator_list_voltage() selectors
1406 * @regulator: regulator source
1408 * Returns number of selectors, or negative errno. Selectors are
1409 * numbered starting at zero, and typically correspond to bitfields
1410 * in hardware registers.
1412 int regulator_count_voltages(struct regulator
*regulator
)
1414 struct regulator_dev
*rdev
= regulator
->rdev
;
1416 return rdev
->desc
->n_voltages
? : -EINVAL
;
1418 EXPORT_SYMBOL_GPL(regulator_count_voltages
);
1421 * regulator_list_voltage - enumerate supported voltages
1422 * @regulator: regulator source
1423 * @selector: identify voltage to list
1424 * Context: can sleep
1426 * Returns a voltage that can be passed to @regulator_set_voltage(),
1427 * zero if this selector code can't be used on this sytem, or a
1430 int regulator_list_voltage(struct regulator
*regulator
, unsigned selector
)
1432 struct regulator_dev
*rdev
= regulator
->rdev
;
1433 struct regulator_ops
*ops
= rdev
->desc
->ops
;
1436 if (!ops
->list_voltage
|| selector
>= rdev
->desc
->n_voltages
)
1439 mutex_lock(&rdev
->mutex
);
1440 ret
= ops
->list_voltage(rdev
, selector
);
1441 mutex_unlock(&rdev
->mutex
);
1444 if (ret
< rdev
->constraints
->min_uV
)
1446 else if (ret
> rdev
->constraints
->max_uV
)
1452 EXPORT_SYMBOL_GPL(regulator_list_voltage
);
1455 * regulator_is_supported_voltage - check if a voltage range can be supported
1457 * @regulator: Regulator to check.
1458 * @min_uV: Minimum required voltage in uV.
1459 * @max_uV: Maximum required voltage in uV.
1461 * Returns a boolean or a negative error code.
1463 int regulator_is_supported_voltage(struct regulator
*regulator
,
1464 int min_uV
, int max_uV
)
1466 int i
, voltages
, ret
;
1468 ret
= regulator_count_voltages(regulator
);
1473 for (i
= 0; i
< voltages
; i
++) {
1474 ret
= regulator_list_voltage(regulator
, i
);
1476 if (ret
>= min_uV
&& ret
<= max_uV
)
1484 * regulator_set_voltage - set regulator output voltage
1485 * @regulator: regulator source
1486 * @min_uV: Minimum required voltage in uV
1487 * @max_uV: Maximum acceptable voltage in uV
1489 * Sets a voltage regulator to the desired output voltage. This can be set
1490 * during any regulator state. IOW, regulator can be disabled or enabled.
1492 * If the regulator is enabled then the voltage will change to the new value
1493 * immediately otherwise if the regulator is disabled the regulator will
1494 * output at the new voltage when enabled.
1496 * NOTE: If the regulator is shared between several devices then the lowest
1497 * request voltage that meets the system constraints will be used.
1498 * Regulator system constraints must be set for this regulator before
1499 * calling this function otherwise this call will fail.
1501 int regulator_set_voltage(struct regulator
*regulator
, int min_uV
, int max_uV
)
1503 struct regulator_dev
*rdev
= regulator
->rdev
;
1506 mutex_lock(&rdev
->mutex
);
1509 if (!rdev
->desc
->ops
->set_voltage
) {
1514 /* constraints check */
1515 ret
= regulator_check_voltage(rdev
, &min_uV
, &max_uV
);
1518 regulator
->min_uV
= min_uV
;
1519 regulator
->max_uV
= max_uV
;
1520 ret
= rdev
->desc
->ops
->set_voltage(rdev
, min_uV
, max_uV
);
1523 _notifier_call_chain(rdev
, REGULATOR_EVENT_VOLTAGE_CHANGE
, NULL
);
1524 mutex_unlock(&rdev
->mutex
);
1527 EXPORT_SYMBOL_GPL(regulator_set_voltage
);
1529 static int _regulator_get_voltage(struct regulator_dev
*rdev
)
1532 if (rdev
->desc
->ops
->get_voltage
)
1533 return rdev
->desc
->ops
->get_voltage(rdev
);
1539 * regulator_get_voltage - get regulator output voltage
1540 * @regulator: regulator source
1542 * This returns the current regulator voltage in uV.
1544 * NOTE: If the regulator is disabled it will return the voltage value. This
1545 * function should not be used to determine regulator state.
1547 int regulator_get_voltage(struct regulator
*regulator
)
1551 mutex_lock(®ulator
->rdev
->mutex
);
1553 ret
= _regulator_get_voltage(regulator
->rdev
);
1555 mutex_unlock(®ulator
->rdev
->mutex
);
1559 EXPORT_SYMBOL_GPL(regulator_get_voltage
);
1562 * regulator_set_current_limit - set regulator output current limit
1563 * @regulator: regulator source
1564 * @min_uA: Minimuum supported current in uA
1565 * @max_uA: Maximum supported current in uA
1567 * Sets current sink to the desired output current. This can be set during
1568 * any regulator state. IOW, regulator can be disabled or enabled.
1570 * If the regulator is enabled then the current will change to the new value
1571 * immediately otherwise if the regulator is disabled the regulator will
1572 * output at the new current when enabled.
1574 * NOTE: Regulator system constraints must be set for this regulator before
1575 * calling this function otherwise this call will fail.
1577 int regulator_set_current_limit(struct regulator
*regulator
,
1578 int min_uA
, int max_uA
)
1580 struct regulator_dev
*rdev
= regulator
->rdev
;
1583 mutex_lock(&rdev
->mutex
);
1586 if (!rdev
->desc
->ops
->set_current_limit
) {
1591 /* constraints check */
1592 ret
= regulator_check_current_limit(rdev
, &min_uA
, &max_uA
);
1596 ret
= rdev
->desc
->ops
->set_current_limit(rdev
, min_uA
, max_uA
);
1598 mutex_unlock(&rdev
->mutex
);
1601 EXPORT_SYMBOL_GPL(regulator_set_current_limit
);
1603 static int _regulator_get_current_limit(struct regulator_dev
*rdev
)
1607 mutex_lock(&rdev
->mutex
);
1610 if (!rdev
->desc
->ops
->get_current_limit
) {
1615 ret
= rdev
->desc
->ops
->get_current_limit(rdev
);
1617 mutex_unlock(&rdev
->mutex
);
1622 * regulator_get_current_limit - get regulator output current
1623 * @regulator: regulator source
1625 * This returns the current supplied by the specified current sink in uA.
1627 * NOTE: If the regulator is disabled it will return the current value. This
1628 * function should not be used to determine regulator state.
1630 int regulator_get_current_limit(struct regulator
*regulator
)
1632 return _regulator_get_current_limit(regulator
->rdev
);
1634 EXPORT_SYMBOL_GPL(regulator_get_current_limit
);
1637 * regulator_set_mode - set regulator operating mode
1638 * @regulator: regulator source
1639 * @mode: operating mode - one of the REGULATOR_MODE constants
1641 * Set regulator operating mode to increase regulator efficiency or improve
1642 * regulation performance.
1644 * NOTE: Regulator system constraints must be set for this regulator before
1645 * calling this function otherwise this call will fail.
1647 int regulator_set_mode(struct regulator
*regulator
, unsigned int mode
)
1649 struct regulator_dev
*rdev
= regulator
->rdev
;
1652 mutex_lock(&rdev
->mutex
);
1655 if (!rdev
->desc
->ops
->set_mode
) {
1660 /* constraints check */
1661 ret
= regulator_check_mode(rdev
, mode
);
1665 ret
= rdev
->desc
->ops
->set_mode(rdev
, mode
);
1667 mutex_unlock(&rdev
->mutex
);
1670 EXPORT_SYMBOL_GPL(regulator_set_mode
);
1672 static unsigned int _regulator_get_mode(struct regulator_dev
*rdev
)
1676 mutex_lock(&rdev
->mutex
);
1679 if (!rdev
->desc
->ops
->get_mode
) {
1684 ret
= rdev
->desc
->ops
->get_mode(rdev
);
1686 mutex_unlock(&rdev
->mutex
);
1691 * regulator_get_mode - get regulator operating mode
1692 * @regulator: regulator source
1694 * Get the current regulator operating mode.
1696 unsigned int regulator_get_mode(struct regulator
*regulator
)
1698 return _regulator_get_mode(regulator
->rdev
);
1700 EXPORT_SYMBOL_GPL(regulator_get_mode
);
1703 * regulator_set_optimum_mode - set regulator optimum operating mode
1704 * @regulator: regulator source
1705 * @uA_load: load current
1707 * Notifies the regulator core of a new device load. This is then used by
1708 * DRMS (if enabled by constraints) to set the most efficient regulator
1709 * operating mode for the new regulator loading.
1711 * Consumer devices notify their supply regulator of the maximum power
1712 * they will require (can be taken from device datasheet in the power
1713 * consumption tables) when they change operational status and hence power
1714 * state. Examples of operational state changes that can affect power
1715 * consumption are :-
1717 * o Device is opened / closed.
1718 * o Device I/O is about to begin or has just finished.
1719 * o Device is idling in between work.
1721 * This information is also exported via sysfs to userspace.
1723 * DRMS will sum the total requested load on the regulator and change
1724 * to the most efficient operating mode if platform constraints allow.
1726 * Returns the new regulator mode or error.
1728 int regulator_set_optimum_mode(struct regulator
*regulator
, int uA_load
)
1730 struct regulator_dev
*rdev
= regulator
->rdev
;
1731 struct regulator
*consumer
;
1732 int ret
, output_uV
, input_uV
, total_uA_load
= 0;
1735 mutex_lock(&rdev
->mutex
);
1737 regulator
->uA_load
= uA_load
;
1738 ret
= regulator_check_drms(rdev
);
1744 if (!rdev
->desc
->ops
->get_optimum_mode
)
1747 /* get output voltage */
1748 output_uV
= rdev
->desc
->ops
->get_voltage(rdev
);
1749 if (output_uV
<= 0) {
1750 printk(KERN_ERR
"%s: invalid output voltage found for %s\n",
1751 __func__
, rdev
->desc
->name
);
1755 /* get input voltage */
1756 if (rdev
->supply
&& rdev
->supply
->desc
->ops
->get_voltage
)
1757 input_uV
= rdev
->supply
->desc
->ops
->get_voltage(rdev
->supply
);
1759 input_uV
= rdev
->constraints
->input_uV
;
1760 if (input_uV
<= 0) {
1761 printk(KERN_ERR
"%s: invalid input voltage found for %s\n",
1762 __func__
, rdev
->desc
->name
);
1766 /* calc total requested load for this regulator */
1767 list_for_each_entry(consumer
, &rdev
->consumer_list
, list
)
1768 total_uA_load
+= consumer
->uA_load
;
1770 mode
= rdev
->desc
->ops
->get_optimum_mode(rdev
,
1771 input_uV
, output_uV
,
1773 ret
= regulator_check_mode(rdev
, mode
);
1775 printk(KERN_ERR
"%s: failed to get optimum mode for %s @"
1776 " %d uA %d -> %d uV\n", __func__
, rdev
->desc
->name
,
1777 total_uA_load
, input_uV
, output_uV
);
1781 ret
= rdev
->desc
->ops
->set_mode(rdev
, mode
);
1783 printk(KERN_ERR
"%s: failed to set optimum mode %x for %s\n",
1784 __func__
, mode
, rdev
->desc
->name
);
1789 mutex_unlock(&rdev
->mutex
);
1792 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode
);
1795 * regulator_register_notifier - register regulator event notifier
1796 * @regulator: regulator source
1797 * @nb: notifier block
1799 * Register notifier block to receive regulator events.
1801 int regulator_register_notifier(struct regulator
*regulator
,
1802 struct notifier_block
*nb
)
1804 return blocking_notifier_chain_register(®ulator
->rdev
->notifier
,
1807 EXPORT_SYMBOL_GPL(regulator_register_notifier
);
1810 * regulator_unregister_notifier - unregister regulator event notifier
1811 * @regulator: regulator source
1812 * @nb: notifier block
1814 * Unregister regulator event notifier block.
1816 int regulator_unregister_notifier(struct regulator
*regulator
,
1817 struct notifier_block
*nb
)
1819 return blocking_notifier_chain_unregister(®ulator
->rdev
->notifier
,
1822 EXPORT_SYMBOL_GPL(regulator_unregister_notifier
);
1824 /* notify regulator consumers and downstream regulator consumers.
1825 * Note mutex must be held by caller.
1827 static void _notifier_call_chain(struct regulator_dev
*rdev
,
1828 unsigned long event
, void *data
)
1830 struct regulator_dev
*_rdev
;
1832 /* call rdev chain first */
1833 blocking_notifier_call_chain(&rdev
->notifier
, event
, NULL
);
1835 /* now notify regulator we supply */
1836 list_for_each_entry(_rdev
, &rdev
->supply_list
, slist
) {
1837 mutex_lock(&_rdev
->mutex
);
1838 _notifier_call_chain(_rdev
, event
, data
);
1839 mutex_unlock(&_rdev
->mutex
);
1844 * regulator_bulk_get - get multiple regulator consumers
1846 * @dev: Device to supply
1847 * @num_consumers: Number of consumers to register
1848 * @consumers: Configuration of consumers; clients are stored here.
1850 * @return 0 on success, an errno on failure.
1852 * This helper function allows drivers to get several regulator
1853 * consumers in one operation. If any of the regulators cannot be
1854 * acquired then any regulators that were allocated will be freed
1855 * before returning to the caller.
1857 int regulator_bulk_get(struct device
*dev
, int num_consumers
,
1858 struct regulator_bulk_data
*consumers
)
1863 for (i
= 0; i
< num_consumers
; i
++)
1864 consumers
[i
].consumer
= NULL
;
1866 for (i
= 0; i
< num_consumers
; i
++) {
1867 consumers
[i
].consumer
= regulator_get(dev
,
1868 consumers
[i
].supply
);
1869 if (IS_ERR(consumers
[i
].consumer
)) {
1870 dev_err(dev
, "Failed to get supply '%s'\n",
1871 consumers
[i
].supply
);
1872 ret
= PTR_ERR(consumers
[i
].consumer
);
1873 consumers
[i
].consumer
= NULL
;
1881 for (i
= 0; i
< num_consumers
&& consumers
[i
].consumer
; i
++)
1882 regulator_put(consumers
[i
].consumer
);
1886 EXPORT_SYMBOL_GPL(regulator_bulk_get
);
1889 * regulator_bulk_enable - enable multiple regulator consumers
1891 * @num_consumers: Number of consumers
1892 * @consumers: Consumer data; clients are stored here.
1893 * @return 0 on success, an errno on failure
1895 * This convenience API allows consumers to enable multiple regulator
1896 * clients in a single API call. If any consumers cannot be enabled
1897 * then any others that were enabled will be disabled again prior to
1900 int regulator_bulk_enable(int num_consumers
,
1901 struct regulator_bulk_data
*consumers
)
1906 for (i
= 0; i
< num_consumers
; i
++) {
1907 ret
= regulator_enable(consumers
[i
].consumer
);
1915 printk(KERN_ERR
"Failed to enable %s\n", consumers
[i
].supply
);
1916 for (i
= 0; i
< num_consumers
; i
++)
1917 regulator_disable(consumers
[i
].consumer
);
1921 EXPORT_SYMBOL_GPL(regulator_bulk_enable
);
1924 * regulator_bulk_disable - disable multiple regulator consumers
1926 * @num_consumers: Number of consumers
1927 * @consumers: Consumer data; clients are stored here.
1928 * @return 0 on success, an errno on failure
1930 * This convenience API allows consumers to disable multiple regulator
1931 * clients in a single API call. If any consumers cannot be enabled
1932 * then any others that were disabled will be disabled again prior to
1935 int regulator_bulk_disable(int num_consumers
,
1936 struct regulator_bulk_data
*consumers
)
1941 for (i
= 0; i
< num_consumers
; i
++) {
1942 ret
= regulator_disable(consumers
[i
].consumer
);
1950 printk(KERN_ERR
"Failed to disable %s\n", consumers
[i
].supply
);
1951 for (i
= 0; i
< num_consumers
; i
++)
1952 regulator_enable(consumers
[i
].consumer
);
1956 EXPORT_SYMBOL_GPL(regulator_bulk_disable
);
1959 * regulator_bulk_free - free multiple regulator consumers
1961 * @num_consumers: Number of consumers
1962 * @consumers: Consumer data; clients are stored here.
1964 * This convenience API allows consumers to free multiple regulator
1965 * clients in a single API call.
1967 void regulator_bulk_free(int num_consumers
,
1968 struct regulator_bulk_data
*consumers
)
1972 for (i
= 0; i
< num_consumers
; i
++) {
1973 regulator_put(consumers
[i
].consumer
);
1974 consumers
[i
].consumer
= NULL
;
1977 EXPORT_SYMBOL_GPL(regulator_bulk_free
);
1980 * regulator_notifier_call_chain - call regulator event notifier
1981 * @rdev: regulator source
1982 * @event: notifier block
1983 * @data: callback-specific data.
1985 * Called by regulator drivers to notify clients a regulator event has
1986 * occurred. We also notify regulator clients downstream.
1987 * Note lock must be held by caller.
1989 int regulator_notifier_call_chain(struct regulator_dev
*rdev
,
1990 unsigned long event
, void *data
)
1992 _notifier_call_chain(rdev
, event
, data
);
1996 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain
);
1999 * regulator_mode_to_status - convert a regulator mode into a status
2001 * @mode: Mode to convert
2003 * Convert a regulator mode into a status.
2005 int regulator_mode_to_status(unsigned int mode
)
2008 case REGULATOR_MODE_FAST
:
2009 return REGULATOR_STATUS_FAST
;
2010 case REGULATOR_MODE_NORMAL
:
2011 return REGULATOR_STATUS_NORMAL
;
2012 case REGULATOR_MODE_IDLE
:
2013 return REGULATOR_STATUS_IDLE
;
2014 case REGULATOR_STATUS_STANDBY
:
2015 return REGULATOR_STATUS_STANDBY
;
2020 EXPORT_SYMBOL_GPL(regulator_mode_to_status
);
2023 * To avoid cluttering sysfs (and memory) with useless state, only
2024 * create attributes that can be meaningfully displayed.
2026 static int add_regulator_attributes(struct regulator_dev
*rdev
)
2028 struct device
*dev
= &rdev
->dev
;
2029 struct regulator_ops
*ops
= rdev
->desc
->ops
;
2032 /* some attributes need specific methods to be displayed */
2033 if (ops
->get_voltage
) {
2034 status
= device_create_file(dev
, &dev_attr_microvolts
);
2038 if (ops
->get_current_limit
) {
2039 status
= device_create_file(dev
, &dev_attr_microamps
);
2043 if (ops
->get_mode
) {
2044 status
= device_create_file(dev
, &dev_attr_opmode
);
2048 if (ops
->is_enabled
) {
2049 status
= device_create_file(dev
, &dev_attr_state
);
2053 if (ops
->get_status
) {
2054 status
= device_create_file(dev
, &dev_attr_status
);
2059 /* some attributes are type-specific */
2060 if (rdev
->desc
->type
== REGULATOR_CURRENT
) {
2061 status
= device_create_file(dev
, &dev_attr_requested_microamps
);
2066 /* all the other attributes exist to support constraints;
2067 * don't show them if there are no constraints, or if the
2068 * relevant supporting methods are missing.
2070 if (!rdev
->constraints
)
2073 /* constraints need specific supporting methods */
2074 if (ops
->set_voltage
) {
2075 status
= device_create_file(dev
, &dev_attr_min_microvolts
);
2078 status
= device_create_file(dev
, &dev_attr_max_microvolts
);
2082 if (ops
->set_current_limit
) {
2083 status
= device_create_file(dev
, &dev_attr_min_microamps
);
2086 status
= device_create_file(dev
, &dev_attr_max_microamps
);
2091 /* suspend mode constraints need multiple supporting methods */
2092 if (!(ops
->set_suspend_enable
&& ops
->set_suspend_disable
))
2095 status
= device_create_file(dev
, &dev_attr_suspend_standby_state
);
2098 status
= device_create_file(dev
, &dev_attr_suspend_mem_state
);
2101 status
= device_create_file(dev
, &dev_attr_suspend_disk_state
);
2105 if (ops
->set_suspend_voltage
) {
2106 status
= device_create_file(dev
,
2107 &dev_attr_suspend_standby_microvolts
);
2110 status
= device_create_file(dev
,
2111 &dev_attr_suspend_mem_microvolts
);
2114 status
= device_create_file(dev
,
2115 &dev_attr_suspend_disk_microvolts
);
2120 if (ops
->set_suspend_mode
) {
2121 status
= device_create_file(dev
,
2122 &dev_attr_suspend_standby_mode
);
2125 status
= device_create_file(dev
,
2126 &dev_attr_suspend_mem_mode
);
2129 status
= device_create_file(dev
,
2130 &dev_attr_suspend_disk_mode
);
2139 * regulator_register - register regulator
2140 * @regulator_desc: regulator to register
2141 * @dev: struct device for the regulator
2142 * @init_data: platform provided init data, passed through by driver
2143 * @driver_data: private regulator data
2145 * Called by regulator drivers to register a regulator.
2146 * Returns 0 on success.
2148 struct regulator_dev
*regulator_register(struct regulator_desc
*regulator_desc
,
2149 struct device
*dev
, struct regulator_init_data
*init_data
,
2152 static atomic_t regulator_no
= ATOMIC_INIT(0);
2153 struct regulator_dev
*rdev
;
2156 if (regulator_desc
== NULL
)
2157 return ERR_PTR(-EINVAL
);
2159 if (regulator_desc
->name
== NULL
|| regulator_desc
->ops
== NULL
)
2160 return ERR_PTR(-EINVAL
);
2162 if (regulator_desc
->type
!= REGULATOR_VOLTAGE
&&
2163 regulator_desc
->type
!= REGULATOR_CURRENT
)
2164 return ERR_PTR(-EINVAL
);
2167 return ERR_PTR(-EINVAL
);
2169 rdev
= kzalloc(sizeof(struct regulator_dev
), GFP_KERNEL
);
2171 return ERR_PTR(-ENOMEM
);
2173 mutex_lock(®ulator_list_mutex
);
2175 mutex_init(&rdev
->mutex
);
2176 rdev
->reg_data
= driver_data
;
2177 rdev
->owner
= regulator_desc
->owner
;
2178 rdev
->desc
= regulator_desc
;
2179 INIT_LIST_HEAD(&rdev
->consumer_list
);
2180 INIT_LIST_HEAD(&rdev
->supply_list
);
2181 INIT_LIST_HEAD(&rdev
->list
);
2182 INIT_LIST_HEAD(&rdev
->slist
);
2183 BLOCKING_INIT_NOTIFIER_HEAD(&rdev
->notifier
);
2185 /* preform any regulator specific init */
2186 if (init_data
->regulator_init
) {
2187 ret
= init_data
->regulator_init(rdev
->reg_data
);
2192 /* register with sysfs */
2193 rdev
->dev
.class = ®ulator_class
;
2194 rdev
->dev
.parent
= dev
;
2195 dev_set_name(&rdev
->dev
, "regulator.%d",
2196 atomic_inc_return(®ulator_no
) - 1);
2197 ret
= device_register(&rdev
->dev
);
2201 dev_set_drvdata(&rdev
->dev
, rdev
);
2203 /* set regulator constraints */
2204 ret
= set_machine_constraints(rdev
, &init_data
->constraints
);
2208 /* add attributes supported by this regulator */
2209 ret
= add_regulator_attributes(rdev
);
2213 /* set supply regulator if it exists */
2214 if (init_data
->supply_regulator_dev
) {
2215 ret
= set_supply(rdev
,
2216 dev_get_drvdata(init_data
->supply_regulator_dev
));
2221 /* add consumers devices */
2222 for (i
= 0; i
< init_data
->num_consumer_supplies
; i
++) {
2223 ret
= set_consumer_device_supply(rdev
,
2224 init_data
->consumer_supplies
[i
].dev
,
2225 init_data
->consumer_supplies
[i
].dev_name
,
2226 init_data
->consumer_supplies
[i
].supply
);
2228 for (--i
; i
>= 0; i
--)
2229 unset_consumer_device_supply(rdev
,
2230 init_data
->consumer_supplies
[i
].dev_name
,
2231 init_data
->consumer_supplies
[i
].dev
);
2236 list_add(&rdev
->list
, ®ulator_list
);
2238 mutex_unlock(®ulator_list_mutex
);
2242 device_unregister(&rdev
->dev
);
2243 /* device core frees rdev */
2244 rdev
= ERR_PTR(ret
);
2249 rdev
= ERR_PTR(ret
);
2252 EXPORT_SYMBOL_GPL(regulator_register
);
2255 * regulator_unregister - unregister regulator
2256 * @rdev: regulator to unregister
2258 * Called by regulator drivers to unregister a regulator.
2260 void regulator_unregister(struct regulator_dev
*rdev
)
2265 mutex_lock(®ulator_list_mutex
);
2266 WARN_ON(rdev
->open_count
);
2267 unset_regulator_supplies(rdev
);
2268 list_del(&rdev
->list
);
2270 sysfs_remove_link(&rdev
->dev
.kobj
, "supply");
2271 device_unregister(&rdev
->dev
);
2272 mutex_unlock(®ulator_list_mutex
);
2274 EXPORT_SYMBOL_GPL(regulator_unregister
);
2277 * regulator_suspend_prepare - prepare regulators for system wide suspend
2278 * @state: system suspend state
2280 * Configure each regulator with it's suspend operating parameters for state.
2281 * This will usually be called by machine suspend code prior to supending.
2283 int regulator_suspend_prepare(suspend_state_t state
)
2285 struct regulator_dev
*rdev
;
2288 /* ON is handled by regulator active state */
2289 if (state
== PM_SUSPEND_ON
)
2292 mutex_lock(®ulator_list_mutex
);
2293 list_for_each_entry(rdev
, ®ulator_list
, list
) {
2295 mutex_lock(&rdev
->mutex
);
2296 ret
= suspend_prepare(rdev
, state
);
2297 mutex_unlock(&rdev
->mutex
);
2300 printk(KERN_ERR
"%s: failed to prepare %s\n",
2301 __func__
, rdev
->desc
->name
);
2306 mutex_unlock(®ulator_list_mutex
);
2309 EXPORT_SYMBOL_GPL(regulator_suspend_prepare
);
2312 * regulator_has_full_constraints - the system has fully specified constraints
2314 * Calling this function will cause the regulator API to disable all
2315 * regulators which have a zero use count and don't have an always_on
2316 * constraint in a late_initcall.
2318 * The intention is that this will become the default behaviour in a
2319 * future kernel release so users are encouraged to use this facility
2322 void regulator_has_full_constraints(void)
2324 has_full_constraints
= 1;
2326 EXPORT_SYMBOL_GPL(regulator_has_full_constraints
);
2329 * rdev_get_drvdata - get rdev regulator driver data
2332 * Get rdev regulator driver private data. This call can be used in the
2333 * regulator driver context.
2335 void *rdev_get_drvdata(struct regulator_dev
*rdev
)
2337 return rdev
->reg_data
;
2339 EXPORT_SYMBOL_GPL(rdev_get_drvdata
);
2342 * regulator_get_drvdata - get regulator driver data
2343 * @regulator: regulator
2345 * Get regulator driver private data. This call can be used in the consumer
2346 * driver context when non API regulator specific functions need to be called.
2348 void *regulator_get_drvdata(struct regulator
*regulator
)
2350 return regulator
->rdev
->reg_data
;
2352 EXPORT_SYMBOL_GPL(regulator_get_drvdata
);
2355 * regulator_set_drvdata - set regulator driver data
2356 * @regulator: regulator
2359 void regulator_set_drvdata(struct regulator
*regulator
, void *data
)
2361 regulator
->rdev
->reg_data
= data
;
2363 EXPORT_SYMBOL_GPL(regulator_set_drvdata
);
2366 * regulator_get_id - get regulator ID
2369 int rdev_get_id(struct regulator_dev
*rdev
)
2371 return rdev
->desc
->id
;
2373 EXPORT_SYMBOL_GPL(rdev_get_id
);
2375 struct device
*rdev_get_dev(struct regulator_dev
*rdev
)
2379 EXPORT_SYMBOL_GPL(rdev_get_dev
);
2381 void *regulator_get_init_drvdata(struct regulator_init_data
*reg_init_data
)
2383 return reg_init_data
->driver_data
;
2385 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata
);
2387 static int __init
regulator_init(void)
2389 printk(KERN_INFO
"regulator: core version %s\n", REGULATOR_VERSION
);
2390 return class_register(®ulator_class
);
2393 /* init early to allow our consumers to complete system booting */
2394 core_initcall(regulator_init
);
2396 static int __init
regulator_init_complete(void)
2398 struct regulator_dev
*rdev
;
2399 struct regulator_ops
*ops
;
2400 struct regulation_constraints
*c
;
2404 mutex_lock(®ulator_list_mutex
);
2406 /* If we have a full configuration then disable any regulators
2407 * which are not in use or always_on. This will become the
2408 * default behaviour in the future.
2410 list_for_each_entry(rdev
, ®ulator_list
, list
) {
2411 ops
= rdev
->desc
->ops
;
2412 c
= rdev
->constraints
;
2416 else if (rdev
->desc
->name
)
2417 name
= rdev
->desc
->name
;
2421 if (!ops
->disable
|| (c
&& c
->always_on
))
2424 mutex_lock(&rdev
->mutex
);
2426 if (rdev
->use_count
)
2429 /* If we can't read the status assume it's on. */
2430 if (ops
->is_enabled
)
2431 enabled
= ops
->is_enabled(rdev
);
2438 if (has_full_constraints
) {
2439 /* We log since this may kill the system if it
2441 printk(KERN_INFO
"%s: disabling %s\n",
2443 ret
= ops
->disable(rdev
);
2446 "%s: couldn't disable %s: %d\n",
2447 __func__
, name
, ret
);
2450 /* The intention is that in future we will
2451 * assume that full constraints are provided
2452 * so warn even if we aren't going to do
2456 "%s: incomplete constraints, leaving %s on\n",
2461 mutex_unlock(&rdev
->mutex
);
2464 mutex_unlock(®ulator_list_mutex
);
2468 late_initcall(regulator_init_complete
);