Linux 4.19.111
[linux/fpc-iii.git] / kernel / kexec_core.c
blobfaeec8255e7e0e8563ee34f0ac04e0b4ca29489c
1 /*
2 * kexec.c - kexec system call core code.
3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/capability.h>
12 #include <linux/mm.h>
13 #include <linux/file.h>
14 #include <linux/slab.h>
15 #include <linux/fs.h>
16 #include <linux/kexec.h>
17 #include <linux/mutex.h>
18 #include <linux/list.h>
19 #include <linux/highmem.h>
20 #include <linux/syscalls.h>
21 #include <linux/reboot.h>
22 #include <linux/ioport.h>
23 #include <linux/hardirq.h>
24 #include <linux/elf.h>
25 #include <linux/elfcore.h>
26 #include <linux/utsname.h>
27 #include <linux/numa.h>
28 #include <linux/suspend.h>
29 #include <linux/device.h>
30 #include <linux/freezer.h>
31 #include <linux/pm.h>
32 #include <linux/cpu.h>
33 #include <linux/uaccess.h>
34 #include <linux/io.h>
35 #include <linux/console.h>
36 #include <linux/vmalloc.h>
37 #include <linux/swap.h>
38 #include <linux/syscore_ops.h>
39 #include <linux/compiler.h>
40 #include <linux/hugetlb.h>
41 #include <linux/frame.h>
43 #include <asm/page.h>
44 #include <asm/sections.h>
46 #include <crypto/hash.h>
47 #include <crypto/sha.h>
48 #include "kexec_internal.h"
50 DEFINE_MUTEX(kexec_mutex);
52 /* Per cpu memory for storing cpu states in case of system crash. */
53 note_buf_t __percpu *crash_notes;
55 /* Flag to indicate we are going to kexec a new kernel */
56 bool kexec_in_progress = false;
59 /* Location of the reserved area for the crash kernel */
60 struct resource crashk_res = {
61 .name = "Crash kernel",
62 .start = 0,
63 .end = 0,
64 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
65 .desc = IORES_DESC_CRASH_KERNEL
67 struct resource crashk_low_res = {
68 .name = "Crash kernel",
69 .start = 0,
70 .end = 0,
71 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
72 .desc = IORES_DESC_CRASH_KERNEL
75 int kexec_should_crash(struct task_struct *p)
78 * If crash_kexec_post_notifiers is enabled, don't run
79 * crash_kexec() here yet, which must be run after panic
80 * notifiers in panic().
82 if (crash_kexec_post_notifiers)
83 return 0;
85 * There are 4 panic() calls in do_exit() path, each of which
86 * corresponds to each of these 4 conditions.
88 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
89 return 1;
90 return 0;
93 int kexec_crash_loaded(void)
95 return !!kexec_crash_image;
97 EXPORT_SYMBOL_GPL(kexec_crash_loaded);
100 * When kexec transitions to the new kernel there is a one-to-one
101 * mapping between physical and virtual addresses. On processors
102 * where you can disable the MMU this is trivial, and easy. For
103 * others it is still a simple predictable page table to setup.
105 * In that environment kexec copies the new kernel to its final
106 * resting place. This means I can only support memory whose
107 * physical address can fit in an unsigned long. In particular
108 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
109 * If the assembly stub has more restrictive requirements
110 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
111 * defined more restrictively in <asm/kexec.h>.
113 * The code for the transition from the current kernel to the
114 * the new kernel is placed in the control_code_buffer, whose size
115 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single
116 * page of memory is necessary, but some architectures require more.
117 * Because this memory must be identity mapped in the transition from
118 * virtual to physical addresses it must live in the range
119 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
120 * modifiable.
122 * The assembly stub in the control code buffer is passed a linked list
123 * of descriptor pages detailing the source pages of the new kernel,
124 * and the destination addresses of those source pages. As this data
125 * structure is not used in the context of the current OS, it must
126 * be self-contained.
128 * The code has been made to work with highmem pages and will use a
129 * destination page in its final resting place (if it happens
130 * to allocate it). The end product of this is that most of the
131 * physical address space, and most of RAM can be used.
133 * Future directions include:
134 * - allocating a page table with the control code buffer identity
135 * mapped, to simplify machine_kexec and make kexec_on_panic more
136 * reliable.
140 * KIMAGE_NO_DEST is an impossible destination address..., for
141 * allocating pages whose destination address we do not care about.
143 #define KIMAGE_NO_DEST (-1UL)
144 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT)
146 static struct page *kimage_alloc_page(struct kimage *image,
147 gfp_t gfp_mask,
148 unsigned long dest);
150 int sanity_check_segment_list(struct kimage *image)
152 int i;
153 unsigned long nr_segments = image->nr_segments;
154 unsigned long total_pages = 0;
157 * Verify we have good destination addresses. The caller is
158 * responsible for making certain we don't attempt to load
159 * the new image into invalid or reserved areas of RAM. This
160 * just verifies it is an address we can use.
162 * Since the kernel does everything in page size chunks ensure
163 * the destination addresses are page aligned. Too many
164 * special cases crop of when we don't do this. The most
165 * insidious is getting overlapping destination addresses
166 * simply because addresses are changed to page size
167 * granularity.
169 for (i = 0; i < nr_segments; i++) {
170 unsigned long mstart, mend;
172 mstart = image->segment[i].mem;
173 mend = mstart + image->segment[i].memsz;
174 if (mstart > mend)
175 return -EADDRNOTAVAIL;
176 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
177 return -EADDRNOTAVAIL;
178 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
179 return -EADDRNOTAVAIL;
182 /* Verify our destination addresses do not overlap.
183 * If we alloed overlapping destination addresses
184 * through very weird things can happen with no
185 * easy explanation as one segment stops on another.
187 for (i = 0; i < nr_segments; i++) {
188 unsigned long mstart, mend;
189 unsigned long j;
191 mstart = image->segment[i].mem;
192 mend = mstart + image->segment[i].memsz;
193 for (j = 0; j < i; j++) {
194 unsigned long pstart, pend;
196 pstart = image->segment[j].mem;
197 pend = pstart + image->segment[j].memsz;
198 /* Do the segments overlap ? */
199 if ((mend > pstart) && (mstart < pend))
200 return -EINVAL;
204 /* Ensure our buffer sizes are strictly less than
205 * our memory sizes. This should always be the case,
206 * and it is easier to check up front than to be surprised
207 * later on.
209 for (i = 0; i < nr_segments; i++) {
210 if (image->segment[i].bufsz > image->segment[i].memsz)
211 return -EINVAL;
215 * Verify that no more than half of memory will be consumed. If the
216 * request from userspace is too large, a large amount of time will be
217 * wasted allocating pages, which can cause a soft lockup.
219 for (i = 0; i < nr_segments; i++) {
220 if (PAGE_COUNT(image->segment[i].memsz) > totalram_pages / 2)
221 return -EINVAL;
223 total_pages += PAGE_COUNT(image->segment[i].memsz);
226 if (total_pages > totalram_pages / 2)
227 return -EINVAL;
230 * Verify we have good destination addresses. Normally
231 * the caller is responsible for making certain we don't
232 * attempt to load the new image into invalid or reserved
233 * areas of RAM. But crash kernels are preloaded into a
234 * reserved area of ram. We must ensure the addresses
235 * are in the reserved area otherwise preloading the
236 * kernel could corrupt things.
239 if (image->type == KEXEC_TYPE_CRASH) {
240 for (i = 0; i < nr_segments; i++) {
241 unsigned long mstart, mend;
243 mstart = image->segment[i].mem;
244 mend = mstart + image->segment[i].memsz - 1;
245 /* Ensure we are within the crash kernel limits */
246 if ((mstart < phys_to_boot_phys(crashk_res.start)) ||
247 (mend > phys_to_boot_phys(crashk_res.end)))
248 return -EADDRNOTAVAIL;
252 return 0;
255 struct kimage *do_kimage_alloc_init(void)
257 struct kimage *image;
259 /* Allocate a controlling structure */
260 image = kzalloc(sizeof(*image), GFP_KERNEL);
261 if (!image)
262 return NULL;
264 image->head = 0;
265 image->entry = &image->head;
266 image->last_entry = &image->head;
267 image->control_page = ~0; /* By default this does not apply */
268 image->type = KEXEC_TYPE_DEFAULT;
270 /* Initialize the list of control pages */
271 INIT_LIST_HEAD(&image->control_pages);
273 /* Initialize the list of destination pages */
274 INIT_LIST_HEAD(&image->dest_pages);
276 /* Initialize the list of unusable pages */
277 INIT_LIST_HEAD(&image->unusable_pages);
279 return image;
282 int kimage_is_destination_range(struct kimage *image,
283 unsigned long start,
284 unsigned long end)
286 unsigned long i;
288 for (i = 0; i < image->nr_segments; i++) {
289 unsigned long mstart, mend;
291 mstart = image->segment[i].mem;
292 mend = mstart + image->segment[i].memsz;
293 if ((end > mstart) && (start < mend))
294 return 1;
297 return 0;
300 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
302 struct page *pages;
304 if (fatal_signal_pending(current))
305 return NULL;
306 pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order);
307 if (pages) {
308 unsigned int count, i;
310 pages->mapping = NULL;
311 set_page_private(pages, order);
312 count = 1 << order;
313 for (i = 0; i < count; i++)
314 SetPageReserved(pages + i);
316 arch_kexec_post_alloc_pages(page_address(pages), count,
317 gfp_mask);
319 if (gfp_mask & __GFP_ZERO)
320 for (i = 0; i < count; i++)
321 clear_highpage(pages + i);
324 return pages;
327 static void kimage_free_pages(struct page *page)
329 unsigned int order, count, i;
331 order = page_private(page);
332 count = 1 << order;
334 arch_kexec_pre_free_pages(page_address(page), count);
336 for (i = 0; i < count; i++)
337 ClearPageReserved(page + i);
338 __free_pages(page, order);
341 void kimage_free_page_list(struct list_head *list)
343 struct page *page, *next;
345 list_for_each_entry_safe(page, next, list, lru) {
346 list_del(&page->lru);
347 kimage_free_pages(page);
351 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
352 unsigned int order)
354 /* Control pages are special, they are the intermediaries
355 * that are needed while we copy the rest of the pages
356 * to their final resting place. As such they must
357 * not conflict with either the destination addresses
358 * or memory the kernel is already using.
360 * The only case where we really need more than one of
361 * these are for architectures where we cannot disable
362 * the MMU and must instead generate an identity mapped
363 * page table for all of the memory.
365 * At worst this runs in O(N) of the image size.
367 struct list_head extra_pages;
368 struct page *pages;
369 unsigned int count;
371 count = 1 << order;
372 INIT_LIST_HEAD(&extra_pages);
374 /* Loop while I can allocate a page and the page allocated
375 * is a destination page.
377 do {
378 unsigned long pfn, epfn, addr, eaddr;
380 pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
381 if (!pages)
382 break;
383 pfn = page_to_boot_pfn(pages);
384 epfn = pfn + count;
385 addr = pfn << PAGE_SHIFT;
386 eaddr = epfn << PAGE_SHIFT;
387 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
388 kimage_is_destination_range(image, addr, eaddr)) {
389 list_add(&pages->lru, &extra_pages);
390 pages = NULL;
392 } while (!pages);
394 if (pages) {
395 /* Remember the allocated page... */
396 list_add(&pages->lru, &image->control_pages);
398 /* Because the page is already in it's destination
399 * location we will never allocate another page at
400 * that address. Therefore kimage_alloc_pages
401 * will not return it (again) and we don't need
402 * to give it an entry in image->segment[].
405 /* Deal with the destination pages I have inadvertently allocated.
407 * Ideally I would convert multi-page allocations into single
408 * page allocations, and add everything to image->dest_pages.
410 * For now it is simpler to just free the pages.
412 kimage_free_page_list(&extra_pages);
414 return pages;
417 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
418 unsigned int order)
420 /* Control pages are special, they are the intermediaries
421 * that are needed while we copy the rest of the pages
422 * to their final resting place. As such they must
423 * not conflict with either the destination addresses
424 * or memory the kernel is already using.
426 * Control pages are also the only pags we must allocate
427 * when loading a crash kernel. All of the other pages
428 * are specified by the segments and we just memcpy
429 * into them directly.
431 * The only case where we really need more than one of
432 * these are for architectures where we cannot disable
433 * the MMU and must instead generate an identity mapped
434 * page table for all of the memory.
436 * Given the low demand this implements a very simple
437 * allocator that finds the first hole of the appropriate
438 * size in the reserved memory region, and allocates all
439 * of the memory up to and including the hole.
441 unsigned long hole_start, hole_end, size;
442 struct page *pages;
444 pages = NULL;
445 size = (1 << order) << PAGE_SHIFT;
446 hole_start = (image->control_page + (size - 1)) & ~(size - 1);
447 hole_end = hole_start + size - 1;
448 while (hole_end <= crashk_res.end) {
449 unsigned long i;
451 cond_resched();
453 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
454 break;
455 /* See if I overlap any of the segments */
456 for (i = 0; i < image->nr_segments; i++) {
457 unsigned long mstart, mend;
459 mstart = image->segment[i].mem;
460 mend = mstart + image->segment[i].memsz - 1;
461 if ((hole_end >= mstart) && (hole_start <= mend)) {
462 /* Advance the hole to the end of the segment */
463 hole_start = (mend + (size - 1)) & ~(size - 1);
464 hole_end = hole_start + size - 1;
465 break;
468 /* If I don't overlap any segments I have found my hole! */
469 if (i == image->nr_segments) {
470 pages = pfn_to_page(hole_start >> PAGE_SHIFT);
471 image->control_page = hole_end;
472 break;
476 /* Ensure that these pages are decrypted if SME is enabled. */
477 if (pages)
478 arch_kexec_post_alloc_pages(page_address(pages), 1 << order, 0);
480 return pages;
484 struct page *kimage_alloc_control_pages(struct kimage *image,
485 unsigned int order)
487 struct page *pages = NULL;
489 switch (image->type) {
490 case KEXEC_TYPE_DEFAULT:
491 pages = kimage_alloc_normal_control_pages(image, order);
492 break;
493 case KEXEC_TYPE_CRASH:
494 pages = kimage_alloc_crash_control_pages(image, order);
495 break;
498 return pages;
501 int kimage_crash_copy_vmcoreinfo(struct kimage *image)
503 struct page *vmcoreinfo_page;
504 void *safecopy;
506 if (image->type != KEXEC_TYPE_CRASH)
507 return 0;
510 * For kdump, allocate one vmcoreinfo safe copy from the
511 * crash memory. as we have arch_kexec_protect_crashkres()
512 * after kexec syscall, we naturally protect it from write
513 * (even read) access under kernel direct mapping. But on
514 * the other hand, we still need to operate it when crash
515 * happens to generate vmcoreinfo note, hereby we rely on
516 * vmap for this purpose.
518 vmcoreinfo_page = kimage_alloc_control_pages(image, 0);
519 if (!vmcoreinfo_page) {
520 pr_warn("Could not allocate vmcoreinfo buffer\n");
521 return -ENOMEM;
523 safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL);
524 if (!safecopy) {
525 pr_warn("Could not vmap vmcoreinfo buffer\n");
526 return -ENOMEM;
529 image->vmcoreinfo_data_copy = safecopy;
530 crash_update_vmcoreinfo_safecopy(safecopy);
532 return 0;
535 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
537 if (*image->entry != 0)
538 image->entry++;
540 if (image->entry == image->last_entry) {
541 kimage_entry_t *ind_page;
542 struct page *page;
544 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
545 if (!page)
546 return -ENOMEM;
548 ind_page = page_address(page);
549 *image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION;
550 image->entry = ind_page;
551 image->last_entry = ind_page +
552 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
554 *image->entry = entry;
555 image->entry++;
556 *image->entry = 0;
558 return 0;
561 static int kimage_set_destination(struct kimage *image,
562 unsigned long destination)
564 int result;
566 destination &= PAGE_MASK;
567 result = kimage_add_entry(image, destination | IND_DESTINATION);
569 return result;
573 static int kimage_add_page(struct kimage *image, unsigned long page)
575 int result;
577 page &= PAGE_MASK;
578 result = kimage_add_entry(image, page | IND_SOURCE);
580 return result;
584 static void kimage_free_extra_pages(struct kimage *image)
586 /* Walk through and free any extra destination pages I may have */
587 kimage_free_page_list(&image->dest_pages);
589 /* Walk through and free any unusable pages I have cached */
590 kimage_free_page_list(&image->unusable_pages);
593 void kimage_terminate(struct kimage *image)
595 if (*image->entry != 0)
596 image->entry++;
598 *image->entry = IND_DONE;
601 #define for_each_kimage_entry(image, ptr, entry) \
602 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
603 ptr = (entry & IND_INDIRECTION) ? \
604 boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
606 static void kimage_free_entry(kimage_entry_t entry)
608 struct page *page;
610 page = boot_pfn_to_page(entry >> PAGE_SHIFT);
611 kimage_free_pages(page);
614 void kimage_free(struct kimage *image)
616 kimage_entry_t *ptr, entry;
617 kimage_entry_t ind = 0;
619 if (!image)
620 return;
622 if (image->vmcoreinfo_data_copy) {
623 crash_update_vmcoreinfo_safecopy(NULL);
624 vunmap(image->vmcoreinfo_data_copy);
627 kimage_free_extra_pages(image);
628 for_each_kimage_entry(image, ptr, entry) {
629 if (entry & IND_INDIRECTION) {
630 /* Free the previous indirection page */
631 if (ind & IND_INDIRECTION)
632 kimage_free_entry(ind);
633 /* Save this indirection page until we are
634 * done with it.
636 ind = entry;
637 } else if (entry & IND_SOURCE)
638 kimage_free_entry(entry);
640 /* Free the final indirection page */
641 if (ind & IND_INDIRECTION)
642 kimage_free_entry(ind);
644 /* Handle any machine specific cleanup */
645 machine_kexec_cleanup(image);
647 /* Free the kexec control pages... */
648 kimage_free_page_list(&image->control_pages);
651 * Free up any temporary buffers allocated. This might hit if
652 * error occurred much later after buffer allocation.
654 if (image->file_mode)
655 kimage_file_post_load_cleanup(image);
657 kfree(image);
660 static kimage_entry_t *kimage_dst_used(struct kimage *image,
661 unsigned long page)
663 kimage_entry_t *ptr, entry;
664 unsigned long destination = 0;
666 for_each_kimage_entry(image, ptr, entry) {
667 if (entry & IND_DESTINATION)
668 destination = entry & PAGE_MASK;
669 else if (entry & IND_SOURCE) {
670 if (page == destination)
671 return ptr;
672 destination += PAGE_SIZE;
676 return NULL;
679 static struct page *kimage_alloc_page(struct kimage *image,
680 gfp_t gfp_mask,
681 unsigned long destination)
684 * Here we implement safeguards to ensure that a source page
685 * is not copied to its destination page before the data on
686 * the destination page is no longer useful.
688 * To do this we maintain the invariant that a source page is
689 * either its own destination page, or it is not a
690 * destination page at all.
692 * That is slightly stronger than required, but the proof
693 * that no problems will not occur is trivial, and the
694 * implementation is simply to verify.
696 * When allocating all pages normally this algorithm will run
697 * in O(N) time, but in the worst case it will run in O(N^2)
698 * time. If the runtime is a problem the data structures can
699 * be fixed.
701 struct page *page;
702 unsigned long addr;
705 * Walk through the list of destination pages, and see if I
706 * have a match.
708 list_for_each_entry(page, &image->dest_pages, lru) {
709 addr = page_to_boot_pfn(page) << PAGE_SHIFT;
710 if (addr == destination) {
711 list_del(&page->lru);
712 return page;
715 page = NULL;
716 while (1) {
717 kimage_entry_t *old;
719 /* Allocate a page, if we run out of memory give up */
720 page = kimage_alloc_pages(gfp_mask, 0);
721 if (!page)
722 return NULL;
723 /* If the page cannot be used file it away */
724 if (page_to_boot_pfn(page) >
725 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
726 list_add(&page->lru, &image->unusable_pages);
727 continue;
729 addr = page_to_boot_pfn(page) << PAGE_SHIFT;
731 /* If it is the destination page we want use it */
732 if (addr == destination)
733 break;
735 /* If the page is not a destination page use it */
736 if (!kimage_is_destination_range(image, addr,
737 addr + PAGE_SIZE))
738 break;
741 * I know that the page is someones destination page.
742 * See if there is already a source page for this
743 * destination page. And if so swap the source pages.
745 old = kimage_dst_used(image, addr);
746 if (old) {
747 /* If so move it */
748 unsigned long old_addr;
749 struct page *old_page;
751 old_addr = *old & PAGE_MASK;
752 old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT);
753 copy_highpage(page, old_page);
754 *old = addr | (*old & ~PAGE_MASK);
756 /* The old page I have found cannot be a
757 * destination page, so return it if it's
758 * gfp_flags honor the ones passed in.
760 if (!(gfp_mask & __GFP_HIGHMEM) &&
761 PageHighMem(old_page)) {
762 kimage_free_pages(old_page);
763 continue;
765 addr = old_addr;
766 page = old_page;
767 break;
769 /* Place the page on the destination list, to be used later */
770 list_add(&page->lru, &image->dest_pages);
773 return page;
776 static int kimage_load_normal_segment(struct kimage *image,
777 struct kexec_segment *segment)
779 unsigned long maddr;
780 size_t ubytes, mbytes;
781 int result;
782 unsigned char __user *buf = NULL;
783 unsigned char *kbuf = NULL;
785 result = 0;
786 if (image->file_mode)
787 kbuf = segment->kbuf;
788 else
789 buf = segment->buf;
790 ubytes = segment->bufsz;
791 mbytes = segment->memsz;
792 maddr = segment->mem;
794 result = kimage_set_destination(image, maddr);
795 if (result < 0)
796 goto out;
798 while (mbytes) {
799 struct page *page;
800 char *ptr;
801 size_t uchunk, mchunk;
803 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
804 if (!page) {
805 result = -ENOMEM;
806 goto out;
808 result = kimage_add_page(image, page_to_boot_pfn(page)
809 << PAGE_SHIFT);
810 if (result < 0)
811 goto out;
813 ptr = kmap(page);
814 /* Start with a clear page */
815 clear_page(ptr);
816 ptr += maddr & ~PAGE_MASK;
817 mchunk = min_t(size_t, mbytes,
818 PAGE_SIZE - (maddr & ~PAGE_MASK));
819 uchunk = min(ubytes, mchunk);
821 /* For file based kexec, source pages are in kernel memory */
822 if (image->file_mode)
823 memcpy(ptr, kbuf, uchunk);
824 else
825 result = copy_from_user(ptr, buf, uchunk);
826 kunmap(page);
827 if (result) {
828 result = -EFAULT;
829 goto out;
831 ubytes -= uchunk;
832 maddr += mchunk;
833 if (image->file_mode)
834 kbuf += mchunk;
835 else
836 buf += mchunk;
837 mbytes -= mchunk;
839 cond_resched();
841 out:
842 return result;
845 static int kimage_load_crash_segment(struct kimage *image,
846 struct kexec_segment *segment)
848 /* For crash dumps kernels we simply copy the data from
849 * user space to it's destination.
850 * We do things a page at a time for the sake of kmap.
852 unsigned long maddr;
853 size_t ubytes, mbytes;
854 int result;
855 unsigned char __user *buf = NULL;
856 unsigned char *kbuf = NULL;
858 result = 0;
859 if (image->file_mode)
860 kbuf = segment->kbuf;
861 else
862 buf = segment->buf;
863 ubytes = segment->bufsz;
864 mbytes = segment->memsz;
865 maddr = segment->mem;
866 while (mbytes) {
867 struct page *page;
868 char *ptr;
869 size_t uchunk, mchunk;
871 page = boot_pfn_to_page(maddr >> PAGE_SHIFT);
872 if (!page) {
873 result = -ENOMEM;
874 goto out;
876 arch_kexec_post_alloc_pages(page_address(page), 1, 0);
877 ptr = kmap(page);
878 ptr += maddr & ~PAGE_MASK;
879 mchunk = min_t(size_t, mbytes,
880 PAGE_SIZE - (maddr & ~PAGE_MASK));
881 uchunk = min(ubytes, mchunk);
882 if (mchunk > uchunk) {
883 /* Zero the trailing part of the page */
884 memset(ptr + uchunk, 0, mchunk - uchunk);
887 /* For file based kexec, source pages are in kernel memory */
888 if (image->file_mode)
889 memcpy(ptr, kbuf, uchunk);
890 else
891 result = copy_from_user(ptr, buf, uchunk);
892 kexec_flush_icache_page(page);
893 kunmap(page);
894 arch_kexec_pre_free_pages(page_address(page), 1);
895 if (result) {
896 result = -EFAULT;
897 goto out;
899 ubytes -= uchunk;
900 maddr += mchunk;
901 if (image->file_mode)
902 kbuf += mchunk;
903 else
904 buf += mchunk;
905 mbytes -= mchunk;
907 cond_resched();
909 out:
910 return result;
913 int kimage_load_segment(struct kimage *image,
914 struct kexec_segment *segment)
916 int result = -ENOMEM;
918 switch (image->type) {
919 case KEXEC_TYPE_DEFAULT:
920 result = kimage_load_normal_segment(image, segment);
921 break;
922 case KEXEC_TYPE_CRASH:
923 result = kimage_load_crash_segment(image, segment);
924 break;
927 return result;
930 struct kimage *kexec_image;
931 struct kimage *kexec_crash_image;
932 int kexec_load_disabled;
935 * No panic_cpu check version of crash_kexec(). This function is called
936 * only when panic_cpu holds the current CPU number; this is the only CPU
937 * which processes crash_kexec routines.
939 void __noclone __crash_kexec(struct pt_regs *regs)
941 /* Take the kexec_mutex here to prevent sys_kexec_load
942 * running on one cpu from replacing the crash kernel
943 * we are using after a panic on a different cpu.
945 * If the crash kernel was not located in a fixed area
946 * of memory the xchg(&kexec_crash_image) would be
947 * sufficient. But since I reuse the memory...
949 if (mutex_trylock(&kexec_mutex)) {
950 if (kexec_crash_image) {
951 struct pt_regs fixed_regs;
953 crash_setup_regs(&fixed_regs, regs);
954 crash_save_vmcoreinfo();
955 machine_crash_shutdown(&fixed_regs);
956 machine_kexec(kexec_crash_image);
958 mutex_unlock(&kexec_mutex);
961 STACK_FRAME_NON_STANDARD(__crash_kexec);
963 void crash_kexec(struct pt_regs *regs)
965 int old_cpu, this_cpu;
968 * Only one CPU is allowed to execute the crash_kexec() code as with
969 * panic(). Otherwise parallel calls of panic() and crash_kexec()
970 * may stop each other. To exclude them, we use panic_cpu here too.
972 this_cpu = raw_smp_processor_id();
973 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
974 if (old_cpu == PANIC_CPU_INVALID) {
975 /* This is the 1st CPU which comes here, so go ahead. */
976 printk_safe_flush_on_panic();
977 __crash_kexec(regs);
980 * Reset panic_cpu to allow another panic()/crash_kexec()
981 * call.
983 atomic_set(&panic_cpu, PANIC_CPU_INVALID);
987 size_t crash_get_memory_size(void)
989 size_t size = 0;
991 mutex_lock(&kexec_mutex);
992 if (crashk_res.end != crashk_res.start)
993 size = resource_size(&crashk_res);
994 mutex_unlock(&kexec_mutex);
995 return size;
998 void __weak crash_free_reserved_phys_range(unsigned long begin,
999 unsigned long end)
1001 unsigned long addr;
1003 for (addr = begin; addr < end; addr += PAGE_SIZE)
1004 free_reserved_page(boot_pfn_to_page(addr >> PAGE_SHIFT));
1007 int crash_shrink_memory(unsigned long new_size)
1009 int ret = 0;
1010 unsigned long start, end;
1011 unsigned long old_size;
1012 struct resource *ram_res;
1014 mutex_lock(&kexec_mutex);
1016 if (kexec_crash_image) {
1017 ret = -ENOENT;
1018 goto unlock;
1020 start = crashk_res.start;
1021 end = crashk_res.end;
1022 old_size = (end == 0) ? 0 : end - start + 1;
1023 if (new_size >= old_size) {
1024 ret = (new_size == old_size) ? 0 : -EINVAL;
1025 goto unlock;
1028 ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
1029 if (!ram_res) {
1030 ret = -ENOMEM;
1031 goto unlock;
1034 start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
1035 end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
1037 crash_free_reserved_phys_range(end, crashk_res.end);
1039 if ((start == end) && (crashk_res.parent != NULL))
1040 release_resource(&crashk_res);
1042 ram_res->start = end;
1043 ram_res->end = crashk_res.end;
1044 ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
1045 ram_res->name = "System RAM";
1047 crashk_res.end = end - 1;
1049 insert_resource(&iomem_resource, ram_res);
1051 unlock:
1052 mutex_unlock(&kexec_mutex);
1053 return ret;
1056 void crash_save_cpu(struct pt_regs *regs, int cpu)
1058 struct elf_prstatus prstatus;
1059 u32 *buf;
1061 if ((cpu < 0) || (cpu >= nr_cpu_ids))
1062 return;
1064 /* Using ELF notes here is opportunistic.
1065 * I need a well defined structure format
1066 * for the data I pass, and I need tags
1067 * on the data to indicate what information I have
1068 * squirrelled away. ELF notes happen to provide
1069 * all of that, so there is no need to invent something new.
1071 buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
1072 if (!buf)
1073 return;
1074 memset(&prstatus, 0, sizeof(prstatus));
1075 prstatus.pr_pid = current->pid;
1076 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1077 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1078 &prstatus, sizeof(prstatus));
1079 final_note(buf);
1082 static int __init crash_notes_memory_init(void)
1084 /* Allocate memory for saving cpu registers. */
1085 size_t size, align;
1088 * crash_notes could be allocated across 2 vmalloc pages when percpu
1089 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
1090 * pages are also on 2 continuous physical pages. In this case the
1091 * 2nd part of crash_notes in 2nd page could be lost since only the
1092 * starting address and size of crash_notes are exported through sysfs.
1093 * Here round up the size of crash_notes to the nearest power of two
1094 * and pass it to __alloc_percpu as align value. This can make sure
1095 * crash_notes is allocated inside one physical page.
1097 size = sizeof(note_buf_t);
1098 align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
1101 * Break compile if size is bigger than PAGE_SIZE since crash_notes
1102 * definitely will be in 2 pages with that.
1104 BUILD_BUG_ON(size > PAGE_SIZE);
1106 crash_notes = __alloc_percpu(size, align);
1107 if (!crash_notes) {
1108 pr_warn("Memory allocation for saving cpu register states failed\n");
1109 return -ENOMEM;
1111 return 0;
1113 subsys_initcall(crash_notes_memory_init);
1117 * Move into place and start executing a preloaded standalone
1118 * executable. If nothing was preloaded return an error.
1120 int kernel_kexec(void)
1122 int error = 0;
1124 if (!mutex_trylock(&kexec_mutex))
1125 return -EBUSY;
1126 if (!kexec_image) {
1127 error = -EINVAL;
1128 goto Unlock;
1131 #ifdef CONFIG_KEXEC_JUMP
1132 if (kexec_image->preserve_context) {
1133 lock_system_sleep();
1134 pm_prepare_console();
1135 error = freeze_processes();
1136 if (error) {
1137 error = -EBUSY;
1138 goto Restore_console;
1140 suspend_console();
1141 error = dpm_suspend_start(PMSG_FREEZE);
1142 if (error)
1143 goto Resume_console;
1144 /* At this point, dpm_suspend_start() has been called,
1145 * but *not* dpm_suspend_end(). We *must* call
1146 * dpm_suspend_end() now. Otherwise, drivers for
1147 * some devices (e.g. interrupt controllers) become
1148 * desynchronized with the actual state of the
1149 * hardware at resume time, and evil weirdness ensues.
1151 error = dpm_suspend_end(PMSG_FREEZE);
1152 if (error)
1153 goto Resume_devices;
1154 error = disable_nonboot_cpus();
1155 if (error)
1156 goto Enable_cpus;
1157 local_irq_disable();
1158 error = syscore_suspend();
1159 if (error)
1160 goto Enable_irqs;
1161 } else
1162 #endif
1164 kexec_in_progress = true;
1165 kernel_restart_prepare(NULL);
1166 migrate_to_reboot_cpu();
1169 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1170 * no further code needs to use CPU hotplug (which is true in
1171 * the reboot case). However, the kexec path depends on using
1172 * CPU hotplug again; so re-enable it here.
1174 cpu_hotplug_enable();
1175 pr_emerg("Starting new kernel\n");
1176 machine_shutdown();
1179 machine_kexec(kexec_image);
1181 #ifdef CONFIG_KEXEC_JUMP
1182 if (kexec_image->preserve_context) {
1183 syscore_resume();
1184 Enable_irqs:
1185 local_irq_enable();
1186 Enable_cpus:
1187 enable_nonboot_cpus();
1188 dpm_resume_start(PMSG_RESTORE);
1189 Resume_devices:
1190 dpm_resume_end(PMSG_RESTORE);
1191 Resume_console:
1192 resume_console();
1193 thaw_processes();
1194 Restore_console:
1195 pm_restore_console();
1196 unlock_system_sleep();
1198 #endif
1200 Unlock:
1201 mutex_unlock(&kexec_mutex);
1202 return error;
1206 * Protection mechanism for crashkernel reserved memory after
1207 * the kdump kernel is loaded.
1209 * Provide an empty default implementation here -- architecture
1210 * code may override this
1212 void __weak arch_kexec_protect_crashkres(void)
1215 void __weak arch_kexec_unprotect_crashkres(void)