Merge tag 'fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arm...
[linux/fpc-iii.git] / mm / page-writeback.c
blob63807583d8e89f1c96f8b05bcf5fe422ed200c26
1 /*
2 * mm/page-writeback.c
4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
10 * 10Apr2002 Andrew Morton
11 * Initial version
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/mm_inline.h>
40 #include <trace/events/writeback.h>
42 #include "internal.h"
45 * Sleep at most 200ms at a time in balance_dirty_pages().
47 #define MAX_PAUSE max(HZ/5, 1)
50 * Try to keep balance_dirty_pages() call intervals higher than this many pages
51 * by raising pause time to max_pause when falls below it.
53 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
56 * Estimate write bandwidth at 200ms intervals.
58 #define BANDWIDTH_INTERVAL max(HZ/5, 1)
60 #define RATELIMIT_CALC_SHIFT 10
63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64 * will look to see if it needs to force writeback or throttling.
66 static long ratelimit_pages = 32;
68 /* The following parameters are exported via /proc/sys/vm */
71 * Start background writeback (via writeback threads) at this percentage
73 int dirty_background_ratio = 10;
76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77 * dirty_background_ratio * the amount of dirtyable memory
79 unsigned long dirty_background_bytes;
82 * free highmem will not be subtracted from the total free memory
83 * for calculating free ratios if vm_highmem_is_dirtyable is true
85 int vm_highmem_is_dirtyable;
88 * The generator of dirty data starts writeback at this percentage
90 int vm_dirty_ratio = 20;
93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94 * vm_dirty_ratio * the amount of dirtyable memory
96 unsigned long vm_dirty_bytes;
99 * The interval between `kupdate'-style writebacks
101 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
103 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
106 * The longest time for which data is allowed to remain dirty
108 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
111 * Flag that makes the machine dump writes/reads and block dirtyings.
113 int block_dump;
116 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
117 * a full sync is triggered after this time elapses without any disk activity.
119 int laptop_mode;
121 EXPORT_SYMBOL(laptop_mode);
123 /* End of sysctl-exported parameters */
125 unsigned long global_dirty_limit;
128 * Scale the writeback cache size proportional to the relative writeout speeds.
130 * We do this by keeping a floating proportion between BDIs, based on page
131 * writeback completions [end_page_writeback()]. Those devices that write out
132 * pages fastest will get the larger share, while the slower will get a smaller
133 * share.
135 * We use page writeout completions because we are interested in getting rid of
136 * dirty pages. Having them written out is the primary goal.
138 * We introduce a concept of time, a period over which we measure these events,
139 * because demand can/will vary over time. The length of this period itself is
140 * measured in page writeback completions.
143 static struct fprop_global writeout_completions;
145 static void writeout_period(unsigned long t);
146 /* Timer for aging of writeout_completions */
147 static struct timer_list writeout_period_timer =
148 TIMER_DEFERRED_INITIALIZER(writeout_period, 0, 0);
149 static unsigned long writeout_period_time = 0;
152 * Length of period for aging writeout fractions of bdis. This is an
153 * arbitrarily chosen number. The longer the period, the slower fractions will
154 * reflect changes in current writeout rate.
156 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
159 * Work out the current dirty-memory clamping and background writeout
160 * thresholds.
162 * The main aim here is to lower them aggressively if there is a lot of mapped
163 * memory around. To avoid stressing page reclaim with lots of unreclaimable
164 * pages. It is better to clamp down on writers than to start swapping, and
165 * performing lots of scanning.
167 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
169 * We don't permit the clamping level to fall below 5% - that is getting rather
170 * excessive.
172 * We make sure that the background writeout level is below the adjusted
173 * clamping level.
177 * In a memory zone, there is a certain amount of pages we consider
178 * available for the page cache, which is essentially the number of
179 * free and reclaimable pages, minus some zone reserves to protect
180 * lowmem and the ability to uphold the zone's watermarks without
181 * requiring writeback.
183 * This number of dirtyable pages is the base value of which the
184 * user-configurable dirty ratio is the effictive number of pages that
185 * are allowed to be actually dirtied. Per individual zone, or
186 * globally by using the sum of dirtyable pages over all zones.
188 * Because the user is allowed to specify the dirty limit globally as
189 * absolute number of bytes, calculating the per-zone dirty limit can
190 * require translating the configured limit into a percentage of
191 * global dirtyable memory first.
194 static unsigned long highmem_dirtyable_memory(unsigned long total)
196 #ifdef CONFIG_HIGHMEM
197 int node;
198 unsigned long x = 0;
200 for_each_node_state(node, N_HIGH_MEMORY) {
201 struct zone *z =
202 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
204 x += zone_page_state(z, NR_FREE_PAGES) +
205 zone_reclaimable_pages(z) - z->dirty_balance_reserve;
208 * Unreclaimable memory (kernel memory or anonymous memory
209 * without swap) can bring down the dirtyable pages below
210 * the zone's dirty balance reserve and the above calculation
211 * will underflow. However we still want to add in nodes
212 * which are below threshold (negative values) to get a more
213 * accurate calculation but make sure that the total never
214 * underflows.
216 if ((long)x < 0)
217 x = 0;
220 * Make sure that the number of highmem pages is never larger
221 * than the number of the total dirtyable memory. This can only
222 * occur in very strange VM situations but we want to make sure
223 * that this does not occur.
225 return min(x, total);
226 #else
227 return 0;
228 #endif
232 * global_dirtyable_memory - number of globally dirtyable pages
234 * Returns the global number of pages potentially available for dirty
235 * page cache. This is the base value for the global dirty limits.
237 static unsigned long global_dirtyable_memory(void)
239 unsigned long x;
241 x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
242 x -= min(x, dirty_balance_reserve);
244 if (!vm_highmem_is_dirtyable)
245 x -= highmem_dirtyable_memory(x);
247 return x + 1; /* Ensure that we never return 0 */
251 * global_dirty_limits - background-writeback and dirty-throttling thresholds
253 * Calculate the dirty thresholds based on sysctl parameters
254 * - vm.dirty_background_ratio or vm.dirty_background_bytes
255 * - vm.dirty_ratio or vm.dirty_bytes
256 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
257 * real-time tasks.
259 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
261 unsigned long background;
262 unsigned long dirty;
263 unsigned long uninitialized_var(available_memory);
264 struct task_struct *tsk;
266 if (!vm_dirty_bytes || !dirty_background_bytes)
267 available_memory = global_dirtyable_memory();
269 if (vm_dirty_bytes)
270 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
271 else
272 dirty = (vm_dirty_ratio * available_memory) / 100;
274 if (dirty_background_bytes)
275 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
276 else
277 background = (dirty_background_ratio * available_memory) / 100;
279 if (background >= dirty)
280 background = dirty / 2;
281 tsk = current;
282 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
283 background += background / 4;
284 dirty += dirty / 4;
286 *pbackground = background;
287 *pdirty = dirty;
288 trace_global_dirty_state(background, dirty);
292 * zone_dirtyable_memory - number of dirtyable pages in a zone
293 * @zone: the zone
295 * Returns the zone's number of pages potentially available for dirty
296 * page cache. This is the base value for the per-zone dirty limits.
298 static unsigned long zone_dirtyable_memory(struct zone *zone)
301 * The effective global number of dirtyable pages may exclude
302 * highmem as a big-picture measure to keep the ratio between
303 * dirty memory and lowmem reasonable.
305 * But this function is purely about the individual zone and a
306 * highmem zone can hold its share of dirty pages, so we don't
307 * care about vm_highmem_is_dirtyable here.
309 unsigned long nr_pages = zone_page_state(zone, NR_FREE_PAGES) +
310 zone_reclaimable_pages(zone);
312 /* don't allow this to underflow */
313 nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
314 return nr_pages;
318 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
319 * @zone: the zone
321 * Returns the maximum number of dirty pages allowed in a zone, based
322 * on the zone's dirtyable memory.
324 static unsigned long zone_dirty_limit(struct zone *zone)
326 unsigned long zone_memory = zone_dirtyable_memory(zone);
327 struct task_struct *tsk = current;
328 unsigned long dirty;
330 if (vm_dirty_bytes)
331 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
332 zone_memory / global_dirtyable_memory();
333 else
334 dirty = vm_dirty_ratio * zone_memory / 100;
336 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
337 dirty += dirty / 4;
339 return dirty;
343 * zone_dirty_ok - tells whether a zone is within its dirty limits
344 * @zone: the zone to check
346 * Returns %true when the dirty pages in @zone are within the zone's
347 * dirty limit, %false if the limit is exceeded.
349 bool zone_dirty_ok(struct zone *zone)
351 unsigned long limit = zone_dirty_limit(zone);
353 return zone_page_state(zone, NR_FILE_DIRTY) +
354 zone_page_state(zone, NR_UNSTABLE_NFS) +
355 zone_page_state(zone, NR_WRITEBACK) <= limit;
358 int dirty_background_ratio_handler(struct ctl_table *table, int write,
359 void __user *buffer, size_t *lenp,
360 loff_t *ppos)
362 int ret;
364 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
365 if (ret == 0 && write)
366 dirty_background_bytes = 0;
367 return ret;
370 int dirty_background_bytes_handler(struct ctl_table *table, int write,
371 void __user *buffer, size_t *lenp,
372 loff_t *ppos)
374 int ret;
376 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
377 if (ret == 0 && write)
378 dirty_background_ratio = 0;
379 return ret;
382 int dirty_ratio_handler(struct ctl_table *table, int write,
383 void __user *buffer, size_t *lenp,
384 loff_t *ppos)
386 int old_ratio = vm_dirty_ratio;
387 int ret;
389 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
390 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
391 writeback_set_ratelimit();
392 vm_dirty_bytes = 0;
394 return ret;
397 int dirty_bytes_handler(struct ctl_table *table, int write,
398 void __user *buffer, size_t *lenp,
399 loff_t *ppos)
401 unsigned long old_bytes = vm_dirty_bytes;
402 int ret;
404 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
405 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
406 writeback_set_ratelimit();
407 vm_dirty_ratio = 0;
409 return ret;
412 static unsigned long wp_next_time(unsigned long cur_time)
414 cur_time += VM_COMPLETIONS_PERIOD_LEN;
415 /* 0 has a special meaning... */
416 if (!cur_time)
417 return 1;
418 return cur_time;
422 * Increment the BDI's writeout completion count and the global writeout
423 * completion count. Called from test_clear_page_writeback().
425 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
427 __inc_bdi_stat(bdi, BDI_WRITTEN);
428 __fprop_inc_percpu_max(&writeout_completions, &bdi->completions,
429 bdi->max_prop_frac);
430 /* First event after period switching was turned off? */
431 if (!unlikely(writeout_period_time)) {
433 * We can race with other __bdi_writeout_inc calls here but
434 * it does not cause any harm since the resulting time when
435 * timer will fire and what is in writeout_period_time will be
436 * roughly the same.
438 writeout_period_time = wp_next_time(jiffies);
439 mod_timer(&writeout_period_timer, writeout_period_time);
443 void bdi_writeout_inc(struct backing_dev_info *bdi)
445 unsigned long flags;
447 local_irq_save(flags);
448 __bdi_writeout_inc(bdi);
449 local_irq_restore(flags);
451 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
454 * Obtain an accurate fraction of the BDI's portion.
456 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
457 long *numerator, long *denominator)
459 fprop_fraction_percpu(&writeout_completions, &bdi->completions,
460 numerator, denominator);
464 * On idle system, we can be called long after we scheduled because we use
465 * deferred timers so count with missed periods.
467 static void writeout_period(unsigned long t)
469 int miss_periods = (jiffies - writeout_period_time) /
470 VM_COMPLETIONS_PERIOD_LEN;
472 if (fprop_new_period(&writeout_completions, miss_periods + 1)) {
473 writeout_period_time = wp_next_time(writeout_period_time +
474 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
475 mod_timer(&writeout_period_timer, writeout_period_time);
476 } else {
478 * Aging has zeroed all fractions. Stop wasting CPU on period
479 * updates.
481 writeout_period_time = 0;
486 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
487 * registered backing devices, which, for obvious reasons, can not
488 * exceed 100%.
490 static unsigned int bdi_min_ratio;
492 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
494 int ret = 0;
496 spin_lock_bh(&bdi_lock);
497 if (min_ratio > bdi->max_ratio) {
498 ret = -EINVAL;
499 } else {
500 min_ratio -= bdi->min_ratio;
501 if (bdi_min_ratio + min_ratio < 100) {
502 bdi_min_ratio += min_ratio;
503 bdi->min_ratio += min_ratio;
504 } else {
505 ret = -EINVAL;
508 spin_unlock_bh(&bdi_lock);
510 return ret;
513 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
515 int ret = 0;
517 if (max_ratio > 100)
518 return -EINVAL;
520 spin_lock_bh(&bdi_lock);
521 if (bdi->min_ratio > max_ratio) {
522 ret = -EINVAL;
523 } else {
524 bdi->max_ratio = max_ratio;
525 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
527 spin_unlock_bh(&bdi_lock);
529 return ret;
531 EXPORT_SYMBOL(bdi_set_max_ratio);
533 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
534 unsigned long bg_thresh)
536 return (thresh + bg_thresh) / 2;
539 static unsigned long hard_dirty_limit(unsigned long thresh)
541 return max(thresh, global_dirty_limit);
545 * bdi_dirty_limit - @bdi's share of dirty throttling threshold
546 * @bdi: the backing_dev_info to query
547 * @dirty: global dirty limit in pages
549 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
550 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
552 * Note that balance_dirty_pages() will only seriously take it as a hard limit
553 * when sleeping max_pause per page is not enough to keep the dirty pages under
554 * control. For example, when the device is completely stalled due to some error
555 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
556 * In the other normal situations, it acts more gently by throttling the tasks
557 * more (rather than completely block them) when the bdi dirty pages go high.
559 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
560 * - starving fast devices
561 * - piling up dirty pages (that will take long time to sync) on slow devices
563 * The bdi's share of dirty limit will be adapting to its throughput and
564 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
566 unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
568 u64 bdi_dirty;
569 long numerator, denominator;
572 * Calculate this BDI's share of the dirty ratio.
574 bdi_writeout_fraction(bdi, &numerator, &denominator);
576 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
577 bdi_dirty *= numerator;
578 do_div(bdi_dirty, denominator);
580 bdi_dirty += (dirty * bdi->min_ratio) / 100;
581 if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
582 bdi_dirty = dirty * bdi->max_ratio / 100;
584 return bdi_dirty;
588 * setpoint - dirty 3
589 * f(dirty) := 1.0 + (----------------)
590 * limit - setpoint
592 * it's a 3rd order polynomial that subjects to
594 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
595 * (2) f(setpoint) = 1.0 => the balance point
596 * (3) f(limit) = 0 => the hard limit
597 * (4) df/dx <= 0 => negative feedback control
598 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
599 * => fast response on large errors; small oscillation near setpoint
601 static inline long long pos_ratio_polynom(unsigned long setpoint,
602 unsigned long dirty,
603 unsigned long limit)
605 long long pos_ratio;
606 long x;
608 x = div_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
609 limit - setpoint + 1);
610 pos_ratio = x;
611 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
612 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
613 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
615 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
619 * Dirty position control.
621 * (o) global/bdi setpoints
623 * We want the dirty pages be balanced around the global/bdi setpoints.
624 * When the number of dirty pages is higher/lower than the setpoint, the
625 * dirty position control ratio (and hence task dirty ratelimit) will be
626 * decreased/increased to bring the dirty pages back to the setpoint.
628 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
630 * if (dirty < setpoint) scale up pos_ratio
631 * if (dirty > setpoint) scale down pos_ratio
633 * if (bdi_dirty < bdi_setpoint) scale up pos_ratio
634 * if (bdi_dirty > bdi_setpoint) scale down pos_ratio
636 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
638 * (o) global control line
640 * ^ pos_ratio
642 * | |<===== global dirty control scope ======>|
643 * 2.0 .............*
644 * | .*
645 * | . *
646 * | . *
647 * | . *
648 * | . *
649 * | . *
650 * 1.0 ................................*
651 * | . . *
652 * | . . *
653 * | . . *
654 * | . . *
655 * | . . *
656 * 0 +------------.------------------.----------------------*------------->
657 * freerun^ setpoint^ limit^ dirty pages
659 * (o) bdi control line
661 * ^ pos_ratio
663 * | *
664 * | *
665 * | *
666 * | *
667 * | * |<=========== span ============>|
668 * 1.0 .......................*
669 * | . *
670 * | . *
671 * | . *
672 * | . *
673 * | . *
674 * | . *
675 * | . *
676 * | . *
677 * | . *
678 * | . *
679 * | . *
680 * 1/4 ...............................................* * * * * * * * * * * *
681 * | . .
682 * | . .
683 * | . .
684 * 0 +----------------------.-------------------------------.------------->
685 * bdi_setpoint^ x_intercept^
687 * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
688 * be smoothly throttled down to normal if it starts high in situations like
689 * - start writing to a slow SD card and a fast disk at the same time. The SD
690 * card's bdi_dirty may rush to many times higher than bdi_setpoint.
691 * - the bdi dirty thresh drops quickly due to change of JBOD workload
693 static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
694 unsigned long thresh,
695 unsigned long bg_thresh,
696 unsigned long dirty,
697 unsigned long bdi_thresh,
698 unsigned long bdi_dirty)
700 unsigned long write_bw = bdi->avg_write_bandwidth;
701 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
702 unsigned long limit = hard_dirty_limit(thresh);
703 unsigned long x_intercept;
704 unsigned long setpoint; /* dirty pages' target balance point */
705 unsigned long bdi_setpoint;
706 unsigned long span;
707 long long pos_ratio; /* for scaling up/down the rate limit */
708 long x;
710 if (unlikely(dirty >= limit))
711 return 0;
714 * global setpoint
716 * See comment for pos_ratio_polynom().
718 setpoint = (freerun + limit) / 2;
719 pos_ratio = pos_ratio_polynom(setpoint, dirty, limit);
722 * The strictlimit feature is a tool preventing mistrusted filesystems
723 * from growing a large number of dirty pages before throttling. For
724 * such filesystems balance_dirty_pages always checks bdi counters
725 * against bdi limits. Even if global "nr_dirty" is under "freerun".
726 * This is especially important for fuse which sets bdi->max_ratio to
727 * 1% by default. Without strictlimit feature, fuse writeback may
728 * consume arbitrary amount of RAM because it is accounted in
729 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
731 * Here, in bdi_position_ratio(), we calculate pos_ratio based on
732 * two values: bdi_dirty and bdi_thresh. Let's consider an example:
733 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
734 * limits are set by default to 10% and 20% (background and throttle).
735 * Then bdi_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
736 * bdi_dirty_limit(bdi, bg_thresh) is about ~4K pages. bdi_setpoint is
737 * about ~6K pages (as the average of background and throttle bdi
738 * limits). The 3rd order polynomial will provide positive feedback if
739 * bdi_dirty is under bdi_setpoint and vice versa.
741 * Note, that we cannot use global counters in these calculations
742 * because we want to throttle process writing to a strictlimit BDI
743 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
744 * in the example above).
746 if (unlikely(bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
747 long long bdi_pos_ratio;
748 unsigned long bdi_bg_thresh;
750 if (bdi_dirty < 8)
751 return min_t(long long, pos_ratio * 2,
752 2 << RATELIMIT_CALC_SHIFT);
754 if (bdi_dirty >= bdi_thresh)
755 return 0;
757 bdi_bg_thresh = div_u64((u64)bdi_thresh * bg_thresh, thresh);
758 bdi_setpoint = dirty_freerun_ceiling(bdi_thresh,
759 bdi_bg_thresh);
761 if (bdi_setpoint == 0 || bdi_setpoint == bdi_thresh)
762 return 0;
764 bdi_pos_ratio = pos_ratio_polynom(bdi_setpoint, bdi_dirty,
765 bdi_thresh);
768 * Typically, for strictlimit case, bdi_setpoint << setpoint
769 * and pos_ratio >> bdi_pos_ratio. In the other words global
770 * state ("dirty") is not limiting factor and we have to
771 * make decision based on bdi counters. But there is an
772 * important case when global pos_ratio should get precedence:
773 * global limits are exceeded (e.g. due to activities on other
774 * BDIs) while given strictlimit BDI is below limit.
776 * "pos_ratio * bdi_pos_ratio" would work for the case above,
777 * but it would look too non-natural for the case of all
778 * activity in the system coming from a single strictlimit BDI
779 * with bdi->max_ratio == 100%.
781 * Note that min() below somewhat changes the dynamics of the
782 * control system. Normally, pos_ratio value can be well over 3
783 * (when globally we are at freerun and bdi is well below bdi
784 * setpoint). Now the maximum pos_ratio in the same situation
785 * is 2. We might want to tweak this if we observe the control
786 * system is too slow to adapt.
788 return min(pos_ratio, bdi_pos_ratio);
792 * We have computed basic pos_ratio above based on global situation. If
793 * the bdi is over/under its share of dirty pages, we want to scale
794 * pos_ratio further down/up. That is done by the following mechanism.
798 * bdi setpoint
800 * f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
802 * x_intercept - bdi_dirty
803 * := --------------------------
804 * x_intercept - bdi_setpoint
806 * The main bdi control line is a linear function that subjects to
808 * (1) f(bdi_setpoint) = 1.0
809 * (2) k = - 1 / (8 * write_bw) (in single bdi case)
810 * or equally: x_intercept = bdi_setpoint + 8 * write_bw
812 * For single bdi case, the dirty pages are observed to fluctuate
813 * regularly within range
814 * [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
815 * for various filesystems, where (2) can yield in a reasonable 12.5%
816 * fluctuation range for pos_ratio.
818 * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
819 * own size, so move the slope over accordingly and choose a slope that
820 * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
822 if (unlikely(bdi_thresh > thresh))
823 bdi_thresh = thresh;
825 * It's very possible that bdi_thresh is close to 0 not because the
826 * device is slow, but that it has remained inactive for long time.
827 * Honour such devices a reasonable good (hopefully IO efficient)
828 * threshold, so that the occasional writes won't be blocked and active
829 * writes can rampup the threshold quickly.
831 bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
833 * scale global setpoint to bdi's:
834 * bdi_setpoint = setpoint * bdi_thresh / thresh
836 x = div_u64((u64)bdi_thresh << 16, thresh + 1);
837 bdi_setpoint = setpoint * (u64)x >> 16;
839 * Use span=(8*write_bw) in single bdi case as indicated by
840 * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
842 * bdi_thresh thresh - bdi_thresh
843 * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
844 * thresh thresh
846 span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
847 x_intercept = bdi_setpoint + span;
849 if (bdi_dirty < x_intercept - span / 4) {
850 pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
851 x_intercept - bdi_setpoint + 1);
852 } else
853 pos_ratio /= 4;
856 * bdi reserve area, safeguard against dirty pool underrun and disk idle
857 * It may push the desired control point of global dirty pages higher
858 * than setpoint.
860 x_intercept = bdi_thresh / 2;
861 if (bdi_dirty < x_intercept) {
862 if (bdi_dirty > x_intercept / 8)
863 pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
864 else
865 pos_ratio *= 8;
868 return pos_ratio;
871 static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
872 unsigned long elapsed,
873 unsigned long written)
875 const unsigned long period = roundup_pow_of_two(3 * HZ);
876 unsigned long avg = bdi->avg_write_bandwidth;
877 unsigned long old = bdi->write_bandwidth;
878 u64 bw;
881 * bw = written * HZ / elapsed
883 * bw * elapsed + write_bandwidth * (period - elapsed)
884 * write_bandwidth = ---------------------------------------------------
885 * period
887 bw = written - bdi->written_stamp;
888 bw *= HZ;
889 if (unlikely(elapsed > period)) {
890 do_div(bw, elapsed);
891 avg = bw;
892 goto out;
894 bw += (u64)bdi->write_bandwidth * (period - elapsed);
895 bw >>= ilog2(period);
898 * one more level of smoothing, for filtering out sudden spikes
900 if (avg > old && old >= (unsigned long)bw)
901 avg -= (avg - old) >> 3;
903 if (avg < old && old <= (unsigned long)bw)
904 avg += (old - avg) >> 3;
906 out:
907 bdi->write_bandwidth = bw;
908 bdi->avg_write_bandwidth = avg;
912 * The global dirtyable memory and dirty threshold could be suddenly knocked
913 * down by a large amount (eg. on the startup of KVM in a swapless system).
914 * This may throw the system into deep dirty exceeded state and throttle
915 * heavy/light dirtiers alike. To retain good responsiveness, maintain
916 * global_dirty_limit for tracking slowly down to the knocked down dirty
917 * threshold.
919 static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
921 unsigned long limit = global_dirty_limit;
924 * Follow up in one step.
926 if (limit < thresh) {
927 limit = thresh;
928 goto update;
932 * Follow down slowly. Use the higher one as the target, because thresh
933 * may drop below dirty. This is exactly the reason to introduce
934 * global_dirty_limit which is guaranteed to lie above the dirty pages.
936 thresh = max(thresh, dirty);
937 if (limit > thresh) {
938 limit -= (limit - thresh) >> 5;
939 goto update;
941 return;
942 update:
943 global_dirty_limit = limit;
946 static void global_update_bandwidth(unsigned long thresh,
947 unsigned long dirty,
948 unsigned long now)
950 static DEFINE_SPINLOCK(dirty_lock);
951 static unsigned long update_time;
954 * check locklessly first to optimize away locking for the most time
956 if (time_before(now, update_time + BANDWIDTH_INTERVAL))
957 return;
959 spin_lock(&dirty_lock);
960 if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
961 update_dirty_limit(thresh, dirty);
962 update_time = now;
964 spin_unlock(&dirty_lock);
968 * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
970 * Normal bdi tasks will be curbed at or below it in long term.
971 * Obviously it should be around (write_bw / N) when there are N dd tasks.
973 static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
974 unsigned long thresh,
975 unsigned long bg_thresh,
976 unsigned long dirty,
977 unsigned long bdi_thresh,
978 unsigned long bdi_dirty,
979 unsigned long dirtied,
980 unsigned long elapsed)
982 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
983 unsigned long limit = hard_dirty_limit(thresh);
984 unsigned long setpoint = (freerun + limit) / 2;
985 unsigned long write_bw = bdi->avg_write_bandwidth;
986 unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
987 unsigned long dirty_rate;
988 unsigned long task_ratelimit;
989 unsigned long balanced_dirty_ratelimit;
990 unsigned long pos_ratio;
991 unsigned long step;
992 unsigned long x;
995 * The dirty rate will match the writeout rate in long term, except
996 * when dirty pages are truncated by userspace or re-dirtied by FS.
998 dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
1000 pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
1001 bdi_thresh, bdi_dirty);
1003 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1005 task_ratelimit = (u64)dirty_ratelimit *
1006 pos_ratio >> RATELIMIT_CALC_SHIFT;
1007 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1010 * A linear estimation of the "balanced" throttle rate. The theory is,
1011 * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
1012 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1013 * formula will yield the balanced rate limit (write_bw / N).
1015 * Note that the expanded form is not a pure rate feedback:
1016 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
1017 * but also takes pos_ratio into account:
1018 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
1020 * (1) is not realistic because pos_ratio also takes part in balancing
1021 * the dirty rate. Consider the state
1022 * pos_ratio = 0.5 (3)
1023 * rate = 2 * (write_bw / N) (4)
1024 * If (1) is used, it will stuck in that state! Because each dd will
1025 * be throttled at
1026 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1027 * yielding
1028 * dirty_rate = N * task_ratelimit = write_bw (6)
1029 * put (6) into (1) we get
1030 * rate_(i+1) = rate_(i) (7)
1032 * So we end up using (2) to always keep
1033 * rate_(i+1) ~= (write_bw / N) (8)
1034 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1035 * pos_ratio is able to drive itself to 1.0, which is not only where
1036 * the dirty count meet the setpoint, but also where the slope of
1037 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1039 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1040 dirty_rate | 1);
1042 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1044 if (unlikely(balanced_dirty_ratelimit > write_bw))
1045 balanced_dirty_ratelimit = write_bw;
1048 * We could safely do this and return immediately:
1050 * bdi->dirty_ratelimit = balanced_dirty_ratelimit;
1052 * However to get a more stable dirty_ratelimit, the below elaborated
1053 * code makes use of task_ratelimit to filter out singular points and
1054 * limit the step size.
1056 * The below code essentially only uses the relative value of
1058 * task_ratelimit - dirty_ratelimit
1059 * = (pos_ratio - 1) * dirty_ratelimit
1061 * which reflects the direction and size of dirty position error.
1065 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1066 * task_ratelimit is on the same side of dirty_ratelimit, too.
1067 * For example, when
1068 * - dirty_ratelimit > balanced_dirty_ratelimit
1069 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1070 * lowering dirty_ratelimit will help meet both the position and rate
1071 * control targets. Otherwise, don't update dirty_ratelimit if it will
1072 * only help meet the rate target. After all, what the users ultimately
1073 * feel and care are stable dirty rate and small position error.
1075 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1076 * and filter out the singular points of balanced_dirty_ratelimit. Which
1077 * keeps jumping around randomly and can even leap far away at times
1078 * due to the small 200ms estimation period of dirty_rate (we want to
1079 * keep that period small to reduce time lags).
1081 step = 0;
1084 * For strictlimit case, calculations above were based on bdi counters
1085 * and limits (starting from pos_ratio = bdi_position_ratio() and up to
1086 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1087 * Hence, to calculate "step" properly, we have to use bdi_dirty as
1088 * "dirty" and bdi_setpoint as "setpoint".
1090 * We rampup dirty_ratelimit forcibly if bdi_dirty is low because
1091 * it's possible that bdi_thresh is close to zero due to inactivity
1092 * of backing device (see the implementation of bdi_dirty_limit()).
1094 if (unlikely(bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1095 dirty = bdi_dirty;
1096 if (bdi_dirty < 8)
1097 setpoint = bdi_dirty + 1;
1098 else
1099 setpoint = (bdi_thresh +
1100 bdi_dirty_limit(bdi, bg_thresh)) / 2;
1103 if (dirty < setpoint) {
1104 x = min(bdi->balanced_dirty_ratelimit,
1105 min(balanced_dirty_ratelimit, task_ratelimit));
1106 if (dirty_ratelimit < x)
1107 step = x - dirty_ratelimit;
1108 } else {
1109 x = max(bdi->balanced_dirty_ratelimit,
1110 max(balanced_dirty_ratelimit, task_ratelimit));
1111 if (dirty_ratelimit > x)
1112 step = dirty_ratelimit - x;
1116 * Don't pursue 100% rate matching. It's impossible since the balanced
1117 * rate itself is constantly fluctuating. So decrease the track speed
1118 * when it gets close to the target. Helps eliminate pointless tremors.
1120 step >>= dirty_ratelimit / (2 * step + 1);
1122 * Limit the tracking speed to avoid overshooting.
1124 step = (step + 7) / 8;
1126 if (dirty_ratelimit < balanced_dirty_ratelimit)
1127 dirty_ratelimit += step;
1128 else
1129 dirty_ratelimit -= step;
1131 bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1132 bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1134 trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
1137 void __bdi_update_bandwidth(struct backing_dev_info *bdi,
1138 unsigned long thresh,
1139 unsigned long bg_thresh,
1140 unsigned long dirty,
1141 unsigned long bdi_thresh,
1142 unsigned long bdi_dirty,
1143 unsigned long start_time)
1145 unsigned long now = jiffies;
1146 unsigned long elapsed = now - bdi->bw_time_stamp;
1147 unsigned long dirtied;
1148 unsigned long written;
1151 * rate-limit, only update once every 200ms.
1153 if (elapsed < BANDWIDTH_INTERVAL)
1154 return;
1156 dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
1157 written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
1160 * Skip quiet periods when disk bandwidth is under-utilized.
1161 * (at least 1s idle time between two flusher runs)
1163 if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
1164 goto snapshot;
1166 if (thresh) {
1167 global_update_bandwidth(thresh, dirty, now);
1168 bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
1169 bdi_thresh, bdi_dirty,
1170 dirtied, elapsed);
1172 bdi_update_write_bandwidth(bdi, elapsed, written);
1174 snapshot:
1175 bdi->dirtied_stamp = dirtied;
1176 bdi->written_stamp = written;
1177 bdi->bw_time_stamp = now;
1180 static void bdi_update_bandwidth(struct backing_dev_info *bdi,
1181 unsigned long thresh,
1182 unsigned long bg_thresh,
1183 unsigned long dirty,
1184 unsigned long bdi_thresh,
1185 unsigned long bdi_dirty,
1186 unsigned long start_time)
1188 if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
1189 return;
1190 spin_lock(&bdi->wb.list_lock);
1191 __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
1192 bdi_thresh, bdi_dirty, start_time);
1193 spin_unlock(&bdi->wb.list_lock);
1197 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1198 * will look to see if it needs to start dirty throttling.
1200 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1201 * global_page_state() too often. So scale it near-sqrt to the safety margin
1202 * (the number of pages we may dirty without exceeding the dirty limits).
1204 static unsigned long dirty_poll_interval(unsigned long dirty,
1205 unsigned long thresh)
1207 if (thresh > dirty)
1208 return 1UL << (ilog2(thresh - dirty) >> 1);
1210 return 1;
1213 static unsigned long bdi_max_pause(struct backing_dev_info *bdi,
1214 unsigned long bdi_dirty)
1216 unsigned long bw = bdi->avg_write_bandwidth;
1217 unsigned long t;
1220 * Limit pause time for small memory systems. If sleeping for too long
1221 * time, a small pool of dirty/writeback pages may go empty and disk go
1222 * idle.
1224 * 8 serves as the safety ratio.
1226 t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1227 t++;
1229 return min_t(unsigned long, t, MAX_PAUSE);
1232 static long bdi_min_pause(struct backing_dev_info *bdi,
1233 long max_pause,
1234 unsigned long task_ratelimit,
1235 unsigned long dirty_ratelimit,
1236 int *nr_dirtied_pause)
1238 long hi = ilog2(bdi->avg_write_bandwidth);
1239 long lo = ilog2(bdi->dirty_ratelimit);
1240 long t; /* target pause */
1241 long pause; /* estimated next pause */
1242 int pages; /* target nr_dirtied_pause */
1244 /* target for 10ms pause on 1-dd case */
1245 t = max(1, HZ / 100);
1248 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1249 * overheads.
1251 * (N * 10ms) on 2^N concurrent tasks.
1253 if (hi > lo)
1254 t += (hi - lo) * (10 * HZ) / 1024;
1257 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1258 * on the much more stable dirty_ratelimit. However the next pause time
1259 * will be computed based on task_ratelimit and the two rate limits may
1260 * depart considerably at some time. Especially if task_ratelimit goes
1261 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1262 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1263 * result task_ratelimit won't be executed faithfully, which could
1264 * eventually bring down dirty_ratelimit.
1266 * We apply two rules to fix it up:
1267 * 1) try to estimate the next pause time and if necessary, use a lower
1268 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1269 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1270 * 2) limit the target pause time to max_pause/2, so that the normal
1271 * small fluctuations of task_ratelimit won't trigger rule (1) and
1272 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
1274 t = min(t, 1 + max_pause / 2);
1275 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1278 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1279 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1280 * When the 16 consecutive reads are often interrupted by some dirty
1281 * throttling pause during the async writes, cfq will go into idles
1282 * (deadline is fine). So push nr_dirtied_pause as high as possible
1283 * until reaches DIRTY_POLL_THRESH=32 pages.
1285 if (pages < DIRTY_POLL_THRESH) {
1286 t = max_pause;
1287 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1288 if (pages > DIRTY_POLL_THRESH) {
1289 pages = DIRTY_POLL_THRESH;
1290 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1294 pause = HZ * pages / (task_ratelimit + 1);
1295 if (pause > max_pause) {
1296 t = max_pause;
1297 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1300 *nr_dirtied_pause = pages;
1302 * The minimal pause time will normally be half the target pause time.
1304 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1307 static inline void bdi_dirty_limits(struct backing_dev_info *bdi,
1308 unsigned long dirty_thresh,
1309 unsigned long background_thresh,
1310 unsigned long *bdi_dirty,
1311 unsigned long *bdi_thresh,
1312 unsigned long *bdi_bg_thresh)
1314 unsigned long bdi_reclaimable;
1317 * bdi_thresh is not treated as some limiting factor as
1318 * dirty_thresh, due to reasons
1319 * - in JBOD setup, bdi_thresh can fluctuate a lot
1320 * - in a system with HDD and USB key, the USB key may somehow
1321 * go into state (bdi_dirty >> bdi_thresh) either because
1322 * bdi_dirty starts high, or because bdi_thresh drops low.
1323 * In this case we don't want to hard throttle the USB key
1324 * dirtiers for 100 seconds until bdi_dirty drops under
1325 * bdi_thresh. Instead the auxiliary bdi control line in
1326 * bdi_position_ratio() will let the dirtier task progress
1327 * at some rate <= (write_bw / 2) for bringing down bdi_dirty.
1329 *bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
1331 if (bdi_bg_thresh)
1332 *bdi_bg_thresh = div_u64((u64)*bdi_thresh *
1333 background_thresh,
1334 dirty_thresh);
1337 * In order to avoid the stacked BDI deadlock we need
1338 * to ensure we accurately count the 'dirty' pages when
1339 * the threshold is low.
1341 * Otherwise it would be possible to get thresh+n pages
1342 * reported dirty, even though there are thresh-m pages
1343 * actually dirty; with m+n sitting in the percpu
1344 * deltas.
1346 if (*bdi_thresh < 2 * bdi_stat_error(bdi)) {
1347 bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
1348 *bdi_dirty = bdi_reclaimable +
1349 bdi_stat_sum(bdi, BDI_WRITEBACK);
1350 } else {
1351 bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
1352 *bdi_dirty = bdi_reclaimable +
1353 bdi_stat(bdi, BDI_WRITEBACK);
1358 * balance_dirty_pages() must be called by processes which are generating dirty
1359 * data. It looks at the number of dirty pages in the machine and will force
1360 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1361 * If we're over `background_thresh' then the writeback threads are woken to
1362 * perform some writeout.
1364 static void balance_dirty_pages(struct address_space *mapping,
1365 unsigned long pages_dirtied)
1367 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
1368 unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */
1369 unsigned long background_thresh;
1370 unsigned long dirty_thresh;
1371 long period;
1372 long pause;
1373 long max_pause;
1374 long min_pause;
1375 int nr_dirtied_pause;
1376 bool dirty_exceeded = false;
1377 unsigned long task_ratelimit;
1378 unsigned long dirty_ratelimit;
1379 unsigned long pos_ratio;
1380 struct backing_dev_info *bdi = mapping->backing_dev_info;
1381 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1382 unsigned long start_time = jiffies;
1384 for (;;) {
1385 unsigned long now = jiffies;
1386 unsigned long uninitialized_var(bdi_thresh);
1387 unsigned long thresh;
1388 unsigned long uninitialized_var(bdi_dirty);
1389 unsigned long dirty;
1390 unsigned long bg_thresh;
1393 * Unstable writes are a feature of certain networked
1394 * filesystems (i.e. NFS) in which data may have been
1395 * written to the server's write cache, but has not yet
1396 * been flushed to permanent storage.
1398 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1399 global_page_state(NR_UNSTABLE_NFS);
1400 nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1402 global_dirty_limits(&background_thresh, &dirty_thresh);
1404 if (unlikely(strictlimit)) {
1405 bdi_dirty_limits(bdi, dirty_thresh, background_thresh,
1406 &bdi_dirty, &bdi_thresh, &bg_thresh);
1408 dirty = bdi_dirty;
1409 thresh = bdi_thresh;
1410 } else {
1411 dirty = nr_dirty;
1412 thresh = dirty_thresh;
1413 bg_thresh = background_thresh;
1417 * Throttle it only when the background writeback cannot
1418 * catch-up. This avoids (excessively) small writeouts
1419 * when the bdi limits are ramping up in case of !strictlimit.
1421 * In strictlimit case make decision based on the bdi counters
1422 * and limits. Small writeouts when the bdi limits are ramping
1423 * up are the price we consciously pay for strictlimit-ing.
1425 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh)) {
1426 current->dirty_paused_when = now;
1427 current->nr_dirtied = 0;
1428 current->nr_dirtied_pause =
1429 dirty_poll_interval(dirty, thresh);
1430 break;
1433 if (unlikely(!writeback_in_progress(bdi)))
1434 bdi_start_background_writeback(bdi);
1436 if (!strictlimit)
1437 bdi_dirty_limits(bdi, dirty_thresh, background_thresh,
1438 &bdi_dirty, &bdi_thresh, NULL);
1440 dirty_exceeded = (bdi_dirty > bdi_thresh) &&
1441 ((nr_dirty > dirty_thresh) || strictlimit);
1442 if (dirty_exceeded && !bdi->dirty_exceeded)
1443 bdi->dirty_exceeded = 1;
1445 bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
1446 nr_dirty, bdi_thresh, bdi_dirty,
1447 start_time);
1449 dirty_ratelimit = bdi->dirty_ratelimit;
1450 pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
1451 background_thresh, nr_dirty,
1452 bdi_thresh, bdi_dirty);
1453 task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
1454 RATELIMIT_CALC_SHIFT;
1455 max_pause = bdi_max_pause(bdi, bdi_dirty);
1456 min_pause = bdi_min_pause(bdi, max_pause,
1457 task_ratelimit, dirty_ratelimit,
1458 &nr_dirtied_pause);
1460 if (unlikely(task_ratelimit == 0)) {
1461 period = max_pause;
1462 pause = max_pause;
1463 goto pause;
1465 period = HZ * pages_dirtied / task_ratelimit;
1466 pause = period;
1467 if (current->dirty_paused_when)
1468 pause -= now - current->dirty_paused_when;
1470 * For less than 1s think time (ext3/4 may block the dirtier
1471 * for up to 800ms from time to time on 1-HDD; so does xfs,
1472 * however at much less frequency), try to compensate it in
1473 * future periods by updating the virtual time; otherwise just
1474 * do a reset, as it may be a light dirtier.
1476 if (pause < min_pause) {
1477 trace_balance_dirty_pages(bdi,
1478 dirty_thresh,
1479 background_thresh,
1480 nr_dirty,
1481 bdi_thresh,
1482 bdi_dirty,
1483 dirty_ratelimit,
1484 task_ratelimit,
1485 pages_dirtied,
1486 period,
1487 min(pause, 0L),
1488 start_time);
1489 if (pause < -HZ) {
1490 current->dirty_paused_when = now;
1491 current->nr_dirtied = 0;
1492 } else if (period) {
1493 current->dirty_paused_when += period;
1494 current->nr_dirtied = 0;
1495 } else if (current->nr_dirtied_pause <= pages_dirtied)
1496 current->nr_dirtied_pause += pages_dirtied;
1497 break;
1499 if (unlikely(pause > max_pause)) {
1500 /* for occasional dropped task_ratelimit */
1501 now += min(pause - max_pause, max_pause);
1502 pause = max_pause;
1505 pause:
1506 trace_balance_dirty_pages(bdi,
1507 dirty_thresh,
1508 background_thresh,
1509 nr_dirty,
1510 bdi_thresh,
1511 bdi_dirty,
1512 dirty_ratelimit,
1513 task_ratelimit,
1514 pages_dirtied,
1515 period,
1516 pause,
1517 start_time);
1518 __set_current_state(TASK_KILLABLE);
1519 io_schedule_timeout(pause);
1521 current->dirty_paused_when = now + pause;
1522 current->nr_dirtied = 0;
1523 current->nr_dirtied_pause = nr_dirtied_pause;
1526 * This is typically equal to (nr_dirty < dirty_thresh) and can
1527 * also keep "1000+ dd on a slow USB stick" under control.
1529 if (task_ratelimit)
1530 break;
1533 * In the case of an unresponding NFS server and the NFS dirty
1534 * pages exceeds dirty_thresh, give the other good bdi's a pipe
1535 * to go through, so that tasks on them still remain responsive.
1537 * In theory 1 page is enough to keep the comsumer-producer
1538 * pipe going: the flusher cleans 1 page => the task dirties 1
1539 * more page. However bdi_dirty has accounting errors. So use
1540 * the larger and more IO friendly bdi_stat_error.
1542 if (bdi_dirty <= bdi_stat_error(bdi))
1543 break;
1545 if (fatal_signal_pending(current))
1546 break;
1549 if (!dirty_exceeded && bdi->dirty_exceeded)
1550 bdi->dirty_exceeded = 0;
1552 if (writeback_in_progress(bdi))
1553 return;
1556 * In laptop mode, we wait until hitting the higher threshold before
1557 * starting background writeout, and then write out all the way down
1558 * to the lower threshold. So slow writers cause minimal disk activity.
1560 * In normal mode, we start background writeout at the lower
1561 * background_thresh, to keep the amount of dirty memory low.
1563 if (laptop_mode)
1564 return;
1566 if (nr_reclaimable > background_thresh)
1567 bdi_start_background_writeback(bdi);
1570 void set_page_dirty_balance(struct page *page, int page_mkwrite)
1572 if (set_page_dirty(page) || page_mkwrite) {
1573 struct address_space *mapping = page_mapping(page);
1575 if (mapping)
1576 balance_dirty_pages_ratelimited(mapping);
1580 static DEFINE_PER_CPU(int, bdp_ratelimits);
1583 * Normal tasks are throttled by
1584 * loop {
1585 * dirty tsk->nr_dirtied_pause pages;
1586 * take a snap in balance_dirty_pages();
1588 * However there is a worst case. If every task exit immediately when dirtied
1589 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1590 * called to throttle the page dirties. The solution is to save the not yet
1591 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1592 * randomly into the running tasks. This works well for the above worst case,
1593 * as the new task will pick up and accumulate the old task's leaked dirty
1594 * count and eventually get throttled.
1596 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1599 * balance_dirty_pages_ratelimited - balance dirty memory state
1600 * @mapping: address_space which was dirtied
1602 * Processes which are dirtying memory should call in here once for each page
1603 * which was newly dirtied. The function will periodically check the system's
1604 * dirty state and will initiate writeback if needed.
1606 * On really big machines, get_writeback_state is expensive, so try to avoid
1607 * calling it too often (ratelimiting). But once we're over the dirty memory
1608 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1609 * from overshooting the limit by (ratelimit_pages) each.
1611 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1613 struct backing_dev_info *bdi = mapping->backing_dev_info;
1614 int ratelimit;
1615 int *p;
1617 if (!bdi_cap_account_dirty(bdi))
1618 return;
1620 ratelimit = current->nr_dirtied_pause;
1621 if (bdi->dirty_exceeded)
1622 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1624 preempt_disable();
1626 * This prevents one CPU to accumulate too many dirtied pages without
1627 * calling into balance_dirty_pages(), which can happen when there are
1628 * 1000+ tasks, all of them start dirtying pages at exactly the same
1629 * time, hence all honoured too large initial task->nr_dirtied_pause.
1631 p = &__get_cpu_var(bdp_ratelimits);
1632 if (unlikely(current->nr_dirtied >= ratelimit))
1633 *p = 0;
1634 else if (unlikely(*p >= ratelimit_pages)) {
1635 *p = 0;
1636 ratelimit = 0;
1639 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1640 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1641 * the dirty throttling and livelock other long-run dirtiers.
1643 p = &__get_cpu_var(dirty_throttle_leaks);
1644 if (*p > 0 && current->nr_dirtied < ratelimit) {
1645 unsigned long nr_pages_dirtied;
1646 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1647 *p -= nr_pages_dirtied;
1648 current->nr_dirtied += nr_pages_dirtied;
1650 preempt_enable();
1652 if (unlikely(current->nr_dirtied >= ratelimit))
1653 balance_dirty_pages(mapping, current->nr_dirtied);
1655 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1657 void throttle_vm_writeout(gfp_t gfp_mask)
1659 unsigned long background_thresh;
1660 unsigned long dirty_thresh;
1662 for ( ; ; ) {
1663 global_dirty_limits(&background_thresh, &dirty_thresh);
1664 dirty_thresh = hard_dirty_limit(dirty_thresh);
1667 * Boost the allowable dirty threshold a bit for page
1668 * allocators so they don't get DoS'ed by heavy writers
1670 dirty_thresh += dirty_thresh / 10; /* wheeee... */
1672 if (global_page_state(NR_UNSTABLE_NFS) +
1673 global_page_state(NR_WRITEBACK) <= dirty_thresh)
1674 break;
1675 congestion_wait(BLK_RW_ASYNC, HZ/10);
1678 * The caller might hold locks which can prevent IO completion
1679 * or progress in the filesystem. So we cannot just sit here
1680 * waiting for IO to complete.
1682 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1683 break;
1688 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1690 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
1691 void __user *buffer, size_t *length, loff_t *ppos)
1693 proc_dointvec(table, write, buffer, length, ppos);
1694 return 0;
1697 #ifdef CONFIG_BLOCK
1698 void laptop_mode_timer_fn(unsigned long data)
1700 struct request_queue *q = (struct request_queue *)data;
1701 int nr_pages = global_page_state(NR_FILE_DIRTY) +
1702 global_page_state(NR_UNSTABLE_NFS);
1705 * We want to write everything out, not just down to the dirty
1706 * threshold
1708 if (bdi_has_dirty_io(&q->backing_dev_info))
1709 bdi_start_writeback(&q->backing_dev_info, nr_pages,
1710 WB_REASON_LAPTOP_TIMER);
1714 * We've spun up the disk and we're in laptop mode: schedule writeback
1715 * of all dirty data a few seconds from now. If the flush is already scheduled
1716 * then push it back - the user is still using the disk.
1718 void laptop_io_completion(struct backing_dev_info *info)
1720 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1724 * We're in laptop mode and we've just synced. The sync's writes will have
1725 * caused another writeback to be scheduled by laptop_io_completion.
1726 * Nothing needs to be written back anymore, so we unschedule the writeback.
1728 void laptop_sync_completion(void)
1730 struct backing_dev_info *bdi;
1732 rcu_read_lock();
1734 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1735 del_timer(&bdi->laptop_mode_wb_timer);
1737 rcu_read_unlock();
1739 #endif
1742 * If ratelimit_pages is too high then we can get into dirty-data overload
1743 * if a large number of processes all perform writes at the same time.
1744 * If it is too low then SMP machines will call the (expensive)
1745 * get_writeback_state too often.
1747 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1748 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1749 * thresholds.
1752 void writeback_set_ratelimit(void)
1754 unsigned long background_thresh;
1755 unsigned long dirty_thresh;
1756 global_dirty_limits(&background_thresh, &dirty_thresh);
1757 global_dirty_limit = dirty_thresh;
1758 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1759 if (ratelimit_pages < 16)
1760 ratelimit_pages = 16;
1763 static int
1764 ratelimit_handler(struct notifier_block *self, unsigned long action,
1765 void *hcpu)
1768 switch (action & ~CPU_TASKS_FROZEN) {
1769 case CPU_ONLINE:
1770 case CPU_DEAD:
1771 writeback_set_ratelimit();
1772 return NOTIFY_OK;
1773 default:
1774 return NOTIFY_DONE;
1778 static struct notifier_block ratelimit_nb = {
1779 .notifier_call = ratelimit_handler,
1780 .next = NULL,
1784 * Called early on to tune the page writeback dirty limits.
1786 * We used to scale dirty pages according to how total memory
1787 * related to pages that could be allocated for buffers (by
1788 * comparing nr_free_buffer_pages() to vm_total_pages.
1790 * However, that was when we used "dirty_ratio" to scale with
1791 * all memory, and we don't do that any more. "dirty_ratio"
1792 * is now applied to total non-HIGHPAGE memory (by subtracting
1793 * totalhigh_pages from vm_total_pages), and as such we can't
1794 * get into the old insane situation any more where we had
1795 * large amounts of dirty pages compared to a small amount of
1796 * non-HIGHMEM memory.
1798 * But we might still want to scale the dirty_ratio by how
1799 * much memory the box has..
1801 void __init page_writeback_init(void)
1803 writeback_set_ratelimit();
1804 register_cpu_notifier(&ratelimit_nb);
1806 fprop_global_init(&writeout_completions);
1810 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1811 * @mapping: address space structure to write
1812 * @start: starting page index
1813 * @end: ending page index (inclusive)
1815 * This function scans the page range from @start to @end (inclusive) and tags
1816 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1817 * that write_cache_pages (or whoever calls this function) will then use
1818 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
1819 * used to avoid livelocking of writeback by a process steadily creating new
1820 * dirty pages in the file (thus it is important for this function to be quick
1821 * so that it can tag pages faster than a dirtying process can create them).
1824 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1826 void tag_pages_for_writeback(struct address_space *mapping,
1827 pgoff_t start, pgoff_t end)
1829 #define WRITEBACK_TAG_BATCH 4096
1830 unsigned long tagged;
1832 do {
1833 spin_lock_irq(&mapping->tree_lock);
1834 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1835 &start, end, WRITEBACK_TAG_BATCH,
1836 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1837 spin_unlock_irq(&mapping->tree_lock);
1838 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1839 cond_resched();
1840 /* We check 'start' to handle wrapping when end == ~0UL */
1841 } while (tagged >= WRITEBACK_TAG_BATCH && start);
1843 EXPORT_SYMBOL(tag_pages_for_writeback);
1846 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1847 * @mapping: address space structure to write
1848 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1849 * @writepage: function called for each page
1850 * @data: data passed to writepage function
1852 * If a page is already under I/O, write_cache_pages() skips it, even
1853 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
1854 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
1855 * and msync() need to guarantee that all the data which was dirty at the time
1856 * the call was made get new I/O started against them. If wbc->sync_mode is
1857 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1858 * existing IO to complete.
1860 * To avoid livelocks (when other process dirties new pages), we first tag
1861 * pages which should be written back with TOWRITE tag and only then start
1862 * writing them. For data-integrity sync we have to be careful so that we do
1863 * not miss some pages (e.g., because some other process has cleared TOWRITE
1864 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1865 * by the process clearing the DIRTY tag (and submitting the page for IO).
1867 int write_cache_pages(struct address_space *mapping,
1868 struct writeback_control *wbc, writepage_t writepage,
1869 void *data)
1871 int ret = 0;
1872 int done = 0;
1873 struct pagevec pvec;
1874 int nr_pages;
1875 pgoff_t uninitialized_var(writeback_index);
1876 pgoff_t index;
1877 pgoff_t end; /* Inclusive */
1878 pgoff_t done_index;
1879 int cycled;
1880 int range_whole = 0;
1881 int tag;
1883 pagevec_init(&pvec, 0);
1884 if (wbc->range_cyclic) {
1885 writeback_index = mapping->writeback_index; /* prev offset */
1886 index = writeback_index;
1887 if (index == 0)
1888 cycled = 1;
1889 else
1890 cycled = 0;
1891 end = -1;
1892 } else {
1893 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1894 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1895 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1896 range_whole = 1;
1897 cycled = 1; /* ignore range_cyclic tests */
1899 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1900 tag = PAGECACHE_TAG_TOWRITE;
1901 else
1902 tag = PAGECACHE_TAG_DIRTY;
1903 retry:
1904 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1905 tag_pages_for_writeback(mapping, index, end);
1906 done_index = index;
1907 while (!done && (index <= end)) {
1908 int i;
1910 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1911 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1912 if (nr_pages == 0)
1913 break;
1915 for (i = 0; i < nr_pages; i++) {
1916 struct page *page = pvec.pages[i];
1919 * At this point, the page may be truncated or
1920 * invalidated (changing page->mapping to NULL), or
1921 * even swizzled back from swapper_space to tmpfs file
1922 * mapping. However, page->index will not change
1923 * because we have a reference on the page.
1925 if (page->index > end) {
1927 * can't be range_cyclic (1st pass) because
1928 * end == -1 in that case.
1930 done = 1;
1931 break;
1934 done_index = page->index;
1936 lock_page(page);
1939 * Page truncated or invalidated. We can freely skip it
1940 * then, even for data integrity operations: the page
1941 * has disappeared concurrently, so there could be no
1942 * real expectation of this data interity operation
1943 * even if there is now a new, dirty page at the same
1944 * pagecache address.
1946 if (unlikely(page->mapping != mapping)) {
1947 continue_unlock:
1948 unlock_page(page);
1949 continue;
1952 if (!PageDirty(page)) {
1953 /* someone wrote it for us */
1954 goto continue_unlock;
1957 if (PageWriteback(page)) {
1958 if (wbc->sync_mode != WB_SYNC_NONE)
1959 wait_on_page_writeback(page);
1960 else
1961 goto continue_unlock;
1964 BUG_ON(PageWriteback(page));
1965 if (!clear_page_dirty_for_io(page))
1966 goto continue_unlock;
1968 trace_wbc_writepage(wbc, mapping->backing_dev_info);
1969 ret = (*writepage)(page, wbc, data);
1970 if (unlikely(ret)) {
1971 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1972 unlock_page(page);
1973 ret = 0;
1974 } else {
1976 * done_index is set past this page,
1977 * so media errors will not choke
1978 * background writeout for the entire
1979 * file. This has consequences for
1980 * range_cyclic semantics (ie. it may
1981 * not be suitable for data integrity
1982 * writeout).
1984 done_index = page->index + 1;
1985 done = 1;
1986 break;
1991 * We stop writing back only if we are not doing
1992 * integrity sync. In case of integrity sync we have to
1993 * keep going until we have written all the pages
1994 * we tagged for writeback prior to entering this loop.
1996 if (--wbc->nr_to_write <= 0 &&
1997 wbc->sync_mode == WB_SYNC_NONE) {
1998 done = 1;
1999 break;
2002 pagevec_release(&pvec);
2003 cond_resched();
2005 if (!cycled && !done) {
2007 * range_cyclic:
2008 * We hit the last page and there is more work to be done: wrap
2009 * back to the start of the file
2011 cycled = 1;
2012 index = 0;
2013 end = writeback_index - 1;
2014 goto retry;
2016 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2017 mapping->writeback_index = done_index;
2019 return ret;
2021 EXPORT_SYMBOL(write_cache_pages);
2024 * Function used by generic_writepages to call the real writepage
2025 * function and set the mapping flags on error
2027 static int __writepage(struct page *page, struct writeback_control *wbc,
2028 void *data)
2030 struct address_space *mapping = data;
2031 int ret = mapping->a_ops->writepage(page, wbc);
2032 mapping_set_error(mapping, ret);
2033 return ret;
2037 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2038 * @mapping: address space structure to write
2039 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2041 * This is a library function, which implements the writepages()
2042 * address_space_operation.
2044 int generic_writepages(struct address_space *mapping,
2045 struct writeback_control *wbc)
2047 struct blk_plug plug;
2048 int ret;
2050 /* deal with chardevs and other special file */
2051 if (!mapping->a_ops->writepage)
2052 return 0;
2054 blk_start_plug(&plug);
2055 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2056 blk_finish_plug(&plug);
2057 return ret;
2060 EXPORT_SYMBOL(generic_writepages);
2062 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2064 int ret;
2066 if (wbc->nr_to_write <= 0)
2067 return 0;
2068 if (mapping->a_ops->writepages)
2069 ret = mapping->a_ops->writepages(mapping, wbc);
2070 else
2071 ret = generic_writepages(mapping, wbc);
2072 return ret;
2076 * write_one_page - write out a single page and optionally wait on I/O
2077 * @page: the page to write
2078 * @wait: if true, wait on writeout
2080 * The page must be locked by the caller and will be unlocked upon return.
2082 * write_one_page() returns a negative error code if I/O failed.
2084 int write_one_page(struct page *page, int wait)
2086 struct address_space *mapping = page->mapping;
2087 int ret = 0;
2088 struct writeback_control wbc = {
2089 .sync_mode = WB_SYNC_ALL,
2090 .nr_to_write = 1,
2093 BUG_ON(!PageLocked(page));
2095 if (wait)
2096 wait_on_page_writeback(page);
2098 if (clear_page_dirty_for_io(page)) {
2099 page_cache_get(page);
2100 ret = mapping->a_ops->writepage(page, &wbc);
2101 if (ret == 0 && wait) {
2102 wait_on_page_writeback(page);
2103 if (PageError(page))
2104 ret = -EIO;
2106 page_cache_release(page);
2107 } else {
2108 unlock_page(page);
2110 return ret;
2112 EXPORT_SYMBOL(write_one_page);
2115 * For address_spaces which do not use buffers nor write back.
2117 int __set_page_dirty_no_writeback(struct page *page)
2119 if (!PageDirty(page))
2120 return !TestSetPageDirty(page);
2121 return 0;
2125 * Helper function for set_page_dirty family.
2126 * NOTE: This relies on being atomic wrt interrupts.
2128 void account_page_dirtied(struct page *page, struct address_space *mapping)
2130 trace_writeback_dirty_page(page, mapping);
2132 if (mapping_cap_account_dirty(mapping)) {
2133 __inc_zone_page_state(page, NR_FILE_DIRTY);
2134 __inc_zone_page_state(page, NR_DIRTIED);
2135 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
2136 __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
2137 task_io_account_write(PAGE_CACHE_SIZE);
2138 current->nr_dirtied++;
2139 this_cpu_inc(bdp_ratelimits);
2142 EXPORT_SYMBOL(account_page_dirtied);
2145 * Helper function for set_page_writeback family.
2147 * The caller must hold mem_cgroup_begin/end_update_page_stat() lock
2148 * while calling this function.
2149 * See test_set_page_writeback for example.
2151 * NOTE: Unlike account_page_dirtied this does not rely on being atomic
2152 * wrt interrupts.
2154 void account_page_writeback(struct page *page)
2156 mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
2157 inc_zone_page_state(page, NR_WRITEBACK);
2159 EXPORT_SYMBOL(account_page_writeback);
2162 * For address_spaces which do not use buffers. Just tag the page as dirty in
2163 * its radix tree.
2165 * This is also used when a single buffer is being dirtied: we want to set the
2166 * page dirty in that case, but not all the buffers. This is a "bottom-up"
2167 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2169 * Most callers have locked the page, which pins the address_space in memory.
2170 * But zap_pte_range() does not lock the page, however in that case the
2171 * mapping is pinned by the vma's ->vm_file reference.
2173 * We take care to handle the case where the page was truncated from the
2174 * mapping by re-checking page_mapping() inside tree_lock.
2176 int __set_page_dirty_nobuffers(struct page *page)
2178 if (!TestSetPageDirty(page)) {
2179 struct address_space *mapping = page_mapping(page);
2180 struct address_space *mapping2;
2182 if (!mapping)
2183 return 1;
2185 spin_lock_irq(&mapping->tree_lock);
2186 mapping2 = page_mapping(page);
2187 if (mapping2) { /* Race with truncate? */
2188 BUG_ON(mapping2 != mapping);
2189 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2190 account_page_dirtied(page, mapping);
2191 radix_tree_tag_set(&mapping->page_tree,
2192 page_index(page), PAGECACHE_TAG_DIRTY);
2194 spin_unlock_irq(&mapping->tree_lock);
2195 if (mapping->host) {
2196 /* !PageAnon && !swapper_space */
2197 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2199 return 1;
2201 return 0;
2203 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2206 * Call this whenever redirtying a page, to de-account the dirty counters
2207 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2208 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2209 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2210 * control.
2212 void account_page_redirty(struct page *page)
2214 struct address_space *mapping = page->mapping;
2215 if (mapping && mapping_cap_account_dirty(mapping)) {
2216 current->nr_dirtied--;
2217 dec_zone_page_state(page, NR_DIRTIED);
2218 dec_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
2221 EXPORT_SYMBOL(account_page_redirty);
2224 * When a writepage implementation decides that it doesn't want to write this
2225 * page for some reason, it should redirty the locked page via
2226 * redirty_page_for_writepage() and it should then unlock the page and return 0
2228 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2230 wbc->pages_skipped++;
2231 account_page_redirty(page);
2232 return __set_page_dirty_nobuffers(page);
2234 EXPORT_SYMBOL(redirty_page_for_writepage);
2237 * Dirty a page.
2239 * For pages with a mapping this should be done under the page lock
2240 * for the benefit of asynchronous memory errors who prefer a consistent
2241 * dirty state. This rule can be broken in some special cases,
2242 * but should be better not to.
2244 * If the mapping doesn't provide a set_page_dirty a_op, then
2245 * just fall through and assume that it wants buffer_heads.
2247 int set_page_dirty(struct page *page)
2249 struct address_space *mapping = page_mapping(page);
2251 if (likely(mapping)) {
2252 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2254 * readahead/lru_deactivate_page could remain
2255 * PG_readahead/PG_reclaim due to race with end_page_writeback
2256 * About readahead, if the page is written, the flags would be
2257 * reset. So no problem.
2258 * About lru_deactivate_page, if the page is redirty, the flag
2259 * will be reset. So no problem. but if the page is used by readahead
2260 * it will confuse readahead and make it restart the size rampup
2261 * process. But it's a trivial problem.
2263 ClearPageReclaim(page);
2264 #ifdef CONFIG_BLOCK
2265 if (!spd)
2266 spd = __set_page_dirty_buffers;
2267 #endif
2268 return (*spd)(page);
2270 if (!PageDirty(page)) {
2271 if (!TestSetPageDirty(page))
2272 return 1;
2274 return 0;
2276 EXPORT_SYMBOL(set_page_dirty);
2279 * set_page_dirty() is racy if the caller has no reference against
2280 * page->mapping->host, and if the page is unlocked. This is because another
2281 * CPU could truncate the page off the mapping and then free the mapping.
2283 * Usually, the page _is_ locked, or the caller is a user-space process which
2284 * holds a reference on the inode by having an open file.
2286 * In other cases, the page should be locked before running set_page_dirty().
2288 int set_page_dirty_lock(struct page *page)
2290 int ret;
2292 lock_page(page);
2293 ret = set_page_dirty(page);
2294 unlock_page(page);
2295 return ret;
2297 EXPORT_SYMBOL(set_page_dirty_lock);
2300 * Clear a page's dirty flag, while caring for dirty memory accounting.
2301 * Returns true if the page was previously dirty.
2303 * This is for preparing to put the page under writeout. We leave the page
2304 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2305 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
2306 * implementation will run either set_page_writeback() or set_page_dirty(),
2307 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2308 * back into sync.
2310 * This incoherency between the page's dirty flag and radix-tree tag is
2311 * unfortunate, but it only exists while the page is locked.
2313 int clear_page_dirty_for_io(struct page *page)
2315 struct address_space *mapping = page_mapping(page);
2317 BUG_ON(!PageLocked(page));
2319 if (mapping && mapping_cap_account_dirty(mapping)) {
2321 * Yes, Virginia, this is indeed insane.
2323 * We use this sequence to make sure that
2324 * (a) we account for dirty stats properly
2325 * (b) we tell the low-level filesystem to
2326 * mark the whole page dirty if it was
2327 * dirty in a pagetable. Only to then
2328 * (c) clean the page again and return 1 to
2329 * cause the writeback.
2331 * This way we avoid all nasty races with the
2332 * dirty bit in multiple places and clearing
2333 * them concurrently from different threads.
2335 * Note! Normally the "set_page_dirty(page)"
2336 * has no effect on the actual dirty bit - since
2337 * that will already usually be set. But we
2338 * need the side effects, and it can help us
2339 * avoid races.
2341 * We basically use the page "master dirty bit"
2342 * as a serialization point for all the different
2343 * threads doing their things.
2345 if (page_mkclean(page))
2346 set_page_dirty(page);
2348 * We carefully synchronise fault handlers against
2349 * installing a dirty pte and marking the page dirty
2350 * at this point. We do this by having them hold the
2351 * page lock at some point after installing their
2352 * pte, but before marking the page dirty.
2353 * Pages are always locked coming in here, so we get
2354 * the desired exclusion. See mm/memory.c:do_wp_page()
2355 * for more comments.
2357 if (TestClearPageDirty(page)) {
2358 dec_zone_page_state(page, NR_FILE_DIRTY);
2359 dec_bdi_stat(mapping->backing_dev_info,
2360 BDI_RECLAIMABLE);
2361 return 1;
2363 return 0;
2365 return TestClearPageDirty(page);
2367 EXPORT_SYMBOL(clear_page_dirty_for_io);
2369 int test_clear_page_writeback(struct page *page)
2371 struct address_space *mapping = page_mapping(page);
2372 int ret;
2373 bool locked;
2374 unsigned long memcg_flags;
2376 mem_cgroup_begin_update_page_stat(page, &locked, &memcg_flags);
2377 if (mapping) {
2378 struct backing_dev_info *bdi = mapping->backing_dev_info;
2379 unsigned long flags;
2381 spin_lock_irqsave(&mapping->tree_lock, flags);
2382 ret = TestClearPageWriteback(page);
2383 if (ret) {
2384 radix_tree_tag_clear(&mapping->page_tree,
2385 page_index(page),
2386 PAGECACHE_TAG_WRITEBACK);
2387 if (bdi_cap_account_writeback(bdi)) {
2388 __dec_bdi_stat(bdi, BDI_WRITEBACK);
2389 __bdi_writeout_inc(bdi);
2392 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2393 } else {
2394 ret = TestClearPageWriteback(page);
2396 if (ret) {
2397 mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
2398 dec_zone_page_state(page, NR_WRITEBACK);
2399 inc_zone_page_state(page, NR_WRITTEN);
2401 mem_cgroup_end_update_page_stat(page, &locked, &memcg_flags);
2402 return ret;
2405 int test_set_page_writeback(struct page *page)
2407 struct address_space *mapping = page_mapping(page);
2408 int ret;
2409 bool locked;
2410 unsigned long memcg_flags;
2412 mem_cgroup_begin_update_page_stat(page, &locked, &memcg_flags);
2413 if (mapping) {
2414 struct backing_dev_info *bdi = mapping->backing_dev_info;
2415 unsigned long flags;
2417 spin_lock_irqsave(&mapping->tree_lock, flags);
2418 ret = TestSetPageWriteback(page);
2419 if (!ret) {
2420 radix_tree_tag_set(&mapping->page_tree,
2421 page_index(page),
2422 PAGECACHE_TAG_WRITEBACK);
2423 if (bdi_cap_account_writeback(bdi))
2424 __inc_bdi_stat(bdi, BDI_WRITEBACK);
2426 if (!PageDirty(page))
2427 radix_tree_tag_clear(&mapping->page_tree,
2428 page_index(page),
2429 PAGECACHE_TAG_DIRTY);
2430 radix_tree_tag_clear(&mapping->page_tree,
2431 page_index(page),
2432 PAGECACHE_TAG_TOWRITE);
2433 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2434 } else {
2435 ret = TestSetPageWriteback(page);
2437 if (!ret)
2438 account_page_writeback(page);
2439 mem_cgroup_end_update_page_stat(page, &locked, &memcg_flags);
2440 return ret;
2443 EXPORT_SYMBOL(test_set_page_writeback);
2446 * Return true if any of the pages in the mapping are marked with the
2447 * passed tag.
2449 int mapping_tagged(struct address_space *mapping, int tag)
2451 return radix_tree_tagged(&mapping->page_tree, tag);
2453 EXPORT_SYMBOL(mapping_tagged);
2456 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2457 * @page: The page to wait on.
2459 * This function determines if the given page is related to a backing device
2460 * that requires page contents to be held stable during writeback. If so, then
2461 * it will wait for any pending writeback to complete.
2463 void wait_for_stable_page(struct page *page)
2465 struct address_space *mapping = page_mapping(page);
2466 struct backing_dev_info *bdi = mapping->backing_dev_info;
2468 if (!bdi_cap_stable_pages_required(bdi))
2469 return;
2471 wait_on_page_writeback(page);
2473 EXPORT_SYMBOL_GPL(wait_for_stable_page);