4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/swap.h>
18 #include <linux/timer.h>
24 #include <trace/events/f2fs.h>
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
28 static struct kmem_cache
*discard_entry_slab
;
29 static struct kmem_cache
*sit_entry_set_slab
;
30 static struct kmem_cache
*inmem_entry_slab
;
32 static unsigned long __reverse_ulong(unsigned char *str
)
34 unsigned long tmp
= 0;
35 int shift
= 24, idx
= 0;
37 #if BITS_PER_LONG == 64
41 tmp
|= (unsigned long)str
[idx
++] << shift
;
42 shift
-= BITS_PER_BYTE
;
48 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
49 * MSB and LSB are reversed in a byte by f2fs_set_bit.
51 static inline unsigned long __reverse_ffs(unsigned long word
)
55 #if BITS_PER_LONG == 64
56 if ((word
& 0xffffffff00000000UL
) == 0)
61 if ((word
& 0xffff0000) == 0)
66 if ((word
& 0xff00) == 0)
71 if ((word
& 0xf0) == 0)
76 if ((word
& 0xc) == 0)
81 if ((word
& 0x2) == 0)
87 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
88 * f2fs_set_bit makes MSB and LSB reversed in a byte.
89 * @size must be integral times of unsigned long.
92 * f2fs_set_bit(0, bitmap) => 1000 0000
93 * f2fs_set_bit(7, bitmap) => 0000 0001
95 static unsigned long __find_rev_next_bit(const unsigned long *addr
,
96 unsigned long size
, unsigned long offset
)
98 const unsigned long *p
= addr
+ BIT_WORD(offset
);
99 unsigned long result
= size
;
105 size
-= (offset
& ~(BITS_PER_LONG
- 1));
106 offset
%= BITS_PER_LONG
;
112 tmp
= __reverse_ulong((unsigned char *)p
);
114 tmp
&= ~0UL >> offset
;
115 if (size
< BITS_PER_LONG
)
116 tmp
&= (~0UL << (BITS_PER_LONG
- size
));
120 if (size
<= BITS_PER_LONG
)
122 size
-= BITS_PER_LONG
;
128 return result
- size
+ __reverse_ffs(tmp
);
131 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr
,
132 unsigned long size
, unsigned long offset
)
134 const unsigned long *p
= addr
+ BIT_WORD(offset
);
135 unsigned long result
= size
;
141 size
-= (offset
& ~(BITS_PER_LONG
- 1));
142 offset
%= BITS_PER_LONG
;
148 tmp
= __reverse_ulong((unsigned char *)p
);
151 tmp
|= ~0UL << (BITS_PER_LONG
- offset
);
152 if (size
< BITS_PER_LONG
)
157 if (size
<= BITS_PER_LONG
)
159 size
-= BITS_PER_LONG
;
165 return result
- size
+ __reverse_ffz(tmp
);
168 void register_inmem_page(struct inode
*inode
, struct page
*page
)
170 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
171 struct inmem_pages
*new;
173 f2fs_trace_pid(page
);
175 set_page_private(page
, (unsigned long)ATOMIC_WRITTEN_PAGE
);
176 SetPagePrivate(page
);
178 new = f2fs_kmem_cache_alloc(inmem_entry_slab
, GFP_NOFS
);
180 /* add atomic page indices to the list */
182 INIT_LIST_HEAD(&new->list
);
184 /* increase reference count with clean state */
185 mutex_lock(&fi
->inmem_lock
);
187 list_add_tail(&new->list
, &fi
->inmem_pages
);
188 inc_page_count(F2FS_I_SB(inode
), F2FS_INMEM_PAGES
);
189 mutex_unlock(&fi
->inmem_lock
);
191 trace_f2fs_register_inmem_page(page
, INMEM
);
194 static int __revoke_inmem_pages(struct inode
*inode
,
195 struct list_head
*head
, bool drop
, bool recover
)
197 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
198 struct inmem_pages
*cur
, *tmp
;
201 list_for_each_entry_safe(cur
, tmp
, head
, list
) {
202 struct page
*page
= cur
->page
;
205 trace_f2fs_commit_inmem_page(page
, INMEM_DROP
);
210 struct dnode_of_data dn
;
213 trace_f2fs_commit_inmem_page(page
, INMEM_REVOKE
);
215 set_new_dnode(&dn
, inode
, NULL
, NULL
, 0);
216 if (get_dnode_of_data(&dn
, page
->index
, LOOKUP_NODE
)) {
220 get_node_info(sbi
, dn
.nid
, &ni
);
221 f2fs_replace_block(sbi
, &dn
, dn
.data_blkaddr
,
222 cur
->old_addr
, ni
.version
, true, true);
226 /* we don't need to invalidate this in the sccessful status */
228 ClearPageUptodate(page
);
229 set_page_private(page
, 0);
230 ClearPagePrivate(page
);
231 f2fs_put_page(page
, 1);
233 list_del(&cur
->list
);
234 kmem_cache_free(inmem_entry_slab
, cur
);
235 dec_page_count(F2FS_I_SB(inode
), F2FS_INMEM_PAGES
);
240 void drop_inmem_pages(struct inode
*inode
)
242 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
244 clear_inode_flag(F2FS_I(inode
), FI_ATOMIC_FILE
);
246 mutex_lock(&fi
->inmem_lock
);
247 __revoke_inmem_pages(inode
, &fi
->inmem_pages
, true, false);
248 mutex_unlock(&fi
->inmem_lock
);
251 static int __commit_inmem_pages(struct inode
*inode
,
252 struct list_head
*revoke_list
)
254 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
255 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
256 struct inmem_pages
*cur
, *tmp
;
257 struct f2fs_io_info fio
= {
260 .rw
= WRITE_SYNC
| REQ_PRIO
,
261 .encrypted_page
= NULL
,
263 bool submit_bio
= false;
266 list_for_each_entry_safe(cur
, tmp
, &fi
->inmem_pages
, list
) {
267 struct page
*page
= cur
->page
;
270 if (page
->mapping
== inode
->i_mapping
) {
271 trace_f2fs_commit_inmem_page(page
, INMEM
);
273 set_page_dirty(page
);
274 f2fs_wait_on_page_writeback(page
, DATA
, true);
275 if (clear_page_dirty_for_io(page
))
276 inode_dec_dirty_pages(inode
);
279 err
= do_write_data_page(&fio
);
285 /* record old blkaddr for revoking */
286 cur
->old_addr
= fio
.old_blkaddr
;
288 clear_cold_data(page
);
292 list_move_tail(&cur
->list
, revoke_list
);
296 f2fs_submit_merged_bio_cond(sbi
, inode
, NULL
, 0, DATA
, WRITE
);
299 __revoke_inmem_pages(inode
, revoke_list
, false, false);
304 int commit_inmem_pages(struct inode
*inode
)
306 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
307 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
308 struct list_head revoke_list
;
311 INIT_LIST_HEAD(&revoke_list
);
312 f2fs_balance_fs(sbi
, true);
315 mutex_lock(&fi
->inmem_lock
);
316 err
= __commit_inmem_pages(inode
, &revoke_list
);
320 * try to revoke all committed pages, but still we could fail
321 * due to no memory or other reason, if that happened, EAGAIN
322 * will be returned, which means in such case, transaction is
323 * already not integrity, caller should use journal to do the
324 * recovery or rewrite & commit last transaction. For other
325 * error number, revoking was done by filesystem itself.
327 ret
= __revoke_inmem_pages(inode
, &revoke_list
, false, true);
331 /* drop all uncommitted pages */
332 __revoke_inmem_pages(inode
, &fi
->inmem_pages
, true, false);
334 mutex_unlock(&fi
->inmem_lock
);
341 * This function balances dirty node and dentry pages.
342 * In addition, it controls garbage collection.
344 void f2fs_balance_fs(struct f2fs_sb_info
*sbi
, bool need
)
349 * We should do GC or end up with checkpoint, if there are so many dirty
350 * dir/node pages without enough free segments.
352 if (has_not_enough_free_secs(sbi
, 0)) {
353 mutex_lock(&sbi
->gc_mutex
);
358 void f2fs_balance_fs_bg(struct f2fs_sb_info
*sbi
)
360 /* try to shrink extent cache when there is no enough memory */
361 if (!available_free_memory(sbi
, EXTENT_CACHE
))
362 f2fs_shrink_extent_tree(sbi
, EXTENT_CACHE_SHRINK_NUMBER
);
364 /* check the # of cached NAT entries */
365 if (!available_free_memory(sbi
, NAT_ENTRIES
))
366 try_to_free_nats(sbi
, NAT_ENTRY_PER_BLOCK
);
368 if (!available_free_memory(sbi
, FREE_NIDS
))
369 try_to_free_nids(sbi
, NAT_ENTRY_PER_BLOCK
* FREE_NID_PAGES
);
371 /* checkpoint is the only way to shrink partial cached entries */
372 if (!available_free_memory(sbi
, NAT_ENTRIES
) ||
373 !available_free_memory(sbi
, INO_ENTRIES
) ||
374 excess_prefree_segs(sbi
) ||
375 excess_dirty_nats(sbi
) ||
376 (is_idle(sbi
) && f2fs_time_over(sbi
, CP_TIME
))) {
377 if (test_opt(sbi
, DATA_FLUSH
)) {
378 struct blk_plug plug
;
380 blk_start_plug(&plug
);
381 sync_dirty_inodes(sbi
, FILE_INODE
);
382 blk_finish_plug(&plug
);
384 f2fs_sync_fs(sbi
->sb
, true);
385 stat_inc_bg_cp_count(sbi
->stat_info
);
389 static int issue_flush_thread(void *data
)
391 struct f2fs_sb_info
*sbi
= data
;
392 struct flush_cmd_control
*fcc
= SM_I(sbi
)->cmd_control_info
;
393 wait_queue_head_t
*q
= &fcc
->flush_wait_queue
;
395 if (kthread_should_stop())
398 if (!llist_empty(&fcc
->issue_list
)) {
400 struct flush_cmd
*cmd
, *next
;
403 bio
= f2fs_bio_alloc(0);
405 fcc
->dispatch_list
= llist_del_all(&fcc
->issue_list
);
406 fcc
->dispatch_list
= llist_reverse_order(fcc
->dispatch_list
);
408 bio
->bi_bdev
= sbi
->sb
->s_bdev
;
409 ret
= submit_bio_wait(WRITE_FLUSH
, bio
);
411 llist_for_each_entry_safe(cmd
, next
,
412 fcc
->dispatch_list
, llnode
) {
414 complete(&cmd
->wait
);
417 fcc
->dispatch_list
= NULL
;
420 wait_event_interruptible(*q
,
421 kthread_should_stop() || !llist_empty(&fcc
->issue_list
));
425 int f2fs_issue_flush(struct f2fs_sb_info
*sbi
)
427 struct flush_cmd_control
*fcc
= SM_I(sbi
)->cmd_control_info
;
428 struct flush_cmd cmd
;
430 trace_f2fs_issue_flush(sbi
->sb
, test_opt(sbi
, NOBARRIER
),
431 test_opt(sbi
, FLUSH_MERGE
));
433 if (test_opt(sbi
, NOBARRIER
))
436 if (!test_opt(sbi
, FLUSH_MERGE
)) {
437 struct bio
*bio
= f2fs_bio_alloc(0);
440 bio
->bi_bdev
= sbi
->sb
->s_bdev
;
441 ret
= submit_bio_wait(WRITE_FLUSH
, bio
);
446 init_completion(&cmd
.wait
);
448 llist_add(&cmd
.llnode
, &fcc
->issue_list
);
450 if (!fcc
->dispatch_list
)
451 wake_up(&fcc
->flush_wait_queue
);
453 wait_for_completion(&cmd
.wait
);
458 int create_flush_cmd_control(struct f2fs_sb_info
*sbi
)
460 dev_t dev
= sbi
->sb
->s_bdev
->bd_dev
;
461 struct flush_cmd_control
*fcc
;
464 fcc
= kzalloc(sizeof(struct flush_cmd_control
), GFP_KERNEL
);
467 init_waitqueue_head(&fcc
->flush_wait_queue
);
468 init_llist_head(&fcc
->issue_list
);
469 SM_I(sbi
)->cmd_control_info
= fcc
;
470 fcc
->f2fs_issue_flush
= kthread_run(issue_flush_thread
, sbi
,
471 "f2fs_flush-%u:%u", MAJOR(dev
), MINOR(dev
));
472 if (IS_ERR(fcc
->f2fs_issue_flush
)) {
473 err
= PTR_ERR(fcc
->f2fs_issue_flush
);
475 SM_I(sbi
)->cmd_control_info
= NULL
;
482 void destroy_flush_cmd_control(struct f2fs_sb_info
*sbi
)
484 struct flush_cmd_control
*fcc
= SM_I(sbi
)->cmd_control_info
;
486 if (fcc
&& fcc
->f2fs_issue_flush
)
487 kthread_stop(fcc
->f2fs_issue_flush
);
489 SM_I(sbi
)->cmd_control_info
= NULL
;
492 static void __locate_dirty_segment(struct f2fs_sb_info
*sbi
, unsigned int segno
,
493 enum dirty_type dirty_type
)
495 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
497 /* need not be added */
498 if (IS_CURSEG(sbi
, segno
))
501 if (!test_and_set_bit(segno
, dirty_i
->dirty_segmap
[dirty_type
]))
502 dirty_i
->nr_dirty
[dirty_type
]++;
504 if (dirty_type
== DIRTY
) {
505 struct seg_entry
*sentry
= get_seg_entry(sbi
, segno
);
506 enum dirty_type t
= sentry
->type
;
508 if (unlikely(t
>= DIRTY
)) {
512 if (!test_and_set_bit(segno
, dirty_i
->dirty_segmap
[t
]))
513 dirty_i
->nr_dirty
[t
]++;
517 static void __remove_dirty_segment(struct f2fs_sb_info
*sbi
, unsigned int segno
,
518 enum dirty_type dirty_type
)
520 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
522 if (test_and_clear_bit(segno
, dirty_i
->dirty_segmap
[dirty_type
]))
523 dirty_i
->nr_dirty
[dirty_type
]--;
525 if (dirty_type
== DIRTY
) {
526 struct seg_entry
*sentry
= get_seg_entry(sbi
, segno
);
527 enum dirty_type t
= sentry
->type
;
529 if (test_and_clear_bit(segno
, dirty_i
->dirty_segmap
[t
]))
530 dirty_i
->nr_dirty
[t
]--;
532 if (get_valid_blocks(sbi
, segno
, sbi
->segs_per_sec
) == 0)
533 clear_bit(GET_SECNO(sbi
, segno
),
534 dirty_i
->victim_secmap
);
539 * Should not occur error such as -ENOMEM.
540 * Adding dirty entry into seglist is not critical operation.
541 * If a given segment is one of current working segments, it won't be added.
543 static void locate_dirty_segment(struct f2fs_sb_info
*sbi
, unsigned int segno
)
545 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
546 unsigned short valid_blocks
;
548 if (segno
== NULL_SEGNO
|| IS_CURSEG(sbi
, segno
))
551 mutex_lock(&dirty_i
->seglist_lock
);
553 valid_blocks
= get_valid_blocks(sbi
, segno
, 0);
555 if (valid_blocks
== 0) {
556 __locate_dirty_segment(sbi
, segno
, PRE
);
557 __remove_dirty_segment(sbi
, segno
, DIRTY
);
558 } else if (valid_blocks
< sbi
->blocks_per_seg
) {
559 __locate_dirty_segment(sbi
, segno
, DIRTY
);
561 /* Recovery routine with SSR needs this */
562 __remove_dirty_segment(sbi
, segno
, DIRTY
);
565 mutex_unlock(&dirty_i
->seglist_lock
);
568 static int f2fs_issue_discard(struct f2fs_sb_info
*sbi
,
569 block_t blkstart
, block_t blklen
)
571 sector_t start
= SECTOR_FROM_BLOCK(blkstart
);
572 sector_t len
= SECTOR_FROM_BLOCK(blklen
);
573 struct seg_entry
*se
;
577 for (i
= blkstart
; i
< blkstart
+ blklen
; i
++) {
578 se
= get_seg_entry(sbi
, GET_SEGNO(sbi
, i
));
579 offset
= GET_BLKOFF_FROM_SEG0(sbi
, i
);
581 if (!f2fs_test_and_set_bit(offset
, se
->discard_map
))
584 trace_f2fs_issue_discard(sbi
->sb
, blkstart
, blklen
);
585 return blkdev_issue_discard(sbi
->sb
->s_bdev
, start
, len
, GFP_NOFS
, 0);
588 bool discard_next_dnode(struct f2fs_sb_info
*sbi
, block_t blkaddr
)
590 int err
= -EOPNOTSUPP
;
592 if (test_opt(sbi
, DISCARD
)) {
593 struct seg_entry
*se
= get_seg_entry(sbi
,
594 GET_SEGNO(sbi
, blkaddr
));
595 unsigned int offset
= GET_BLKOFF_FROM_SEG0(sbi
, blkaddr
);
597 if (f2fs_test_bit(offset
, se
->discard_map
))
600 err
= f2fs_issue_discard(sbi
, blkaddr
, 1);
604 update_meta_page(sbi
, NULL
, blkaddr
);
610 static void __add_discard_entry(struct f2fs_sb_info
*sbi
,
611 struct cp_control
*cpc
, struct seg_entry
*se
,
612 unsigned int start
, unsigned int end
)
614 struct list_head
*head
= &SM_I(sbi
)->discard_list
;
615 struct discard_entry
*new, *last
;
617 if (!list_empty(head
)) {
618 last
= list_last_entry(head
, struct discard_entry
, list
);
619 if (START_BLOCK(sbi
, cpc
->trim_start
) + start
==
620 last
->blkaddr
+ last
->len
) {
621 last
->len
+= end
- start
;
626 new = f2fs_kmem_cache_alloc(discard_entry_slab
, GFP_NOFS
);
627 INIT_LIST_HEAD(&new->list
);
628 new->blkaddr
= START_BLOCK(sbi
, cpc
->trim_start
) + start
;
629 new->len
= end
- start
;
630 list_add_tail(&new->list
, head
);
632 SM_I(sbi
)->nr_discards
+= end
- start
;
635 static void add_discard_addrs(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
637 int entries
= SIT_VBLOCK_MAP_SIZE
/ sizeof(unsigned long);
638 int max_blocks
= sbi
->blocks_per_seg
;
639 struct seg_entry
*se
= get_seg_entry(sbi
, cpc
->trim_start
);
640 unsigned long *cur_map
= (unsigned long *)se
->cur_valid_map
;
641 unsigned long *ckpt_map
= (unsigned long *)se
->ckpt_valid_map
;
642 unsigned long *discard_map
= (unsigned long *)se
->discard_map
;
643 unsigned long *dmap
= SIT_I(sbi
)->tmp_map
;
644 unsigned int start
= 0, end
= -1;
645 bool force
= (cpc
->reason
== CP_DISCARD
);
648 if (se
->valid_blocks
== max_blocks
)
652 if (!test_opt(sbi
, DISCARD
) || !se
->valid_blocks
||
653 SM_I(sbi
)->nr_discards
>= SM_I(sbi
)->max_discards
)
657 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
658 for (i
= 0; i
< entries
; i
++)
659 dmap
[i
] = force
? ~ckpt_map
[i
] & ~discard_map
[i
] :
660 (cur_map
[i
] ^ ckpt_map
[i
]) & ckpt_map
[i
];
662 while (force
|| SM_I(sbi
)->nr_discards
<= SM_I(sbi
)->max_discards
) {
663 start
= __find_rev_next_bit(dmap
, max_blocks
, end
+ 1);
664 if (start
>= max_blocks
)
667 end
= __find_rev_next_zero_bit(dmap
, max_blocks
, start
+ 1);
668 __add_discard_entry(sbi
, cpc
, se
, start
, end
);
672 void release_discard_addrs(struct f2fs_sb_info
*sbi
)
674 struct list_head
*head
= &(SM_I(sbi
)->discard_list
);
675 struct discard_entry
*entry
, *this;
678 list_for_each_entry_safe(entry
, this, head
, list
) {
679 list_del(&entry
->list
);
680 kmem_cache_free(discard_entry_slab
, entry
);
685 * Should call clear_prefree_segments after checkpoint is done.
687 static void set_prefree_as_free_segments(struct f2fs_sb_info
*sbi
)
689 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
692 mutex_lock(&dirty_i
->seglist_lock
);
693 for_each_set_bit(segno
, dirty_i
->dirty_segmap
[PRE
], MAIN_SEGS(sbi
))
694 __set_test_and_free(sbi
, segno
);
695 mutex_unlock(&dirty_i
->seglist_lock
);
698 void clear_prefree_segments(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
700 struct list_head
*head
= &(SM_I(sbi
)->discard_list
);
701 struct discard_entry
*entry
, *this;
702 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
703 unsigned long *prefree_map
= dirty_i
->dirty_segmap
[PRE
];
704 unsigned int start
= 0, end
= -1;
706 mutex_lock(&dirty_i
->seglist_lock
);
710 start
= find_next_bit(prefree_map
, MAIN_SEGS(sbi
), end
+ 1);
711 if (start
>= MAIN_SEGS(sbi
))
713 end
= find_next_zero_bit(prefree_map
, MAIN_SEGS(sbi
),
716 for (i
= start
; i
< end
; i
++)
717 clear_bit(i
, prefree_map
);
719 dirty_i
->nr_dirty
[PRE
] -= end
- start
;
721 if (!test_opt(sbi
, DISCARD
))
724 f2fs_issue_discard(sbi
, START_BLOCK(sbi
, start
),
725 (end
- start
) << sbi
->log_blocks_per_seg
);
727 mutex_unlock(&dirty_i
->seglist_lock
);
729 /* send small discards */
730 list_for_each_entry_safe(entry
, this, head
, list
) {
731 if (cpc
->reason
== CP_DISCARD
&& entry
->len
< cpc
->trim_minlen
)
733 f2fs_issue_discard(sbi
, entry
->blkaddr
, entry
->len
);
734 cpc
->trimmed
+= entry
->len
;
736 list_del(&entry
->list
);
737 SM_I(sbi
)->nr_discards
-= entry
->len
;
738 kmem_cache_free(discard_entry_slab
, entry
);
742 static bool __mark_sit_entry_dirty(struct f2fs_sb_info
*sbi
, unsigned int segno
)
744 struct sit_info
*sit_i
= SIT_I(sbi
);
746 if (!__test_and_set_bit(segno
, sit_i
->dirty_sentries_bitmap
)) {
747 sit_i
->dirty_sentries
++;
754 static void __set_sit_entry_type(struct f2fs_sb_info
*sbi
, int type
,
755 unsigned int segno
, int modified
)
757 struct seg_entry
*se
= get_seg_entry(sbi
, segno
);
760 __mark_sit_entry_dirty(sbi
, segno
);
763 static void update_sit_entry(struct f2fs_sb_info
*sbi
, block_t blkaddr
, int del
)
765 struct seg_entry
*se
;
766 unsigned int segno
, offset
;
767 long int new_vblocks
;
769 segno
= GET_SEGNO(sbi
, blkaddr
);
771 se
= get_seg_entry(sbi
, segno
);
772 new_vblocks
= se
->valid_blocks
+ del
;
773 offset
= GET_BLKOFF_FROM_SEG0(sbi
, blkaddr
);
775 f2fs_bug_on(sbi
, (new_vblocks
>> (sizeof(unsigned short) << 3) ||
776 (new_vblocks
> sbi
->blocks_per_seg
)));
778 se
->valid_blocks
= new_vblocks
;
779 se
->mtime
= get_mtime(sbi
);
780 SIT_I(sbi
)->max_mtime
= se
->mtime
;
782 /* Update valid block bitmap */
784 if (f2fs_test_and_set_bit(offset
, se
->cur_valid_map
))
786 if (!f2fs_test_and_set_bit(offset
, se
->discard_map
))
789 if (!f2fs_test_and_clear_bit(offset
, se
->cur_valid_map
))
791 if (f2fs_test_and_clear_bit(offset
, se
->discard_map
))
794 if (!f2fs_test_bit(offset
, se
->ckpt_valid_map
))
795 se
->ckpt_valid_blocks
+= del
;
797 __mark_sit_entry_dirty(sbi
, segno
);
799 /* update total number of valid blocks to be written in ckpt area */
800 SIT_I(sbi
)->written_valid_blocks
+= del
;
802 if (sbi
->segs_per_sec
> 1)
803 get_sec_entry(sbi
, segno
)->valid_blocks
+= del
;
806 void refresh_sit_entry(struct f2fs_sb_info
*sbi
, block_t old
, block_t
new)
808 update_sit_entry(sbi
, new, 1);
809 if (GET_SEGNO(sbi
, old
) != NULL_SEGNO
)
810 update_sit_entry(sbi
, old
, -1);
812 locate_dirty_segment(sbi
, GET_SEGNO(sbi
, old
));
813 locate_dirty_segment(sbi
, GET_SEGNO(sbi
, new));
816 void invalidate_blocks(struct f2fs_sb_info
*sbi
, block_t addr
)
818 unsigned int segno
= GET_SEGNO(sbi
, addr
);
819 struct sit_info
*sit_i
= SIT_I(sbi
);
821 f2fs_bug_on(sbi
, addr
== NULL_ADDR
);
822 if (addr
== NEW_ADDR
)
825 /* add it into sit main buffer */
826 mutex_lock(&sit_i
->sentry_lock
);
828 update_sit_entry(sbi
, addr
, -1);
830 /* add it into dirty seglist */
831 locate_dirty_segment(sbi
, segno
);
833 mutex_unlock(&sit_i
->sentry_lock
);
836 bool is_checkpointed_data(struct f2fs_sb_info
*sbi
, block_t blkaddr
)
838 struct sit_info
*sit_i
= SIT_I(sbi
);
839 unsigned int segno
, offset
;
840 struct seg_entry
*se
;
843 if (blkaddr
== NEW_ADDR
|| blkaddr
== NULL_ADDR
)
846 mutex_lock(&sit_i
->sentry_lock
);
848 segno
= GET_SEGNO(sbi
, blkaddr
);
849 se
= get_seg_entry(sbi
, segno
);
850 offset
= GET_BLKOFF_FROM_SEG0(sbi
, blkaddr
);
852 if (f2fs_test_bit(offset
, se
->ckpt_valid_map
))
855 mutex_unlock(&sit_i
->sentry_lock
);
861 * This function should be resided under the curseg_mutex lock
863 static void __add_sum_entry(struct f2fs_sb_info
*sbi
, int type
,
864 struct f2fs_summary
*sum
)
866 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
867 void *addr
= curseg
->sum_blk
;
868 addr
+= curseg
->next_blkoff
* sizeof(struct f2fs_summary
);
869 memcpy(addr
, sum
, sizeof(struct f2fs_summary
));
873 * Calculate the number of current summary pages for writing
875 int npages_for_summary_flush(struct f2fs_sb_info
*sbi
, bool for_ra
)
877 int valid_sum_count
= 0;
880 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++) {
881 if (sbi
->ckpt
->alloc_type
[i
] == SSR
)
882 valid_sum_count
+= sbi
->blocks_per_seg
;
885 valid_sum_count
+= le16_to_cpu(
886 F2FS_CKPT(sbi
)->cur_data_blkoff
[i
]);
888 valid_sum_count
+= curseg_blkoff(sbi
, i
);
892 sum_in_page
= (PAGE_SIZE
- 2 * SUM_JOURNAL_SIZE
-
893 SUM_FOOTER_SIZE
) / SUMMARY_SIZE
;
894 if (valid_sum_count
<= sum_in_page
)
896 else if ((valid_sum_count
- sum_in_page
) <=
897 (PAGE_SIZE
- SUM_FOOTER_SIZE
) / SUMMARY_SIZE
)
903 * Caller should put this summary page
905 struct page
*get_sum_page(struct f2fs_sb_info
*sbi
, unsigned int segno
)
907 return get_meta_page(sbi
, GET_SUM_BLOCK(sbi
, segno
));
910 void update_meta_page(struct f2fs_sb_info
*sbi
, void *src
, block_t blk_addr
)
912 struct page
*page
= grab_meta_page(sbi
, blk_addr
);
913 void *dst
= page_address(page
);
916 memcpy(dst
, src
, PAGE_SIZE
);
918 memset(dst
, 0, PAGE_SIZE
);
919 set_page_dirty(page
);
920 f2fs_put_page(page
, 1);
923 static void write_sum_page(struct f2fs_sb_info
*sbi
,
924 struct f2fs_summary_block
*sum_blk
, block_t blk_addr
)
926 update_meta_page(sbi
, (void *)sum_blk
, blk_addr
);
929 static void write_current_sum_page(struct f2fs_sb_info
*sbi
,
930 int type
, block_t blk_addr
)
932 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
933 struct page
*page
= grab_meta_page(sbi
, blk_addr
);
934 struct f2fs_summary_block
*src
= curseg
->sum_blk
;
935 struct f2fs_summary_block
*dst
;
937 dst
= (struct f2fs_summary_block
*)page_address(page
);
939 mutex_lock(&curseg
->curseg_mutex
);
941 down_read(&curseg
->journal_rwsem
);
942 memcpy(&dst
->journal
, curseg
->journal
, SUM_JOURNAL_SIZE
);
943 up_read(&curseg
->journal_rwsem
);
945 memcpy(dst
->entries
, src
->entries
, SUM_ENTRY_SIZE
);
946 memcpy(&dst
->footer
, &src
->footer
, SUM_FOOTER_SIZE
);
948 mutex_unlock(&curseg
->curseg_mutex
);
950 set_page_dirty(page
);
951 f2fs_put_page(page
, 1);
954 static int is_next_segment_free(struct f2fs_sb_info
*sbi
, int type
)
956 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
957 unsigned int segno
= curseg
->segno
+ 1;
958 struct free_segmap_info
*free_i
= FREE_I(sbi
);
960 if (segno
< MAIN_SEGS(sbi
) && segno
% sbi
->segs_per_sec
)
961 return !test_bit(segno
, free_i
->free_segmap
);
966 * Find a new segment from the free segments bitmap to right order
967 * This function should be returned with success, otherwise BUG
969 static void get_new_segment(struct f2fs_sb_info
*sbi
,
970 unsigned int *newseg
, bool new_sec
, int dir
)
972 struct free_segmap_info
*free_i
= FREE_I(sbi
);
973 unsigned int segno
, secno
, zoneno
;
974 unsigned int total_zones
= MAIN_SECS(sbi
) / sbi
->secs_per_zone
;
975 unsigned int hint
= *newseg
/ sbi
->segs_per_sec
;
976 unsigned int old_zoneno
= GET_ZONENO_FROM_SEGNO(sbi
, *newseg
);
977 unsigned int left_start
= hint
;
982 spin_lock(&free_i
->segmap_lock
);
984 if (!new_sec
&& ((*newseg
+ 1) % sbi
->segs_per_sec
)) {
985 segno
= find_next_zero_bit(free_i
->free_segmap
,
986 (hint
+ 1) * sbi
->segs_per_sec
, *newseg
+ 1);
987 if (segno
< (hint
+ 1) * sbi
->segs_per_sec
)
991 secno
= find_next_zero_bit(free_i
->free_secmap
, MAIN_SECS(sbi
), hint
);
992 if (secno
>= MAIN_SECS(sbi
)) {
993 if (dir
== ALLOC_RIGHT
) {
994 secno
= find_next_zero_bit(free_i
->free_secmap
,
996 f2fs_bug_on(sbi
, secno
>= MAIN_SECS(sbi
));
999 left_start
= hint
- 1;
1005 while (test_bit(left_start
, free_i
->free_secmap
)) {
1006 if (left_start
> 0) {
1010 left_start
= find_next_zero_bit(free_i
->free_secmap
,
1012 f2fs_bug_on(sbi
, left_start
>= MAIN_SECS(sbi
));
1018 segno
= secno
* sbi
->segs_per_sec
;
1019 zoneno
= secno
/ sbi
->secs_per_zone
;
1021 /* give up on finding another zone */
1024 if (sbi
->secs_per_zone
== 1)
1026 if (zoneno
== old_zoneno
)
1028 if (dir
== ALLOC_LEFT
) {
1029 if (!go_left
&& zoneno
+ 1 >= total_zones
)
1031 if (go_left
&& zoneno
== 0)
1034 for (i
= 0; i
< NR_CURSEG_TYPE
; i
++)
1035 if (CURSEG_I(sbi
, i
)->zone
== zoneno
)
1038 if (i
< NR_CURSEG_TYPE
) {
1039 /* zone is in user, try another */
1041 hint
= zoneno
* sbi
->secs_per_zone
- 1;
1042 else if (zoneno
+ 1 >= total_zones
)
1045 hint
= (zoneno
+ 1) * sbi
->secs_per_zone
;
1047 goto find_other_zone
;
1050 /* set it as dirty segment in free segmap */
1051 f2fs_bug_on(sbi
, test_bit(segno
, free_i
->free_segmap
));
1052 __set_inuse(sbi
, segno
);
1054 spin_unlock(&free_i
->segmap_lock
);
1057 static void reset_curseg(struct f2fs_sb_info
*sbi
, int type
, int modified
)
1059 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1060 struct summary_footer
*sum_footer
;
1062 curseg
->segno
= curseg
->next_segno
;
1063 curseg
->zone
= GET_ZONENO_FROM_SEGNO(sbi
, curseg
->segno
);
1064 curseg
->next_blkoff
= 0;
1065 curseg
->next_segno
= NULL_SEGNO
;
1067 sum_footer
= &(curseg
->sum_blk
->footer
);
1068 memset(sum_footer
, 0, sizeof(struct summary_footer
));
1069 if (IS_DATASEG(type
))
1070 SET_SUM_TYPE(sum_footer
, SUM_TYPE_DATA
);
1071 if (IS_NODESEG(type
))
1072 SET_SUM_TYPE(sum_footer
, SUM_TYPE_NODE
);
1073 __set_sit_entry_type(sbi
, type
, curseg
->segno
, modified
);
1077 * Allocate a current working segment.
1078 * This function always allocates a free segment in LFS manner.
1080 static void new_curseg(struct f2fs_sb_info
*sbi
, int type
, bool new_sec
)
1082 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1083 unsigned int segno
= curseg
->segno
;
1084 int dir
= ALLOC_LEFT
;
1086 write_sum_page(sbi
, curseg
->sum_blk
,
1087 GET_SUM_BLOCK(sbi
, segno
));
1088 if (type
== CURSEG_WARM_DATA
|| type
== CURSEG_COLD_DATA
)
1091 if (test_opt(sbi
, NOHEAP
))
1094 get_new_segment(sbi
, &segno
, new_sec
, dir
);
1095 curseg
->next_segno
= segno
;
1096 reset_curseg(sbi
, type
, 1);
1097 curseg
->alloc_type
= LFS
;
1100 static void __next_free_blkoff(struct f2fs_sb_info
*sbi
,
1101 struct curseg_info
*seg
, block_t start
)
1103 struct seg_entry
*se
= get_seg_entry(sbi
, seg
->segno
);
1104 int entries
= SIT_VBLOCK_MAP_SIZE
/ sizeof(unsigned long);
1105 unsigned long *target_map
= SIT_I(sbi
)->tmp_map
;
1106 unsigned long *ckpt_map
= (unsigned long *)se
->ckpt_valid_map
;
1107 unsigned long *cur_map
= (unsigned long *)se
->cur_valid_map
;
1110 for (i
= 0; i
< entries
; i
++)
1111 target_map
[i
] = ckpt_map
[i
] | cur_map
[i
];
1113 pos
= __find_rev_next_zero_bit(target_map
, sbi
->blocks_per_seg
, start
);
1115 seg
->next_blkoff
= pos
;
1119 * If a segment is written by LFS manner, next block offset is just obtained
1120 * by increasing the current block offset. However, if a segment is written by
1121 * SSR manner, next block offset obtained by calling __next_free_blkoff
1123 static void __refresh_next_blkoff(struct f2fs_sb_info
*sbi
,
1124 struct curseg_info
*seg
)
1126 if (seg
->alloc_type
== SSR
)
1127 __next_free_blkoff(sbi
, seg
, seg
->next_blkoff
+ 1);
1133 * This function always allocates a used segment(from dirty seglist) by SSR
1134 * manner, so it should recover the existing segment information of valid blocks
1136 static void change_curseg(struct f2fs_sb_info
*sbi
, int type
, bool reuse
)
1138 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
1139 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1140 unsigned int new_segno
= curseg
->next_segno
;
1141 struct f2fs_summary_block
*sum_node
;
1142 struct page
*sum_page
;
1144 write_sum_page(sbi
, curseg
->sum_blk
,
1145 GET_SUM_BLOCK(sbi
, curseg
->segno
));
1146 __set_test_and_inuse(sbi
, new_segno
);
1148 mutex_lock(&dirty_i
->seglist_lock
);
1149 __remove_dirty_segment(sbi
, new_segno
, PRE
);
1150 __remove_dirty_segment(sbi
, new_segno
, DIRTY
);
1151 mutex_unlock(&dirty_i
->seglist_lock
);
1153 reset_curseg(sbi
, type
, 1);
1154 curseg
->alloc_type
= SSR
;
1155 __next_free_blkoff(sbi
, curseg
, 0);
1158 sum_page
= get_sum_page(sbi
, new_segno
);
1159 sum_node
= (struct f2fs_summary_block
*)page_address(sum_page
);
1160 memcpy(curseg
->sum_blk
, sum_node
, SUM_ENTRY_SIZE
);
1161 f2fs_put_page(sum_page
, 1);
1165 static int get_ssr_segment(struct f2fs_sb_info
*sbi
, int type
)
1167 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1168 const struct victim_selection
*v_ops
= DIRTY_I(sbi
)->v_ops
;
1170 if (IS_NODESEG(type
) || !has_not_enough_free_secs(sbi
, 0))
1171 return v_ops
->get_victim(sbi
,
1172 &(curseg
)->next_segno
, BG_GC
, type
, SSR
);
1174 /* For data segments, let's do SSR more intensively */
1175 for (; type
>= CURSEG_HOT_DATA
; type
--)
1176 if (v_ops
->get_victim(sbi
, &(curseg
)->next_segno
,
1183 * flush out current segment and replace it with new segment
1184 * This function should be returned with success, otherwise BUG
1186 static void allocate_segment_by_default(struct f2fs_sb_info
*sbi
,
1187 int type
, bool force
)
1189 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1192 new_curseg(sbi
, type
, true);
1193 else if (type
== CURSEG_WARM_NODE
)
1194 new_curseg(sbi
, type
, false);
1195 else if (curseg
->alloc_type
== LFS
&& is_next_segment_free(sbi
, type
))
1196 new_curseg(sbi
, type
, false);
1197 else if (need_SSR(sbi
) && get_ssr_segment(sbi
, type
))
1198 change_curseg(sbi
, type
, true);
1200 new_curseg(sbi
, type
, false);
1202 stat_inc_seg_type(sbi
, curseg
);
1205 static void __allocate_new_segments(struct f2fs_sb_info
*sbi
, int type
)
1207 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1208 unsigned int old_segno
;
1210 old_segno
= curseg
->segno
;
1211 SIT_I(sbi
)->s_ops
->allocate_segment(sbi
, type
, true);
1212 locate_dirty_segment(sbi
, old_segno
);
1215 void allocate_new_segments(struct f2fs_sb_info
*sbi
)
1219 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++)
1220 __allocate_new_segments(sbi
, i
);
1223 static const struct segment_allocation default_salloc_ops
= {
1224 .allocate_segment
= allocate_segment_by_default
,
1227 int f2fs_trim_fs(struct f2fs_sb_info
*sbi
, struct fstrim_range
*range
)
1229 __u64 start
= F2FS_BYTES_TO_BLK(range
->start
);
1230 __u64 end
= start
+ F2FS_BYTES_TO_BLK(range
->len
) - 1;
1231 unsigned int start_segno
, end_segno
;
1232 struct cp_control cpc
;
1235 if (start
>= MAX_BLKADDR(sbi
) || range
->len
< sbi
->blocksize
)
1239 if (end
<= MAIN_BLKADDR(sbi
))
1242 /* start/end segment number in main_area */
1243 start_segno
= (start
<= MAIN_BLKADDR(sbi
)) ? 0 : GET_SEGNO(sbi
, start
);
1244 end_segno
= (end
>= MAX_BLKADDR(sbi
)) ? MAIN_SEGS(sbi
) - 1 :
1245 GET_SEGNO(sbi
, end
);
1246 cpc
.reason
= CP_DISCARD
;
1247 cpc
.trim_minlen
= max_t(__u64
, 1, F2FS_BYTES_TO_BLK(range
->minlen
));
1249 /* do checkpoint to issue discard commands safely */
1250 for (; start_segno
<= end_segno
; start_segno
= cpc
.trim_end
+ 1) {
1251 cpc
.trim_start
= start_segno
;
1253 if (sbi
->discard_blks
== 0)
1255 else if (sbi
->discard_blks
< BATCHED_TRIM_BLOCKS(sbi
))
1256 cpc
.trim_end
= end_segno
;
1258 cpc
.trim_end
= min_t(unsigned int,
1259 rounddown(start_segno
+
1260 BATCHED_TRIM_SEGMENTS(sbi
),
1261 sbi
->segs_per_sec
) - 1, end_segno
);
1263 mutex_lock(&sbi
->gc_mutex
);
1264 err
= write_checkpoint(sbi
, &cpc
);
1265 mutex_unlock(&sbi
->gc_mutex
);
1268 range
->len
= F2FS_BLK_TO_BYTES(cpc
.trimmed
);
1272 static bool __has_curseg_space(struct f2fs_sb_info
*sbi
, int type
)
1274 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1275 if (curseg
->next_blkoff
< sbi
->blocks_per_seg
)
1280 static int __get_segment_type_2(struct page
*page
, enum page_type p_type
)
1283 return CURSEG_HOT_DATA
;
1285 return CURSEG_HOT_NODE
;
1288 static int __get_segment_type_4(struct page
*page
, enum page_type p_type
)
1290 if (p_type
== DATA
) {
1291 struct inode
*inode
= page
->mapping
->host
;
1293 if (S_ISDIR(inode
->i_mode
))
1294 return CURSEG_HOT_DATA
;
1296 return CURSEG_COLD_DATA
;
1298 if (IS_DNODE(page
) && is_cold_node(page
))
1299 return CURSEG_WARM_NODE
;
1301 return CURSEG_COLD_NODE
;
1305 static int __get_segment_type_6(struct page
*page
, enum page_type p_type
)
1307 if (p_type
== DATA
) {
1308 struct inode
*inode
= page
->mapping
->host
;
1310 if (S_ISDIR(inode
->i_mode
))
1311 return CURSEG_HOT_DATA
;
1312 else if (is_cold_data(page
) || file_is_cold(inode
))
1313 return CURSEG_COLD_DATA
;
1315 return CURSEG_WARM_DATA
;
1318 return is_cold_node(page
) ? CURSEG_WARM_NODE
:
1321 return CURSEG_COLD_NODE
;
1325 static int __get_segment_type(struct page
*page
, enum page_type p_type
)
1327 switch (F2FS_P_SB(page
)->active_logs
) {
1329 return __get_segment_type_2(page
, p_type
);
1331 return __get_segment_type_4(page
, p_type
);
1333 /* NR_CURSEG_TYPE(6) logs by default */
1334 f2fs_bug_on(F2FS_P_SB(page
),
1335 F2FS_P_SB(page
)->active_logs
!= NR_CURSEG_TYPE
);
1336 return __get_segment_type_6(page
, p_type
);
1339 void allocate_data_block(struct f2fs_sb_info
*sbi
, struct page
*page
,
1340 block_t old_blkaddr
, block_t
*new_blkaddr
,
1341 struct f2fs_summary
*sum
, int type
)
1343 struct sit_info
*sit_i
= SIT_I(sbi
);
1344 struct curseg_info
*curseg
;
1345 bool direct_io
= (type
== CURSEG_DIRECT_IO
);
1347 type
= direct_io
? CURSEG_WARM_DATA
: type
;
1349 curseg
= CURSEG_I(sbi
, type
);
1351 mutex_lock(&curseg
->curseg_mutex
);
1352 mutex_lock(&sit_i
->sentry_lock
);
1354 /* direct_io'ed data is aligned to the segment for better performance */
1355 if (direct_io
&& curseg
->next_blkoff
&&
1356 !has_not_enough_free_secs(sbi
, 0))
1357 __allocate_new_segments(sbi
, type
);
1359 *new_blkaddr
= NEXT_FREE_BLKADDR(sbi
, curseg
);
1362 * __add_sum_entry should be resided under the curseg_mutex
1363 * because, this function updates a summary entry in the
1364 * current summary block.
1366 __add_sum_entry(sbi
, type
, sum
);
1368 __refresh_next_blkoff(sbi
, curseg
);
1370 stat_inc_block_count(sbi
, curseg
);
1372 if (!__has_curseg_space(sbi
, type
))
1373 sit_i
->s_ops
->allocate_segment(sbi
, type
, false);
1375 * SIT information should be updated before segment allocation,
1376 * since SSR needs latest valid block information.
1378 refresh_sit_entry(sbi
, old_blkaddr
, *new_blkaddr
);
1380 mutex_unlock(&sit_i
->sentry_lock
);
1382 if (page
&& IS_NODESEG(type
))
1383 fill_node_footer_blkaddr(page
, NEXT_FREE_BLKADDR(sbi
, curseg
));
1385 mutex_unlock(&curseg
->curseg_mutex
);
1388 static void do_write_page(struct f2fs_summary
*sum
, struct f2fs_io_info
*fio
)
1390 int type
= __get_segment_type(fio
->page
, fio
->type
);
1392 allocate_data_block(fio
->sbi
, fio
->page
, fio
->old_blkaddr
,
1393 &fio
->new_blkaddr
, sum
, type
);
1395 /* writeout dirty page into bdev */
1396 f2fs_submit_page_mbio(fio
);
1399 void write_meta_page(struct f2fs_sb_info
*sbi
, struct page
*page
)
1401 struct f2fs_io_info fio
= {
1404 .rw
= WRITE_SYNC
| REQ_META
| REQ_PRIO
,
1405 .old_blkaddr
= page
->index
,
1406 .new_blkaddr
= page
->index
,
1408 .encrypted_page
= NULL
,
1411 if (unlikely(page
->index
>= MAIN_BLKADDR(sbi
)))
1412 fio
.rw
&= ~REQ_META
;
1414 set_page_writeback(page
);
1415 f2fs_submit_page_mbio(&fio
);
1418 void write_node_page(unsigned int nid
, struct f2fs_io_info
*fio
)
1420 struct f2fs_summary sum
;
1422 set_summary(&sum
, nid
, 0, 0);
1423 do_write_page(&sum
, fio
);
1426 void write_data_page(struct dnode_of_data
*dn
, struct f2fs_io_info
*fio
)
1428 struct f2fs_sb_info
*sbi
= fio
->sbi
;
1429 struct f2fs_summary sum
;
1430 struct node_info ni
;
1432 f2fs_bug_on(sbi
, dn
->data_blkaddr
== NULL_ADDR
);
1433 get_node_info(sbi
, dn
->nid
, &ni
);
1434 set_summary(&sum
, dn
->nid
, dn
->ofs_in_node
, ni
.version
);
1435 do_write_page(&sum
, fio
);
1436 f2fs_update_data_blkaddr(dn
, fio
->new_blkaddr
);
1439 void rewrite_data_page(struct f2fs_io_info
*fio
)
1441 fio
->new_blkaddr
= fio
->old_blkaddr
;
1442 stat_inc_inplace_blocks(fio
->sbi
);
1443 f2fs_submit_page_mbio(fio
);
1446 void __f2fs_replace_block(struct f2fs_sb_info
*sbi
, struct f2fs_summary
*sum
,
1447 block_t old_blkaddr
, block_t new_blkaddr
,
1448 bool recover_curseg
, bool recover_newaddr
)
1450 struct sit_info
*sit_i
= SIT_I(sbi
);
1451 struct curseg_info
*curseg
;
1452 unsigned int segno
, old_cursegno
;
1453 struct seg_entry
*se
;
1455 unsigned short old_blkoff
;
1457 segno
= GET_SEGNO(sbi
, new_blkaddr
);
1458 se
= get_seg_entry(sbi
, segno
);
1461 if (!recover_curseg
) {
1462 /* for recovery flow */
1463 if (se
->valid_blocks
== 0 && !IS_CURSEG(sbi
, segno
)) {
1464 if (old_blkaddr
== NULL_ADDR
)
1465 type
= CURSEG_COLD_DATA
;
1467 type
= CURSEG_WARM_DATA
;
1470 if (!IS_CURSEG(sbi
, segno
))
1471 type
= CURSEG_WARM_DATA
;
1474 curseg
= CURSEG_I(sbi
, type
);
1476 mutex_lock(&curseg
->curseg_mutex
);
1477 mutex_lock(&sit_i
->sentry_lock
);
1479 old_cursegno
= curseg
->segno
;
1480 old_blkoff
= curseg
->next_blkoff
;
1482 /* change the current segment */
1483 if (segno
!= curseg
->segno
) {
1484 curseg
->next_segno
= segno
;
1485 change_curseg(sbi
, type
, true);
1488 curseg
->next_blkoff
= GET_BLKOFF_FROM_SEG0(sbi
, new_blkaddr
);
1489 __add_sum_entry(sbi
, type
, sum
);
1491 if (!recover_curseg
|| recover_newaddr
)
1492 update_sit_entry(sbi
, new_blkaddr
, 1);
1493 if (GET_SEGNO(sbi
, old_blkaddr
) != NULL_SEGNO
)
1494 update_sit_entry(sbi
, old_blkaddr
, -1);
1496 locate_dirty_segment(sbi
, GET_SEGNO(sbi
, old_blkaddr
));
1497 locate_dirty_segment(sbi
, GET_SEGNO(sbi
, new_blkaddr
));
1499 locate_dirty_segment(sbi
, old_cursegno
);
1501 if (recover_curseg
) {
1502 if (old_cursegno
!= curseg
->segno
) {
1503 curseg
->next_segno
= old_cursegno
;
1504 change_curseg(sbi
, type
, true);
1506 curseg
->next_blkoff
= old_blkoff
;
1509 mutex_unlock(&sit_i
->sentry_lock
);
1510 mutex_unlock(&curseg
->curseg_mutex
);
1513 void f2fs_replace_block(struct f2fs_sb_info
*sbi
, struct dnode_of_data
*dn
,
1514 block_t old_addr
, block_t new_addr
,
1515 unsigned char version
, bool recover_curseg
,
1516 bool recover_newaddr
)
1518 struct f2fs_summary sum
;
1520 set_summary(&sum
, dn
->nid
, dn
->ofs_in_node
, version
);
1522 __f2fs_replace_block(sbi
, &sum
, old_addr
, new_addr
,
1523 recover_curseg
, recover_newaddr
);
1525 f2fs_update_data_blkaddr(dn
, new_addr
);
1528 void f2fs_wait_on_page_writeback(struct page
*page
,
1529 enum page_type type
, bool ordered
)
1531 if (PageWriteback(page
)) {
1532 struct f2fs_sb_info
*sbi
= F2FS_P_SB(page
);
1534 f2fs_submit_merged_bio_cond(sbi
, NULL
, page
, 0, type
, WRITE
);
1536 wait_on_page_writeback(page
);
1538 wait_for_stable_page(page
);
1542 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info
*sbi
,
1547 if (blkaddr
== NEW_ADDR
)
1550 f2fs_bug_on(sbi
, blkaddr
== NULL_ADDR
);
1552 cpage
= find_lock_page(META_MAPPING(sbi
), blkaddr
);
1554 f2fs_wait_on_page_writeback(cpage
, DATA
, true);
1555 f2fs_put_page(cpage
, 1);
1559 static int read_compacted_summaries(struct f2fs_sb_info
*sbi
)
1561 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1562 struct curseg_info
*seg_i
;
1563 unsigned char *kaddr
;
1568 start
= start_sum_block(sbi
);
1570 page
= get_meta_page(sbi
, start
++);
1571 kaddr
= (unsigned char *)page_address(page
);
1573 /* Step 1: restore nat cache */
1574 seg_i
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
1575 memcpy(seg_i
->journal
, kaddr
, SUM_JOURNAL_SIZE
);
1577 /* Step 2: restore sit cache */
1578 seg_i
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
1579 memcpy(seg_i
->journal
, kaddr
+ SUM_JOURNAL_SIZE
, SUM_JOURNAL_SIZE
);
1580 offset
= 2 * SUM_JOURNAL_SIZE
;
1582 /* Step 3: restore summary entries */
1583 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++) {
1584 unsigned short blk_off
;
1587 seg_i
= CURSEG_I(sbi
, i
);
1588 segno
= le32_to_cpu(ckpt
->cur_data_segno
[i
]);
1589 blk_off
= le16_to_cpu(ckpt
->cur_data_blkoff
[i
]);
1590 seg_i
->next_segno
= segno
;
1591 reset_curseg(sbi
, i
, 0);
1592 seg_i
->alloc_type
= ckpt
->alloc_type
[i
];
1593 seg_i
->next_blkoff
= blk_off
;
1595 if (seg_i
->alloc_type
== SSR
)
1596 blk_off
= sbi
->blocks_per_seg
;
1598 for (j
= 0; j
< blk_off
; j
++) {
1599 struct f2fs_summary
*s
;
1600 s
= (struct f2fs_summary
*)(kaddr
+ offset
);
1601 seg_i
->sum_blk
->entries
[j
] = *s
;
1602 offset
+= SUMMARY_SIZE
;
1603 if (offset
+ SUMMARY_SIZE
<= PAGE_SIZE
-
1607 f2fs_put_page(page
, 1);
1610 page
= get_meta_page(sbi
, start
++);
1611 kaddr
= (unsigned char *)page_address(page
);
1615 f2fs_put_page(page
, 1);
1619 static int read_normal_summaries(struct f2fs_sb_info
*sbi
, int type
)
1621 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1622 struct f2fs_summary_block
*sum
;
1623 struct curseg_info
*curseg
;
1625 unsigned short blk_off
;
1626 unsigned int segno
= 0;
1627 block_t blk_addr
= 0;
1629 /* get segment number and block addr */
1630 if (IS_DATASEG(type
)) {
1631 segno
= le32_to_cpu(ckpt
->cur_data_segno
[type
]);
1632 blk_off
= le16_to_cpu(ckpt
->cur_data_blkoff
[type
-
1634 if (__exist_node_summaries(sbi
))
1635 blk_addr
= sum_blk_addr(sbi
, NR_CURSEG_TYPE
, type
);
1637 blk_addr
= sum_blk_addr(sbi
, NR_CURSEG_DATA_TYPE
, type
);
1639 segno
= le32_to_cpu(ckpt
->cur_node_segno
[type
-
1641 blk_off
= le16_to_cpu(ckpt
->cur_node_blkoff
[type
-
1643 if (__exist_node_summaries(sbi
))
1644 blk_addr
= sum_blk_addr(sbi
, NR_CURSEG_NODE_TYPE
,
1645 type
- CURSEG_HOT_NODE
);
1647 blk_addr
= GET_SUM_BLOCK(sbi
, segno
);
1650 new = get_meta_page(sbi
, blk_addr
);
1651 sum
= (struct f2fs_summary_block
*)page_address(new);
1653 if (IS_NODESEG(type
)) {
1654 if (__exist_node_summaries(sbi
)) {
1655 struct f2fs_summary
*ns
= &sum
->entries
[0];
1657 for (i
= 0; i
< sbi
->blocks_per_seg
; i
++, ns
++) {
1659 ns
->ofs_in_node
= 0;
1664 err
= restore_node_summary(sbi
, segno
, sum
);
1666 f2fs_put_page(new, 1);
1672 /* set uncompleted segment to curseg */
1673 curseg
= CURSEG_I(sbi
, type
);
1674 mutex_lock(&curseg
->curseg_mutex
);
1676 /* update journal info */
1677 down_write(&curseg
->journal_rwsem
);
1678 memcpy(curseg
->journal
, &sum
->journal
, SUM_JOURNAL_SIZE
);
1679 up_write(&curseg
->journal_rwsem
);
1681 memcpy(curseg
->sum_blk
->entries
, sum
->entries
, SUM_ENTRY_SIZE
);
1682 memcpy(&curseg
->sum_blk
->footer
, &sum
->footer
, SUM_FOOTER_SIZE
);
1683 curseg
->next_segno
= segno
;
1684 reset_curseg(sbi
, type
, 0);
1685 curseg
->alloc_type
= ckpt
->alloc_type
[type
];
1686 curseg
->next_blkoff
= blk_off
;
1687 mutex_unlock(&curseg
->curseg_mutex
);
1688 f2fs_put_page(new, 1);
1692 static int restore_curseg_summaries(struct f2fs_sb_info
*sbi
)
1694 int type
= CURSEG_HOT_DATA
;
1697 if (is_set_ckpt_flags(F2FS_CKPT(sbi
), CP_COMPACT_SUM_FLAG
)) {
1698 int npages
= npages_for_summary_flush(sbi
, true);
1701 ra_meta_pages(sbi
, start_sum_block(sbi
), npages
,
1704 /* restore for compacted data summary */
1705 if (read_compacted_summaries(sbi
))
1707 type
= CURSEG_HOT_NODE
;
1710 if (__exist_node_summaries(sbi
))
1711 ra_meta_pages(sbi
, sum_blk_addr(sbi
, NR_CURSEG_TYPE
, type
),
1712 NR_CURSEG_TYPE
- type
, META_CP
, true);
1714 for (; type
<= CURSEG_COLD_NODE
; type
++) {
1715 err
= read_normal_summaries(sbi
, type
);
1723 static void write_compacted_summaries(struct f2fs_sb_info
*sbi
, block_t blkaddr
)
1726 unsigned char *kaddr
;
1727 struct f2fs_summary
*summary
;
1728 struct curseg_info
*seg_i
;
1729 int written_size
= 0;
1732 page
= grab_meta_page(sbi
, blkaddr
++);
1733 kaddr
= (unsigned char *)page_address(page
);
1735 /* Step 1: write nat cache */
1736 seg_i
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
1737 memcpy(kaddr
, seg_i
->journal
, SUM_JOURNAL_SIZE
);
1738 written_size
+= SUM_JOURNAL_SIZE
;
1740 /* Step 2: write sit cache */
1741 seg_i
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
1742 memcpy(kaddr
+ written_size
, seg_i
->journal
, SUM_JOURNAL_SIZE
);
1743 written_size
+= SUM_JOURNAL_SIZE
;
1745 /* Step 3: write summary entries */
1746 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++) {
1747 unsigned short blkoff
;
1748 seg_i
= CURSEG_I(sbi
, i
);
1749 if (sbi
->ckpt
->alloc_type
[i
] == SSR
)
1750 blkoff
= sbi
->blocks_per_seg
;
1752 blkoff
= curseg_blkoff(sbi
, i
);
1754 for (j
= 0; j
< blkoff
; j
++) {
1756 page
= grab_meta_page(sbi
, blkaddr
++);
1757 kaddr
= (unsigned char *)page_address(page
);
1760 summary
= (struct f2fs_summary
*)(kaddr
+ written_size
);
1761 *summary
= seg_i
->sum_blk
->entries
[j
];
1762 written_size
+= SUMMARY_SIZE
;
1764 if (written_size
+ SUMMARY_SIZE
<= PAGE_SIZE
-
1768 set_page_dirty(page
);
1769 f2fs_put_page(page
, 1);
1774 set_page_dirty(page
);
1775 f2fs_put_page(page
, 1);
1779 static void write_normal_summaries(struct f2fs_sb_info
*sbi
,
1780 block_t blkaddr
, int type
)
1783 if (IS_DATASEG(type
))
1784 end
= type
+ NR_CURSEG_DATA_TYPE
;
1786 end
= type
+ NR_CURSEG_NODE_TYPE
;
1788 for (i
= type
; i
< end
; i
++)
1789 write_current_sum_page(sbi
, i
, blkaddr
+ (i
- type
));
1792 void write_data_summaries(struct f2fs_sb_info
*sbi
, block_t start_blk
)
1794 if (is_set_ckpt_flags(F2FS_CKPT(sbi
), CP_COMPACT_SUM_FLAG
))
1795 write_compacted_summaries(sbi
, start_blk
);
1797 write_normal_summaries(sbi
, start_blk
, CURSEG_HOT_DATA
);
1800 void write_node_summaries(struct f2fs_sb_info
*sbi
, block_t start_blk
)
1802 write_normal_summaries(sbi
, start_blk
, CURSEG_HOT_NODE
);
1805 int lookup_journal_in_cursum(struct f2fs_journal
*journal
, int type
,
1806 unsigned int val
, int alloc
)
1810 if (type
== NAT_JOURNAL
) {
1811 for (i
= 0; i
< nats_in_cursum(journal
); i
++) {
1812 if (le32_to_cpu(nid_in_journal(journal
, i
)) == val
)
1815 if (alloc
&& __has_cursum_space(journal
, 1, NAT_JOURNAL
))
1816 return update_nats_in_cursum(journal
, 1);
1817 } else if (type
== SIT_JOURNAL
) {
1818 for (i
= 0; i
< sits_in_cursum(journal
); i
++)
1819 if (le32_to_cpu(segno_in_journal(journal
, i
)) == val
)
1821 if (alloc
&& __has_cursum_space(journal
, 1, SIT_JOURNAL
))
1822 return update_sits_in_cursum(journal
, 1);
1827 static struct page
*get_current_sit_page(struct f2fs_sb_info
*sbi
,
1830 return get_meta_page(sbi
, current_sit_addr(sbi
, segno
));
1833 static struct page
*get_next_sit_page(struct f2fs_sb_info
*sbi
,
1836 struct sit_info
*sit_i
= SIT_I(sbi
);
1837 struct page
*src_page
, *dst_page
;
1838 pgoff_t src_off
, dst_off
;
1839 void *src_addr
, *dst_addr
;
1841 src_off
= current_sit_addr(sbi
, start
);
1842 dst_off
= next_sit_addr(sbi
, src_off
);
1844 /* get current sit block page without lock */
1845 src_page
= get_meta_page(sbi
, src_off
);
1846 dst_page
= grab_meta_page(sbi
, dst_off
);
1847 f2fs_bug_on(sbi
, PageDirty(src_page
));
1849 src_addr
= page_address(src_page
);
1850 dst_addr
= page_address(dst_page
);
1851 memcpy(dst_addr
, src_addr
, PAGE_SIZE
);
1853 set_page_dirty(dst_page
);
1854 f2fs_put_page(src_page
, 1);
1856 set_to_next_sit(sit_i
, start
);
1861 static struct sit_entry_set
*grab_sit_entry_set(void)
1863 struct sit_entry_set
*ses
=
1864 f2fs_kmem_cache_alloc(sit_entry_set_slab
, GFP_NOFS
);
1867 INIT_LIST_HEAD(&ses
->set_list
);
1871 static void release_sit_entry_set(struct sit_entry_set
*ses
)
1873 list_del(&ses
->set_list
);
1874 kmem_cache_free(sit_entry_set_slab
, ses
);
1877 static void adjust_sit_entry_set(struct sit_entry_set
*ses
,
1878 struct list_head
*head
)
1880 struct sit_entry_set
*next
= ses
;
1882 if (list_is_last(&ses
->set_list
, head
))
1885 list_for_each_entry_continue(next
, head
, set_list
)
1886 if (ses
->entry_cnt
<= next
->entry_cnt
)
1889 list_move_tail(&ses
->set_list
, &next
->set_list
);
1892 static void add_sit_entry(unsigned int segno
, struct list_head
*head
)
1894 struct sit_entry_set
*ses
;
1895 unsigned int start_segno
= START_SEGNO(segno
);
1897 list_for_each_entry(ses
, head
, set_list
) {
1898 if (ses
->start_segno
== start_segno
) {
1900 adjust_sit_entry_set(ses
, head
);
1905 ses
= grab_sit_entry_set();
1907 ses
->start_segno
= start_segno
;
1909 list_add(&ses
->set_list
, head
);
1912 static void add_sits_in_set(struct f2fs_sb_info
*sbi
)
1914 struct f2fs_sm_info
*sm_info
= SM_I(sbi
);
1915 struct list_head
*set_list
= &sm_info
->sit_entry_set
;
1916 unsigned long *bitmap
= SIT_I(sbi
)->dirty_sentries_bitmap
;
1919 for_each_set_bit(segno
, bitmap
, MAIN_SEGS(sbi
))
1920 add_sit_entry(segno
, set_list
);
1923 static void remove_sits_in_journal(struct f2fs_sb_info
*sbi
)
1925 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
1926 struct f2fs_journal
*journal
= curseg
->journal
;
1929 down_write(&curseg
->journal_rwsem
);
1930 for (i
= 0; i
< sits_in_cursum(journal
); i
++) {
1934 segno
= le32_to_cpu(segno_in_journal(journal
, i
));
1935 dirtied
= __mark_sit_entry_dirty(sbi
, segno
);
1938 add_sit_entry(segno
, &SM_I(sbi
)->sit_entry_set
);
1940 update_sits_in_cursum(journal
, -i
);
1941 up_write(&curseg
->journal_rwsem
);
1945 * CP calls this function, which flushes SIT entries including sit_journal,
1946 * and moves prefree segs to free segs.
1948 void flush_sit_entries(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
1950 struct sit_info
*sit_i
= SIT_I(sbi
);
1951 unsigned long *bitmap
= sit_i
->dirty_sentries_bitmap
;
1952 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
1953 struct f2fs_journal
*journal
= curseg
->journal
;
1954 struct sit_entry_set
*ses
, *tmp
;
1955 struct list_head
*head
= &SM_I(sbi
)->sit_entry_set
;
1956 bool to_journal
= true;
1957 struct seg_entry
*se
;
1959 mutex_lock(&sit_i
->sentry_lock
);
1961 if (!sit_i
->dirty_sentries
)
1965 * add and account sit entries of dirty bitmap in sit entry
1968 add_sits_in_set(sbi
);
1971 * if there are no enough space in journal to store dirty sit
1972 * entries, remove all entries from journal and add and account
1973 * them in sit entry set.
1975 if (!__has_cursum_space(journal
, sit_i
->dirty_sentries
, SIT_JOURNAL
))
1976 remove_sits_in_journal(sbi
);
1979 * there are two steps to flush sit entries:
1980 * #1, flush sit entries to journal in current cold data summary block.
1981 * #2, flush sit entries to sit page.
1983 list_for_each_entry_safe(ses
, tmp
, head
, set_list
) {
1984 struct page
*page
= NULL
;
1985 struct f2fs_sit_block
*raw_sit
= NULL
;
1986 unsigned int start_segno
= ses
->start_segno
;
1987 unsigned int end
= min(start_segno
+ SIT_ENTRY_PER_BLOCK
,
1988 (unsigned long)MAIN_SEGS(sbi
));
1989 unsigned int segno
= start_segno
;
1992 !__has_cursum_space(journal
, ses
->entry_cnt
, SIT_JOURNAL
))
1996 down_write(&curseg
->journal_rwsem
);
1998 page
= get_next_sit_page(sbi
, start_segno
);
1999 raw_sit
= page_address(page
);
2002 /* flush dirty sit entries in region of current sit set */
2003 for_each_set_bit_from(segno
, bitmap
, end
) {
2004 int offset
, sit_offset
;
2006 se
= get_seg_entry(sbi
, segno
);
2008 /* add discard candidates */
2009 if (cpc
->reason
!= CP_DISCARD
) {
2010 cpc
->trim_start
= segno
;
2011 add_discard_addrs(sbi
, cpc
);
2015 offset
= lookup_journal_in_cursum(journal
,
2016 SIT_JOURNAL
, segno
, 1);
2017 f2fs_bug_on(sbi
, offset
< 0);
2018 segno_in_journal(journal
, offset
) =
2020 seg_info_to_raw_sit(se
,
2021 &sit_in_journal(journal
, offset
));
2023 sit_offset
= SIT_ENTRY_OFFSET(sit_i
, segno
);
2024 seg_info_to_raw_sit(se
,
2025 &raw_sit
->entries
[sit_offset
]);
2028 __clear_bit(segno
, bitmap
);
2029 sit_i
->dirty_sentries
--;
2034 up_write(&curseg
->journal_rwsem
);
2036 f2fs_put_page(page
, 1);
2038 f2fs_bug_on(sbi
, ses
->entry_cnt
);
2039 release_sit_entry_set(ses
);
2042 f2fs_bug_on(sbi
, !list_empty(head
));
2043 f2fs_bug_on(sbi
, sit_i
->dirty_sentries
);
2045 if (cpc
->reason
== CP_DISCARD
) {
2046 for (; cpc
->trim_start
<= cpc
->trim_end
; cpc
->trim_start
++)
2047 add_discard_addrs(sbi
, cpc
);
2049 mutex_unlock(&sit_i
->sentry_lock
);
2051 set_prefree_as_free_segments(sbi
);
2054 static int build_sit_info(struct f2fs_sb_info
*sbi
)
2056 struct f2fs_super_block
*raw_super
= F2FS_RAW_SUPER(sbi
);
2057 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
2058 struct sit_info
*sit_i
;
2059 unsigned int sit_segs
, start
;
2060 char *src_bitmap
, *dst_bitmap
;
2061 unsigned int bitmap_size
;
2063 /* allocate memory for SIT information */
2064 sit_i
= kzalloc(sizeof(struct sit_info
), GFP_KERNEL
);
2068 SM_I(sbi
)->sit_info
= sit_i
;
2070 sit_i
->sentries
= f2fs_kvzalloc(MAIN_SEGS(sbi
) *
2071 sizeof(struct seg_entry
), GFP_KERNEL
);
2072 if (!sit_i
->sentries
)
2075 bitmap_size
= f2fs_bitmap_size(MAIN_SEGS(sbi
));
2076 sit_i
->dirty_sentries_bitmap
= f2fs_kvzalloc(bitmap_size
, GFP_KERNEL
);
2077 if (!sit_i
->dirty_sentries_bitmap
)
2080 for (start
= 0; start
< MAIN_SEGS(sbi
); start
++) {
2081 sit_i
->sentries
[start
].cur_valid_map
2082 = kzalloc(SIT_VBLOCK_MAP_SIZE
, GFP_KERNEL
);
2083 sit_i
->sentries
[start
].ckpt_valid_map
2084 = kzalloc(SIT_VBLOCK_MAP_SIZE
, GFP_KERNEL
);
2085 sit_i
->sentries
[start
].discard_map
2086 = kzalloc(SIT_VBLOCK_MAP_SIZE
, GFP_KERNEL
);
2087 if (!sit_i
->sentries
[start
].cur_valid_map
||
2088 !sit_i
->sentries
[start
].ckpt_valid_map
||
2089 !sit_i
->sentries
[start
].discard_map
)
2093 sit_i
->tmp_map
= kzalloc(SIT_VBLOCK_MAP_SIZE
, GFP_KERNEL
);
2094 if (!sit_i
->tmp_map
)
2097 if (sbi
->segs_per_sec
> 1) {
2098 sit_i
->sec_entries
= f2fs_kvzalloc(MAIN_SECS(sbi
) *
2099 sizeof(struct sec_entry
), GFP_KERNEL
);
2100 if (!sit_i
->sec_entries
)
2104 /* get information related with SIT */
2105 sit_segs
= le32_to_cpu(raw_super
->segment_count_sit
) >> 1;
2107 /* setup SIT bitmap from ckeckpoint pack */
2108 bitmap_size
= __bitmap_size(sbi
, SIT_BITMAP
);
2109 src_bitmap
= __bitmap_ptr(sbi
, SIT_BITMAP
);
2111 dst_bitmap
= kmemdup(src_bitmap
, bitmap_size
, GFP_KERNEL
);
2115 /* init SIT information */
2116 sit_i
->s_ops
= &default_salloc_ops
;
2118 sit_i
->sit_base_addr
= le32_to_cpu(raw_super
->sit_blkaddr
);
2119 sit_i
->sit_blocks
= sit_segs
<< sbi
->log_blocks_per_seg
;
2120 sit_i
->written_valid_blocks
= le64_to_cpu(ckpt
->valid_block_count
);
2121 sit_i
->sit_bitmap
= dst_bitmap
;
2122 sit_i
->bitmap_size
= bitmap_size
;
2123 sit_i
->dirty_sentries
= 0;
2124 sit_i
->sents_per_block
= SIT_ENTRY_PER_BLOCK
;
2125 sit_i
->elapsed_time
= le64_to_cpu(sbi
->ckpt
->elapsed_time
);
2126 sit_i
->mounted_time
= CURRENT_TIME_SEC
.tv_sec
;
2127 mutex_init(&sit_i
->sentry_lock
);
2131 static int build_free_segmap(struct f2fs_sb_info
*sbi
)
2133 struct free_segmap_info
*free_i
;
2134 unsigned int bitmap_size
, sec_bitmap_size
;
2136 /* allocate memory for free segmap information */
2137 free_i
= kzalloc(sizeof(struct free_segmap_info
), GFP_KERNEL
);
2141 SM_I(sbi
)->free_info
= free_i
;
2143 bitmap_size
= f2fs_bitmap_size(MAIN_SEGS(sbi
));
2144 free_i
->free_segmap
= f2fs_kvmalloc(bitmap_size
, GFP_KERNEL
);
2145 if (!free_i
->free_segmap
)
2148 sec_bitmap_size
= f2fs_bitmap_size(MAIN_SECS(sbi
));
2149 free_i
->free_secmap
= f2fs_kvmalloc(sec_bitmap_size
, GFP_KERNEL
);
2150 if (!free_i
->free_secmap
)
2153 /* set all segments as dirty temporarily */
2154 memset(free_i
->free_segmap
, 0xff, bitmap_size
);
2155 memset(free_i
->free_secmap
, 0xff, sec_bitmap_size
);
2157 /* init free segmap information */
2158 free_i
->start_segno
= GET_SEGNO_FROM_SEG0(sbi
, MAIN_BLKADDR(sbi
));
2159 free_i
->free_segments
= 0;
2160 free_i
->free_sections
= 0;
2161 spin_lock_init(&free_i
->segmap_lock
);
2165 static int build_curseg(struct f2fs_sb_info
*sbi
)
2167 struct curseg_info
*array
;
2170 array
= kcalloc(NR_CURSEG_TYPE
, sizeof(*array
), GFP_KERNEL
);
2174 SM_I(sbi
)->curseg_array
= array
;
2176 for (i
= 0; i
< NR_CURSEG_TYPE
; i
++) {
2177 mutex_init(&array
[i
].curseg_mutex
);
2178 array
[i
].sum_blk
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
2179 if (!array
[i
].sum_blk
)
2181 init_rwsem(&array
[i
].journal_rwsem
);
2182 array
[i
].journal
= kzalloc(sizeof(struct f2fs_journal
),
2184 if (!array
[i
].journal
)
2186 array
[i
].segno
= NULL_SEGNO
;
2187 array
[i
].next_blkoff
= 0;
2189 return restore_curseg_summaries(sbi
);
2192 static void build_sit_entries(struct f2fs_sb_info
*sbi
)
2194 struct sit_info
*sit_i
= SIT_I(sbi
);
2195 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
2196 struct f2fs_journal
*journal
= curseg
->journal
;
2197 int sit_blk_cnt
= SIT_BLK_CNT(sbi
);
2198 unsigned int i
, start
, end
;
2199 unsigned int readed
, start_blk
= 0;
2200 int nrpages
= MAX_BIO_BLOCKS(sbi
) * 8;
2203 readed
= ra_meta_pages(sbi
, start_blk
, nrpages
, META_SIT
, true);
2205 start
= start_blk
* sit_i
->sents_per_block
;
2206 end
= (start_blk
+ readed
) * sit_i
->sents_per_block
;
2208 for (; start
< end
&& start
< MAIN_SEGS(sbi
); start
++) {
2209 struct seg_entry
*se
= &sit_i
->sentries
[start
];
2210 struct f2fs_sit_block
*sit_blk
;
2211 struct f2fs_sit_entry sit
;
2214 down_read(&curseg
->journal_rwsem
);
2215 for (i
= 0; i
< sits_in_cursum(journal
); i
++) {
2216 if (le32_to_cpu(segno_in_journal(journal
, i
))
2218 sit
= sit_in_journal(journal
, i
);
2219 up_read(&curseg
->journal_rwsem
);
2223 up_read(&curseg
->journal_rwsem
);
2225 page
= get_current_sit_page(sbi
, start
);
2226 sit_blk
= (struct f2fs_sit_block
*)page_address(page
);
2227 sit
= sit_blk
->entries
[SIT_ENTRY_OFFSET(sit_i
, start
)];
2228 f2fs_put_page(page
, 1);
2230 check_block_count(sbi
, start
, &sit
);
2231 seg_info_from_raw_sit(se
, &sit
);
2233 /* build discard map only one time */
2234 memcpy(se
->discard_map
, se
->cur_valid_map
, SIT_VBLOCK_MAP_SIZE
);
2235 sbi
->discard_blks
+= sbi
->blocks_per_seg
- se
->valid_blocks
;
2237 if (sbi
->segs_per_sec
> 1) {
2238 struct sec_entry
*e
= get_sec_entry(sbi
, start
);
2239 e
->valid_blocks
+= se
->valid_blocks
;
2242 start_blk
+= readed
;
2243 } while (start_blk
< sit_blk_cnt
);
2246 static void init_free_segmap(struct f2fs_sb_info
*sbi
)
2251 for (start
= 0; start
< MAIN_SEGS(sbi
); start
++) {
2252 struct seg_entry
*sentry
= get_seg_entry(sbi
, start
);
2253 if (!sentry
->valid_blocks
)
2254 __set_free(sbi
, start
);
2257 /* set use the current segments */
2258 for (type
= CURSEG_HOT_DATA
; type
<= CURSEG_COLD_NODE
; type
++) {
2259 struct curseg_info
*curseg_t
= CURSEG_I(sbi
, type
);
2260 __set_test_and_inuse(sbi
, curseg_t
->segno
);
2264 static void init_dirty_segmap(struct f2fs_sb_info
*sbi
)
2266 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
2267 struct free_segmap_info
*free_i
= FREE_I(sbi
);
2268 unsigned int segno
= 0, offset
= 0;
2269 unsigned short valid_blocks
;
2272 /* find dirty segment based on free segmap */
2273 segno
= find_next_inuse(free_i
, MAIN_SEGS(sbi
), offset
);
2274 if (segno
>= MAIN_SEGS(sbi
))
2277 valid_blocks
= get_valid_blocks(sbi
, segno
, 0);
2278 if (valid_blocks
== sbi
->blocks_per_seg
|| !valid_blocks
)
2280 if (valid_blocks
> sbi
->blocks_per_seg
) {
2281 f2fs_bug_on(sbi
, 1);
2284 mutex_lock(&dirty_i
->seglist_lock
);
2285 __locate_dirty_segment(sbi
, segno
, DIRTY
);
2286 mutex_unlock(&dirty_i
->seglist_lock
);
2290 static int init_victim_secmap(struct f2fs_sb_info
*sbi
)
2292 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
2293 unsigned int bitmap_size
= f2fs_bitmap_size(MAIN_SECS(sbi
));
2295 dirty_i
->victim_secmap
= f2fs_kvzalloc(bitmap_size
, GFP_KERNEL
);
2296 if (!dirty_i
->victim_secmap
)
2301 static int build_dirty_segmap(struct f2fs_sb_info
*sbi
)
2303 struct dirty_seglist_info
*dirty_i
;
2304 unsigned int bitmap_size
, i
;
2306 /* allocate memory for dirty segments list information */
2307 dirty_i
= kzalloc(sizeof(struct dirty_seglist_info
), GFP_KERNEL
);
2311 SM_I(sbi
)->dirty_info
= dirty_i
;
2312 mutex_init(&dirty_i
->seglist_lock
);
2314 bitmap_size
= f2fs_bitmap_size(MAIN_SEGS(sbi
));
2316 for (i
= 0; i
< NR_DIRTY_TYPE
; i
++) {
2317 dirty_i
->dirty_segmap
[i
] = f2fs_kvzalloc(bitmap_size
, GFP_KERNEL
);
2318 if (!dirty_i
->dirty_segmap
[i
])
2322 init_dirty_segmap(sbi
);
2323 return init_victim_secmap(sbi
);
2327 * Update min, max modified time for cost-benefit GC algorithm
2329 static void init_min_max_mtime(struct f2fs_sb_info
*sbi
)
2331 struct sit_info
*sit_i
= SIT_I(sbi
);
2334 mutex_lock(&sit_i
->sentry_lock
);
2336 sit_i
->min_mtime
= LLONG_MAX
;
2338 for (segno
= 0; segno
< MAIN_SEGS(sbi
); segno
+= sbi
->segs_per_sec
) {
2340 unsigned long long mtime
= 0;
2342 for (i
= 0; i
< sbi
->segs_per_sec
; i
++)
2343 mtime
+= get_seg_entry(sbi
, segno
+ i
)->mtime
;
2345 mtime
= div_u64(mtime
, sbi
->segs_per_sec
);
2347 if (sit_i
->min_mtime
> mtime
)
2348 sit_i
->min_mtime
= mtime
;
2350 sit_i
->max_mtime
= get_mtime(sbi
);
2351 mutex_unlock(&sit_i
->sentry_lock
);
2354 int build_segment_manager(struct f2fs_sb_info
*sbi
)
2356 struct f2fs_super_block
*raw_super
= F2FS_RAW_SUPER(sbi
);
2357 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
2358 struct f2fs_sm_info
*sm_info
;
2361 sm_info
= kzalloc(sizeof(struct f2fs_sm_info
), GFP_KERNEL
);
2366 sbi
->sm_info
= sm_info
;
2367 sm_info
->seg0_blkaddr
= le32_to_cpu(raw_super
->segment0_blkaddr
);
2368 sm_info
->main_blkaddr
= le32_to_cpu(raw_super
->main_blkaddr
);
2369 sm_info
->segment_count
= le32_to_cpu(raw_super
->segment_count
);
2370 sm_info
->reserved_segments
= le32_to_cpu(ckpt
->rsvd_segment_count
);
2371 sm_info
->ovp_segments
= le32_to_cpu(ckpt
->overprov_segment_count
);
2372 sm_info
->main_segments
= le32_to_cpu(raw_super
->segment_count_main
);
2373 sm_info
->ssa_blkaddr
= le32_to_cpu(raw_super
->ssa_blkaddr
);
2374 sm_info
->rec_prefree_segments
= sm_info
->main_segments
*
2375 DEF_RECLAIM_PREFREE_SEGMENTS
/ 100;
2376 sm_info
->ipu_policy
= 1 << F2FS_IPU_FSYNC
;
2377 sm_info
->min_ipu_util
= DEF_MIN_IPU_UTIL
;
2378 sm_info
->min_fsync_blocks
= DEF_MIN_FSYNC_BLOCKS
;
2380 INIT_LIST_HEAD(&sm_info
->discard_list
);
2381 sm_info
->nr_discards
= 0;
2382 sm_info
->max_discards
= 0;
2384 sm_info
->trim_sections
= DEF_BATCHED_TRIM_SECTIONS
;
2386 INIT_LIST_HEAD(&sm_info
->sit_entry_set
);
2388 if (test_opt(sbi
, FLUSH_MERGE
) && !f2fs_readonly(sbi
->sb
)) {
2389 err
= create_flush_cmd_control(sbi
);
2394 err
= build_sit_info(sbi
);
2397 err
= build_free_segmap(sbi
);
2400 err
= build_curseg(sbi
);
2404 /* reinit free segmap based on SIT */
2405 build_sit_entries(sbi
);
2407 init_free_segmap(sbi
);
2408 err
= build_dirty_segmap(sbi
);
2412 init_min_max_mtime(sbi
);
2416 static void discard_dirty_segmap(struct f2fs_sb_info
*sbi
,
2417 enum dirty_type dirty_type
)
2419 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
2421 mutex_lock(&dirty_i
->seglist_lock
);
2422 kvfree(dirty_i
->dirty_segmap
[dirty_type
]);
2423 dirty_i
->nr_dirty
[dirty_type
] = 0;
2424 mutex_unlock(&dirty_i
->seglist_lock
);
2427 static void destroy_victim_secmap(struct f2fs_sb_info
*sbi
)
2429 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
2430 kvfree(dirty_i
->victim_secmap
);
2433 static void destroy_dirty_segmap(struct f2fs_sb_info
*sbi
)
2435 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
2441 /* discard pre-free/dirty segments list */
2442 for (i
= 0; i
< NR_DIRTY_TYPE
; i
++)
2443 discard_dirty_segmap(sbi
, i
);
2445 destroy_victim_secmap(sbi
);
2446 SM_I(sbi
)->dirty_info
= NULL
;
2450 static void destroy_curseg(struct f2fs_sb_info
*sbi
)
2452 struct curseg_info
*array
= SM_I(sbi
)->curseg_array
;
2457 SM_I(sbi
)->curseg_array
= NULL
;
2458 for (i
= 0; i
< NR_CURSEG_TYPE
; i
++) {
2459 kfree(array
[i
].sum_blk
);
2460 kfree(array
[i
].journal
);
2465 static void destroy_free_segmap(struct f2fs_sb_info
*sbi
)
2467 struct free_segmap_info
*free_i
= SM_I(sbi
)->free_info
;
2470 SM_I(sbi
)->free_info
= NULL
;
2471 kvfree(free_i
->free_segmap
);
2472 kvfree(free_i
->free_secmap
);
2476 static void destroy_sit_info(struct f2fs_sb_info
*sbi
)
2478 struct sit_info
*sit_i
= SIT_I(sbi
);
2484 if (sit_i
->sentries
) {
2485 for (start
= 0; start
< MAIN_SEGS(sbi
); start
++) {
2486 kfree(sit_i
->sentries
[start
].cur_valid_map
);
2487 kfree(sit_i
->sentries
[start
].ckpt_valid_map
);
2488 kfree(sit_i
->sentries
[start
].discard_map
);
2491 kfree(sit_i
->tmp_map
);
2493 kvfree(sit_i
->sentries
);
2494 kvfree(sit_i
->sec_entries
);
2495 kvfree(sit_i
->dirty_sentries_bitmap
);
2497 SM_I(sbi
)->sit_info
= NULL
;
2498 kfree(sit_i
->sit_bitmap
);
2502 void destroy_segment_manager(struct f2fs_sb_info
*sbi
)
2504 struct f2fs_sm_info
*sm_info
= SM_I(sbi
);
2508 destroy_flush_cmd_control(sbi
);
2509 destroy_dirty_segmap(sbi
);
2510 destroy_curseg(sbi
);
2511 destroy_free_segmap(sbi
);
2512 destroy_sit_info(sbi
);
2513 sbi
->sm_info
= NULL
;
2517 int __init
create_segment_manager_caches(void)
2519 discard_entry_slab
= f2fs_kmem_cache_create("discard_entry",
2520 sizeof(struct discard_entry
));
2521 if (!discard_entry_slab
)
2524 sit_entry_set_slab
= f2fs_kmem_cache_create("sit_entry_set",
2525 sizeof(struct sit_entry_set
));
2526 if (!sit_entry_set_slab
)
2527 goto destory_discard_entry
;
2529 inmem_entry_slab
= f2fs_kmem_cache_create("inmem_page_entry",
2530 sizeof(struct inmem_pages
));
2531 if (!inmem_entry_slab
)
2532 goto destroy_sit_entry_set
;
2535 destroy_sit_entry_set
:
2536 kmem_cache_destroy(sit_entry_set_slab
);
2537 destory_discard_entry
:
2538 kmem_cache_destroy(discard_entry_slab
);
2543 void destroy_segment_manager_caches(void)
2545 kmem_cache_destroy(sit_entry_set_slab
);
2546 kmem_cache_destroy(discard_entry_slab
);
2547 kmem_cache_destroy(inmem_entry_slab
);