2 * libata-core.c - helper library for ATA
4 * Maintained by: Tejun Heo <tj@kernel.org>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
59 #include <linux/async.h>
60 #include <linux/log2.h>
61 #include <linux/slab.h>
62 #include <linux/glob.h>
63 #include <scsi/scsi.h>
64 #include <scsi/scsi_cmnd.h>
65 #include <scsi/scsi_host.h>
66 #include <linux/libata.h>
67 #include <asm/byteorder.h>
68 #include <linux/cdrom.h>
69 #include <linux/ratelimit.h>
70 #include <linux/pm_runtime.h>
71 #include <linux/platform_device.h>
73 #define CREATE_TRACE_POINTS
74 #include <trace/events/libata.h>
77 #include "libata-transport.h"
79 /* debounce timing parameters in msecs { interval, duration, timeout } */
80 const unsigned long sata_deb_timing_normal
[] = { 5, 100, 2000 };
81 const unsigned long sata_deb_timing_hotplug
[] = { 25, 500, 2000 };
82 const unsigned long sata_deb_timing_long
[] = { 100, 2000, 5000 };
84 const struct ata_port_operations ata_base_port_ops
= {
85 .prereset
= ata_std_prereset
,
86 .postreset
= ata_std_postreset
,
87 .error_handler
= ata_std_error_handler
,
88 .sched_eh
= ata_std_sched_eh
,
89 .end_eh
= ata_std_end_eh
,
92 const struct ata_port_operations sata_port_ops
= {
93 .inherits
= &ata_base_port_ops
,
95 .qc_defer
= ata_std_qc_defer
,
96 .hardreset
= sata_std_hardreset
,
99 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
100 u16 heads
, u16 sectors
);
101 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
);
102 static void ata_dev_xfermask(struct ata_device
*dev
);
103 static unsigned long ata_dev_blacklisted(const struct ata_device
*dev
);
105 atomic_t ata_print_id
= ATOMIC_INIT(0);
107 struct ata_force_param
{
111 unsigned long xfer_mask
;
112 unsigned int horkage_on
;
113 unsigned int horkage_off
;
117 struct ata_force_ent
{
120 struct ata_force_param param
;
123 static struct ata_force_ent
*ata_force_tbl
;
124 static int ata_force_tbl_size
;
126 static char ata_force_param_buf
[PAGE_SIZE
] __initdata
;
127 /* param_buf is thrown away after initialization, disallow read */
128 module_param_string(force
, ata_force_param_buf
, sizeof(ata_force_param_buf
), 0);
129 MODULE_PARM_DESC(force
, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
131 static int atapi_enabled
= 1;
132 module_param(atapi_enabled
, int, 0444);
133 MODULE_PARM_DESC(atapi_enabled
, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
135 static int atapi_dmadir
= 0;
136 module_param(atapi_dmadir
, int, 0444);
137 MODULE_PARM_DESC(atapi_dmadir
, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
139 int atapi_passthru16
= 1;
140 module_param(atapi_passthru16
, int, 0444);
141 MODULE_PARM_DESC(atapi_passthru16
, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
144 module_param_named(fua
, libata_fua
, int, 0444);
145 MODULE_PARM_DESC(fua
, "FUA support (0=off [default], 1=on)");
147 static int ata_ignore_hpa
;
148 module_param_named(ignore_hpa
, ata_ignore_hpa
, int, 0644);
149 MODULE_PARM_DESC(ignore_hpa
, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
151 static int libata_dma_mask
= ATA_DMA_MASK_ATA
|ATA_DMA_MASK_ATAPI
|ATA_DMA_MASK_CFA
;
152 module_param_named(dma
, libata_dma_mask
, int, 0444);
153 MODULE_PARM_DESC(dma
, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
155 static int ata_probe_timeout
;
156 module_param(ata_probe_timeout
, int, 0444);
157 MODULE_PARM_DESC(ata_probe_timeout
, "Set ATA probing timeout (seconds)");
159 int libata_noacpi
= 0;
160 module_param_named(noacpi
, libata_noacpi
, int, 0444);
161 MODULE_PARM_DESC(noacpi
, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
163 int libata_allow_tpm
= 0;
164 module_param_named(allow_tpm
, libata_allow_tpm
, int, 0444);
165 MODULE_PARM_DESC(allow_tpm
, "Permit the use of TPM commands (0=off [default], 1=on)");
168 module_param(atapi_an
, int, 0444);
169 MODULE_PARM_DESC(atapi_an
, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
171 MODULE_AUTHOR("Jeff Garzik");
172 MODULE_DESCRIPTION("Library module for ATA devices");
173 MODULE_LICENSE("GPL");
174 MODULE_VERSION(DRV_VERSION
);
177 static bool ata_sstatus_online(u32 sstatus
)
179 return (sstatus
& 0xf) == 0x3;
183 * ata_link_next - link iteration helper
184 * @link: the previous link, NULL to start
185 * @ap: ATA port containing links to iterate
186 * @mode: iteration mode, one of ATA_LITER_*
189 * Host lock or EH context.
192 * Pointer to the next link.
194 struct ata_link
*ata_link_next(struct ata_link
*link
, struct ata_port
*ap
,
195 enum ata_link_iter_mode mode
)
197 BUG_ON(mode
!= ATA_LITER_EDGE
&&
198 mode
!= ATA_LITER_PMP_FIRST
&& mode
!= ATA_LITER_HOST_FIRST
);
200 /* NULL link indicates start of iteration */
204 case ATA_LITER_PMP_FIRST
:
205 if (sata_pmp_attached(ap
))
208 case ATA_LITER_HOST_FIRST
:
212 /* we just iterated over the host link, what's next? */
213 if (link
== &ap
->link
)
215 case ATA_LITER_HOST_FIRST
:
216 if (sata_pmp_attached(ap
))
219 case ATA_LITER_PMP_FIRST
:
220 if (unlikely(ap
->slave_link
))
221 return ap
->slave_link
;
227 /* slave_link excludes PMP */
228 if (unlikely(link
== ap
->slave_link
))
231 /* we were over a PMP link */
232 if (++link
< ap
->pmp_link
+ ap
->nr_pmp_links
)
235 if (mode
== ATA_LITER_PMP_FIRST
)
242 * ata_dev_next - device iteration helper
243 * @dev: the previous device, NULL to start
244 * @link: ATA link containing devices to iterate
245 * @mode: iteration mode, one of ATA_DITER_*
248 * Host lock or EH context.
251 * Pointer to the next device.
253 struct ata_device
*ata_dev_next(struct ata_device
*dev
, struct ata_link
*link
,
254 enum ata_dev_iter_mode mode
)
256 BUG_ON(mode
!= ATA_DITER_ENABLED
&& mode
!= ATA_DITER_ENABLED_REVERSE
&&
257 mode
!= ATA_DITER_ALL
&& mode
!= ATA_DITER_ALL_REVERSE
);
259 /* NULL dev indicates start of iteration */
262 case ATA_DITER_ENABLED
:
266 case ATA_DITER_ENABLED_REVERSE
:
267 case ATA_DITER_ALL_REVERSE
:
268 dev
= link
->device
+ ata_link_max_devices(link
) - 1;
273 /* move to the next one */
275 case ATA_DITER_ENABLED
:
277 if (++dev
< link
->device
+ ata_link_max_devices(link
))
280 case ATA_DITER_ENABLED_REVERSE
:
281 case ATA_DITER_ALL_REVERSE
:
282 if (--dev
>= link
->device
)
288 if ((mode
== ATA_DITER_ENABLED
|| mode
== ATA_DITER_ENABLED_REVERSE
) &&
289 !ata_dev_enabled(dev
))
295 * ata_dev_phys_link - find physical link for a device
296 * @dev: ATA device to look up physical link for
298 * Look up physical link which @dev is attached to. Note that
299 * this is different from @dev->link only when @dev is on slave
300 * link. For all other cases, it's the same as @dev->link.
306 * Pointer to the found physical link.
308 struct ata_link
*ata_dev_phys_link(struct ata_device
*dev
)
310 struct ata_port
*ap
= dev
->link
->ap
;
316 return ap
->slave_link
;
320 * ata_force_cbl - force cable type according to libata.force
321 * @ap: ATA port of interest
323 * Force cable type according to libata.force and whine about it.
324 * The last entry which has matching port number is used, so it
325 * can be specified as part of device force parameters. For
326 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
332 void ata_force_cbl(struct ata_port
*ap
)
336 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
337 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
339 if (fe
->port
!= -1 && fe
->port
!= ap
->print_id
)
342 if (fe
->param
.cbl
== ATA_CBL_NONE
)
345 ap
->cbl
= fe
->param
.cbl
;
346 ata_port_notice(ap
, "FORCE: cable set to %s\n", fe
->param
.name
);
352 * ata_force_link_limits - force link limits according to libata.force
353 * @link: ATA link of interest
355 * Force link flags and SATA spd limit according to libata.force
356 * and whine about it. When only the port part is specified
357 * (e.g. 1:), the limit applies to all links connected to both
358 * the host link and all fan-out ports connected via PMP. If the
359 * device part is specified as 0 (e.g. 1.00:), it specifies the
360 * first fan-out link not the host link. Device number 15 always
361 * points to the host link whether PMP is attached or not. If the
362 * controller has slave link, device number 16 points to it.
367 static void ata_force_link_limits(struct ata_link
*link
)
369 bool did_spd
= false;
370 int linkno
= link
->pmp
;
373 if (ata_is_host_link(link
))
376 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
377 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
379 if (fe
->port
!= -1 && fe
->port
!= link
->ap
->print_id
)
382 if (fe
->device
!= -1 && fe
->device
!= linkno
)
385 /* only honor the first spd limit */
386 if (!did_spd
&& fe
->param
.spd_limit
) {
387 link
->hw_sata_spd_limit
= (1 << fe
->param
.spd_limit
) - 1;
388 ata_link_notice(link
, "FORCE: PHY spd limit set to %s\n",
393 /* let lflags stack */
394 if (fe
->param
.lflags
) {
395 link
->flags
|= fe
->param
.lflags
;
396 ata_link_notice(link
,
397 "FORCE: link flag 0x%x forced -> 0x%x\n",
398 fe
->param
.lflags
, link
->flags
);
404 * ata_force_xfermask - force xfermask according to libata.force
405 * @dev: ATA device of interest
407 * Force xfer_mask according to libata.force and whine about it.
408 * For consistency with link selection, device number 15 selects
409 * the first device connected to the host link.
414 static void ata_force_xfermask(struct ata_device
*dev
)
416 int devno
= dev
->link
->pmp
+ dev
->devno
;
417 int alt_devno
= devno
;
420 /* allow n.15/16 for devices attached to host port */
421 if (ata_is_host_link(dev
->link
))
424 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
425 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
426 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
428 if (fe
->port
!= -1 && fe
->port
!= dev
->link
->ap
->print_id
)
431 if (fe
->device
!= -1 && fe
->device
!= devno
&&
432 fe
->device
!= alt_devno
)
435 if (!fe
->param
.xfer_mask
)
438 ata_unpack_xfermask(fe
->param
.xfer_mask
,
439 &pio_mask
, &mwdma_mask
, &udma_mask
);
441 dev
->udma_mask
= udma_mask
;
442 else if (mwdma_mask
) {
444 dev
->mwdma_mask
= mwdma_mask
;
448 dev
->pio_mask
= pio_mask
;
451 ata_dev_notice(dev
, "FORCE: xfer_mask set to %s\n",
458 * ata_force_horkage - force horkage according to libata.force
459 * @dev: ATA device of interest
461 * Force horkage according to libata.force and whine about it.
462 * For consistency with link selection, device number 15 selects
463 * the first device connected to the host link.
468 static void ata_force_horkage(struct ata_device
*dev
)
470 int devno
= dev
->link
->pmp
+ dev
->devno
;
471 int alt_devno
= devno
;
474 /* allow n.15/16 for devices attached to host port */
475 if (ata_is_host_link(dev
->link
))
478 for (i
= 0; i
< ata_force_tbl_size
; i
++) {
479 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
481 if (fe
->port
!= -1 && fe
->port
!= dev
->link
->ap
->print_id
)
484 if (fe
->device
!= -1 && fe
->device
!= devno
&&
485 fe
->device
!= alt_devno
)
488 if (!(~dev
->horkage
& fe
->param
.horkage_on
) &&
489 !(dev
->horkage
& fe
->param
.horkage_off
))
492 dev
->horkage
|= fe
->param
.horkage_on
;
493 dev
->horkage
&= ~fe
->param
.horkage_off
;
495 ata_dev_notice(dev
, "FORCE: horkage modified (%s)\n",
501 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
502 * @opcode: SCSI opcode
504 * Determine ATAPI command type from @opcode.
510 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
512 int atapi_cmd_type(u8 opcode
)
521 case GPCMD_WRITE_AND_VERIFY_10
:
525 case GPCMD_READ_CD_MSF
:
526 return ATAPI_READ_CD
;
530 if (atapi_passthru16
)
531 return ATAPI_PASS_THRU
;
539 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
540 * @tf: Taskfile to convert
541 * @pmp: Port multiplier port
542 * @is_cmd: This FIS is for command
543 * @fis: Buffer into which data will output
545 * Converts a standard ATA taskfile to a Serial ATA
546 * FIS structure (Register - Host to Device).
549 * Inherited from caller.
551 void ata_tf_to_fis(const struct ata_taskfile
*tf
, u8 pmp
, int is_cmd
, u8
*fis
)
553 fis
[0] = 0x27; /* Register - Host to Device FIS */
554 fis
[1] = pmp
& 0xf; /* Port multiplier number*/
556 fis
[1] |= (1 << 7); /* bit 7 indicates Command FIS */
558 fis
[2] = tf
->command
;
559 fis
[3] = tf
->feature
;
566 fis
[8] = tf
->hob_lbal
;
567 fis
[9] = tf
->hob_lbam
;
568 fis
[10] = tf
->hob_lbah
;
569 fis
[11] = tf
->hob_feature
;
572 fis
[13] = tf
->hob_nsect
;
576 fis
[16] = tf
->auxiliary
& 0xff;
577 fis
[17] = (tf
->auxiliary
>> 8) & 0xff;
578 fis
[18] = (tf
->auxiliary
>> 16) & 0xff;
579 fis
[19] = (tf
->auxiliary
>> 24) & 0xff;
583 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
584 * @fis: Buffer from which data will be input
585 * @tf: Taskfile to output
587 * Converts a serial ATA FIS structure to a standard ATA taskfile.
590 * Inherited from caller.
593 void ata_tf_from_fis(const u8
*fis
, struct ata_taskfile
*tf
)
595 tf
->command
= fis
[2]; /* status */
596 tf
->feature
= fis
[3]; /* error */
603 tf
->hob_lbal
= fis
[8];
604 tf
->hob_lbam
= fis
[9];
605 tf
->hob_lbah
= fis
[10];
608 tf
->hob_nsect
= fis
[13];
611 static const u8 ata_rw_cmds
[] = {
615 ATA_CMD_READ_MULTI_EXT
,
616 ATA_CMD_WRITE_MULTI_EXT
,
620 ATA_CMD_WRITE_MULTI_FUA_EXT
,
624 ATA_CMD_PIO_READ_EXT
,
625 ATA_CMD_PIO_WRITE_EXT
,
638 ATA_CMD_WRITE_FUA_EXT
642 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
643 * @tf: command to examine and configure
644 * @dev: device tf belongs to
646 * Examine the device configuration and tf->flags to calculate
647 * the proper read/write commands and protocol to use.
652 static int ata_rwcmd_protocol(struct ata_taskfile
*tf
, struct ata_device
*dev
)
656 int index
, fua
, lba48
, write
;
658 fua
= (tf
->flags
& ATA_TFLAG_FUA
) ? 4 : 0;
659 lba48
= (tf
->flags
& ATA_TFLAG_LBA48
) ? 2 : 0;
660 write
= (tf
->flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
662 if (dev
->flags
& ATA_DFLAG_PIO
) {
663 tf
->protocol
= ATA_PROT_PIO
;
664 index
= dev
->multi_count
? 0 : 8;
665 } else if (lba48
&& (dev
->link
->ap
->flags
& ATA_FLAG_PIO_LBA48
)) {
666 /* Unable to use DMA due to host limitation */
667 tf
->protocol
= ATA_PROT_PIO
;
668 index
= dev
->multi_count
? 0 : 8;
670 tf
->protocol
= ATA_PROT_DMA
;
674 cmd
= ata_rw_cmds
[index
+ fua
+ lba48
+ write
];
683 * ata_tf_read_block - Read block address from ATA taskfile
684 * @tf: ATA taskfile of interest
685 * @dev: ATA device @tf belongs to
690 * Read block address from @tf. This function can handle all
691 * three address formats - LBA, LBA48 and CHS. tf->protocol and
692 * flags select the address format to use.
695 * Block address read from @tf.
697 u64
ata_tf_read_block(struct ata_taskfile
*tf
, struct ata_device
*dev
)
701 if (tf
->flags
& ATA_TFLAG_LBA
) {
702 if (tf
->flags
& ATA_TFLAG_LBA48
) {
703 block
|= (u64
)tf
->hob_lbah
<< 40;
704 block
|= (u64
)tf
->hob_lbam
<< 32;
705 block
|= (u64
)tf
->hob_lbal
<< 24;
707 block
|= (tf
->device
& 0xf) << 24;
709 block
|= tf
->lbah
<< 16;
710 block
|= tf
->lbam
<< 8;
715 cyl
= tf
->lbam
| (tf
->lbah
<< 8);
716 head
= tf
->device
& 0xf;
721 "device reported invalid CHS sector 0\n");
722 sect
= 1; /* oh well */
725 block
= (cyl
* dev
->heads
+ head
) * dev
->sectors
+ sect
- 1;
732 * ata_build_rw_tf - Build ATA taskfile for given read/write request
733 * @tf: Target ATA taskfile
734 * @dev: ATA device @tf belongs to
735 * @block: Block address
736 * @n_block: Number of blocks
737 * @tf_flags: RW/FUA etc...
743 * Build ATA taskfile @tf for read/write request described by
744 * @block, @n_block, @tf_flags and @tag on @dev.
748 * 0 on success, -ERANGE if the request is too large for @dev,
749 * -EINVAL if the request is invalid.
751 int ata_build_rw_tf(struct ata_taskfile
*tf
, struct ata_device
*dev
,
752 u64 block
, u32 n_block
, unsigned int tf_flags
,
755 tf
->flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
756 tf
->flags
|= tf_flags
;
758 if (ata_ncq_enabled(dev
) && likely(tag
!= ATA_TAG_INTERNAL
)) {
760 if (!lba_48_ok(block
, n_block
))
763 tf
->protocol
= ATA_PROT_NCQ
;
764 tf
->flags
|= ATA_TFLAG_LBA
| ATA_TFLAG_LBA48
;
766 if (tf
->flags
& ATA_TFLAG_WRITE
)
767 tf
->command
= ATA_CMD_FPDMA_WRITE
;
769 tf
->command
= ATA_CMD_FPDMA_READ
;
771 tf
->nsect
= tag
<< 3;
772 tf
->hob_feature
= (n_block
>> 8) & 0xff;
773 tf
->feature
= n_block
& 0xff;
775 tf
->hob_lbah
= (block
>> 40) & 0xff;
776 tf
->hob_lbam
= (block
>> 32) & 0xff;
777 tf
->hob_lbal
= (block
>> 24) & 0xff;
778 tf
->lbah
= (block
>> 16) & 0xff;
779 tf
->lbam
= (block
>> 8) & 0xff;
780 tf
->lbal
= block
& 0xff;
782 tf
->device
= ATA_LBA
;
783 if (tf
->flags
& ATA_TFLAG_FUA
)
784 tf
->device
|= 1 << 7;
785 } else if (dev
->flags
& ATA_DFLAG_LBA
) {
786 tf
->flags
|= ATA_TFLAG_LBA
;
788 if (lba_28_ok(block
, n_block
)) {
790 tf
->device
|= (block
>> 24) & 0xf;
791 } else if (lba_48_ok(block
, n_block
)) {
792 if (!(dev
->flags
& ATA_DFLAG_LBA48
))
796 tf
->flags
|= ATA_TFLAG_LBA48
;
798 tf
->hob_nsect
= (n_block
>> 8) & 0xff;
800 tf
->hob_lbah
= (block
>> 40) & 0xff;
801 tf
->hob_lbam
= (block
>> 32) & 0xff;
802 tf
->hob_lbal
= (block
>> 24) & 0xff;
804 /* request too large even for LBA48 */
807 if (unlikely(ata_rwcmd_protocol(tf
, dev
) < 0))
810 tf
->nsect
= n_block
& 0xff;
812 tf
->lbah
= (block
>> 16) & 0xff;
813 tf
->lbam
= (block
>> 8) & 0xff;
814 tf
->lbal
= block
& 0xff;
816 tf
->device
|= ATA_LBA
;
819 u32 sect
, head
, cyl
, track
;
821 /* The request -may- be too large for CHS addressing. */
822 if (!lba_28_ok(block
, n_block
))
825 if (unlikely(ata_rwcmd_protocol(tf
, dev
) < 0))
828 /* Convert LBA to CHS */
829 track
= (u32
)block
/ dev
->sectors
;
830 cyl
= track
/ dev
->heads
;
831 head
= track
% dev
->heads
;
832 sect
= (u32
)block
% dev
->sectors
+ 1;
834 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
835 (u32
)block
, track
, cyl
, head
, sect
);
837 /* Check whether the converted CHS can fit.
841 if ((cyl
>> 16) || (head
>> 4) || (sect
>> 8) || (!sect
))
844 tf
->nsect
= n_block
& 0xff; /* Sector count 0 means 256 sectors */
855 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
856 * @pio_mask: pio_mask
857 * @mwdma_mask: mwdma_mask
858 * @udma_mask: udma_mask
860 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
861 * unsigned int xfer_mask.
869 unsigned long ata_pack_xfermask(unsigned long pio_mask
,
870 unsigned long mwdma_mask
,
871 unsigned long udma_mask
)
873 return ((pio_mask
<< ATA_SHIFT_PIO
) & ATA_MASK_PIO
) |
874 ((mwdma_mask
<< ATA_SHIFT_MWDMA
) & ATA_MASK_MWDMA
) |
875 ((udma_mask
<< ATA_SHIFT_UDMA
) & ATA_MASK_UDMA
);
879 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
880 * @xfer_mask: xfer_mask to unpack
881 * @pio_mask: resulting pio_mask
882 * @mwdma_mask: resulting mwdma_mask
883 * @udma_mask: resulting udma_mask
885 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
886 * Any NULL distination masks will be ignored.
888 void ata_unpack_xfermask(unsigned long xfer_mask
, unsigned long *pio_mask
,
889 unsigned long *mwdma_mask
, unsigned long *udma_mask
)
892 *pio_mask
= (xfer_mask
& ATA_MASK_PIO
) >> ATA_SHIFT_PIO
;
894 *mwdma_mask
= (xfer_mask
& ATA_MASK_MWDMA
) >> ATA_SHIFT_MWDMA
;
896 *udma_mask
= (xfer_mask
& ATA_MASK_UDMA
) >> ATA_SHIFT_UDMA
;
899 static const struct ata_xfer_ent
{
903 { ATA_SHIFT_PIO
, ATA_NR_PIO_MODES
, XFER_PIO_0
},
904 { ATA_SHIFT_MWDMA
, ATA_NR_MWDMA_MODES
, XFER_MW_DMA_0
},
905 { ATA_SHIFT_UDMA
, ATA_NR_UDMA_MODES
, XFER_UDMA_0
},
910 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
911 * @xfer_mask: xfer_mask of interest
913 * Return matching XFER_* value for @xfer_mask. Only the highest
914 * bit of @xfer_mask is considered.
920 * Matching XFER_* value, 0xff if no match found.
922 u8
ata_xfer_mask2mode(unsigned long xfer_mask
)
924 int highbit
= fls(xfer_mask
) - 1;
925 const struct ata_xfer_ent
*ent
;
927 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
928 if (highbit
>= ent
->shift
&& highbit
< ent
->shift
+ ent
->bits
)
929 return ent
->base
+ highbit
- ent
->shift
;
934 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
935 * @xfer_mode: XFER_* of interest
937 * Return matching xfer_mask for @xfer_mode.
943 * Matching xfer_mask, 0 if no match found.
945 unsigned long ata_xfer_mode2mask(u8 xfer_mode
)
947 const struct ata_xfer_ent
*ent
;
949 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
950 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
951 return ((2 << (ent
->shift
+ xfer_mode
- ent
->base
)) - 1)
952 & ~((1 << ent
->shift
) - 1);
957 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
958 * @xfer_mode: XFER_* of interest
960 * Return matching xfer_shift for @xfer_mode.
966 * Matching xfer_shift, -1 if no match found.
968 int ata_xfer_mode2shift(unsigned long xfer_mode
)
970 const struct ata_xfer_ent
*ent
;
972 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
973 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
979 * ata_mode_string - convert xfer_mask to string
980 * @xfer_mask: mask of bits supported; only highest bit counts.
982 * Determine string which represents the highest speed
983 * (highest bit in @modemask).
989 * Constant C string representing highest speed listed in
990 * @mode_mask, or the constant C string "<n/a>".
992 const char *ata_mode_string(unsigned long xfer_mask
)
994 static const char * const xfer_mode_str
[] = {
1018 highbit
= fls(xfer_mask
) - 1;
1019 if (highbit
>= 0 && highbit
< ARRAY_SIZE(xfer_mode_str
))
1020 return xfer_mode_str
[highbit
];
1024 const char *sata_spd_string(unsigned int spd
)
1026 static const char * const spd_str
[] = {
1032 if (spd
== 0 || (spd
- 1) >= ARRAY_SIZE(spd_str
))
1034 return spd_str
[spd
- 1];
1038 * ata_dev_classify - determine device type based on ATA-spec signature
1039 * @tf: ATA taskfile register set for device to be identified
1041 * Determine from taskfile register contents whether a device is
1042 * ATA or ATAPI, as per "Signature and persistence" section
1043 * of ATA/PI spec (volume 1, sect 5.14).
1049 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1050 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1052 unsigned int ata_dev_classify(const struct ata_taskfile
*tf
)
1054 /* Apple's open source Darwin code hints that some devices only
1055 * put a proper signature into the LBA mid/high registers,
1056 * So, we only check those. It's sufficient for uniqueness.
1058 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1059 * signatures for ATA and ATAPI devices attached on SerialATA,
1060 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1061 * spec has never mentioned about using different signatures
1062 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1063 * Multiplier specification began to use 0x69/0x96 to identify
1064 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1065 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1066 * 0x69/0x96 shortly and described them as reserved for
1069 * We follow the current spec and consider that 0x69/0x96
1070 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1071 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1072 * SEMB signature. This is worked around in
1073 * ata_dev_read_id().
1075 if ((tf
->lbam
== 0) && (tf
->lbah
== 0)) {
1076 DPRINTK("found ATA device by sig\n");
1080 if ((tf
->lbam
== 0x14) && (tf
->lbah
== 0xeb)) {
1081 DPRINTK("found ATAPI device by sig\n");
1082 return ATA_DEV_ATAPI
;
1085 if ((tf
->lbam
== 0x69) && (tf
->lbah
== 0x96)) {
1086 DPRINTK("found PMP device by sig\n");
1090 if ((tf
->lbam
== 0x3c) && (tf
->lbah
== 0xc3)) {
1091 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1092 return ATA_DEV_SEMB
;
1095 if ((tf
->lbam
== 0xcd) && (tf
->lbah
== 0xab)) {
1096 DPRINTK("found ZAC device by sig\n");
1100 DPRINTK("unknown device\n");
1101 return ATA_DEV_UNKNOWN
;
1105 * ata_id_string - Convert IDENTIFY DEVICE page into string
1106 * @id: IDENTIFY DEVICE results we will examine
1107 * @s: string into which data is output
1108 * @ofs: offset into identify device page
1109 * @len: length of string to return. must be an even number.
1111 * The strings in the IDENTIFY DEVICE page are broken up into
1112 * 16-bit chunks. Run through the string, and output each
1113 * 8-bit chunk linearly, regardless of platform.
1119 void ata_id_string(const u16
*id
, unsigned char *s
,
1120 unsigned int ofs
, unsigned int len
)
1141 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1142 * @id: IDENTIFY DEVICE results we will examine
1143 * @s: string into which data is output
1144 * @ofs: offset into identify device page
1145 * @len: length of string to return. must be an odd number.
1147 * This function is identical to ata_id_string except that it
1148 * trims trailing spaces and terminates the resulting string with
1149 * null. @len must be actual maximum length (even number) + 1.
1154 void ata_id_c_string(const u16
*id
, unsigned char *s
,
1155 unsigned int ofs
, unsigned int len
)
1159 ata_id_string(id
, s
, ofs
, len
- 1);
1161 p
= s
+ strnlen(s
, len
- 1);
1162 while (p
> s
&& p
[-1] == ' ')
1167 static u64
ata_id_n_sectors(const u16
*id
)
1169 if (ata_id_has_lba(id
)) {
1170 if (ata_id_has_lba48(id
))
1171 return ata_id_u64(id
, ATA_ID_LBA_CAPACITY_2
);
1173 return ata_id_u32(id
, ATA_ID_LBA_CAPACITY
);
1175 if (ata_id_current_chs_valid(id
))
1176 return id
[ATA_ID_CUR_CYLS
] * id
[ATA_ID_CUR_HEADS
] *
1177 id
[ATA_ID_CUR_SECTORS
];
1179 return id
[ATA_ID_CYLS
] * id
[ATA_ID_HEADS
] *
1184 u64
ata_tf_to_lba48(const struct ata_taskfile
*tf
)
1188 sectors
|= ((u64
)(tf
->hob_lbah
& 0xff)) << 40;
1189 sectors
|= ((u64
)(tf
->hob_lbam
& 0xff)) << 32;
1190 sectors
|= ((u64
)(tf
->hob_lbal
& 0xff)) << 24;
1191 sectors
|= (tf
->lbah
& 0xff) << 16;
1192 sectors
|= (tf
->lbam
& 0xff) << 8;
1193 sectors
|= (tf
->lbal
& 0xff);
1198 u64
ata_tf_to_lba(const struct ata_taskfile
*tf
)
1202 sectors
|= (tf
->device
& 0x0f) << 24;
1203 sectors
|= (tf
->lbah
& 0xff) << 16;
1204 sectors
|= (tf
->lbam
& 0xff) << 8;
1205 sectors
|= (tf
->lbal
& 0xff);
1211 * ata_read_native_max_address - Read native max address
1212 * @dev: target device
1213 * @max_sectors: out parameter for the result native max address
1215 * Perform an LBA48 or LBA28 native size query upon the device in
1219 * 0 on success, -EACCES if command is aborted by the drive.
1220 * -EIO on other errors.
1222 static int ata_read_native_max_address(struct ata_device
*dev
, u64
*max_sectors
)
1224 unsigned int err_mask
;
1225 struct ata_taskfile tf
;
1226 int lba48
= ata_id_has_lba48(dev
->id
);
1228 ata_tf_init(dev
, &tf
);
1230 /* always clear all address registers */
1231 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_ISADDR
;
1234 tf
.command
= ATA_CMD_READ_NATIVE_MAX_EXT
;
1235 tf
.flags
|= ATA_TFLAG_LBA48
;
1237 tf
.command
= ATA_CMD_READ_NATIVE_MAX
;
1239 tf
.protocol
|= ATA_PROT_NODATA
;
1240 tf
.device
|= ATA_LBA
;
1242 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
1245 "failed to read native max address (err_mask=0x%x)\n",
1247 if (err_mask
== AC_ERR_DEV
&& (tf
.feature
& ATA_ABORTED
))
1253 *max_sectors
= ata_tf_to_lba48(&tf
) + 1;
1255 *max_sectors
= ata_tf_to_lba(&tf
) + 1;
1256 if (dev
->horkage
& ATA_HORKAGE_HPA_SIZE
)
1262 * ata_set_max_sectors - Set max sectors
1263 * @dev: target device
1264 * @new_sectors: new max sectors value to set for the device
1266 * Set max sectors of @dev to @new_sectors.
1269 * 0 on success, -EACCES if command is aborted or denied (due to
1270 * previous non-volatile SET_MAX) by the drive. -EIO on other
1273 static int ata_set_max_sectors(struct ata_device
*dev
, u64 new_sectors
)
1275 unsigned int err_mask
;
1276 struct ata_taskfile tf
;
1277 int lba48
= ata_id_has_lba48(dev
->id
);
1281 ata_tf_init(dev
, &tf
);
1283 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_ISADDR
;
1286 tf
.command
= ATA_CMD_SET_MAX_EXT
;
1287 tf
.flags
|= ATA_TFLAG_LBA48
;
1289 tf
.hob_lbal
= (new_sectors
>> 24) & 0xff;
1290 tf
.hob_lbam
= (new_sectors
>> 32) & 0xff;
1291 tf
.hob_lbah
= (new_sectors
>> 40) & 0xff;
1293 tf
.command
= ATA_CMD_SET_MAX
;
1295 tf
.device
|= (new_sectors
>> 24) & 0xf;
1298 tf
.protocol
|= ATA_PROT_NODATA
;
1299 tf
.device
|= ATA_LBA
;
1301 tf
.lbal
= (new_sectors
>> 0) & 0xff;
1302 tf
.lbam
= (new_sectors
>> 8) & 0xff;
1303 tf
.lbah
= (new_sectors
>> 16) & 0xff;
1305 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
1308 "failed to set max address (err_mask=0x%x)\n",
1310 if (err_mask
== AC_ERR_DEV
&&
1311 (tf
.feature
& (ATA_ABORTED
| ATA_IDNF
)))
1320 * ata_hpa_resize - Resize a device with an HPA set
1321 * @dev: Device to resize
1323 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1324 * it if required to the full size of the media. The caller must check
1325 * the drive has the HPA feature set enabled.
1328 * 0 on success, -errno on failure.
1330 static int ata_hpa_resize(struct ata_device
*dev
)
1332 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
1333 int print_info
= ehc
->i
.flags
& ATA_EHI_PRINTINFO
;
1334 bool unlock_hpa
= ata_ignore_hpa
|| dev
->flags
& ATA_DFLAG_UNLOCK_HPA
;
1335 u64 sectors
= ata_id_n_sectors(dev
->id
);
1339 /* do we need to do it? */
1340 if ((dev
->class != ATA_DEV_ATA
&& dev
->class != ATA_DEV_ZAC
) ||
1341 !ata_id_has_lba(dev
->id
) || !ata_id_hpa_enabled(dev
->id
) ||
1342 (dev
->horkage
& ATA_HORKAGE_BROKEN_HPA
))
1345 /* read native max address */
1346 rc
= ata_read_native_max_address(dev
, &native_sectors
);
1348 /* If device aborted the command or HPA isn't going to
1349 * be unlocked, skip HPA resizing.
1351 if (rc
== -EACCES
|| !unlock_hpa
) {
1353 "HPA support seems broken, skipping HPA handling\n");
1354 dev
->horkage
|= ATA_HORKAGE_BROKEN_HPA
;
1356 /* we can continue if device aborted the command */
1363 dev
->n_native_sectors
= native_sectors
;
1365 /* nothing to do? */
1366 if (native_sectors
<= sectors
|| !unlock_hpa
) {
1367 if (!print_info
|| native_sectors
== sectors
)
1370 if (native_sectors
> sectors
)
1372 "HPA detected: current %llu, native %llu\n",
1373 (unsigned long long)sectors
,
1374 (unsigned long long)native_sectors
);
1375 else if (native_sectors
< sectors
)
1377 "native sectors (%llu) is smaller than sectors (%llu)\n",
1378 (unsigned long long)native_sectors
,
1379 (unsigned long long)sectors
);
1383 /* let's unlock HPA */
1384 rc
= ata_set_max_sectors(dev
, native_sectors
);
1385 if (rc
== -EACCES
) {
1386 /* if device aborted the command, skip HPA resizing */
1388 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1389 (unsigned long long)sectors
,
1390 (unsigned long long)native_sectors
);
1391 dev
->horkage
|= ATA_HORKAGE_BROKEN_HPA
;
1396 /* re-read IDENTIFY data */
1397 rc
= ata_dev_reread_id(dev
, 0);
1400 "failed to re-read IDENTIFY data after HPA resizing\n");
1405 u64 new_sectors
= ata_id_n_sectors(dev
->id
);
1407 "HPA unlocked: %llu -> %llu, native %llu\n",
1408 (unsigned long long)sectors
,
1409 (unsigned long long)new_sectors
,
1410 (unsigned long long)native_sectors
);
1417 * ata_dump_id - IDENTIFY DEVICE info debugging output
1418 * @id: IDENTIFY DEVICE page to dump
1420 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1427 static inline void ata_dump_id(const u16
*id
)
1429 DPRINTK("49==0x%04x "
1439 DPRINTK("80==0x%04x "
1449 DPRINTK("88==0x%04x "
1456 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1457 * @id: IDENTIFY data to compute xfer mask from
1459 * Compute the xfermask for this device. This is not as trivial
1460 * as it seems if we must consider early devices correctly.
1462 * FIXME: pre IDE drive timing (do we care ?).
1470 unsigned long ata_id_xfermask(const u16
*id
)
1472 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
1474 /* Usual case. Word 53 indicates word 64 is valid */
1475 if (id
[ATA_ID_FIELD_VALID
] & (1 << 1)) {
1476 pio_mask
= id
[ATA_ID_PIO_MODES
] & 0x03;
1480 /* If word 64 isn't valid then Word 51 high byte holds
1481 * the PIO timing number for the maximum. Turn it into
1484 u8 mode
= (id
[ATA_ID_OLD_PIO_MODES
] >> 8) & 0xFF;
1485 if (mode
< 5) /* Valid PIO range */
1486 pio_mask
= (2 << mode
) - 1;
1490 /* But wait.. there's more. Design your standards by
1491 * committee and you too can get a free iordy field to
1492 * process. However its the speeds not the modes that
1493 * are supported... Note drivers using the timing API
1494 * will get this right anyway
1498 mwdma_mask
= id
[ATA_ID_MWDMA_MODES
] & 0x07;
1500 if (ata_id_is_cfa(id
)) {
1502 * Process compact flash extended modes
1504 int pio
= (id
[ATA_ID_CFA_MODES
] >> 0) & 0x7;
1505 int dma
= (id
[ATA_ID_CFA_MODES
] >> 3) & 0x7;
1508 pio_mask
|= (1 << 5);
1510 pio_mask
|= (1 << 6);
1512 mwdma_mask
|= (1 << 3);
1514 mwdma_mask
|= (1 << 4);
1518 if (id
[ATA_ID_FIELD_VALID
] & (1 << 2))
1519 udma_mask
= id
[ATA_ID_UDMA_MODES
] & 0xff;
1521 return ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
1524 static void ata_qc_complete_internal(struct ata_queued_cmd
*qc
)
1526 struct completion
*waiting
= qc
->private_data
;
1532 * ata_exec_internal_sg - execute libata internal command
1533 * @dev: Device to which the command is sent
1534 * @tf: Taskfile registers for the command and the result
1535 * @cdb: CDB for packet command
1536 * @dma_dir: Data transfer direction of the command
1537 * @sgl: sg list for the data buffer of the command
1538 * @n_elem: Number of sg entries
1539 * @timeout: Timeout in msecs (0 for default)
1541 * Executes libata internal command with timeout. @tf contains
1542 * command on entry and result on return. Timeout and error
1543 * conditions are reported via return value. No recovery action
1544 * is taken after a command times out. It's caller's duty to
1545 * clean up after timeout.
1548 * None. Should be called with kernel context, might sleep.
1551 * Zero on success, AC_ERR_* mask on failure
1553 unsigned ata_exec_internal_sg(struct ata_device
*dev
,
1554 struct ata_taskfile
*tf
, const u8
*cdb
,
1555 int dma_dir
, struct scatterlist
*sgl
,
1556 unsigned int n_elem
, unsigned long timeout
)
1558 struct ata_link
*link
= dev
->link
;
1559 struct ata_port
*ap
= link
->ap
;
1560 u8 command
= tf
->command
;
1561 int auto_timeout
= 0;
1562 struct ata_queued_cmd
*qc
;
1563 unsigned int tag
, preempted_tag
;
1564 u32 preempted_sactive
, preempted_qc_active
;
1565 int preempted_nr_active_links
;
1566 DECLARE_COMPLETION_ONSTACK(wait
);
1567 unsigned long flags
;
1568 unsigned int err_mask
;
1571 spin_lock_irqsave(ap
->lock
, flags
);
1573 /* no internal command while frozen */
1574 if (ap
->pflags
& ATA_PFLAG_FROZEN
) {
1575 spin_unlock_irqrestore(ap
->lock
, flags
);
1576 return AC_ERR_SYSTEM
;
1579 /* initialize internal qc */
1581 /* XXX: Tag 0 is used for drivers with legacy EH as some
1582 * drivers choke if any other tag is given. This breaks
1583 * ata_tag_internal() test for those drivers. Don't use new
1584 * EH stuff without converting to it.
1586 if (ap
->ops
->error_handler
)
1587 tag
= ATA_TAG_INTERNAL
;
1591 qc
= __ata_qc_from_tag(ap
, tag
);
1599 preempted_tag
= link
->active_tag
;
1600 preempted_sactive
= link
->sactive
;
1601 preempted_qc_active
= ap
->qc_active
;
1602 preempted_nr_active_links
= ap
->nr_active_links
;
1603 link
->active_tag
= ATA_TAG_POISON
;
1606 ap
->nr_active_links
= 0;
1608 /* prepare & issue qc */
1611 memcpy(qc
->cdb
, cdb
, ATAPI_CDB_LEN
);
1613 /* some SATA bridges need us to indicate data xfer direction */
1614 if (tf
->protocol
== ATAPI_PROT_DMA
&& (dev
->flags
& ATA_DFLAG_DMADIR
) &&
1615 dma_dir
== DMA_FROM_DEVICE
)
1616 qc
->tf
.feature
|= ATAPI_DMADIR
;
1618 qc
->flags
|= ATA_QCFLAG_RESULT_TF
;
1619 qc
->dma_dir
= dma_dir
;
1620 if (dma_dir
!= DMA_NONE
) {
1621 unsigned int i
, buflen
= 0;
1622 struct scatterlist
*sg
;
1624 for_each_sg(sgl
, sg
, n_elem
, i
)
1625 buflen
+= sg
->length
;
1627 ata_sg_init(qc
, sgl
, n_elem
);
1628 qc
->nbytes
= buflen
;
1631 qc
->private_data
= &wait
;
1632 qc
->complete_fn
= ata_qc_complete_internal
;
1636 spin_unlock_irqrestore(ap
->lock
, flags
);
1639 if (ata_probe_timeout
)
1640 timeout
= ata_probe_timeout
* 1000;
1642 timeout
= ata_internal_cmd_timeout(dev
, command
);
1647 if (ap
->ops
->error_handler
)
1650 rc
= wait_for_completion_timeout(&wait
, msecs_to_jiffies(timeout
));
1652 if (ap
->ops
->error_handler
)
1655 ata_sff_flush_pio_task(ap
);
1658 spin_lock_irqsave(ap
->lock
, flags
);
1660 /* We're racing with irq here. If we lose, the
1661 * following test prevents us from completing the qc
1662 * twice. If we win, the port is frozen and will be
1663 * cleaned up by ->post_internal_cmd().
1665 if (qc
->flags
& ATA_QCFLAG_ACTIVE
) {
1666 qc
->err_mask
|= AC_ERR_TIMEOUT
;
1668 if (ap
->ops
->error_handler
)
1669 ata_port_freeze(ap
);
1671 ata_qc_complete(qc
);
1673 if (ata_msg_warn(ap
))
1674 ata_dev_warn(dev
, "qc timeout (cmd 0x%x)\n",
1678 spin_unlock_irqrestore(ap
->lock
, flags
);
1681 /* do post_internal_cmd */
1682 if (ap
->ops
->post_internal_cmd
)
1683 ap
->ops
->post_internal_cmd(qc
);
1685 /* perform minimal error analysis */
1686 if (qc
->flags
& ATA_QCFLAG_FAILED
) {
1687 if (qc
->result_tf
.command
& (ATA_ERR
| ATA_DF
))
1688 qc
->err_mask
|= AC_ERR_DEV
;
1691 qc
->err_mask
|= AC_ERR_OTHER
;
1693 if (qc
->err_mask
& ~AC_ERR_OTHER
)
1694 qc
->err_mask
&= ~AC_ERR_OTHER
;
1698 spin_lock_irqsave(ap
->lock
, flags
);
1700 *tf
= qc
->result_tf
;
1701 err_mask
= qc
->err_mask
;
1704 link
->active_tag
= preempted_tag
;
1705 link
->sactive
= preempted_sactive
;
1706 ap
->qc_active
= preempted_qc_active
;
1707 ap
->nr_active_links
= preempted_nr_active_links
;
1709 spin_unlock_irqrestore(ap
->lock
, flags
);
1711 if ((err_mask
& AC_ERR_TIMEOUT
) && auto_timeout
)
1712 ata_internal_cmd_timed_out(dev
, command
);
1718 * ata_exec_internal - execute libata internal command
1719 * @dev: Device to which the command is sent
1720 * @tf: Taskfile registers for the command and the result
1721 * @cdb: CDB for packet command
1722 * @dma_dir: Data transfer direction of the command
1723 * @buf: Data buffer of the command
1724 * @buflen: Length of data buffer
1725 * @timeout: Timeout in msecs (0 for default)
1727 * Wrapper around ata_exec_internal_sg() which takes simple
1728 * buffer instead of sg list.
1731 * None. Should be called with kernel context, might sleep.
1734 * Zero on success, AC_ERR_* mask on failure
1736 unsigned ata_exec_internal(struct ata_device
*dev
,
1737 struct ata_taskfile
*tf
, const u8
*cdb
,
1738 int dma_dir
, void *buf
, unsigned int buflen
,
1739 unsigned long timeout
)
1741 struct scatterlist
*psg
= NULL
, sg
;
1742 unsigned int n_elem
= 0;
1744 if (dma_dir
!= DMA_NONE
) {
1746 sg_init_one(&sg
, buf
, buflen
);
1751 return ata_exec_internal_sg(dev
, tf
, cdb
, dma_dir
, psg
, n_elem
,
1756 * ata_pio_need_iordy - check if iordy needed
1759 * Check if the current speed of the device requires IORDY. Used
1760 * by various controllers for chip configuration.
1762 unsigned int ata_pio_need_iordy(const struct ata_device
*adev
)
1764 /* Don't set IORDY if we're preparing for reset. IORDY may
1765 * lead to controller lock up on certain controllers if the
1766 * port is not occupied. See bko#11703 for details.
1768 if (adev
->link
->ap
->pflags
& ATA_PFLAG_RESETTING
)
1770 /* Controller doesn't support IORDY. Probably a pointless
1771 * check as the caller should know this.
1773 if (adev
->link
->ap
->flags
& ATA_FLAG_NO_IORDY
)
1775 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1776 if (ata_id_is_cfa(adev
->id
)
1777 && (adev
->pio_mode
== XFER_PIO_5
|| adev
->pio_mode
== XFER_PIO_6
))
1779 /* PIO3 and higher it is mandatory */
1780 if (adev
->pio_mode
> XFER_PIO_2
)
1782 /* We turn it on when possible */
1783 if (ata_id_has_iordy(adev
->id
))
1789 * ata_pio_mask_no_iordy - Return the non IORDY mask
1792 * Compute the highest mode possible if we are not using iordy. Return
1793 * -1 if no iordy mode is available.
1795 static u32
ata_pio_mask_no_iordy(const struct ata_device
*adev
)
1797 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1798 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE */
1799 u16 pio
= adev
->id
[ATA_ID_EIDE_PIO
];
1800 /* Is the speed faster than the drive allows non IORDY ? */
1802 /* This is cycle times not frequency - watch the logic! */
1803 if (pio
> 240) /* PIO2 is 240nS per cycle */
1804 return 3 << ATA_SHIFT_PIO
;
1805 return 7 << ATA_SHIFT_PIO
;
1808 return 3 << ATA_SHIFT_PIO
;
1812 * ata_do_dev_read_id - default ID read method
1814 * @tf: proposed taskfile
1817 * Issue the identify taskfile and hand back the buffer containing
1818 * identify data. For some RAID controllers and for pre ATA devices
1819 * this function is wrapped or replaced by the driver
1821 unsigned int ata_do_dev_read_id(struct ata_device
*dev
,
1822 struct ata_taskfile
*tf
, u16
*id
)
1824 return ata_exec_internal(dev
, tf
, NULL
, DMA_FROM_DEVICE
,
1825 id
, sizeof(id
[0]) * ATA_ID_WORDS
, 0);
1829 * ata_dev_read_id - Read ID data from the specified device
1830 * @dev: target device
1831 * @p_class: pointer to class of the target device (may be changed)
1832 * @flags: ATA_READID_* flags
1833 * @id: buffer to read IDENTIFY data into
1835 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1836 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1837 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1838 * for pre-ATA4 drives.
1840 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1841 * now we abort if we hit that case.
1844 * Kernel thread context (may sleep)
1847 * 0 on success, -errno otherwise.
1849 int ata_dev_read_id(struct ata_device
*dev
, unsigned int *p_class
,
1850 unsigned int flags
, u16
*id
)
1852 struct ata_port
*ap
= dev
->link
->ap
;
1853 unsigned int class = *p_class
;
1854 struct ata_taskfile tf
;
1855 unsigned int err_mask
= 0;
1857 bool is_semb
= class == ATA_DEV_SEMB
;
1858 int may_fallback
= 1, tried_spinup
= 0;
1861 if (ata_msg_ctl(ap
))
1862 ata_dev_dbg(dev
, "%s: ENTER\n", __func__
);
1865 ata_tf_init(dev
, &tf
);
1869 class = ATA_DEV_ATA
; /* some hard drives report SEMB sig */
1872 tf
.command
= ATA_CMD_ID_ATA
;
1875 tf
.command
= ATA_CMD_ID_ATAPI
;
1879 reason
= "unsupported class";
1883 tf
.protocol
= ATA_PROT_PIO
;
1885 /* Some devices choke if TF registers contain garbage. Make
1886 * sure those are properly initialized.
1888 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
1890 /* Device presence detection is unreliable on some
1891 * controllers. Always poll IDENTIFY if available.
1893 tf
.flags
|= ATA_TFLAG_POLLING
;
1895 if (ap
->ops
->read_id
)
1896 err_mask
= ap
->ops
->read_id(dev
, &tf
, id
);
1898 err_mask
= ata_do_dev_read_id(dev
, &tf
, id
);
1901 if (err_mask
& AC_ERR_NODEV_HINT
) {
1902 ata_dev_dbg(dev
, "NODEV after polling detection\n");
1908 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1909 /* SEMB is not supported yet */
1910 *p_class
= ATA_DEV_SEMB_UNSUP
;
1914 if ((err_mask
== AC_ERR_DEV
) && (tf
.feature
& ATA_ABORTED
)) {
1915 /* Device or controller might have reported
1916 * the wrong device class. Give a shot at the
1917 * other IDENTIFY if the current one is
1918 * aborted by the device.
1923 if (class == ATA_DEV_ATA
)
1924 class = ATA_DEV_ATAPI
;
1926 class = ATA_DEV_ATA
;
1930 /* Control reaches here iff the device aborted
1931 * both flavors of IDENTIFYs which happens
1932 * sometimes with phantom devices.
1935 "both IDENTIFYs aborted, assuming NODEV\n");
1940 reason
= "I/O error";
1944 if (dev
->horkage
& ATA_HORKAGE_DUMP_ID
) {
1945 ata_dev_dbg(dev
, "dumping IDENTIFY data, "
1946 "class=%d may_fallback=%d tried_spinup=%d\n",
1947 class, may_fallback
, tried_spinup
);
1948 print_hex_dump(KERN_DEBUG
, "", DUMP_PREFIX_OFFSET
,
1949 16, 2, id
, ATA_ID_WORDS
* sizeof(*id
), true);
1952 /* Falling back doesn't make sense if ID data was read
1953 * successfully at least once.
1957 swap_buf_le16(id
, ATA_ID_WORDS
);
1961 reason
= "device reports invalid type";
1963 if (class == ATA_DEV_ATA
|| class == ATA_DEV_ZAC
) {
1964 if (!ata_id_is_ata(id
) && !ata_id_is_cfa(id
))
1966 if (ap
->host
->flags
& ATA_HOST_IGNORE_ATA
&&
1967 ata_id_is_ata(id
)) {
1969 "host indicates ignore ATA devices, ignored\n");
1973 if (ata_id_is_ata(id
))
1977 if (!tried_spinup
&& (id
[2] == 0x37c8 || id
[2] == 0x738c)) {
1980 * Drive powered-up in standby mode, and requires a specific
1981 * SET_FEATURES spin-up subcommand before it will accept
1982 * anything other than the original IDENTIFY command.
1984 err_mask
= ata_dev_set_feature(dev
, SETFEATURES_SPINUP
, 0);
1985 if (err_mask
&& id
[2] != 0x738c) {
1987 reason
= "SPINUP failed";
1991 * If the drive initially returned incomplete IDENTIFY info,
1992 * we now must reissue the IDENTIFY command.
1994 if (id
[2] == 0x37c8)
1998 if ((flags
& ATA_READID_POSTRESET
) &&
1999 (class == ATA_DEV_ATA
|| class == ATA_DEV_ZAC
)) {
2001 * The exact sequence expected by certain pre-ATA4 drives is:
2003 * IDENTIFY (optional in early ATA)
2004 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2006 * Some drives were very specific about that exact sequence.
2008 * Note that ATA4 says lba is mandatory so the second check
2009 * should never trigger.
2011 if (ata_id_major_version(id
) < 4 || !ata_id_has_lba(id
)) {
2012 err_mask
= ata_dev_init_params(dev
, id
[3], id
[6]);
2015 reason
= "INIT_DEV_PARAMS failed";
2019 /* current CHS translation info (id[53-58]) might be
2020 * changed. reread the identify device info.
2022 flags
&= ~ATA_READID_POSTRESET
;
2032 if (ata_msg_warn(ap
))
2033 ata_dev_warn(dev
, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2038 static int ata_do_link_spd_horkage(struct ata_device
*dev
)
2040 struct ata_link
*plink
= ata_dev_phys_link(dev
);
2041 u32 target
, target_limit
;
2043 if (!sata_scr_valid(plink
))
2046 if (dev
->horkage
& ATA_HORKAGE_1_5_GBPS
)
2051 target_limit
= (1 << target
) - 1;
2053 /* if already on stricter limit, no need to push further */
2054 if (plink
->sata_spd_limit
<= target_limit
)
2057 plink
->sata_spd_limit
= target_limit
;
2059 /* Request another EH round by returning -EAGAIN if link is
2060 * going faster than the target speed. Forward progress is
2061 * guaranteed by setting sata_spd_limit to target_limit above.
2063 if (plink
->sata_spd
> target
) {
2064 ata_dev_info(dev
, "applying link speed limit horkage to %s\n",
2065 sata_spd_string(target
));
2071 static inline u8
ata_dev_knobble(struct ata_device
*dev
)
2073 struct ata_port
*ap
= dev
->link
->ap
;
2075 if (ata_dev_blacklisted(dev
) & ATA_HORKAGE_BRIDGE_OK
)
2078 return ((ap
->cbl
== ATA_CBL_SATA
) && (!ata_id_is_sata(dev
->id
)));
2081 static int ata_dev_config_ncq(struct ata_device
*dev
,
2082 char *desc
, size_t desc_sz
)
2084 struct ata_port
*ap
= dev
->link
->ap
;
2085 int hdepth
= 0, ddepth
= ata_id_queue_depth(dev
->id
);
2086 unsigned int err_mask
;
2089 if (!ata_id_has_ncq(dev
->id
)) {
2093 if (dev
->horkage
& ATA_HORKAGE_NONCQ
) {
2094 snprintf(desc
, desc_sz
, "NCQ (not used)");
2097 if (ap
->flags
& ATA_FLAG_NCQ
) {
2098 hdepth
= min(ap
->scsi_host
->can_queue
, ATA_MAX_QUEUE
- 1);
2099 dev
->flags
|= ATA_DFLAG_NCQ
;
2102 if (!(dev
->horkage
& ATA_HORKAGE_BROKEN_FPDMA_AA
) &&
2103 (ap
->flags
& ATA_FLAG_FPDMA_AA
) &&
2104 ata_id_has_fpdma_aa(dev
->id
)) {
2105 err_mask
= ata_dev_set_feature(dev
, SETFEATURES_SATA_ENABLE
,
2109 "failed to enable AA (error_mask=0x%x)\n",
2111 if (err_mask
!= AC_ERR_DEV
) {
2112 dev
->horkage
|= ATA_HORKAGE_BROKEN_FPDMA_AA
;
2119 if (hdepth
>= ddepth
)
2120 snprintf(desc
, desc_sz
, "NCQ (depth %d)%s", ddepth
, aa_desc
);
2122 snprintf(desc
, desc_sz
, "NCQ (depth %d/%d)%s", hdepth
,
2125 if ((ap
->flags
& ATA_FLAG_FPDMA_AUX
) &&
2126 ata_id_has_ncq_send_and_recv(dev
->id
)) {
2127 err_mask
= ata_read_log_page(dev
, ATA_LOG_NCQ_SEND_RECV
,
2128 0, ap
->sector_buf
, 1);
2131 "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2134 u8
*cmds
= dev
->ncq_send_recv_cmds
;
2136 dev
->flags
|= ATA_DFLAG_NCQ_SEND_RECV
;
2137 memcpy(cmds
, ap
->sector_buf
, ATA_LOG_NCQ_SEND_RECV_SIZE
);
2139 if (dev
->horkage
& ATA_HORKAGE_NO_NCQ_TRIM
) {
2140 ata_dev_dbg(dev
, "disabling queued TRIM support\n");
2141 cmds
[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET
] &=
2142 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM
;
2151 * ata_dev_configure - Configure the specified ATA/ATAPI device
2152 * @dev: Target device to configure
2154 * Configure @dev according to @dev->id. Generic and low-level
2155 * driver specific fixups are also applied.
2158 * Kernel thread context (may sleep)
2161 * 0 on success, -errno otherwise
2163 int ata_dev_configure(struct ata_device
*dev
)
2165 struct ata_port
*ap
= dev
->link
->ap
;
2166 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
2167 int print_info
= ehc
->i
.flags
& ATA_EHI_PRINTINFO
;
2168 const u16
*id
= dev
->id
;
2169 unsigned long xfer_mask
;
2170 unsigned int err_mask
;
2171 char revbuf
[7]; /* XYZ-99\0 */
2172 char fwrevbuf
[ATA_ID_FW_REV_LEN
+1];
2173 char modelbuf
[ATA_ID_PROD_LEN
+1];
2176 if (!ata_dev_enabled(dev
) && ata_msg_info(ap
)) {
2177 ata_dev_info(dev
, "%s: ENTER/EXIT -- nodev\n", __func__
);
2181 if (ata_msg_probe(ap
))
2182 ata_dev_dbg(dev
, "%s: ENTER\n", __func__
);
2185 dev
->horkage
|= ata_dev_blacklisted(dev
);
2186 ata_force_horkage(dev
);
2188 if (dev
->horkage
& ATA_HORKAGE_DISABLE
) {
2189 ata_dev_info(dev
, "unsupported device, disabling\n");
2190 ata_dev_disable(dev
);
2194 if ((!atapi_enabled
|| (ap
->flags
& ATA_FLAG_NO_ATAPI
)) &&
2195 dev
->class == ATA_DEV_ATAPI
) {
2196 ata_dev_warn(dev
, "WARNING: ATAPI is %s, device ignored\n",
2197 atapi_enabled
? "not supported with this driver"
2199 ata_dev_disable(dev
);
2203 rc
= ata_do_link_spd_horkage(dev
);
2207 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2208 if ((dev
->horkage
& ATA_HORKAGE_WD_BROKEN_LPM
) &&
2209 (id
[ATA_ID_SATA_CAPABILITY
] & 0xe) == 0x2)
2210 dev
->horkage
|= ATA_HORKAGE_NOLPM
;
2212 if (ap
->flags
& ATA_FLAG_NO_LPM
)
2213 dev
->horkage
|= ATA_HORKAGE_NOLPM
;
2215 if (dev
->horkage
& ATA_HORKAGE_NOLPM
) {
2216 ata_dev_warn(dev
, "LPM support broken, forcing max_power\n");
2217 dev
->link
->ap
->target_lpm_policy
= ATA_LPM_MAX_POWER
;
2220 /* let ACPI work its magic */
2221 rc
= ata_acpi_on_devcfg(dev
);
2225 /* massage HPA, do it early as it might change IDENTIFY data */
2226 rc
= ata_hpa_resize(dev
);
2230 /* print device capabilities */
2231 if (ata_msg_probe(ap
))
2233 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2234 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2236 id
[49], id
[82], id
[83], id
[84],
2237 id
[85], id
[86], id
[87], id
[88]);
2239 /* initialize to-be-configured parameters */
2240 dev
->flags
&= ~ATA_DFLAG_CFG_MASK
;
2241 dev
->max_sectors
= 0;
2247 dev
->multi_count
= 0;
2250 * common ATA, ATAPI feature tests
2253 /* find max transfer mode; for printk only */
2254 xfer_mask
= ata_id_xfermask(id
);
2256 if (ata_msg_probe(ap
))
2259 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2260 ata_id_c_string(dev
->id
, fwrevbuf
, ATA_ID_FW_REV
,
2263 ata_id_c_string(dev
->id
, modelbuf
, ATA_ID_PROD
,
2266 /* ATA-specific feature tests */
2267 if (dev
->class == ATA_DEV_ATA
|| dev
->class == ATA_DEV_ZAC
) {
2268 if (ata_id_is_cfa(id
)) {
2269 /* CPRM may make this media unusable */
2270 if (id
[ATA_ID_CFA_KEY_MGMT
] & 1)
2272 "supports DRM functions and may not be fully accessible\n");
2273 snprintf(revbuf
, 7, "CFA");
2275 snprintf(revbuf
, 7, "ATA-%d", ata_id_major_version(id
));
2276 /* Warn the user if the device has TPM extensions */
2277 if (ata_id_has_tpm(id
))
2279 "supports DRM functions and may not be fully accessible\n");
2282 dev
->n_sectors
= ata_id_n_sectors(id
);
2284 /* get current R/W Multiple count setting */
2285 if ((dev
->id
[47] >> 8) == 0x80 && (dev
->id
[59] & 0x100)) {
2286 unsigned int max
= dev
->id
[47] & 0xff;
2287 unsigned int cnt
= dev
->id
[59] & 0xff;
2288 /* only recognize/allow powers of two here */
2289 if (is_power_of_2(max
) && is_power_of_2(cnt
))
2291 dev
->multi_count
= cnt
;
2294 if (ata_id_has_lba(id
)) {
2295 const char *lba_desc
;
2299 dev
->flags
|= ATA_DFLAG_LBA
;
2300 if (ata_id_has_lba48(id
)) {
2301 dev
->flags
|= ATA_DFLAG_LBA48
;
2304 if (dev
->n_sectors
>= (1UL << 28) &&
2305 ata_id_has_flush_ext(id
))
2306 dev
->flags
|= ATA_DFLAG_FLUSH_EXT
;
2310 rc
= ata_dev_config_ncq(dev
, ncq_desc
, sizeof(ncq_desc
));
2314 /* print device info to dmesg */
2315 if (ata_msg_drv(ap
) && print_info
) {
2316 ata_dev_info(dev
, "%s: %s, %s, max %s\n",
2317 revbuf
, modelbuf
, fwrevbuf
,
2318 ata_mode_string(xfer_mask
));
2320 "%llu sectors, multi %u: %s %s\n",
2321 (unsigned long long)dev
->n_sectors
,
2322 dev
->multi_count
, lba_desc
, ncq_desc
);
2327 /* Default translation */
2328 dev
->cylinders
= id
[1];
2330 dev
->sectors
= id
[6];
2332 if (ata_id_current_chs_valid(id
)) {
2333 /* Current CHS translation is valid. */
2334 dev
->cylinders
= id
[54];
2335 dev
->heads
= id
[55];
2336 dev
->sectors
= id
[56];
2339 /* print device info to dmesg */
2340 if (ata_msg_drv(ap
) && print_info
) {
2341 ata_dev_info(dev
, "%s: %s, %s, max %s\n",
2342 revbuf
, modelbuf
, fwrevbuf
,
2343 ata_mode_string(xfer_mask
));
2345 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2346 (unsigned long long)dev
->n_sectors
,
2347 dev
->multi_count
, dev
->cylinders
,
2348 dev
->heads
, dev
->sectors
);
2352 /* Check and mark DevSlp capability. Get DevSlp timing variables
2353 * from SATA Settings page of Identify Device Data Log.
2355 if (ata_id_has_devslp(dev
->id
)) {
2356 u8
*sata_setting
= ap
->sector_buf
;
2359 dev
->flags
|= ATA_DFLAG_DEVSLP
;
2360 err_mask
= ata_read_log_page(dev
,
2361 ATA_LOG_SATA_ID_DEV_DATA
,
2362 ATA_LOG_SATA_SETTINGS
,
2367 "failed to get Identify Device Data, Emask 0x%x\n",
2370 for (i
= 0; i
< ATA_LOG_DEVSLP_SIZE
; i
++) {
2371 j
= ATA_LOG_DEVSLP_OFFSET
+ i
;
2372 dev
->devslp_timing
[i
] = sata_setting
[j
];
2379 /* ATAPI-specific feature tests */
2380 else if (dev
->class == ATA_DEV_ATAPI
) {
2381 const char *cdb_intr_string
= "";
2382 const char *atapi_an_string
= "";
2383 const char *dma_dir_string
= "";
2386 rc
= atapi_cdb_len(id
);
2387 if ((rc
< 12) || (rc
> ATAPI_CDB_LEN
)) {
2388 if (ata_msg_warn(ap
))
2389 ata_dev_warn(dev
, "unsupported CDB len\n");
2393 dev
->cdb_len
= (unsigned int) rc
;
2395 /* Enable ATAPI AN if both the host and device have
2396 * the support. If PMP is attached, SNTF is required
2397 * to enable ATAPI AN to discern between PHY status
2398 * changed notifications and ATAPI ANs.
2401 (ap
->flags
& ATA_FLAG_AN
) && ata_id_has_atapi_AN(id
) &&
2402 (!sata_pmp_attached(ap
) ||
2403 sata_scr_read(&ap
->link
, SCR_NOTIFICATION
, &sntf
) == 0)) {
2404 /* issue SET feature command to turn this on */
2405 err_mask
= ata_dev_set_feature(dev
,
2406 SETFEATURES_SATA_ENABLE
, SATA_AN
);
2409 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2412 dev
->flags
|= ATA_DFLAG_AN
;
2413 atapi_an_string
= ", ATAPI AN";
2417 if (ata_id_cdb_intr(dev
->id
)) {
2418 dev
->flags
|= ATA_DFLAG_CDB_INTR
;
2419 cdb_intr_string
= ", CDB intr";
2422 if (atapi_dmadir
|| (dev
->horkage
& ATA_HORKAGE_ATAPI_DMADIR
) || atapi_id_dmadir(dev
->id
)) {
2423 dev
->flags
|= ATA_DFLAG_DMADIR
;
2424 dma_dir_string
= ", DMADIR";
2427 if (ata_id_has_da(dev
->id
)) {
2428 dev
->flags
|= ATA_DFLAG_DA
;
2432 /* print device info to dmesg */
2433 if (ata_msg_drv(ap
) && print_info
)
2435 "ATAPI: %s, %s, max %s%s%s%s\n",
2437 ata_mode_string(xfer_mask
),
2438 cdb_intr_string
, atapi_an_string
,
2442 /* determine max_sectors */
2443 dev
->max_sectors
= ATA_MAX_SECTORS
;
2444 if (dev
->flags
& ATA_DFLAG_LBA48
)
2445 dev
->max_sectors
= ATA_MAX_SECTORS_LBA48
;
2447 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2449 if (ata_dev_knobble(dev
)) {
2450 if (ata_msg_drv(ap
) && print_info
)
2451 ata_dev_info(dev
, "applying bridge limits\n");
2452 dev
->udma_mask
&= ATA_UDMA5
;
2453 dev
->max_sectors
= ATA_MAX_SECTORS
;
2456 if ((dev
->class == ATA_DEV_ATAPI
) &&
2457 (atapi_command_packet_set(id
) == TYPE_TAPE
)) {
2458 dev
->max_sectors
= ATA_MAX_SECTORS_TAPE
;
2459 dev
->horkage
|= ATA_HORKAGE_STUCK_ERR
;
2462 if (dev
->horkage
& ATA_HORKAGE_MAX_SEC_128
)
2463 dev
->max_sectors
= min_t(unsigned int, ATA_MAX_SECTORS_128
,
2466 if (dev
->horkage
& ATA_HORKAGE_MAX_SEC_1024
)
2467 dev
->max_sectors
= min_t(unsigned int, ATA_MAX_SECTORS_1024
,
2470 if (dev
->horkage
& ATA_HORKAGE_MAX_SEC_LBA48
)
2471 dev
->max_sectors
= ATA_MAX_SECTORS_LBA48
;
2473 if (ap
->ops
->dev_config
)
2474 ap
->ops
->dev_config(dev
);
2476 if (dev
->horkage
& ATA_HORKAGE_DIAGNOSTIC
) {
2477 /* Let the user know. We don't want to disallow opens for
2478 rescue purposes, or in case the vendor is just a blithering
2479 idiot. Do this after the dev_config call as some controllers
2480 with buggy firmware may want to avoid reporting false device
2485 "Drive reports diagnostics failure. This may indicate a drive\n");
2487 "fault or invalid emulation. Contact drive vendor for information.\n");
2491 if ((dev
->horkage
& ATA_HORKAGE_FIRMWARE_WARN
) && print_info
) {
2492 ata_dev_warn(dev
, "WARNING: device requires firmware update to be fully functional\n");
2493 ata_dev_warn(dev
, " contact the vendor or visit http://ata.wiki.kernel.org\n");
2499 if (ata_msg_probe(ap
))
2500 ata_dev_dbg(dev
, "%s: EXIT, err\n", __func__
);
2505 * ata_cable_40wire - return 40 wire cable type
2508 * Helper method for drivers which want to hardwire 40 wire cable
2512 int ata_cable_40wire(struct ata_port
*ap
)
2514 return ATA_CBL_PATA40
;
2518 * ata_cable_80wire - return 80 wire cable type
2521 * Helper method for drivers which want to hardwire 80 wire cable
2525 int ata_cable_80wire(struct ata_port
*ap
)
2527 return ATA_CBL_PATA80
;
2531 * ata_cable_unknown - return unknown PATA cable.
2534 * Helper method for drivers which have no PATA cable detection.
2537 int ata_cable_unknown(struct ata_port
*ap
)
2539 return ATA_CBL_PATA_UNK
;
2543 * ata_cable_ignore - return ignored PATA cable.
2546 * Helper method for drivers which don't use cable type to limit
2549 int ata_cable_ignore(struct ata_port
*ap
)
2551 return ATA_CBL_PATA_IGN
;
2555 * ata_cable_sata - return SATA cable type
2558 * Helper method for drivers which have SATA cables
2561 int ata_cable_sata(struct ata_port
*ap
)
2563 return ATA_CBL_SATA
;
2567 * ata_bus_probe - Reset and probe ATA bus
2570 * Master ATA bus probing function. Initiates a hardware-dependent
2571 * bus reset, then attempts to identify any devices found on
2575 * PCI/etc. bus probe sem.
2578 * Zero on success, negative errno otherwise.
2581 int ata_bus_probe(struct ata_port
*ap
)
2583 unsigned int classes
[ATA_MAX_DEVICES
];
2584 int tries
[ATA_MAX_DEVICES
];
2586 struct ata_device
*dev
;
2588 ata_for_each_dev(dev
, &ap
->link
, ALL
)
2589 tries
[dev
->devno
] = ATA_PROBE_MAX_TRIES
;
2592 ata_for_each_dev(dev
, &ap
->link
, ALL
) {
2593 /* If we issue an SRST then an ATA drive (not ATAPI)
2594 * may change configuration and be in PIO0 timing. If
2595 * we do a hard reset (or are coming from power on)
2596 * this is true for ATA or ATAPI. Until we've set a
2597 * suitable controller mode we should not touch the
2598 * bus as we may be talking too fast.
2600 dev
->pio_mode
= XFER_PIO_0
;
2601 dev
->dma_mode
= 0xff;
2603 /* If the controller has a pio mode setup function
2604 * then use it to set the chipset to rights. Don't
2605 * touch the DMA setup as that will be dealt with when
2606 * configuring devices.
2608 if (ap
->ops
->set_piomode
)
2609 ap
->ops
->set_piomode(ap
, dev
);
2612 /* reset and determine device classes */
2613 ap
->ops
->phy_reset(ap
);
2615 ata_for_each_dev(dev
, &ap
->link
, ALL
) {
2616 if (dev
->class != ATA_DEV_UNKNOWN
)
2617 classes
[dev
->devno
] = dev
->class;
2619 classes
[dev
->devno
] = ATA_DEV_NONE
;
2621 dev
->class = ATA_DEV_UNKNOWN
;
2624 /* read IDENTIFY page and configure devices. We have to do the identify
2625 specific sequence bass-ackwards so that PDIAG- is released by
2628 ata_for_each_dev(dev
, &ap
->link
, ALL_REVERSE
) {
2629 if (tries
[dev
->devno
])
2630 dev
->class = classes
[dev
->devno
];
2632 if (!ata_dev_enabled(dev
))
2635 rc
= ata_dev_read_id(dev
, &dev
->class, ATA_READID_POSTRESET
,
2641 /* Now ask for the cable type as PDIAG- should have been released */
2642 if (ap
->ops
->cable_detect
)
2643 ap
->cbl
= ap
->ops
->cable_detect(ap
);
2645 /* We may have SATA bridge glue hiding here irrespective of
2646 * the reported cable types and sensed types. When SATA
2647 * drives indicate we have a bridge, we don't know which end
2648 * of the link the bridge is which is a problem.
2650 ata_for_each_dev(dev
, &ap
->link
, ENABLED
)
2651 if (ata_id_is_sata(dev
->id
))
2652 ap
->cbl
= ATA_CBL_SATA
;
2654 /* After the identify sequence we can now set up the devices. We do
2655 this in the normal order so that the user doesn't get confused */
2657 ata_for_each_dev(dev
, &ap
->link
, ENABLED
) {
2658 ap
->link
.eh_context
.i
.flags
|= ATA_EHI_PRINTINFO
;
2659 rc
= ata_dev_configure(dev
);
2660 ap
->link
.eh_context
.i
.flags
&= ~ATA_EHI_PRINTINFO
;
2665 /* configure transfer mode */
2666 rc
= ata_set_mode(&ap
->link
, &dev
);
2670 ata_for_each_dev(dev
, &ap
->link
, ENABLED
)
2676 tries
[dev
->devno
]--;
2680 /* eeek, something went very wrong, give up */
2681 tries
[dev
->devno
] = 0;
2685 /* give it just one more chance */
2686 tries
[dev
->devno
] = min(tries
[dev
->devno
], 1);
2688 if (tries
[dev
->devno
] == 1) {
2689 /* This is the last chance, better to slow
2690 * down than lose it.
2692 sata_down_spd_limit(&ap
->link
, 0);
2693 ata_down_xfermask_limit(dev
, ATA_DNXFER_PIO
);
2697 if (!tries
[dev
->devno
])
2698 ata_dev_disable(dev
);
2704 * sata_print_link_status - Print SATA link status
2705 * @link: SATA link to printk link status about
2707 * This function prints link speed and status of a SATA link.
2712 static void sata_print_link_status(struct ata_link
*link
)
2714 u32 sstatus
, scontrol
, tmp
;
2716 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
))
2718 sata_scr_read(link
, SCR_CONTROL
, &scontrol
);
2720 if (ata_phys_link_online(link
)) {
2721 tmp
= (sstatus
>> 4) & 0xf;
2722 ata_link_info(link
, "SATA link up %s (SStatus %X SControl %X)\n",
2723 sata_spd_string(tmp
), sstatus
, scontrol
);
2725 ata_link_info(link
, "SATA link down (SStatus %X SControl %X)\n",
2731 * ata_dev_pair - return other device on cable
2734 * Obtain the other device on the same cable, or if none is
2735 * present NULL is returned
2738 struct ata_device
*ata_dev_pair(struct ata_device
*adev
)
2740 struct ata_link
*link
= adev
->link
;
2741 struct ata_device
*pair
= &link
->device
[1 - adev
->devno
];
2742 if (!ata_dev_enabled(pair
))
2748 * sata_down_spd_limit - adjust SATA spd limit downward
2749 * @link: Link to adjust SATA spd limit for
2750 * @spd_limit: Additional limit
2752 * Adjust SATA spd limit of @link downward. Note that this
2753 * function only adjusts the limit. The change must be applied
2754 * using sata_set_spd().
2756 * If @spd_limit is non-zero, the speed is limited to equal to or
2757 * lower than @spd_limit if such speed is supported. If
2758 * @spd_limit is slower than any supported speed, only the lowest
2759 * supported speed is allowed.
2762 * Inherited from caller.
2765 * 0 on success, negative errno on failure
2767 int sata_down_spd_limit(struct ata_link
*link
, u32 spd_limit
)
2769 u32 sstatus
, spd
, mask
;
2772 if (!sata_scr_valid(link
))
2775 /* If SCR can be read, use it to determine the current SPD.
2776 * If not, use cached value in link->sata_spd.
2778 rc
= sata_scr_read(link
, SCR_STATUS
, &sstatus
);
2779 if (rc
== 0 && ata_sstatus_online(sstatus
))
2780 spd
= (sstatus
>> 4) & 0xf;
2782 spd
= link
->sata_spd
;
2784 mask
= link
->sata_spd_limit
;
2788 /* unconditionally mask off the highest bit */
2789 bit
= fls(mask
) - 1;
2790 mask
&= ~(1 << bit
);
2792 /* Mask off all speeds higher than or equal to the current
2793 * one. Force 1.5Gbps if current SPD is not available.
2796 mask
&= (1 << (spd
- 1)) - 1;
2800 /* were we already at the bottom? */
2805 if (mask
& ((1 << spd_limit
) - 1))
2806 mask
&= (1 << spd_limit
) - 1;
2808 bit
= ffs(mask
) - 1;
2813 link
->sata_spd_limit
= mask
;
2815 ata_link_warn(link
, "limiting SATA link speed to %s\n",
2816 sata_spd_string(fls(mask
)));
2821 static int __sata_set_spd_needed(struct ata_link
*link
, u32
*scontrol
)
2823 struct ata_link
*host_link
= &link
->ap
->link
;
2824 u32 limit
, target
, spd
;
2826 limit
= link
->sata_spd_limit
;
2828 /* Don't configure downstream link faster than upstream link.
2829 * It doesn't speed up anything and some PMPs choke on such
2832 if (!ata_is_host_link(link
) && host_link
->sata_spd
)
2833 limit
&= (1 << host_link
->sata_spd
) - 1;
2835 if (limit
== UINT_MAX
)
2838 target
= fls(limit
);
2840 spd
= (*scontrol
>> 4) & 0xf;
2841 *scontrol
= (*scontrol
& ~0xf0) | ((target
& 0xf) << 4);
2843 return spd
!= target
;
2847 * sata_set_spd_needed - is SATA spd configuration needed
2848 * @link: Link in question
2850 * Test whether the spd limit in SControl matches
2851 * @link->sata_spd_limit. This function is used to determine
2852 * whether hardreset is necessary to apply SATA spd
2856 * Inherited from caller.
2859 * 1 if SATA spd configuration is needed, 0 otherwise.
2861 static int sata_set_spd_needed(struct ata_link
*link
)
2865 if (sata_scr_read(link
, SCR_CONTROL
, &scontrol
))
2868 return __sata_set_spd_needed(link
, &scontrol
);
2872 * sata_set_spd - set SATA spd according to spd limit
2873 * @link: Link to set SATA spd for
2875 * Set SATA spd of @link according to sata_spd_limit.
2878 * Inherited from caller.
2881 * 0 if spd doesn't need to be changed, 1 if spd has been
2882 * changed. Negative errno if SCR registers are inaccessible.
2884 int sata_set_spd(struct ata_link
*link
)
2889 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
2892 if (!__sata_set_spd_needed(link
, &scontrol
))
2895 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
2902 * This mode timing computation functionality is ported over from
2903 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2906 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2907 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2908 * for UDMA6, which is currently supported only by Maxtor drives.
2910 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2913 static const struct ata_timing ata_timing
[] = {
2914 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
2915 { XFER_PIO_0
, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
2916 { XFER_PIO_1
, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
2917 { XFER_PIO_2
, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
2918 { XFER_PIO_3
, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
2919 { XFER_PIO_4
, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
2920 { XFER_PIO_5
, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
2921 { XFER_PIO_6
, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
2923 { XFER_SW_DMA_0
, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
2924 { XFER_SW_DMA_1
, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
2925 { XFER_SW_DMA_2
, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
2927 { XFER_MW_DMA_0
, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
2928 { XFER_MW_DMA_1
, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
2929 { XFER_MW_DMA_2
, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
2930 { XFER_MW_DMA_3
, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
2931 { XFER_MW_DMA_4
, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
2933 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2934 { XFER_UDMA_0
, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
2935 { XFER_UDMA_1
, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
2936 { XFER_UDMA_2
, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
2937 { XFER_UDMA_3
, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
2938 { XFER_UDMA_4
, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
2939 { XFER_UDMA_5
, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
2940 { XFER_UDMA_6
, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
2945 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2946 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
2948 static void ata_timing_quantize(const struct ata_timing
*t
, struct ata_timing
*q
, int T
, int UT
)
2950 q
->setup
= EZ(t
->setup
* 1000, T
);
2951 q
->act8b
= EZ(t
->act8b
* 1000, T
);
2952 q
->rec8b
= EZ(t
->rec8b
* 1000, T
);
2953 q
->cyc8b
= EZ(t
->cyc8b
* 1000, T
);
2954 q
->active
= EZ(t
->active
* 1000, T
);
2955 q
->recover
= EZ(t
->recover
* 1000, T
);
2956 q
->dmack_hold
= EZ(t
->dmack_hold
* 1000, T
);
2957 q
->cycle
= EZ(t
->cycle
* 1000, T
);
2958 q
->udma
= EZ(t
->udma
* 1000, UT
);
2961 void ata_timing_merge(const struct ata_timing
*a
, const struct ata_timing
*b
,
2962 struct ata_timing
*m
, unsigned int what
)
2964 if (what
& ATA_TIMING_SETUP
) m
->setup
= max(a
->setup
, b
->setup
);
2965 if (what
& ATA_TIMING_ACT8B
) m
->act8b
= max(a
->act8b
, b
->act8b
);
2966 if (what
& ATA_TIMING_REC8B
) m
->rec8b
= max(a
->rec8b
, b
->rec8b
);
2967 if (what
& ATA_TIMING_CYC8B
) m
->cyc8b
= max(a
->cyc8b
, b
->cyc8b
);
2968 if (what
& ATA_TIMING_ACTIVE
) m
->active
= max(a
->active
, b
->active
);
2969 if (what
& ATA_TIMING_RECOVER
) m
->recover
= max(a
->recover
, b
->recover
);
2970 if (what
& ATA_TIMING_DMACK_HOLD
) m
->dmack_hold
= max(a
->dmack_hold
, b
->dmack_hold
);
2971 if (what
& ATA_TIMING_CYCLE
) m
->cycle
= max(a
->cycle
, b
->cycle
);
2972 if (what
& ATA_TIMING_UDMA
) m
->udma
= max(a
->udma
, b
->udma
);
2975 const struct ata_timing
*ata_timing_find_mode(u8 xfer_mode
)
2977 const struct ata_timing
*t
= ata_timing
;
2979 while (xfer_mode
> t
->mode
)
2982 if (xfer_mode
== t
->mode
)
2985 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
2986 __func__
, xfer_mode
);
2991 int ata_timing_compute(struct ata_device
*adev
, unsigned short speed
,
2992 struct ata_timing
*t
, int T
, int UT
)
2994 const u16
*id
= adev
->id
;
2995 const struct ata_timing
*s
;
2996 struct ata_timing p
;
3002 if (!(s
= ata_timing_find_mode(speed
)))
3005 memcpy(t
, s
, sizeof(*s
));
3008 * If the drive is an EIDE drive, it can tell us it needs extended
3009 * PIO/MW_DMA cycle timing.
3012 if (id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE drive */
3013 memset(&p
, 0, sizeof(p
));
3015 if (speed
>= XFER_PIO_0
&& speed
< XFER_SW_DMA_0
) {
3016 if (speed
<= XFER_PIO_2
)
3017 p
.cycle
= p
.cyc8b
= id
[ATA_ID_EIDE_PIO
];
3018 else if ((speed
<= XFER_PIO_4
) ||
3019 (speed
== XFER_PIO_5
&& !ata_id_is_cfa(id
)))
3020 p
.cycle
= p
.cyc8b
= id
[ATA_ID_EIDE_PIO_IORDY
];
3021 } else if (speed
>= XFER_MW_DMA_0
&& speed
<= XFER_MW_DMA_2
)
3022 p
.cycle
= id
[ATA_ID_EIDE_DMA_MIN
];
3024 ata_timing_merge(&p
, t
, t
, ATA_TIMING_CYCLE
| ATA_TIMING_CYC8B
);
3028 * Convert the timing to bus clock counts.
3031 ata_timing_quantize(t
, t
, T
, UT
);
3034 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3035 * S.M.A.R.T * and some other commands. We have to ensure that the
3036 * DMA cycle timing is slower/equal than the fastest PIO timing.
3039 if (speed
> XFER_PIO_6
) {
3040 ata_timing_compute(adev
, adev
->pio_mode
, &p
, T
, UT
);
3041 ata_timing_merge(&p
, t
, t
, ATA_TIMING_ALL
);
3045 * Lengthen active & recovery time so that cycle time is correct.
3048 if (t
->act8b
+ t
->rec8b
< t
->cyc8b
) {
3049 t
->act8b
+= (t
->cyc8b
- (t
->act8b
+ t
->rec8b
)) / 2;
3050 t
->rec8b
= t
->cyc8b
- t
->act8b
;
3053 if (t
->active
+ t
->recover
< t
->cycle
) {
3054 t
->active
+= (t
->cycle
- (t
->active
+ t
->recover
)) / 2;
3055 t
->recover
= t
->cycle
- t
->active
;
3058 /* In a few cases quantisation may produce enough errors to
3059 leave t->cycle too low for the sum of active and recovery
3060 if so we must correct this */
3061 if (t
->active
+ t
->recover
> t
->cycle
)
3062 t
->cycle
= t
->active
+ t
->recover
;
3068 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3069 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3070 * @cycle: cycle duration in ns
3072 * Return matching xfer mode for @cycle. The returned mode is of
3073 * the transfer type specified by @xfer_shift. If @cycle is too
3074 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3075 * than the fastest known mode, the fasted mode is returned.
3081 * Matching xfer_mode, 0xff if no match found.
3083 u8
ata_timing_cycle2mode(unsigned int xfer_shift
, int cycle
)
3085 u8 base_mode
= 0xff, last_mode
= 0xff;
3086 const struct ata_xfer_ent
*ent
;
3087 const struct ata_timing
*t
;
3089 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
3090 if (ent
->shift
== xfer_shift
)
3091 base_mode
= ent
->base
;
3093 for (t
= ata_timing_find_mode(base_mode
);
3094 t
&& ata_xfer_mode2shift(t
->mode
) == xfer_shift
; t
++) {
3095 unsigned short this_cycle
;
3097 switch (xfer_shift
) {
3099 case ATA_SHIFT_MWDMA
:
3100 this_cycle
= t
->cycle
;
3102 case ATA_SHIFT_UDMA
:
3103 this_cycle
= t
->udma
;
3109 if (cycle
> this_cycle
)
3112 last_mode
= t
->mode
;
3119 * ata_down_xfermask_limit - adjust dev xfer masks downward
3120 * @dev: Device to adjust xfer masks
3121 * @sel: ATA_DNXFER_* selector
3123 * Adjust xfer masks of @dev downward. Note that this function
3124 * does not apply the change. Invoking ata_set_mode() afterwards
3125 * will apply the limit.
3128 * Inherited from caller.
3131 * 0 on success, negative errno on failure
3133 int ata_down_xfermask_limit(struct ata_device
*dev
, unsigned int sel
)
3136 unsigned long orig_mask
, xfer_mask
;
3137 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
3140 quiet
= !!(sel
& ATA_DNXFER_QUIET
);
3141 sel
&= ~ATA_DNXFER_QUIET
;
3143 xfer_mask
= orig_mask
= ata_pack_xfermask(dev
->pio_mask
,
3146 ata_unpack_xfermask(xfer_mask
, &pio_mask
, &mwdma_mask
, &udma_mask
);
3149 case ATA_DNXFER_PIO
:
3150 highbit
= fls(pio_mask
) - 1;
3151 pio_mask
&= ~(1 << highbit
);
3154 case ATA_DNXFER_DMA
:
3156 highbit
= fls(udma_mask
) - 1;
3157 udma_mask
&= ~(1 << highbit
);
3160 } else if (mwdma_mask
) {
3161 highbit
= fls(mwdma_mask
) - 1;
3162 mwdma_mask
&= ~(1 << highbit
);
3168 case ATA_DNXFER_40C
:
3169 udma_mask
&= ATA_UDMA_MASK_40C
;
3172 case ATA_DNXFER_FORCE_PIO0
:
3174 case ATA_DNXFER_FORCE_PIO
:
3183 xfer_mask
&= ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
3185 if (!(xfer_mask
& ATA_MASK_PIO
) || xfer_mask
== orig_mask
)
3189 if (xfer_mask
& (ATA_MASK_MWDMA
| ATA_MASK_UDMA
))
3190 snprintf(buf
, sizeof(buf
), "%s:%s",
3191 ata_mode_string(xfer_mask
),
3192 ata_mode_string(xfer_mask
& ATA_MASK_PIO
));
3194 snprintf(buf
, sizeof(buf
), "%s",
3195 ata_mode_string(xfer_mask
));
3197 ata_dev_warn(dev
, "limiting speed to %s\n", buf
);
3200 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
, &dev
->mwdma_mask
,
3206 static int ata_dev_set_mode(struct ata_device
*dev
)
3208 struct ata_port
*ap
= dev
->link
->ap
;
3209 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
3210 const bool nosetxfer
= dev
->horkage
& ATA_HORKAGE_NOSETXFER
;
3211 const char *dev_err_whine
= "";
3212 int ign_dev_err
= 0;
3213 unsigned int err_mask
= 0;
3216 dev
->flags
&= ~ATA_DFLAG_PIO
;
3217 if (dev
->xfer_shift
== ATA_SHIFT_PIO
)
3218 dev
->flags
|= ATA_DFLAG_PIO
;
3220 if (nosetxfer
&& ap
->flags
& ATA_FLAG_SATA
&& ata_id_is_sata(dev
->id
))
3221 dev_err_whine
= " (SET_XFERMODE skipped)";
3225 "NOSETXFER but PATA detected - can't "
3226 "skip SETXFER, might malfunction\n");
3227 err_mask
= ata_dev_set_xfermode(dev
);
3230 if (err_mask
& ~AC_ERR_DEV
)
3234 ehc
->i
.flags
|= ATA_EHI_POST_SETMODE
;
3235 rc
= ata_dev_revalidate(dev
, ATA_DEV_UNKNOWN
, 0);
3236 ehc
->i
.flags
&= ~ATA_EHI_POST_SETMODE
;
3240 if (dev
->xfer_shift
== ATA_SHIFT_PIO
) {
3241 /* Old CFA may refuse this command, which is just fine */
3242 if (ata_id_is_cfa(dev
->id
))
3244 /* Catch several broken garbage emulations plus some pre
3246 if (ata_id_major_version(dev
->id
) == 0 &&
3247 dev
->pio_mode
<= XFER_PIO_2
)
3249 /* Some very old devices and some bad newer ones fail
3250 any kind of SET_XFERMODE request but support PIO0-2
3251 timings and no IORDY */
3252 if (!ata_id_has_iordy(dev
->id
) && dev
->pio_mode
<= XFER_PIO_2
)
3255 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3256 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3257 if (dev
->xfer_shift
== ATA_SHIFT_MWDMA
&&
3258 dev
->dma_mode
== XFER_MW_DMA_0
&&
3259 (dev
->id
[63] >> 8) & 1)
3262 /* if the device is actually configured correctly, ignore dev err */
3263 if (dev
->xfer_mode
== ata_xfer_mask2mode(ata_id_xfermask(dev
->id
)))
3266 if (err_mask
& AC_ERR_DEV
) {
3270 dev_err_whine
= " (device error ignored)";
3273 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3274 dev
->xfer_shift
, (int)dev
->xfer_mode
);
3276 ata_dev_info(dev
, "configured for %s%s\n",
3277 ata_mode_string(ata_xfer_mode2mask(dev
->xfer_mode
)),
3283 ata_dev_err(dev
, "failed to set xfermode (err_mask=0x%x)\n", err_mask
);
3288 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3289 * @link: link on which timings will be programmed
3290 * @r_failed_dev: out parameter for failed device
3292 * Standard implementation of the function used to tune and set
3293 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3294 * ata_dev_set_mode() fails, pointer to the failing device is
3295 * returned in @r_failed_dev.
3298 * PCI/etc. bus probe sem.
3301 * 0 on success, negative errno otherwise
3304 int ata_do_set_mode(struct ata_link
*link
, struct ata_device
**r_failed_dev
)
3306 struct ata_port
*ap
= link
->ap
;
3307 struct ata_device
*dev
;
3308 int rc
= 0, used_dma
= 0, found
= 0;
3310 /* step 1: calculate xfer_mask */
3311 ata_for_each_dev(dev
, link
, ENABLED
) {
3312 unsigned long pio_mask
, dma_mask
;
3313 unsigned int mode_mask
;
3315 mode_mask
= ATA_DMA_MASK_ATA
;
3316 if (dev
->class == ATA_DEV_ATAPI
)
3317 mode_mask
= ATA_DMA_MASK_ATAPI
;
3318 else if (ata_id_is_cfa(dev
->id
))
3319 mode_mask
= ATA_DMA_MASK_CFA
;
3321 ata_dev_xfermask(dev
);
3322 ata_force_xfermask(dev
);
3324 pio_mask
= ata_pack_xfermask(dev
->pio_mask
, 0, 0);
3326 if (libata_dma_mask
& mode_mask
)
3327 dma_mask
= ata_pack_xfermask(0, dev
->mwdma_mask
,
3332 dev
->pio_mode
= ata_xfer_mask2mode(pio_mask
);
3333 dev
->dma_mode
= ata_xfer_mask2mode(dma_mask
);
3336 if (ata_dma_enabled(dev
))
3342 /* step 2: always set host PIO timings */
3343 ata_for_each_dev(dev
, link
, ENABLED
) {
3344 if (dev
->pio_mode
== 0xff) {
3345 ata_dev_warn(dev
, "no PIO support\n");
3350 dev
->xfer_mode
= dev
->pio_mode
;
3351 dev
->xfer_shift
= ATA_SHIFT_PIO
;
3352 if (ap
->ops
->set_piomode
)
3353 ap
->ops
->set_piomode(ap
, dev
);
3356 /* step 3: set host DMA timings */
3357 ata_for_each_dev(dev
, link
, ENABLED
) {
3358 if (!ata_dma_enabled(dev
))
3361 dev
->xfer_mode
= dev
->dma_mode
;
3362 dev
->xfer_shift
= ata_xfer_mode2shift(dev
->dma_mode
);
3363 if (ap
->ops
->set_dmamode
)
3364 ap
->ops
->set_dmamode(ap
, dev
);
3367 /* step 4: update devices' xfer mode */
3368 ata_for_each_dev(dev
, link
, ENABLED
) {
3369 rc
= ata_dev_set_mode(dev
);
3374 /* Record simplex status. If we selected DMA then the other
3375 * host channels are not permitted to do so.
3377 if (used_dma
&& (ap
->host
->flags
& ATA_HOST_SIMPLEX
))
3378 ap
->host
->simplex_claimed
= ap
;
3382 *r_failed_dev
= dev
;
3387 * ata_wait_ready - wait for link to become ready
3388 * @link: link to be waited on
3389 * @deadline: deadline jiffies for the operation
3390 * @check_ready: callback to check link readiness
3392 * Wait for @link to become ready. @check_ready should return
3393 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3394 * link doesn't seem to be occupied, other errno for other error
3397 * Transient -ENODEV conditions are allowed for
3398 * ATA_TMOUT_FF_WAIT.
3404 * 0 if @linke is ready before @deadline; otherwise, -errno.
3406 int ata_wait_ready(struct ata_link
*link
, unsigned long deadline
,
3407 int (*check_ready
)(struct ata_link
*link
))
3409 unsigned long start
= jiffies
;
3410 unsigned long nodev_deadline
;
3413 /* choose which 0xff timeout to use, read comment in libata.h */
3414 if (link
->ap
->host
->flags
& ATA_HOST_PARALLEL_SCAN
)
3415 nodev_deadline
= ata_deadline(start
, ATA_TMOUT_FF_WAIT_LONG
);
3417 nodev_deadline
= ata_deadline(start
, ATA_TMOUT_FF_WAIT
);
3419 /* Slave readiness can't be tested separately from master. On
3420 * M/S emulation configuration, this function should be called
3421 * only on the master and it will handle both master and slave.
3423 WARN_ON(link
== link
->ap
->slave_link
);
3425 if (time_after(nodev_deadline
, deadline
))
3426 nodev_deadline
= deadline
;
3429 unsigned long now
= jiffies
;
3432 ready
= tmp
= check_ready(link
);
3437 * -ENODEV could be transient. Ignore -ENODEV if link
3438 * is online. Also, some SATA devices take a long
3439 * time to clear 0xff after reset. Wait for
3440 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3443 * Note that some PATA controllers (pata_ali) explode
3444 * if status register is read more than once when
3445 * there's no device attached.
3447 if (ready
== -ENODEV
) {
3448 if (ata_link_online(link
))
3450 else if ((link
->ap
->flags
& ATA_FLAG_SATA
) &&
3451 !ata_link_offline(link
) &&
3452 time_before(now
, nodev_deadline
))
3458 if (time_after(now
, deadline
))
3461 if (!warned
&& time_after(now
, start
+ 5 * HZ
) &&
3462 (deadline
- now
> 3 * HZ
)) {
3464 "link is slow to respond, please be patient "
3465 "(ready=%d)\n", tmp
);
3469 ata_msleep(link
->ap
, 50);
3474 * ata_wait_after_reset - wait for link to become ready after reset
3475 * @link: link to be waited on
3476 * @deadline: deadline jiffies for the operation
3477 * @check_ready: callback to check link readiness
3479 * Wait for @link to become ready after reset.
3485 * 0 if @linke is ready before @deadline; otherwise, -errno.
3487 int ata_wait_after_reset(struct ata_link
*link
, unsigned long deadline
,
3488 int (*check_ready
)(struct ata_link
*link
))
3490 ata_msleep(link
->ap
, ATA_WAIT_AFTER_RESET
);
3492 return ata_wait_ready(link
, deadline
, check_ready
);
3496 * sata_link_debounce - debounce SATA phy status
3497 * @link: ATA link to debounce SATA phy status for
3498 * @params: timing parameters { interval, duratinon, timeout } in msec
3499 * @deadline: deadline jiffies for the operation
3501 * Make sure SStatus of @link reaches stable state, determined by
3502 * holding the same value where DET is not 1 for @duration polled
3503 * every @interval, before @timeout. Timeout constraints the
3504 * beginning of the stable state. Because DET gets stuck at 1 on
3505 * some controllers after hot unplugging, this functions waits
3506 * until timeout then returns 0 if DET is stable at 1.
3508 * @timeout is further limited by @deadline. The sooner of the
3512 * Kernel thread context (may sleep)
3515 * 0 on success, -errno on failure.
3517 int sata_link_debounce(struct ata_link
*link
, const unsigned long *params
,
3518 unsigned long deadline
)
3520 unsigned long interval
= params
[0];
3521 unsigned long duration
= params
[1];
3522 unsigned long last_jiffies
, t
;
3526 t
= ata_deadline(jiffies
, params
[2]);
3527 if (time_before(t
, deadline
))
3530 if ((rc
= sata_scr_read(link
, SCR_STATUS
, &cur
)))
3535 last_jiffies
= jiffies
;
3538 ata_msleep(link
->ap
, interval
);
3539 if ((rc
= sata_scr_read(link
, SCR_STATUS
, &cur
)))
3545 if (cur
== 1 && time_before(jiffies
, deadline
))
3547 if (time_after(jiffies
,
3548 ata_deadline(last_jiffies
, duration
)))
3553 /* unstable, start over */
3555 last_jiffies
= jiffies
;
3557 /* Check deadline. If debouncing failed, return
3558 * -EPIPE to tell upper layer to lower link speed.
3560 if (time_after(jiffies
, deadline
))
3566 * sata_link_resume - resume SATA link
3567 * @link: ATA link to resume SATA
3568 * @params: timing parameters { interval, duratinon, timeout } in msec
3569 * @deadline: deadline jiffies for the operation
3571 * Resume SATA phy @link and debounce it.
3574 * Kernel thread context (may sleep)
3577 * 0 on success, -errno on failure.
3579 int sata_link_resume(struct ata_link
*link
, const unsigned long *params
,
3580 unsigned long deadline
)
3582 int tries
= ATA_LINK_RESUME_TRIES
;
3583 u32 scontrol
, serror
;
3586 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3590 * Writes to SControl sometimes get ignored under certain
3591 * controllers (ata_piix SIDPR). Make sure DET actually is
3595 scontrol
= (scontrol
& 0x0f0) | 0x300;
3596 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
3599 * Some PHYs react badly if SStatus is pounded
3600 * immediately after resuming. Delay 200ms before
3603 ata_msleep(link
->ap
, 200);
3605 /* is SControl restored correctly? */
3606 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3608 } while ((scontrol
& 0xf0f) != 0x300 && --tries
);
3610 if ((scontrol
& 0xf0f) != 0x300) {
3611 ata_link_warn(link
, "failed to resume link (SControl %X)\n",
3616 if (tries
< ATA_LINK_RESUME_TRIES
)
3617 ata_link_warn(link
, "link resume succeeded after %d retries\n",
3618 ATA_LINK_RESUME_TRIES
- tries
);
3620 if ((rc
= sata_link_debounce(link
, params
, deadline
)))
3623 /* clear SError, some PHYs require this even for SRST to work */
3624 if (!(rc
= sata_scr_read(link
, SCR_ERROR
, &serror
)))
3625 rc
= sata_scr_write(link
, SCR_ERROR
, serror
);
3627 return rc
!= -EINVAL
? rc
: 0;
3631 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3632 * @link: ATA link to manipulate SControl for
3633 * @policy: LPM policy to configure
3634 * @spm_wakeup: initiate LPM transition to active state
3636 * Manipulate the IPM field of the SControl register of @link
3637 * according to @policy. If @policy is ATA_LPM_MAX_POWER and
3638 * @spm_wakeup is %true, the SPM field is manipulated to wake up
3639 * the link. This function also clears PHYRDY_CHG before
3646 * 0 on success, -errno otherwise.
3648 int sata_link_scr_lpm(struct ata_link
*link
, enum ata_lpm_policy policy
,
3651 struct ata_eh_context
*ehc
= &link
->eh_context
;
3652 bool woken_up
= false;
3656 rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
);
3661 case ATA_LPM_MAX_POWER
:
3662 /* disable all LPM transitions */
3663 scontrol
|= (0x7 << 8);
3664 /* initiate transition to active state */
3666 scontrol
|= (0x4 << 12);
3670 case ATA_LPM_MED_POWER
:
3671 /* allow LPM to PARTIAL */
3672 scontrol
&= ~(0x1 << 8);
3673 scontrol
|= (0x6 << 8);
3675 case ATA_LPM_MIN_POWER
:
3676 if (ata_link_nr_enabled(link
) > 0)
3677 /* no restrictions on LPM transitions */
3678 scontrol
&= ~(0x7 << 8);
3680 /* empty port, power off */
3682 scontrol
|= (0x1 << 2);
3689 rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
);
3693 /* give the link time to transit out of LPM state */
3697 /* clear PHYRDY_CHG from SError */
3698 ehc
->i
.serror
&= ~SERR_PHYRDY_CHG
;
3699 return sata_scr_write(link
, SCR_ERROR
, SERR_PHYRDY_CHG
);
3703 * ata_std_prereset - prepare for reset
3704 * @link: ATA link to be reset
3705 * @deadline: deadline jiffies for the operation
3707 * @link is about to be reset. Initialize it. Failure from
3708 * prereset makes libata abort whole reset sequence and give up
3709 * that port, so prereset should be best-effort. It does its
3710 * best to prepare for reset sequence but if things go wrong, it
3711 * should just whine, not fail.
3714 * Kernel thread context (may sleep)
3717 * 0 on success, -errno otherwise.
3719 int ata_std_prereset(struct ata_link
*link
, unsigned long deadline
)
3721 struct ata_port
*ap
= link
->ap
;
3722 struct ata_eh_context
*ehc
= &link
->eh_context
;
3723 const unsigned long *timing
= sata_ehc_deb_timing(ehc
);
3726 /* if we're about to do hardreset, nothing more to do */
3727 if (ehc
->i
.action
& ATA_EH_HARDRESET
)
3730 /* if SATA, resume link */
3731 if (ap
->flags
& ATA_FLAG_SATA
) {
3732 rc
= sata_link_resume(link
, timing
, deadline
);
3733 /* whine about phy resume failure but proceed */
3734 if (rc
&& rc
!= -EOPNOTSUPP
)
3736 "failed to resume link for reset (errno=%d)\n",
3740 /* no point in trying softreset on offline link */
3741 if (ata_phys_link_offline(link
))
3742 ehc
->i
.action
&= ~ATA_EH_SOFTRESET
;
3748 * sata_link_hardreset - reset link via SATA phy reset
3749 * @link: link to reset
3750 * @timing: timing parameters { interval, duratinon, timeout } in msec
3751 * @deadline: deadline jiffies for the operation
3752 * @online: optional out parameter indicating link onlineness
3753 * @check_ready: optional callback to check link readiness
3755 * SATA phy-reset @link using DET bits of SControl register.
3756 * After hardreset, link readiness is waited upon using
3757 * ata_wait_ready() if @check_ready is specified. LLDs are
3758 * allowed to not specify @check_ready and wait itself after this
3759 * function returns. Device classification is LLD's
3762 * *@online is set to one iff reset succeeded and @link is online
3766 * Kernel thread context (may sleep)
3769 * 0 on success, -errno otherwise.
3771 int sata_link_hardreset(struct ata_link
*link
, const unsigned long *timing
,
3772 unsigned long deadline
,
3773 bool *online
, int (*check_ready
)(struct ata_link
*))
3783 if (sata_set_spd_needed(link
)) {
3784 /* SATA spec says nothing about how to reconfigure
3785 * spd. To be on the safe side, turn off phy during
3786 * reconfiguration. This works for at least ICH7 AHCI
3789 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3792 scontrol
= (scontrol
& 0x0f0) | 0x304;
3794 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
3800 /* issue phy wake/reset */
3801 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3804 scontrol
= (scontrol
& 0x0f0) | 0x301;
3806 if ((rc
= sata_scr_write_flush(link
, SCR_CONTROL
, scontrol
)))
3809 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3810 * 10.4.2 says at least 1 ms.
3812 ata_msleep(link
->ap
, 1);
3814 /* bring link back */
3815 rc
= sata_link_resume(link
, timing
, deadline
);
3818 /* if link is offline nothing more to do */
3819 if (ata_phys_link_offline(link
))
3822 /* Link is online. From this point, -ENODEV too is an error. */
3826 if (sata_pmp_supported(link
->ap
) && ata_is_host_link(link
)) {
3827 /* If PMP is supported, we have to do follow-up SRST.
3828 * Some PMPs don't send D2H Reg FIS after hardreset if
3829 * the first port is empty. Wait only for
3830 * ATA_TMOUT_PMP_SRST_WAIT.
3833 unsigned long pmp_deadline
;
3835 pmp_deadline
= ata_deadline(jiffies
,
3836 ATA_TMOUT_PMP_SRST_WAIT
);
3837 if (time_after(pmp_deadline
, deadline
))
3838 pmp_deadline
= deadline
;
3839 ata_wait_ready(link
, pmp_deadline
, check_ready
);
3847 rc
= ata_wait_ready(link
, deadline
, check_ready
);
3849 if (rc
&& rc
!= -EAGAIN
) {
3850 /* online is set iff link is online && reset succeeded */
3853 ata_link_err(link
, "COMRESET failed (errno=%d)\n", rc
);
3855 DPRINTK("EXIT, rc=%d\n", rc
);
3860 * sata_std_hardreset - COMRESET w/o waiting or classification
3861 * @link: link to reset
3862 * @class: resulting class of attached device
3863 * @deadline: deadline jiffies for the operation
3865 * Standard SATA COMRESET w/o waiting or classification.
3868 * Kernel thread context (may sleep)
3871 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3873 int sata_std_hardreset(struct ata_link
*link
, unsigned int *class,
3874 unsigned long deadline
)
3876 const unsigned long *timing
= sata_ehc_deb_timing(&link
->eh_context
);
3881 rc
= sata_link_hardreset(link
, timing
, deadline
, &online
, NULL
);
3882 return online
? -EAGAIN
: rc
;
3886 * ata_std_postreset - standard postreset callback
3887 * @link: the target ata_link
3888 * @classes: classes of attached devices
3890 * This function is invoked after a successful reset. Note that
3891 * the device might have been reset more than once using
3892 * different reset methods before postreset is invoked.
3895 * Kernel thread context (may sleep)
3897 void ata_std_postreset(struct ata_link
*link
, unsigned int *classes
)
3903 /* reset complete, clear SError */
3904 if (!sata_scr_read(link
, SCR_ERROR
, &serror
))
3905 sata_scr_write(link
, SCR_ERROR
, serror
);
3907 /* print link status */
3908 sata_print_link_status(link
);
3914 * ata_dev_same_device - Determine whether new ID matches configured device
3915 * @dev: device to compare against
3916 * @new_class: class of the new device
3917 * @new_id: IDENTIFY page of the new device
3919 * Compare @new_class and @new_id against @dev and determine
3920 * whether @dev is the device indicated by @new_class and
3927 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3929 static int ata_dev_same_device(struct ata_device
*dev
, unsigned int new_class
,
3932 const u16
*old_id
= dev
->id
;
3933 unsigned char model
[2][ATA_ID_PROD_LEN
+ 1];
3934 unsigned char serial
[2][ATA_ID_SERNO_LEN
+ 1];
3936 if (dev
->class != new_class
) {
3937 ata_dev_info(dev
, "class mismatch %d != %d\n",
3938 dev
->class, new_class
);
3942 ata_id_c_string(old_id
, model
[0], ATA_ID_PROD
, sizeof(model
[0]));
3943 ata_id_c_string(new_id
, model
[1], ATA_ID_PROD
, sizeof(model
[1]));
3944 ata_id_c_string(old_id
, serial
[0], ATA_ID_SERNO
, sizeof(serial
[0]));
3945 ata_id_c_string(new_id
, serial
[1], ATA_ID_SERNO
, sizeof(serial
[1]));
3947 if (strcmp(model
[0], model
[1])) {
3948 ata_dev_info(dev
, "model number mismatch '%s' != '%s'\n",
3949 model
[0], model
[1]);
3953 if (strcmp(serial
[0], serial
[1])) {
3954 ata_dev_info(dev
, "serial number mismatch '%s' != '%s'\n",
3955 serial
[0], serial
[1]);
3963 * ata_dev_reread_id - Re-read IDENTIFY data
3964 * @dev: target ATA device
3965 * @readid_flags: read ID flags
3967 * Re-read IDENTIFY page and make sure @dev is still attached to
3971 * Kernel thread context (may sleep)
3974 * 0 on success, negative errno otherwise
3976 int ata_dev_reread_id(struct ata_device
*dev
, unsigned int readid_flags
)
3978 unsigned int class = dev
->class;
3979 u16
*id
= (void *)dev
->link
->ap
->sector_buf
;
3983 rc
= ata_dev_read_id(dev
, &class, readid_flags
, id
);
3987 /* is the device still there? */
3988 if (!ata_dev_same_device(dev
, class, id
))
3991 memcpy(dev
->id
, id
, sizeof(id
[0]) * ATA_ID_WORDS
);
3996 * ata_dev_revalidate - Revalidate ATA device
3997 * @dev: device to revalidate
3998 * @new_class: new class code
3999 * @readid_flags: read ID flags
4001 * Re-read IDENTIFY page, make sure @dev is still attached to the
4002 * port and reconfigure it according to the new IDENTIFY page.
4005 * Kernel thread context (may sleep)
4008 * 0 on success, negative errno otherwise
4010 int ata_dev_revalidate(struct ata_device
*dev
, unsigned int new_class
,
4011 unsigned int readid_flags
)
4013 u64 n_sectors
= dev
->n_sectors
;
4014 u64 n_native_sectors
= dev
->n_native_sectors
;
4017 if (!ata_dev_enabled(dev
))
4020 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4021 if (ata_class_enabled(new_class
) &&
4022 new_class
!= ATA_DEV_ATA
&&
4023 new_class
!= ATA_DEV_ATAPI
&&
4024 new_class
!= ATA_DEV_ZAC
&&
4025 new_class
!= ATA_DEV_SEMB
) {
4026 ata_dev_info(dev
, "class mismatch %u != %u\n",
4027 dev
->class, new_class
);
4033 rc
= ata_dev_reread_id(dev
, readid_flags
);
4037 /* configure device according to the new ID */
4038 rc
= ata_dev_configure(dev
);
4042 /* verify n_sectors hasn't changed */
4043 if (dev
->class != ATA_DEV_ATA
|| !n_sectors
||
4044 dev
->n_sectors
== n_sectors
)
4047 /* n_sectors has changed */
4048 ata_dev_warn(dev
, "n_sectors mismatch %llu != %llu\n",
4049 (unsigned long long)n_sectors
,
4050 (unsigned long long)dev
->n_sectors
);
4053 * Something could have caused HPA to be unlocked
4054 * involuntarily. If n_native_sectors hasn't changed and the
4055 * new size matches it, keep the device.
4057 if (dev
->n_native_sectors
== n_native_sectors
&&
4058 dev
->n_sectors
> n_sectors
&& dev
->n_sectors
== n_native_sectors
) {
4060 "new n_sectors matches native, probably "
4061 "late HPA unlock, n_sectors updated\n");
4062 /* use the larger n_sectors */
4067 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4068 * unlocking HPA in those cases.
4070 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4072 if (dev
->n_native_sectors
== n_native_sectors
&&
4073 dev
->n_sectors
< n_sectors
&& n_sectors
== n_native_sectors
&&
4074 !(dev
->horkage
& ATA_HORKAGE_BROKEN_HPA
)) {
4076 "old n_sectors matches native, probably "
4077 "late HPA lock, will try to unlock HPA\n");
4078 /* try unlocking HPA */
4079 dev
->flags
|= ATA_DFLAG_UNLOCK_HPA
;
4084 /* restore original n_[native_]sectors and fail */
4085 dev
->n_native_sectors
= n_native_sectors
;
4086 dev
->n_sectors
= n_sectors
;
4088 ata_dev_err(dev
, "revalidation failed (errno=%d)\n", rc
);
4092 struct ata_blacklist_entry
{
4093 const char *model_num
;
4094 const char *model_rev
;
4095 unsigned long horkage
;
4098 static const struct ata_blacklist_entry ata_device_blacklist
[] = {
4099 /* Devices with DMA related problems under Linux */
4100 { "WDC AC11000H", NULL
, ATA_HORKAGE_NODMA
},
4101 { "WDC AC22100H", NULL
, ATA_HORKAGE_NODMA
},
4102 { "WDC AC32500H", NULL
, ATA_HORKAGE_NODMA
},
4103 { "WDC AC33100H", NULL
, ATA_HORKAGE_NODMA
},
4104 { "WDC AC31600H", NULL
, ATA_HORKAGE_NODMA
},
4105 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA
},
4106 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA
},
4107 { "Compaq CRD-8241B", NULL
, ATA_HORKAGE_NODMA
},
4108 { "CRD-8400B", NULL
, ATA_HORKAGE_NODMA
},
4109 { "CRD-848[02]B", NULL
, ATA_HORKAGE_NODMA
},
4110 { "CRD-84", NULL
, ATA_HORKAGE_NODMA
},
4111 { "SanDisk SDP3B", NULL
, ATA_HORKAGE_NODMA
},
4112 { "SanDisk SDP3B-64", NULL
, ATA_HORKAGE_NODMA
},
4113 { "SANYO CD-ROM CRD", NULL
, ATA_HORKAGE_NODMA
},
4114 { "HITACHI CDR-8", NULL
, ATA_HORKAGE_NODMA
},
4115 { "HITACHI CDR-8[34]35",NULL
, ATA_HORKAGE_NODMA
},
4116 { "Toshiba CD-ROM XM-6202B", NULL
, ATA_HORKAGE_NODMA
},
4117 { "TOSHIBA CD-ROM XM-1702BC", NULL
, ATA_HORKAGE_NODMA
},
4118 { "CD-532E-A", NULL
, ATA_HORKAGE_NODMA
},
4119 { "E-IDE CD-ROM CR-840",NULL
, ATA_HORKAGE_NODMA
},
4120 { "CD-ROM Drive/F5A", NULL
, ATA_HORKAGE_NODMA
},
4121 { "WPI CDD-820", NULL
, ATA_HORKAGE_NODMA
},
4122 { "SAMSUNG CD-ROM SC-148C", NULL
, ATA_HORKAGE_NODMA
},
4123 { "SAMSUNG CD-ROM SC", NULL
, ATA_HORKAGE_NODMA
},
4124 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL
,ATA_HORKAGE_NODMA
},
4125 { "_NEC DV5800A", NULL
, ATA_HORKAGE_NODMA
},
4126 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA
},
4127 { "Seagate STT20000A", NULL
, ATA_HORKAGE_NODMA
},
4128 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA
},
4129 /* Odd clown on sil3726/4726 PMPs */
4130 { "Config Disk", NULL
, ATA_HORKAGE_DISABLE
},
4132 /* Weird ATAPI devices */
4133 { "TORiSAN DVD-ROM DRD-N216", NULL
, ATA_HORKAGE_MAX_SEC_128
},
4134 { "QUANTUM DAT DAT72-000", NULL
, ATA_HORKAGE_ATAPI_MOD16_DMA
},
4135 { "Slimtype DVD A DS8A8SH", NULL
, ATA_HORKAGE_MAX_SEC_LBA48
},
4136 { "Slimtype DVD A DS8A9SH", NULL
, ATA_HORKAGE_MAX_SEC_LBA48
},
4139 * Causes silent data corruption with higher max sects.
4140 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4142 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024
},
4145 * These devices time out with higher max sects.
4146 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
4148 { "LITEON CX1-JB*-HP", NULL
, ATA_HORKAGE_MAX_SEC_1024
},
4149 { "LITEON EP1-*", NULL
, ATA_HORKAGE_MAX_SEC_1024
},
4151 /* Devices we expect to fail diagnostics */
4153 /* Devices where NCQ should be avoided */
4155 { "WDC WD740ADFD-00", NULL
, ATA_HORKAGE_NONCQ
},
4156 { "WDC WD740ADFD-00NLR1", NULL
, ATA_HORKAGE_NONCQ
, },
4157 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4158 { "FUJITSU MHT2060BH", NULL
, ATA_HORKAGE_NONCQ
},
4160 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ
},
4161 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ
},
4162 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ
},
4163 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ
},
4164 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ
},
4166 /* Seagate NCQ + FLUSH CACHE firmware bug */
4167 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ
|
4168 ATA_HORKAGE_FIRMWARE_WARN
},
4170 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ
|
4171 ATA_HORKAGE_FIRMWARE_WARN
},
4173 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ
|
4174 ATA_HORKAGE_FIRMWARE_WARN
},
4176 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ
|
4177 ATA_HORKAGE_FIRMWARE_WARN
},
4179 /* drives which fail FPDMA_AA activation (some may freeze afterwards) */
4180 { "ST1000LM024 HN-M101MBB", "2AR10001", ATA_HORKAGE_BROKEN_FPDMA_AA
},
4181 { "ST1000LM024 HN-M101MBB", "2BA30001", ATA_HORKAGE_BROKEN_FPDMA_AA
},
4182 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA
},
4184 /* Blacklist entries taken from Silicon Image 3124/3132
4185 Windows driver .inf file - also several Linux problem reports */
4186 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ
, },
4187 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ
, },
4188 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ
, },
4190 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4191 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ
, },
4193 /* Some Sandisk SSDs lock up hard with NCQ enabled. Reported on
4194 SD7SN6S256G and SD8SN8U256G */
4195 { "SanDisk SD[78]SN*G", NULL
, ATA_HORKAGE_NONCQ
, },
4197 /* devices which puke on READ_NATIVE_MAX */
4198 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA
, },
4199 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA
},
4200 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA
},
4201 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA
},
4203 /* this one allows HPA unlocking but fails IOs on the area */
4204 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA
},
4206 /* Devices which report 1 sector over size HPA */
4207 { "ST340823A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
4208 { "ST320413A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
4209 { "ST310211A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
4211 /* Devices which get the IVB wrong */
4212 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB
, },
4213 /* Maybe we should just blacklist TSSTcorp... */
4214 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB
, },
4216 /* Devices that do not need bridging limits applied */
4217 { "MTRON MSP-SATA*", NULL
, ATA_HORKAGE_BRIDGE_OK
, },
4218 { "BUFFALO HD-QSU2/R5", NULL
, ATA_HORKAGE_BRIDGE_OK
, },
4220 /* Devices which aren't very happy with higher link speeds */
4221 { "WD My Book", NULL
, ATA_HORKAGE_1_5_GBPS
, },
4222 { "Seagate FreeAgent GoFlex", NULL
, ATA_HORKAGE_1_5_GBPS
, },
4225 * Devices which choke on SETXFER. Applies only if both the
4226 * device and controller are SATA.
4228 { "PIONEER DVD-RW DVRTD08", NULL
, ATA_HORKAGE_NOSETXFER
},
4229 { "PIONEER DVD-RW DVRTD08A", NULL
, ATA_HORKAGE_NOSETXFER
},
4230 { "PIONEER DVD-RW DVR-215", NULL
, ATA_HORKAGE_NOSETXFER
},
4231 { "PIONEER DVD-RW DVR-212D", NULL
, ATA_HORKAGE_NOSETXFER
},
4232 { "PIONEER DVD-RW DVR-216D", NULL
, ATA_HORKAGE_NOSETXFER
},
4234 /* Crucial BX100 SSD 500GB has broken LPM support */
4235 { "CT500BX100SSD1", NULL
, ATA_HORKAGE_NOLPM
},
4237 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
4238 { "Crucial_CT512MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM
|
4239 ATA_HORKAGE_ZERO_AFTER_TRIM
|
4240 ATA_HORKAGE_NOLPM
, },
4241 /* 512GB MX100 with newer firmware has only LPM issues */
4242 { "Crucial_CT512MX100*", NULL
, ATA_HORKAGE_ZERO_AFTER_TRIM
|
4243 ATA_HORKAGE_NOLPM
, },
4245 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
4246 { "Crucial_CT480M500*", NULL
, ATA_HORKAGE_NO_NCQ_TRIM
|
4247 ATA_HORKAGE_ZERO_AFTER_TRIM
|
4248 ATA_HORKAGE_NOLPM
, },
4249 { "Crucial_CT960M500*", NULL
, ATA_HORKAGE_NO_NCQ_TRIM
|
4250 ATA_HORKAGE_ZERO_AFTER_TRIM
|
4251 ATA_HORKAGE_NOLPM
, },
4253 /* devices that don't properly handle queued TRIM commands */
4254 { "Micron_M500IT_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM
|
4255 ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4256 { "Micron_M500_*", NULL
, ATA_HORKAGE_NO_NCQ_TRIM
|
4257 ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4258 { "Crucial_CT*M500*", NULL
, ATA_HORKAGE_NO_NCQ_TRIM
|
4259 ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4260 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM
|
4261 ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4262 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM
|
4263 ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4264 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM
|
4265 ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4266 { "Samsung SSD 840*", NULL
, ATA_HORKAGE_NO_NCQ_TRIM
|
4267 ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4268 { "Samsung SSD 850*", NULL
, ATA_HORKAGE_NO_NCQ_TRIM
|
4269 ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4270 { "FCCT*M500*", NULL
, ATA_HORKAGE_NO_NCQ_TRIM
|
4271 ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4273 /* devices that don't properly handle TRIM commands */
4274 { "SuperSSpeed S238*", NULL
, ATA_HORKAGE_NOTRIM
, },
4277 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4278 * (Return Zero After Trim) flags in the ATA Command Set are
4279 * unreliable in the sense that they only define what happens if
4280 * the device successfully executed the DSM TRIM command. TRIM
4281 * is only advisory, however, and the device is free to silently
4282 * ignore all or parts of the request.
4284 * Whitelist drives that are known to reliably return zeroes
4289 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4290 * that model before whitelisting all other intel SSDs.
4292 { "INTEL*SSDSC2MH*", NULL
, 0, },
4294 { "Micron*", NULL
, ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4295 { "Crucial*", NULL
, ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4296 { "INTEL*SSD*", NULL
, ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4297 { "SSD*INTEL*", NULL
, ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4298 { "Samsung*SSD*", NULL
, ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4299 { "SAMSUNG*SSD*", NULL
, ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4300 { "ST[1248][0248]0[FH]*", NULL
, ATA_HORKAGE_ZERO_AFTER_TRIM
, },
4303 * Some WD SATA-I drives spin up and down erratically when the link
4304 * is put into the slumber mode. We don't have full list of the
4305 * affected devices. Disable LPM if the device matches one of the
4306 * known prefixes and is SATA-1. As a side effect LPM partial is
4309 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4311 { "WDC WD800JD-*", NULL
, ATA_HORKAGE_WD_BROKEN_LPM
},
4312 { "WDC WD1200JD-*", NULL
, ATA_HORKAGE_WD_BROKEN_LPM
},
4313 { "WDC WD1600JD-*", NULL
, ATA_HORKAGE_WD_BROKEN_LPM
},
4314 { "WDC WD2000JD-*", NULL
, ATA_HORKAGE_WD_BROKEN_LPM
},
4315 { "WDC WD2500JD-*", NULL
, ATA_HORKAGE_WD_BROKEN_LPM
},
4316 { "WDC WD3000JD-*", NULL
, ATA_HORKAGE_WD_BROKEN_LPM
},
4317 { "WDC WD3200JD-*", NULL
, ATA_HORKAGE_WD_BROKEN_LPM
},
4323 static unsigned long ata_dev_blacklisted(const struct ata_device
*dev
)
4325 unsigned char model_num
[ATA_ID_PROD_LEN
+ 1];
4326 unsigned char model_rev
[ATA_ID_FW_REV_LEN
+ 1];
4327 const struct ata_blacklist_entry
*ad
= ata_device_blacklist
;
4329 ata_id_c_string(dev
->id
, model_num
, ATA_ID_PROD
, sizeof(model_num
));
4330 ata_id_c_string(dev
->id
, model_rev
, ATA_ID_FW_REV
, sizeof(model_rev
));
4332 while (ad
->model_num
) {
4333 if (glob_match(ad
->model_num
, model_num
)) {
4334 if (ad
->model_rev
== NULL
)
4336 if (glob_match(ad
->model_rev
, model_rev
))
4344 static int ata_dma_blacklisted(const struct ata_device
*dev
)
4346 /* We don't support polling DMA.
4347 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4348 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4350 if ((dev
->link
->ap
->flags
& ATA_FLAG_PIO_POLLING
) &&
4351 (dev
->flags
& ATA_DFLAG_CDB_INTR
))
4353 return (dev
->horkage
& ATA_HORKAGE_NODMA
) ? 1 : 0;
4357 * ata_is_40wire - check drive side detection
4360 * Perform drive side detection decoding, allowing for device vendors
4361 * who can't follow the documentation.
4364 static int ata_is_40wire(struct ata_device
*dev
)
4366 if (dev
->horkage
& ATA_HORKAGE_IVB
)
4367 return ata_drive_40wire_relaxed(dev
->id
);
4368 return ata_drive_40wire(dev
->id
);
4372 * cable_is_40wire - 40/80/SATA decider
4373 * @ap: port to consider
4375 * This function encapsulates the policy for speed management
4376 * in one place. At the moment we don't cache the result but
4377 * there is a good case for setting ap->cbl to the result when
4378 * we are called with unknown cables (and figuring out if it
4379 * impacts hotplug at all).
4381 * Return 1 if the cable appears to be 40 wire.
4384 static int cable_is_40wire(struct ata_port
*ap
)
4386 struct ata_link
*link
;
4387 struct ata_device
*dev
;
4389 /* If the controller thinks we are 40 wire, we are. */
4390 if (ap
->cbl
== ATA_CBL_PATA40
)
4393 /* If the controller thinks we are 80 wire, we are. */
4394 if (ap
->cbl
== ATA_CBL_PATA80
|| ap
->cbl
== ATA_CBL_SATA
)
4397 /* If the system is known to be 40 wire short cable (eg
4398 * laptop), then we allow 80 wire modes even if the drive
4401 if (ap
->cbl
== ATA_CBL_PATA40_SHORT
)
4404 /* If the controller doesn't know, we scan.
4406 * Note: We look for all 40 wire detects at this point. Any
4407 * 80 wire detect is taken to be 80 wire cable because
4408 * - in many setups only the one drive (slave if present) will
4409 * give a valid detect
4410 * - if you have a non detect capable drive you don't want it
4411 * to colour the choice
4413 ata_for_each_link(link
, ap
, EDGE
) {
4414 ata_for_each_dev(dev
, link
, ENABLED
) {
4415 if (!ata_is_40wire(dev
))
4423 * ata_dev_xfermask - Compute supported xfermask of the given device
4424 * @dev: Device to compute xfermask for
4426 * Compute supported xfermask of @dev and store it in
4427 * dev->*_mask. This function is responsible for applying all
4428 * known limits including host controller limits, device
4434 static void ata_dev_xfermask(struct ata_device
*dev
)
4436 struct ata_link
*link
= dev
->link
;
4437 struct ata_port
*ap
= link
->ap
;
4438 struct ata_host
*host
= ap
->host
;
4439 unsigned long xfer_mask
;
4441 /* controller modes available */
4442 xfer_mask
= ata_pack_xfermask(ap
->pio_mask
,
4443 ap
->mwdma_mask
, ap
->udma_mask
);
4445 /* drive modes available */
4446 xfer_mask
&= ata_pack_xfermask(dev
->pio_mask
,
4447 dev
->mwdma_mask
, dev
->udma_mask
);
4448 xfer_mask
&= ata_id_xfermask(dev
->id
);
4451 * CFA Advanced TrueIDE timings are not allowed on a shared
4454 if (ata_dev_pair(dev
)) {
4455 /* No PIO5 or PIO6 */
4456 xfer_mask
&= ~(0x03 << (ATA_SHIFT_PIO
+ 5));
4457 /* No MWDMA3 or MWDMA 4 */
4458 xfer_mask
&= ~(0x03 << (ATA_SHIFT_MWDMA
+ 3));
4461 if (ata_dma_blacklisted(dev
)) {
4462 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
4464 "device is on DMA blacklist, disabling DMA\n");
4467 if ((host
->flags
& ATA_HOST_SIMPLEX
) &&
4468 host
->simplex_claimed
&& host
->simplex_claimed
!= ap
) {
4469 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
4471 "simplex DMA is claimed by other device, disabling DMA\n");
4474 if (ap
->flags
& ATA_FLAG_NO_IORDY
)
4475 xfer_mask
&= ata_pio_mask_no_iordy(dev
);
4477 if (ap
->ops
->mode_filter
)
4478 xfer_mask
= ap
->ops
->mode_filter(dev
, xfer_mask
);
4480 /* Apply cable rule here. Don't apply it early because when
4481 * we handle hot plug the cable type can itself change.
4482 * Check this last so that we know if the transfer rate was
4483 * solely limited by the cable.
4484 * Unknown or 80 wire cables reported host side are checked
4485 * drive side as well. Cases where we know a 40wire cable
4486 * is used safely for 80 are not checked here.
4488 if (xfer_mask
& (0xF8 << ATA_SHIFT_UDMA
))
4489 /* UDMA/44 or higher would be available */
4490 if (cable_is_40wire(ap
)) {
4492 "limited to UDMA/33 due to 40-wire cable\n");
4493 xfer_mask
&= ~(0xF8 << ATA_SHIFT_UDMA
);
4496 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
,
4497 &dev
->mwdma_mask
, &dev
->udma_mask
);
4501 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4502 * @dev: Device to which command will be sent
4504 * Issue SET FEATURES - XFER MODE command to device @dev
4508 * PCI/etc. bus probe sem.
4511 * 0 on success, AC_ERR_* mask otherwise.
4514 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
)
4516 struct ata_taskfile tf
;
4517 unsigned int err_mask
;
4519 /* set up set-features taskfile */
4520 DPRINTK("set features - xfer mode\n");
4522 /* Some controllers and ATAPI devices show flaky interrupt
4523 * behavior after setting xfer mode. Use polling instead.
4525 ata_tf_init(dev
, &tf
);
4526 tf
.command
= ATA_CMD_SET_FEATURES
;
4527 tf
.feature
= SETFEATURES_XFER
;
4528 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
| ATA_TFLAG_POLLING
;
4529 tf
.protocol
= ATA_PROT_NODATA
;
4530 /* If we are using IORDY we must send the mode setting command */
4531 if (ata_pio_need_iordy(dev
))
4532 tf
.nsect
= dev
->xfer_mode
;
4533 /* If the device has IORDY and the controller does not - turn it off */
4534 else if (ata_id_has_iordy(dev
->id
))
4536 else /* In the ancient relic department - skip all of this */
4539 /* On some disks, this command causes spin-up, so we need longer timeout */
4540 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 15000);
4542 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4547 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4548 * @dev: Device to which command will be sent
4549 * @enable: Whether to enable or disable the feature
4550 * @feature: The sector count represents the feature to set
4552 * Issue SET FEATURES - SATA FEATURES command to device @dev
4553 * on port @ap with sector count
4556 * PCI/etc. bus probe sem.
4559 * 0 on success, AC_ERR_* mask otherwise.
4561 unsigned int ata_dev_set_feature(struct ata_device
*dev
, u8 enable
, u8 feature
)
4563 struct ata_taskfile tf
;
4564 unsigned int err_mask
;
4566 /* set up set-features taskfile */
4567 DPRINTK("set features - SATA features\n");
4569 ata_tf_init(dev
, &tf
);
4570 tf
.command
= ATA_CMD_SET_FEATURES
;
4571 tf
.feature
= enable
;
4572 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
4573 tf
.protocol
= ATA_PROT_NODATA
;
4576 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
4578 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4581 EXPORT_SYMBOL_GPL(ata_dev_set_feature
);
4584 * ata_dev_init_params - Issue INIT DEV PARAMS command
4585 * @dev: Device to which command will be sent
4586 * @heads: Number of heads (taskfile parameter)
4587 * @sectors: Number of sectors (taskfile parameter)
4590 * Kernel thread context (may sleep)
4593 * 0 on success, AC_ERR_* mask otherwise.
4595 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
4596 u16 heads
, u16 sectors
)
4598 struct ata_taskfile tf
;
4599 unsigned int err_mask
;
4601 /* Number of sectors per track 1-255. Number of heads 1-16 */
4602 if (sectors
< 1 || sectors
> 255 || heads
< 1 || heads
> 16)
4603 return AC_ERR_INVALID
;
4605 /* set up init dev params taskfile */
4606 DPRINTK("init dev params \n");
4608 ata_tf_init(dev
, &tf
);
4609 tf
.command
= ATA_CMD_INIT_DEV_PARAMS
;
4610 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
4611 tf
.protocol
= ATA_PROT_NODATA
;
4613 tf
.device
|= (heads
- 1) & 0x0f; /* max head = num. of heads - 1 */
4615 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
4616 /* A clean abort indicates an original or just out of spec drive
4617 and we should continue as we issue the setup based on the
4618 drive reported working geometry */
4619 if (err_mask
== AC_ERR_DEV
&& (tf
.feature
& ATA_ABORTED
))
4622 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4627 * ata_sg_clean - Unmap DMA memory associated with command
4628 * @qc: Command containing DMA memory to be released
4630 * Unmap all mapped DMA memory associated with this command.
4633 * spin_lock_irqsave(host lock)
4635 void ata_sg_clean(struct ata_queued_cmd
*qc
)
4637 struct ata_port
*ap
= qc
->ap
;
4638 struct scatterlist
*sg
= qc
->sg
;
4639 int dir
= qc
->dma_dir
;
4641 WARN_ON_ONCE(sg
== NULL
);
4643 VPRINTK("unmapping %u sg elements\n", qc
->n_elem
);
4646 dma_unmap_sg(ap
->dev
, sg
, qc
->orig_n_elem
, dir
);
4648 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
4653 * atapi_check_dma - Check whether ATAPI DMA can be supported
4654 * @qc: Metadata associated with taskfile to check
4656 * Allow low-level driver to filter ATA PACKET commands, returning
4657 * a status indicating whether or not it is OK to use DMA for the
4658 * supplied PACKET command.
4661 * spin_lock_irqsave(host lock)
4663 * RETURNS: 0 when ATAPI DMA can be used
4666 int atapi_check_dma(struct ata_queued_cmd
*qc
)
4668 struct ata_port
*ap
= qc
->ap
;
4670 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4671 * few ATAPI devices choke on such DMA requests.
4673 if (!(qc
->dev
->horkage
& ATA_HORKAGE_ATAPI_MOD16_DMA
) &&
4674 unlikely(qc
->nbytes
& 15))
4677 if (ap
->ops
->check_atapi_dma
)
4678 return ap
->ops
->check_atapi_dma(qc
);
4684 * ata_std_qc_defer - Check whether a qc needs to be deferred
4685 * @qc: ATA command in question
4687 * Non-NCQ commands cannot run with any other command, NCQ or
4688 * not. As upper layer only knows the queue depth, we are
4689 * responsible for maintaining exclusion. This function checks
4690 * whether a new command @qc can be issued.
4693 * spin_lock_irqsave(host lock)
4696 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4698 int ata_std_qc_defer(struct ata_queued_cmd
*qc
)
4700 struct ata_link
*link
= qc
->dev
->link
;
4702 if (qc
->tf
.protocol
== ATA_PROT_NCQ
) {
4703 if (!ata_tag_valid(link
->active_tag
))
4706 if (!ata_tag_valid(link
->active_tag
) && !link
->sactive
)
4710 return ATA_DEFER_LINK
;
4713 void ata_noop_qc_prep(struct ata_queued_cmd
*qc
) { }
4716 * ata_sg_init - Associate command with scatter-gather table.
4717 * @qc: Command to be associated
4718 * @sg: Scatter-gather table.
4719 * @n_elem: Number of elements in s/g table.
4721 * Initialize the data-related elements of queued_cmd @qc
4722 * to point to a scatter-gather table @sg, containing @n_elem
4726 * spin_lock_irqsave(host lock)
4728 void ata_sg_init(struct ata_queued_cmd
*qc
, struct scatterlist
*sg
,
4729 unsigned int n_elem
)
4732 qc
->n_elem
= n_elem
;
4737 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4738 * @qc: Command with scatter-gather table to be mapped.
4740 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4743 * spin_lock_irqsave(host lock)
4746 * Zero on success, negative on error.
4749 static int ata_sg_setup(struct ata_queued_cmd
*qc
)
4751 struct ata_port
*ap
= qc
->ap
;
4752 unsigned int n_elem
;
4754 VPRINTK("ENTER, ata%u\n", ap
->print_id
);
4756 n_elem
= dma_map_sg(ap
->dev
, qc
->sg
, qc
->n_elem
, qc
->dma_dir
);
4760 DPRINTK("%d sg elements mapped\n", n_elem
);
4761 qc
->orig_n_elem
= qc
->n_elem
;
4762 qc
->n_elem
= n_elem
;
4763 qc
->flags
|= ATA_QCFLAG_DMAMAP
;
4769 * swap_buf_le16 - swap halves of 16-bit words in place
4770 * @buf: Buffer to swap
4771 * @buf_words: Number of 16-bit words in buffer.
4773 * Swap halves of 16-bit words if needed to convert from
4774 * little-endian byte order to native cpu byte order, or
4778 * Inherited from caller.
4780 void swap_buf_le16(u16
*buf
, unsigned int buf_words
)
4785 for (i
= 0; i
< buf_words
; i
++)
4786 buf
[i
] = le16_to_cpu(buf
[i
]);
4787 #endif /* __BIG_ENDIAN */
4791 * ata_qc_new_init - Request an available ATA command, and initialize it
4792 * @dev: Device from whom we request an available command structure
4799 struct ata_queued_cmd
*ata_qc_new_init(struct ata_device
*dev
, int tag
)
4801 struct ata_port
*ap
= dev
->link
->ap
;
4802 struct ata_queued_cmd
*qc
;
4804 /* no command while frozen */
4805 if (unlikely(ap
->pflags
& ATA_PFLAG_FROZEN
))
4809 if (ap
->flags
& ATA_FLAG_SAS_HOST
) {
4810 tag
= ata_sas_allocate_tag(ap
);
4815 qc
= __ata_qc_from_tag(ap
, tag
);
4827 * ata_qc_free - free unused ata_queued_cmd
4828 * @qc: Command to complete
4830 * Designed to free unused ata_queued_cmd object
4831 * in case something prevents using it.
4834 * spin_lock_irqsave(host lock)
4836 void ata_qc_free(struct ata_queued_cmd
*qc
)
4838 struct ata_port
*ap
;
4841 WARN_ON_ONCE(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
4846 if (likely(ata_tag_valid(tag
))) {
4847 qc
->tag
= ATA_TAG_POISON
;
4848 if (ap
->flags
& ATA_FLAG_SAS_HOST
)
4849 ata_sas_free_tag(tag
, ap
);
4853 void __ata_qc_complete(struct ata_queued_cmd
*qc
)
4855 struct ata_port
*ap
;
4856 struct ata_link
*link
;
4858 WARN_ON_ONCE(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
4859 WARN_ON_ONCE(!(qc
->flags
& ATA_QCFLAG_ACTIVE
));
4861 link
= qc
->dev
->link
;
4863 if (likely(qc
->flags
& ATA_QCFLAG_DMAMAP
))
4866 /* command should be marked inactive atomically with qc completion */
4867 if (qc
->tf
.protocol
== ATA_PROT_NCQ
) {
4868 link
->sactive
&= ~(1 << qc
->tag
);
4870 ap
->nr_active_links
--;
4872 link
->active_tag
= ATA_TAG_POISON
;
4873 ap
->nr_active_links
--;
4876 /* clear exclusive status */
4877 if (unlikely(qc
->flags
& ATA_QCFLAG_CLEAR_EXCL
&&
4878 ap
->excl_link
== link
))
4879 ap
->excl_link
= NULL
;
4881 /* atapi: mark qc as inactive to prevent the interrupt handler
4882 * from completing the command twice later, before the error handler
4883 * is called. (when rc != 0 and atapi request sense is needed)
4885 qc
->flags
&= ~ATA_QCFLAG_ACTIVE
;
4886 ap
->qc_active
&= ~(1 << qc
->tag
);
4888 /* call completion callback */
4889 qc
->complete_fn(qc
);
4892 static void fill_result_tf(struct ata_queued_cmd
*qc
)
4894 struct ata_port
*ap
= qc
->ap
;
4896 qc
->result_tf
.flags
= qc
->tf
.flags
;
4897 ap
->ops
->qc_fill_rtf(qc
);
4900 static void ata_verify_xfer(struct ata_queued_cmd
*qc
)
4902 struct ata_device
*dev
= qc
->dev
;
4904 if (ata_is_nodata(qc
->tf
.protocol
))
4907 if ((dev
->mwdma_mask
|| dev
->udma_mask
) && ata_is_pio(qc
->tf
.protocol
))
4910 dev
->flags
&= ~ATA_DFLAG_DUBIOUS_XFER
;
4914 * ata_qc_complete - Complete an active ATA command
4915 * @qc: Command to complete
4917 * Indicate to the mid and upper layers that an ATA command has
4918 * completed, with either an ok or not-ok status.
4920 * Refrain from calling this function multiple times when
4921 * successfully completing multiple NCQ commands.
4922 * ata_qc_complete_multiple() should be used instead, which will
4923 * properly update IRQ expect state.
4926 * spin_lock_irqsave(host lock)
4928 void ata_qc_complete(struct ata_queued_cmd
*qc
)
4930 struct ata_port
*ap
= qc
->ap
;
4932 /* XXX: New EH and old EH use different mechanisms to
4933 * synchronize EH with regular execution path.
4935 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4936 * Normal execution path is responsible for not accessing a
4937 * failed qc. libata core enforces the rule by returning NULL
4938 * from ata_qc_from_tag() for failed qcs.
4940 * Old EH depends on ata_qc_complete() nullifying completion
4941 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4942 * not synchronize with interrupt handler. Only PIO task is
4945 if (ap
->ops
->error_handler
) {
4946 struct ata_device
*dev
= qc
->dev
;
4947 struct ata_eh_info
*ehi
= &dev
->link
->eh_info
;
4949 if (unlikely(qc
->err_mask
))
4950 qc
->flags
|= ATA_QCFLAG_FAILED
;
4953 * Finish internal commands without any further processing
4954 * and always with the result TF filled.
4956 if (unlikely(ata_tag_internal(qc
->tag
))) {
4958 trace_ata_qc_complete_internal(qc
);
4959 __ata_qc_complete(qc
);
4964 * Non-internal qc has failed. Fill the result TF and
4967 if (unlikely(qc
->flags
& ATA_QCFLAG_FAILED
)) {
4969 trace_ata_qc_complete_failed(qc
);
4970 ata_qc_schedule_eh(qc
);
4974 WARN_ON_ONCE(ap
->pflags
& ATA_PFLAG_FROZEN
);
4976 /* read result TF if requested */
4977 if (qc
->flags
& ATA_QCFLAG_RESULT_TF
)
4980 trace_ata_qc_complete_done(qc
);
4981 /* Some commands need post-processing after successful
4984 switch (qc
->tf
.command
) {
4985 case ATA_CMD_SET_FEATURES
:
4986 if (qc
->tf
.feature
!= SETFEATURES_WC_ON
&&
4987 qc
->tf
.feature
!= SETFEATURES_WC_OFF
)
4990 case ATA_CMD_INIT_DEV_PARAMS
: /* CHS translation changed */
4991 case ATA_CMD_SET_MULTI
: /* multi_count changed */
4992 /* revalidate device */
4993 ehi
->dev_action
[dev
->devno
] |= ATA_EH_REVALIDATE
;
4994 ata_port_schedule_eh(ap
);
4998 dev
->flags
|= ATA_DFLAG_SLEEPING
;
5002 if (unlikely(dev
->flags
& ATA_DFLAG_DUBIOUS_XFER
))
5003 ata_verify_xfer(qc
);
5005 __ata_qc_complete(qc
);
5007 if (qc
->flags
& ATA_QCFLAG_EH_SCHEDULED
)
5010 /* read result TF if failed or requested */
5011 if (qc
->err_mask
|| qc
->flags
& ATA_QCFLAG_RESULT_TF
)
5014 __ata_qc_complete(qc
);
5019 * ata_qc_complete_multiple - Complete multiple qcs successfully
5020 * @ap: port in question
5021 * @qc_active: new qc_active mask
5023 * Complete in-flight commands. This functions is meant to be
5024 * called from low-level driver's interrupt routine to complete
5025 * requests normally. ap->qc_active and @qc_active is compared
5026 * and commands are completed accordingly.
5028 * Always use this function when completing multiple NCQ commands
5029 * from IRQ handlers instead of calling ata_qc_complete()
5030 * multiple times to keep IRQ expect status properly in sync.
5033 * spin_lock_irqsave(host lock)
5036 * Number of completed commands on success, -errno otherwise.
5038 int ata_qc_complete_multiple(struct ata_port
*ap
, u32 qc_active
)
5043 done_mask
= ap
->qc_active
^ qc_active
;
5045 if (unlikely(done_mask
& qc_active
)) {
5046 ata_port_err(ap
, "illegal qc_active transition (%08x->%08x)\n",
5047 ap
->qc_active
, qc_active
);
5052 struct ata_queued_cmd
*qc
;
5053 unsigned int tag
= __ffs(done_mask
);
5055 qc
= ata_qc_from_tag(ap
, tag
);
5057 ata_qc_complete(qc
);
5060 done_mask
&= ~(1 << tag
);
5067 * ata_qc_issue - issue taskfile to device
5068 * @qc: command to issue to device
5070 * Prepare an ATA command to submission to device.
5071 * This includes mapping the data into a DMA-able
5072 * area, filling in the S/G table, and finally
5073 * writing the taskfile to hardware, starting the command.
5076 * spin_lock_irqsave(host lock)
5078 void ata_qc_issue(struct ata_queued_cmd
*qc
)
5080 struct ata_port
*ap
= qc
->ap
;
5081 struct ata_link
*link
= qc
->dev
->link
;
5082 u8 prot
= qc
->tf
.protocol
;
5084 /* Make sure only one non-NCQ command is outstanding. The
5085 * check is skipped for old EH because it reuses active qc to
5086 * request ATAPI sense.
5088 WARN_ON_ONCE(ap
->ops
->error_handler
&& ata_tag_valid(link
->active_tag
));
5090 if (ata_is_ncq(prot
)) {
5091 WARN_ON_ONCE(link
->sactive
& (1 << qc
->tag
));
5094 ap
->nr_active_links
++;
5095 link
->sactive
|= 1 << qc
->tag
;
5097 WARN_ON_ONCE(link
->sactive
);
5099 ap
->nr_active_links
++;
5100 link
->active_tag
= qc
->tag
;
5103 qc
->flags
|= ATA_QCFLAG_ACTIVE
;
5104 ap
->qc_active
|= 1 << qc
->tag
;
5107 * We guarantee to LLDs that they will have at least one
5108 * non-zero sg if the command is a data command.
5110 if (ata_is_data(prot
) && (!qc
->sg
|| !qc
->n_elem
|| !qc
->nbytes
))
5113 if (ata_is_dma(prot
) || (ata_is_pio(prot
) &&
5114 (ap
->flags
& ATA_FLAG_PIO_DMA
)))
5115 if (ata_sg_setup(qc
))
5118 /* if device is sleeping, schedule reset and abort the link */
5119 if (unlikely(qc
->dev
->flags
& ATA_DFLAG_SLEEPING
)) {
5120 link
->eh_info
.action
|= ATA_EH_RESET
;
5121 ata_ehi_push_desc(&link
->eh_info
, "waking up from sleep");
5122 ata_link_abort(link
);
5126 ap
->ops
->qc_prep(qc
);
5127 trace_ata_qc_issue(qc
);
5128 qc
->err_mask
|= ap
->ops
->qc_issue(qc
);
5129 if (unlikely(qc
->err_mask
))
5134 qc
->err_mask
|= AC_ERR_SYSTEM
;
5136 ata_qc_complete(qc
);
5140 * sata_scr_valid - test whether SCRs are accessible
5141 * @link: ATA link to test SCR accessibility for
5143 * Test whether SCRs are accessible for @link.
5149 * 1 if SCRs are accessible, 0 otherwise.
5151 int sata_scr_valid(struct ata_link
*link
)
5153 struct ata_port
*ap
= link
->ap
;
5155 return (ap
->flags
& ATA_FLAG_SATA
) && ap
->ops
->scr_read
;
5159 * sata_scr_read - read SCR register of the specified port
5160 * @link: ATA link to read SCR for
5162 * @val: Place to store read value
5164 * Read SCR register @reg of @link into *@val. This function is
5165 * guaranteed to succeed if @link is ap->link, the cable type of
5166 * the port is SATA and the port implements ->scr_read.
5169 * None if @link is ap->link. Kernel thread context otherwise.
5172 * 0 on success, negative errno on failure.
5174 int sata_scr_read(struct ata_link
*link
, int reg
, u32
*val
)
5176 if (ata_is_host_link(link
)) {
5177 if (sata_scr_valid(link
))
5178 return link
->ap
->ops
->scr_read(link
, reg
, val
);
5182 return sata_pmp_scr_read(link
, reg
, val
);
5186 * sata_scr_write - write SCR register of the specified port
5187 * @link: ATA link to write SCR for
5188 * @reg: SCR to write
5189 * @val: value to write
5191 * Write @val to SCR register @reg of @link. This function is
5192 * guaranteed to succeed if @link is ap->link, the cable type of
5193 * the port is SATA and the port implements ->scr_read.
5196 * None if @link is ap->link. Kernel thread context otherwise.
5199 * 0 on success, negative errno on failure.
5201 int sata_scr_write(struct ata_link
*link
, int reg
, u32 val
)
5203 if (ata_is_host_link(link
)) {
5204 if (sata_scr_valid(link
))
5205 return link
->ap
->ops
->scr_write(link
, reg
, val
);
5209 return sata_pmp_scr_write(link
, reg
, val
);
5213 * sata_scr_write_flush - write SCR register of the specified port and flush
5214 * @link: ATA link to write SCR for
5215 * @reg: SCR to write
5216 * @val: value to write
5218 * This function is identical to sata_scr_write() except that this
5219 * function performs flush after writing to the register.
5222 * None if @link is ap->link. Kernel thread context otherwise.
5225 * 0 on success, negative errno on failure.
5227 int sata_scr_write_flush(struct ata_link
*link
, int reg
, u32 val
)
5229 if (ata_is_host_link(link
)) {
5232 if (sata_scr_valid(link
)) {
5233 rc
= link
->ap
->ops
->scr_write(link
, reg
, val
);
5235 rc
= link
->ap
->ops
->scr_read(link
, reg
, &val
);
5241 return sata_pmp_scr_write(link
, reg
, val
);
5245 * ata_phys_link_online - test whether the given link is online
5246 * @link: ATA link to test
5248 * Test whether @link is online. Note that this function returns
5249 * 0 if online status of @link cannot be obtained, so
5250 * ata_link_online(link) != !ata_link_offline(link).
5256 * True if the port online status is available and online.
5258 bool ata_phys_link_online(struct ata_link
*link
)
5262 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
) == 0 &&
5263 ata_sstatus_online(sstatus
))
5269 * ata_phys_link_offline - test whether the given link is offline
5270 * @link: ATA link to test
5272 * Test whether @link is offline. Note that this function
5273 * returns 0 if offline status of @link cannot be obtained, so
5274 * ata_link_online(link) != !ata_link_offline(link).
5280 * True if the port offline status is available and offline.
5282 bool ata_phys_link_offline(struct ata_link
*link
)
5286 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
) == 0 &&
5287 !ata_sstatus_online(sstatus
))
5293 * ata_link_online - test whether the given link is online
5294 * @link: ATA link to test
5296 * Test whether @link is online. This is identical to
5297 * ata_phys_link_online() when there's no slave link. When
5298 * there's a slave link, this function should only be called on
5299 * the master link and will return true if any of M/S links is
5306 * True if the port online status is available and online.
5308 bool ata_link_online(struct ata_link
*link
)
5310 struct ata_link
*slave
= link
->ap
->slave_link
;
5312 WARN_ON(link
== slave
); /* shouldn't be called on slave link */
5314 return ata_phys_link_online(link
) ||
5315 (slave
&& ata_phys_link_online(slave
));
5319 * ata_link_offline - test whether the given link is offline
5320 * @link: ATA link to test
5322 * Test whether @link is offline. This is identical to
5323 * ata_phys_link_offline() when there's no slave link. When
5324 * there's a slave link, this function should only be called on
5325 * the master link and will return true if both M/S links are
5332 * True if the port offline status is available and offline.
5334 bool ata_link_offline(struct ata_link
*link
)
5336 struct ata_link
*slave
= link
->ap
->slave_link
;
5338 WARN_ON(link
== slave
); /* shouldn't be called on slave link */
5340 return ata_phys_link_offline(link
) &&
5341 (!slave
|| ata_phys_link_offline(slave
));
5345 static void ata_port_request_pm(struct ata_port
*ap
, pm_message_t mesg
,
5346 unsigned int action
, unsigned int ehi_flags
,
5349 struct ata_link
*link
;
5350 unsigned long flags
;
5352 /* Previous resume operation might still be in
5353 * progress. Wait for PM_PENDING to clear.
5355 if (ap
->pflags
& ATA_PFLAG_PM_PENDING
) {
5356 ata_port_wait_eh(ap
);
5357 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
5360 /* request PM ops to EH */
5361 spin_lock_irqsave(ap
->lock
, flags
);
5364 ap
->pflags
|= ATA_PFLAG_PM_PENDING
;
5365 ata_for_each_link(link
, ap
, HOST_FIRST
) {
5366 link
->eh_info
.action
|= action
;
5367 link
->eh_info
.flags
|= ehi_flags
;
5370 ata_port_schedule_eh(ap
);
5372 spin_unlock_irqrestore(ap
->lock
, flags
);
5375 ata_port_wait_eh(ap
);
5376 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
5381 * On some hardware, device fails to respond after spun down for suspend. As
5382 * the device won't be used before being resumed, we don't need to touch the
5383 * device. Ask EH to skip the usual stuff and proceed directly to suspend.
5385 * http://thread.gmane.org/gmane.linux.ide/46764
5387 static const unsigned int ata_port_suspend_ehi
= ATA_EHI_QUIET
5388 | ATA_EHI_NO_AUTOPSY
5389 | ATA_EHI_NO_RECOVERY
;
5391 static void ata_port_suspend(struct ata_port
*ap
, pm_message_t mesg
)
5393 ata_port_request_pm(ap
, mesg
, 0, ata_port_suspend_ehi
, false);
5396 static void ata_port_suspend_async(struct ata_port
*ap
, pm_message_t mesg
)
5398 ata_port_request_pm(ap
, mesg
, 0, ata_port_suspend_ehi
, true);
5401 static int ata_port_pm_suspend(struct device
*dev
)
5403 struct ata_port
*ap
= to_ata_port(dev
);
5405 if (pm_runtime_suspended(dev
))
5408 ata_port_suspend(ap
, PMSG_SUSPEND
);
5412 static int ata_port_pm_freeze(struct device
*dev
)
5414 struct ata_port
*ap
= to_ata_port(dev
);
5416 if (pm_runtime_suspended(dev
))
5419 ata_port_suspend(ap
, PMSG_FREEZE
);
5423 static int ata_port_pm_poweroff(struct device
*dev
)
5425 ata_port_suspend(to_ata_port(dev
), PMSG_HIBERNATE
);
5429 static const unsigned int ata_port_resume_ehi
= ATA_EHI_NO_AUTOPSY
5432 static void ata_port_resume(struct ata_port
*ap
, pm_message_t mesg
)
5434 ata_port_request_pm(ap
, mesg
, ATA_EH_RESET
, ata_port_resume_ehi
, false);
5437 static void ata_port_resume_async(struct ata_port
*ap
, pm_message_t mesg
)
5439 ata_port_request_pm(ap
, mesg
, ATA_EH_RESET
, ata_port_resume_ehi
, true);
5442 static int ata_port_pm_resume(struct device
*dev
)
5444 ata_port_resume_async(to_ata_port(dev
), PMSG_RESUME
);
5445 pm_runtime_disable(dev
);
5446 pm_runtime_set_active(dev
);
5447 pm_runtime_enable(dev
);
5452 * For ODDs, the upper layer will poll for media change every few seconds,
5453 * which will make it enter and leave suspend state every few seconds. And
5454 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5455 * is very little and the ODD may malfunction after constantly being reset.
5456 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5457 * ODD is attached to the port.
5459 static int ata_port_runtime_idle(struct device
*dev
)
5461 struct ata_port
*ap
= to_ata_port(dev
);
5462 struct ata_link
*link
;
5463 struct ata_device
*adev
;
5465 ata_for_each_link(link
, ap
, HOST_FIRST
) {
5466 ata_for_each_dev(adev
, link
, ENABLED
)
5467 if (adev
->class == ATA_DEV_ATAPI
&&
5468 !zpodd_dev_enabled(adev
))
5475 static int ata_port_runtime_suspend(struct device
*dev
)
5477 ata_port_suspend(to_ata_port(dev
), PMSG_AUTO_SUSPEND
);
5481 static int ata_port_runtime_resume(struct device
*dev
)
5483 ata_port_resume(to_ata_port(dev
), PMSG_AUTO_RESUME
);
5487 static const struct dev_pm_ops ata_port_pm_ops
= {
5488 .suspend
= ata_port_pm_suspend
,
5489 .resume
= ata_port_pm_resume
,
5490 .freeze
= ata_port_pm_freeze
,
5491 .thaw
= ata_port_pm_resume
,
5492 .poweroff
= ata_port_pm_poweroff
,
5493 .restore
= ata_port_pm_resume
,
5495 .runtime_suspend
= ata_port_runtime_suspend
,
5496 .runtime_resume
= ata_port_runtime_resume
,
5497 .runtime_idle
= ata_port_runtime_idle
,
5500 /* sas ports don't participate in pm runtime management of ata_ports,
5501 * and need to resume ata devices at the domain level, not the per-port
5502 * level. sas suspend/resume is async to allow parallel port recovery
5503 * since sas has multiple ata_port instances per Scsi_Host.
5505 void ata_sas_port_suspend(struct ata_port
*ap
)
5507 ata_port_suspend_async(ap
, PMSG_SUSPEND
);
5509 EXPORT_SYMBOL_GPL(ata_sas_port_suspend
);
5511 void ata_sas_port_resume(struct ata_port
*ap
)
5513 ata_port_resume_async(ap
, PMSG_RESUME
);
5515 EXPORT_SYMBOL_GPL(ata_sas_port_resume
);
5518 * ata_host_suspend - suspend host
5519 * @host: host to suspend
5522 * Suspend @host. Actual operation is performed by port suspend.
5524 int ata_host_suspend(struct ata_host
*host
, pm_message_t mesg
)
5526 host
->dev
->power
.power_state
= mesg
;
5531 * ata_host_resume - resume host
5532 * @host: host to resume
5534 * Resume @host. Actual operation is performed by port resume.
5536 void ata_host_resume(struct ata_host
*host
)
5538 host
->dev
->power
.power_state
= PMSG_ON
;
5542 struct device_type ata_port_type
= {
5545 .pm
= &ata_port_pm_ops
,
5550 * ata_dev_init - Initialize an ata_device structure
5551 * @dev: Device structure to initialize
5553 * Initialize @dev in preparation for probing.
5556 * Inherited from caller.
5558 void ata_dev_init(struct ata_device
*dev
)
5560 struct ata_link
*link
= ata_dev_phys_link(dev
);
5561 struct ata_port
*ap
= link
->ap
;
5562 unsigned long flags
;
5564 /* SATA spd limit is bound to the attached device, reset together */
5565 link
->sata_spd_limit
= link
->hw_sata_spd_limit
;
5568 /* High bits of dev->flags are used to record warm plug
5569 * requests which occur asynchronously. Synchronize using
5572 spin_lock_irqsave(ap
->lock
, flags
);
5573 dev
->flags
&= ~ATA_DFLAG_INIT_MASK
;
5575 spin_unlock_irqrestore(ap
->lock
, flags
);
5577 memset((void *)dev
+ ATA_DEVICE_CLEAR_BEGIN
, 0,
5578 ATA_DEVICE_CLEAR_END
- ATA_DEVICE_CLEAR_BEGIN
);
5579 dev
->pio_mask
= UINT_MAX
;
5580 dev
->mwdma_mask
= UINT_MAX
;
5581 dev
->udma_mask
= UINT_MAX
;
5585 * ata_link_init - Initialize an ata_link structure
5586 * @ap: ATA port link is attached to
5587 * @link: Link structure to initialize
5588 * @pmp: Port multiplier port number
5593 * Kernel thread context (may sleep)
5595 void ata_link_init(struct ata_port
*ap
, struct ata_link
*link
, int pmp
)
5599 /* clear everything except for devices */
5600 memset((void *)link
+ ATA_LINK_CLEAR_BEGIN
, 0,
5601 ATA_LINK_CLEAR_END
- ATA_LINK_CLEAR_BEGIN
);
5605 link
->active_tag
= ATA_TAG_POISON
;
5606 link
->hw_sata_spd_limit
= UINT_MAX
;
5608 /* can't use iterator, ap isn't initialized yet */
5609 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
5610 struct ata_device
*dev
= &link
->device
[i
];
5613 dev
->devno
= dev
- link
->device
;
5614 #ifdef CONFIG_ATA_ACPI
5615 dev
->gtf_filter
= ata_acpi_gtf_filter
;
5622 * sata_link_init_spd - Initialize link->sata_spd_limit
5623 * @link: Link to configure sata_spd_limit for
5625 * Initialize @link->[hw_]sata_spd_limit to the currently
5629 * Kernel thread context (may sleep).
5632 * 0 on success, -errno on failure.
5634 int sata_link_init_spd(struct ata_link
*link
)
5639 rc
= sata_scr_read(link
, SCR_CONTROL
, &link
->saved_scontrol
);
5643 spd
= (link
->saved_scontrol
>> 4) & 0xf;
5645 link
->hw_sata_spd_limit
&= (1 << spd
) - 1;
5647 ata_force_link_limits(link
);
5649 link
->sata_spd_limit
= link
->hw_sata_spd_limit
;
5655 * ata_port_alloc - allocate and initialize basic ATA port resources
5656 * @host: ATA host this allocated port belongs to
5658 * Allocate and initialize basic ATA port resources.
5661 * Allocate ATA port on success, NULL on failure.
5664 * Inherited from calling layer (may sleep).
5666 struct ata_port
*ata_port_alloc(struct ata_host
*host
)
5668 struct ata_port
*ap
;
5672 ap
= kzalloc(sizeof(*ap
), GFP_KERNEL
);
5676 ap
->pflags
|= ATA_PFLAG_INITIALIZING
| ATA_PFLAG_FROZEN
;
5677 ap
->lock
= &host
->lock
;
5679 ap
->local_port_no
= -1;
5681 ap
->dev
= host
->dev
;
5683 #if defined(ATA_VERBOSE_DEBUG)
5684 /* turn on all debugging levels */
5685 ap
->msg_enable
= 0x00FF;
5686 #elif defined(ATA_DEBUG)
5687 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_INFO
| ATA_MSG_CTL
| ATA_MSG_WARN
| ATA_MSG_ERR
;
5689 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_ERR
| ATA_MSG_WARN
;
5692 mutex_init(&ap
->scsi_scan_mutex
);
5693 INIT_DELAYED_WORK(&ap
->hotplug_task
, ata_scsi_hotplug
);
5694 INIT_WORK(&ap
->scsi_rescan_task
, ata_scsi_dev_rescan
);
5695 INIT_LIST_HEAD(&ap
->eh_done_q
);
5696 init_waitqueue_head(&ap
->eh_wait_q
);
5697 init_completion(&ap
->park_req_pending
);
5698 init_timer_deferrable(&ap
->fastdrain_timer
);
5699 ap
->fastdrain_timer
.function
= ata_eh_fastdrain_timerfn
;
5700 ap
->fastdrain_timer
.data
= (unsigned long)ap
;
5702 ap
->cbl
= ATA_CBL_NONE
;
5704 ata_link_init(ap
, &ap
->link
, 0);
5707 ap
->stats
.unhandled_irq
= 1;
5708 ap
->stats
.idle_irq
= 1;
5710 ata_sff_port_init(ap
);
5715 static void ata_host_release(struct device
*gendev
, void *res
)
5717 struct ata_host
*host
= dev_get_drvdata(gendev
);
5720 for (i
= 0; i
< host
->n_ports
; i
++) {
5721 struct ata_port
*ap
= host
->ports
[i
];
5727 scsi_host_put(ap
->scsi_host
);
5729 kfree(ap
->pmp_link
);
5730 kfree(ap
->slave_link
);
5732 host
->ports
[i
] = NULL
;
5735 dev_set_drvdata(gendev
, NULL
);
5739 * ata_host_alloc - allocate and init basic ATA host resources
5740 * @dev: generic device this host is associated with
5741 * @max_ports: maximum number of ATA ports associated with this host
5743 * Allocate and initialize basic ATA host resources. LLD calls
5744 * this function to allocate a host, initializes it fully and
5745 * attaches it using ata_host_register().
5747 * @max_ports ports are allocated and host->n_ports is
5748 * initialized to @max_ports. The caller is allowed to decrease
5749 * host->n_ports before calling ata_host_register(). The unused
5750 * ports will be automatically freed on registration.
5753 * Allocate ATA host on success, NULL on failure.
5756 * Inherited from calling layer (may sleep).
5758 struct ata_host
*ata_host_alloc(struct device
*dev
, int max_ports
)
5760 struct ata_host
*host
;
5766 if (!devres_open_group(dev
, NULL
, GFP_KERNEL
))
5769 /* alloc a container for our list of ATA ports (buses) */
5770 sz
= sizeof(struct ata_host
) + (max_ports
+ 1) * sizeof(void *);
5771 /* alloc a container for our list of ATA ports (buses) */
5772 host
= devres_alloc(ata_host_release
, sz
, GFP_KERNEL
);
5776 devres_add(dev
, host
);
5777 dev_set_drvdata(dev
, host
);
5779 spin_lock_init(&host
->lock
);
5780 mutex_init(&host
->eh_mutex
);
5782 host
->n_ports
= max_ports
;
5784 /* allocate ports bound to this host */
5785 for (i
= 0; i
< max_ports
; i
++) {
5786 struct ata_port
*ap
;
5788 ap
= ata_port_alloc(host
);
5793 host
->ports
[i
] = ap
;
5796 devres_remove_group(dev
, NULL
);
5800 devres_release_group(dev
, NULL
);
5805 * ata_host_alloc_pinfo - alloc host and init with port_info array
5806 * @dev: generic device this host is associated with
5807 * @ppi: array of ATA port_info to initialize host with
5808 * @n_ports: number of ATA ports attached to this host
5810 * Allocate ATA host and initialize with info from @ppi. If NULL
5811 * terminated, @ppi may contain fewer entries than @n_ports. The
5812 * last entry will be used for the remaining ports.
5815 * Allocate ATA host on success, NULL on failure.
5818 * Inherited from calling layer (may sleep).
5820 struct ata_host
*ata_host_alloc_pinfo(struct device
*dev
,
5821 const struct ata_port_info
* const * ppi
,
5824 const struct ata_port_info
*pi
;
5825 struct ata_host
*host
;
5828 host
= ata_host_alloc(dev
, n_ports
);
5832 for (i
= 0, j
= 0, pi
= NULL
; i
< host
->n_ports
; i
++) {
5833 struct ata_port
*ap
= host
->ports
[i
];
5838 ap
->pio_mask
= pi
->pio_mask
;
5839 ap
->mwdma_mask
= pi
->mwdma_mask
;
5840 ap
->udma_mask
= pi
->udma_mask
;
5841 ap
->flags
|= pi
->flags
;
5842 ap
->link
.flags
|= pi
->link_flags
;
5843 ap
->ops
= pi
->port_ops
;
5845 if (!host
->ops
&& (pi
->port_ops
!= &ata_dummy_port_ops
))
5846 host
->ops
= pi
->port_ops
;
5853 * ata_slave_link_init - initialize slave link
5854 * @ap: port to initialize slave link for
5856 * Create and initialize slave link for @ap. This enables slave
5857 * link handling on the port.
5859 * In libata, a port contains links and a link contains devices.
5860 * There is single host link but if a PMP is attached to it,
5861 * there can be multiple fan-out links. On SATA, there's usually
5862 * a single device connected to a link but PATA and SATA
5863 * controllers emulating TF based interface can have two - master
5866 * However, there are a few controllers which don't fit into this
5867 * abstraction too well - SATA controllers which emulate TF
5868 * interface with both master and slave devices but also have
5869 * separate SCR register sets for each device. These controllers
5870 * need separate links for physical link handling
5871 * (e.g. onlineness, link speed) but should be treated like a
5872 * traditional M/S controller for everything else (e.g. command
5873 * issue, softreset).
5875 * slave_link is libata's way of handling this class of
5876 * controllers without impacting core layer too much. For
5877 * anything other than physical link handling, the default host
5878 * link is used for both master and slave. For physical link
5879 * handling, separate @ap->slave_link is used. All dirty details
5880 * are implemented inside libata core layer. From LLD's POV, the
5881 * only difference is that prereset, hardreset and postreset are
5882 * called once more for the slave link, so the reset sequence
5883 * looks like the following.
5885 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5886 * softreset(M) -> postreset(M) -> postreset(S)
5888 * Note that softreset is called only for the master. Softreset
5889 * resets both M/S by definition, so SRST on master should handle
5890 * both (the standard method will work just fine).
5893 * Should be called before host is registered.
5896 * 0 on success, -errno on failure.
5898 int ata_slave_link_init(struct ata_port
*ap
)
5900 struct ata_link
*link
;
5902 WARN_ON(ap
->slave_link
);
5903 WARN_ON(ap
->flags
& ATA_FLAG_PMP
);
5905 link
= kzalloc(sizeof(*link
), GFP_KERNEL
);
5909 ata_link_init(ap
, link
, 1);
5910 ap
->slave_link
= link
;
5914 static void ata_host_stop(struct device
*gendev
, void *res
)
5916 struct ata_host
*host
= dev_get_drvdata(gendev
);
5919 WARN_ON(!(host
->flags
& ATA_HOST_STARTED
));
5921 for (i
= 0; i
< host
->n_ports
; i
++) {
5922 struct ata_port
*ap
= host
->ports
[i
];
5924 if (ap
->ops
->port_stop
)
5925 ap
->ops
->port_stop(ap
);
5928 if (host
->ops
->host_stop
)
5929 host
->ops
->host_stop(host
);
5933 * ata_finalize_port_ops - finalize ata_port_operations
5934 * @ops: ata_port_operations to finalize
5936 * An ata_port_operations can inherit from another ops and that
5937 * ops can again inherit from another. This can go on as many
5938 * times as necessary as long as there is no loop in the
5939 * inheritance chain.
5941 * Ops tables are finalized when the host is started. NULL or
5942 * unspecified entries are inherited from the closet ancestor
5943 * which has the method and the entry is populated with it.
5944 * After finalization, the ops table directly points to all the
5945 * methods and ->inherits is no longer necessary and cleared.
5947 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5952 static void ata_finalize_port_ops(struct ata_port_operations
*ops
)
5954 static DEFINE_SPINLOCK(lock
);
5955 const struct ata_port_operations
*cur
;
5956 void **begin
= (void **)ops
;
5957 void **end
= (void **)&ops
->inherits
;
5960 if (!ops
|| !ops
->inherits
)
5965 for (cur
= ops
->inherits
; cur
; cur
= cur
->inherits
) {
5966 void **inherit
= (void **)cur
;
5968 for (pp
= begin
; pp
< end
; pp
++, inherit
++)
5973 for (pp
= begin
; pp
< end
; pp
++)
5977 ops
->inherits
= NULL
;
5983 * ata_host_start - start and freeze ports of an ATA host
5984 * @host: ATA host to start ports for
5986 * Start and then freeze ports of @host. Started status is
5987 * recorded in host->flags, so this function can be called
5988 * multiple times. Ports are guaranteed to get started only
5989 * once. If host->ops isn't initialized yet, its set to the
5990 * first non-dummy port ops.
5993 * Inherited from calling layer (may sleep).
5996 * 0 if all ports are started successfully, -errno otherwise.
5998 int ata_host_start(struct ata_host
*host
)
6001 void *start_dr
= NULL
;
6004 if (host
->flags
& ATA_HOST_STARTED
)
6007 ata_finalize_port_ops(host
->ops
);
6009 for (i
= 0; i
< host
->n_ports
; i
++) {
6010 struct ata_port
*ap
= host
->ports
[i
];
6012 ata_finalize_port_ops(ap
->ops
);
6014 if (!host
->ops
&& !ata_port_is_dummy(ap
))
6015 host
->ops
= ap
->ops
;
6017 if (ap
->ops
->port_stop
)
6021 if (host
->ops
->host_stop
)
6025 start_dr
= devres_alloc(ata_host_stop
, 0, GFP_KERNEL
);
6030 for (i
= 0; i
< host
->n_ports
; i
++) {
6031 struct ata_port
*ap
= host
->ports
[i
];
6033 if (ap
->ops
->port_start
) {
6034 rc
= ap
->ops
->port_start(ap
);
6038 "failed to start port %d (errno=%d)\n",
6043 ata_eh_freeze_port(ap
);
6047 devres_add(host
->dev
, start_dr
);
6048 host
->flags
|= ATA_HOST_STARTED
;
6053 struct ata_port
*ap
= host
->ports
[i
];
6055 if (ap
->ops
->port_stop
)
6056 ap
->ops
->port_stop(ap
);
6058 devres_free(start_dr
);
6063 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
6064 * @host: host to initialize
6065 * @dev: device host is attached to
6069 void ata_host_init(struct ata_host
*host
, struct device
*dev
,
6070 struct ata_port_operations
*ops
)
6072 spin_lock_init(&host
->lock
);
6073 mutex_init(&host
->eh_mutex
);
6074 host
->n_tags
= ATA_MAX_QUEUE
- 1;
6079 void __ata_port_probe(struct ata_port
*ap
)
6081 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
6082 unsigned long flags
;
6084 /* kick EH for boot probing */
6085 spin_lock_irqsave(ap
->lock
, flags
);
6087 ehi
->probe_mask
|= ATA_ALL_DEVICES
;
6088 ehi
->action
|= ATA_EH_RESET
;
6089 ehi
->flags
|= ATA_EHI_NO_AUTOPSY
| ATA_EHI_QUIET
;
6091 ap
->pflags
&= ~ATA_PFLAG_INITIALIZING
;
6092 ap
->pflags
|= ATA_PFLAG_LOADING
;
6093 ata_port_schedule_eh(ap
);
6095 spin_unlock_irqrestore(ap
->lock
, flags
);
6098 int ata_port_probe(struct ata_port
*ap
)
6102 if (ap
->ops
->error_handler
) {
6103 __ata_port_probe(ap
);
6104 ata_port_wait_eh(ap
);
6106 DPRINTK("ata%u: bus probe begin\n", ap
->print_id
);
6107 rc
= ata_bus_probe(ap
);
6108 DPRINTK("ata%u: bus probe end\n", ap
->print_id
);
6114 static void async_port_probe(void *data
, async_cookie_t cookie
)
6116 struct ata_port
*ap
= data
;
6119 * If we're not allowed to scan this host in parallel,
6120 * we need to wait until all previous scans have completed
6121 * before going further.
6122 * Jeff Garzik says this is only within a controller, so we
6123 * don't need to wait for port 0, only for later ports.
6125 if (!(ap
->host
->flags
& ATA_HOST_PARALLEL_SCAN
) && ap
->port_no
!= 0)
6126 async_synchronize_cookie(cookie
);
6128 (void)ata_port_probe(ap
);
6130 /* in order to keep device order, we need to synchronize at this point */
6131 async_synchronize_cookie(cookie
);
6133 ata_scsi_scan_host(ap
, 1);
6137 * ata_host_register - register initialized ATA host
6138 * @host: ATA host to register
6139 * @sht: template for SCSI host
6141 * Register initialized ATA host. @host is allocated using
6142 * ata_host_alloc() and fully initialized by LLD. This function
6143 * starts ports, registers @host with ATA and SCSI layers and
6144 * probe registered devices.
6147 * Inherited from calling layer (may sleep).
6150 * 0 on success, -errno otherwise.
6152 int ata_host_register(struct ata_host
*host
, struct scsi_host_template
*sht
)
6156 host
->n_tags
= clamp(sht
->can_queue
, 1, ATA_MAX_QUEUE
- 1);
6158 /* host must have been started */
6159 if (!(host
->flags
& ATA_HOST_STARTED
)) {
6160 dev_err(host
->dev
, "BUG: trying to register unstarted host\n");
6165 /* Blow away unused ports. This happens when LLD can't
6166 * determine the exact number of ports to allocate at
6169 for (i
= host
->n_ports
; host
->ports
[i
]; i
++)
6170 kfree(host
->ports
[i
]);
6172 /* give ports names and add SCSI hosts */
6173 for (i
= 0; i
< host
->n_ports
; i
++) {
6174 host
->ports
[i
]->print_id
= atomic_inc_return(&ata_print_id
);
6175 host
->ports
[i
]->local_port_no
= i
+ 1;
6178 /* Create associated sysfs transport objects */
6179 for (i
= 0; i
< host
->n_ports
; i
++) {
6180 rc
= ata_tport_add(host
->dev
,host
->ports
[i
]);
6186 rc
= ata_scsi_add_hosts(host
, sht
);
6190 /* set cable, sata_spd_limit and report */
6191 for (i
= 0; i
< host
->n_ports
; i
++) {
6192 struct ata_port
*ap
= host
->ports
[i
];
6193 unsigned long xfer_mask
;
6195 /* set SATA cable type if still unset */
6196 if (ap
->cbl
== ATA_CBL_NONE
&& (ap
->flags
& ATA_FLAG_SATA
))
6197 ap
->cbl
= ATA_CBL_SATA
;
6199 /* init sata_spd_limit to the current value */
6200 sata_link_init_spd(&ap
->link
);
6202 sata_link_init_spd(ap
->slave_link
);
6204 /* print per-port info to dmesg */
6205 xfer_mask
= ata_pack_xfermask(ap
->pio_mask
, ap
->mwdma_mask
,
6208 if (!ata_port_is_dummy(ap
)) {
6209 ata_port_info(ap
, "%cATA max %s %s\n",
6210 (ap
->flags
& ATA_FLAG_SATA
) ? 'S' : 'P',
6211 ata_mode_string(xfer_mask
),
6212 ap
->link
.eh_info
.desc
);
6213 ata_ehi_clear_desc(&ap
->link
.eh_info
);
6215 ata_port_info(ap
, "DUMMY\n");
6218 /* perform each probe asynchronously */
6219 for (i
= 0; i
< host
->n_ports
; i
++) {
6220 struct ata_port
*ap
= host
->ports
[i
];
6221 async_schedule(async_port_probe
, ap
);
6228 ata_tport_delete(host
->ports
[i
]);
6235 * ata_host_activate - start host, request IRQ and register it
6236 * @host: target ATA host
6237 * @irq: IRQ to request
6238 * @irq_handler: irq_handler used when requesting IRQ
6239 * @irq_flags: irq_flags used when requesting IRQ
6240 * @sht: scsi_host_template to use when registering the host
6242 * After allocating an ATA host and initializing it, most libata
6243 * LLDs perform three steps to activate the host - start host,
6244 * request IRQ and register it. This helper takes necessasry
6245 * arguments and performs the three steps in one go.
6247 * An invalid IRQ skips the IRQ registration and expects the host to
6248 * have set polling mode on the port. In this case, @irq_handler
6252 * Inherited from calling layer (may sleep).
6255 * 0 on success, -errno otherwise.
6257 int ata_host_activate(struct ata_host
*host
, int irq
,
6258 irq_handler_t irq_handler
, unsigned long irq_flags
,
6259 struct scsi_host_template
*sht
)
6263 rc
= ata_host_start(host
);
6267 /* Special case for polling mode */
6269 WARN_ON(irq_handler
);
6270 return ata_host_register(host
, sht
);
6273 rc
= devm_request_irq(host
->dev
, irq
, irq_handler
, irq_flags
,
6274 dev_name(host
->dev
), host
);
6278 for (i
= 0; i
< host
->n_ports
; i
++)
6279 ata_port_desc(host
->ports
[i
], "irq %d", irq
);
6281 rc
= ata_host_register(host
, sht
);
6282 /* if failed, just free the IRQ and leave ports alone */
6284 devm_free_irq(host
->dev
, irq
, host
);
6290 * ata_port_detach - Detach ATA port in prepration of device removal
6291 * @ap: ATA port to be detached
6293 * Detach all ATA devices and the associated SCSI devices of @ap;
6294 * then, remove the associated SCSI host. @ap is guaranteed to
6295 * be quiescent on return from this function.
6298 * Kernel thread context (may sleep).
6300 static void ata_port_detach(struct ata_port
*ap
)
6302 unsigned long flags
;
6303 struct ata_link
*link
;
6304 struct ata_device
*dev
;
6306 if (!ap
->ops
->error_handler
)
6309 /* tell EH we're leaving & flush EH */
6310 spin_lock_irqsave(ap
->lock
, flags
);
6311 ap
->pflags
|= ATA_PFLAG_UNLOADING
;
6312 ata_port_schedule_eh(ap
);
6313 spin_unlock_irqrestore(ap
->lock
, flags
);
6315 /* wait till EH commits suicide */
6316 ata_port_wait_eh(ap
);
6318 /* it better be dead now */
6319 WARN_ON(!(ap
->pflags
& ATA_PFLAG_UNLOADED
));
6321 cancel_delayed_work_sync(&ap
->hotplug_task
);
6324 /* clean up zpodd on port removal */
6325 ata_for_each_link(link
, ap
, HOST_FIRST
) {
6326 ata_for_each_dev(dev
, link
, ALL
) {
6327 if (zpodd_dev_enabled(dev
))
6333 for (i
= 0; i
< SATA_PMP_MAX_PORTS
; i
++)
6334 ata_tlink_delete(&ap
->pmp_link
[i
]);
6336 /* remove the associated SCSI host */
6337 scsi_remove_host(ap
->scsi_host
);
6338 ata_tport_delete(ap
);
6342 * ata_host_detach - Detach all ports of an ATA host
6343 * @host: Host to detach
6345 * Detach all ports of @host.
6348 * Kernel thread context (may sleep).
6350 void ata_host_detach(struct ata_host
*host
)
6354 for (i
= 0; i
< host
->n_ports
; i
++)
6355 ata_port_detach(host
->ports
[i
]);
6357 /* the host is dead now, dissociate ACPI */
6358 ata_acpi_dissociate(host
);
6364 * ata_pci_remove_one - PCI layer callback for device removal
6365 * @pdev: PCI device that was removed
6367 * PCI layer indicates to libata via this hook that hot-unplug or
6368 * module unload event has occurred. Detach all ports. Resource
6369 * release is handled via devres.
6372 * Inherited from PCI layer (may sleep).
6374 void ata_pci_remove_one(struct pci_dev
*pdev
)
6376 struct ata_host
*host
= pci_get_drvdata(pdev
);
6378 ata_host_detach(host
);
6381 /* move to PCI subsystem */
6382 int pci_test_config_bits(struct pci_dev
*pdev
, const struct pci_bits
*bits
)
6384 unsigned long tmp
= 0;
6386 switch (bits
->width
) {
6389 pci_read_config_byte(pdev
, bits
->reg
, &tmp8
);
6395 pci_read_config_word(pdev
, bits
->reg
, &tmp16
);
6401 pci_read_config_dword(pdev
, bits
->reg
, &tmp32
);
6412 return (tmp
== bits
->val
) ? 1 : 0;
6416 void ata_pci_device_do_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
6418 pci_save_state(pdev
);
6419 pci_disable_device(pdev
);
6421 if (mesg
.event
& PM_EVENT_SLEEP
)
6422 pci_set_power_state(pdev
, PCI_D3hot
);
6425 int ata_pci_device_do_resume(struct pci_dev
*pdev
)
6429 pci_set_power_state(pdev
, PCI_D0
);
6430 pci_restore_state(pdev
);
6432 rc
= pcim_enable_device(pdev
);
6435 "failed to enable device after resume (%d)\n", rc
);
6439 pci_set_master(pdev
);
6443 int ata_pci_device_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
6445 struct ata_host
*host
= pci_get_drvdata(pdev
);
6448 rc
= ata_host_suspend(host
, mesg
);
6452 ata_pci_device_do_suspend(pdev
, mesg
);
6457 int ata_pci_device_resume(struct pci_dev
*pdev
)
6459 struct ata_host
*host
= pci_get_drvdata(pdev
);
6462 rc
= ata_pci_device_do_resume(pdev
);
6464 ata_host_resume(host
);
6467 #endif /* CONFIG_PM */
6469 #endif /* CONFIG_PCI */
6472 * ata_platform_remove_one - Platform layer callback for device removal
6473 * @pdev: Platform device that was removed
6475 * Platform layer indicates to libata via this hook that hot-unplug or
6476 * module unload event has occurred. Detach all ports. Resource
6477 * release is handled via devres.
6480 * Inherited from platform layer (may sleep).
6482 int ata_platform_remove_one(struct platform_device
*pdev
)
6484 struct ata_host
*host
= platform_get_drvdata(pdev
);
6486 ata_host_detach(host
);
6491 static int __init
ata_parse_force_one(char **cur
,
6492 struct ata_force_ent
*force_ent
,
6493 const char **reason
)
6495 static const struct ata_force_param force_tbl
[] __initconst
= {
6496 { "40c", .cbl
= ATA_CBL_PATA40
},
6497 { "80c", .cbl
= ATA_CBL_PATA80
},
6498 { "short40c", .cbl
= ATA_CBL_PATA40_SHORT
},
6499 { "unk", .cbl
= ATA_CBL_PATA_UNK
},
6500 { "ign", .cbl
= ATA_CBL_PATA_IGN
},
6501 { "sata", .cbl
= ATA_CBL_SATA
},
6502 { "1.5Gbps", .spd_limit
= 1 },
6503 { "3.0Gbps", .spd_limit
= 2 },
6504 { "noncq", .horkage_on
= ATA_HORKAGE_NONCQ
},
6505 { "ncq", .horkage_off
= ATA_HORKAGE_NONCQ
},
6506 { "noncqtrim", .horkage_on
= ATA_HORKAGE_NO_NCQ_TRIM
},
6507 { "ncqtrim", .horkage_off
= ATA_HORKAGE_NO_NCQ_TRIM
},
6508 { "dump_id", .horkage_on
= ATA_HORKAGE_DUMP_ID
},
6509 { "pio0", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 0) },
6510 { "pio1", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 1) },
6511 { "pio2", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 2) },
6512 { "pio3", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 3) },
6513 { "pio4", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 4) },
6514 { "pio5", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 5) },
6515 { "pio6", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 6) },
6516 { "mwdma0", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 0) },
6517 { "mwdma1", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 1) },
6518 { "mwdma2", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 2) },
6519 { "mwdma3", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 3) },
6520 { "mwdma4", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 4) },
6521 { "udma0", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
6522 { "udma16", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
6523 { "udma/16", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
6524 { "udma1", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
6525 { "udma25", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
6526 { "udma/25", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
6527 { "udma2", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
6528 { "udma33", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
6529 { "udma/33", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
6530 { "udma3", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
6531 { "udma44", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
6532 { "udma/44", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
6533 { "udma4", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
6534 { "udma66", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
6535 { "udma/66", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
6536 { "udma5", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
6537 { "udma100", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
6538 { "udma/100", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
6539 { "udma6", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
6540 { "udma133", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
6541 { "udma/133", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
6542 { "udma7", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 7) },
6543 { "nohrst", .lflags
= ATA_LFLAG_NO_HRST
},
6544 { "nosrst", .lflags
= ATA_LFLAG_NO_SRST
},
6545 { "norst", .lflags
= ATA_LFLAG_NO_HRST
| ATA_LFLAG_NO_SRST
},
6546 { "rstonce", .lflags
= ATA_LFLAG_RST_ONCE
},
6547 { "atapi_dmadir", .horkage_on
= ATA_HORKAGE_ATAPI_DMADIR
},
6548 { "disable", .horkage_on
= ATA_HORKAGE_DISABLE
},
6550 char *start
= *cur
, *p
= *cur
;
6551 char *id
, *val
, *endp
;
6552 const struct ata_force_param
*match_fp
= NULL
;
6553 int nr_matches
= 0, i
;
6555 /* find where this param ends and update *cur */
6556 while (*p
!= '\0' && *p
!= ',')
6567 p
= strchr(start
, ':');
6569 val
= strstrip(start
);
6574 id
= strstrip(start
);
6575 val
= strstrip(p
+ 1);
6578 p
= strchr(id
, '.');
6581 force_ent
->device
= simple_strtoul(p
, &endp
, 10);
6582 if (p
== endp
|| *endp
!= '\0') {
6583 *reason
= "invalid device";
6588 force_ent
->port
= simple_strtoul(id
, &endp
, 10);
6589 if (p
== endp
|| *endp
!= '\0') {
6590 *reason
= "invalid port/link";
6595 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6596 for (i
= 0; i
< ARRAY_SIZE(force_tbl
); i
++) {
6597 const struct ata_force_param
*fp
= &force_tbl
[i
];
6599 if (strncasecmp(val
, fp
->name
, strlen(val
)))
6605 if (strcasecmp(val
, fp
->name
) == 0) {
6612 *reason
= "unknown value";
6615 if (nr_matches
> 1) {
6616 *reason
= "ambigious value";
6620 force_ent
->param
= *match_fp
;
6625 static void __init
ata_parse_force_param(void)
6627 int idx
= 0, size
= 1;
6628 int last_port
= -1, last_device
= -1;
6629 char *p
, *cur
, *next
;
6631 /* calculate maximum number of params and allocate force_tbl */
6632 for (p
= ata_force_param_buf
; *p
; p
++)
6636 ata_force_tbl
= kzalloc(sizeof(ata_force_tbl
[0]) * size
, GFP_KERNEL
);
6637 if (!ata_force_tbl
) {
6638 printk(KERN_WARNING
"ata: failed to extend force table, "
6639 "libata.force ignored\n");
6643 /* parse and populate the table */
6644 for (cur
= ata_force_param_buf
; *cur
!= '\0'; cur
= next
) {
6645 const char *reason
= "";
6646 struct ata_force_ent te
= { .port
= -1, .device
= -1 };
6649 if (ata_parse_force_one(&next
, &te
, &reason
)) {
6650 printk(KERN_WARNING
"ata: failed to parse force "
6651 "parameter \"%s\" (%s)\n",
6656 if (te
.port
== -1) {
6657 te
.port
= last_port
;
6658 te
.device
= last_device
;
6661 ata_force_tbl
[idx
++] = te
;
6663 last_port
= te
.port
;
6664 last_device
= te
.device
;
6667 ata_force_tbl_size
= idx
;
6670 static int __init
ata_init(void)
6674 ata_parse_force_param();
6676 rc
= ata_sff_init();
6678 kfree(ata_force_tbl
);
6682 libata_transport_init();
6683 ata_scsi_transport_template
= ata_attach_transport();
6684 if (!ata_scsi_transport_template
) {
6690 printk(KERN_DEBUG
"libata version " DRV_VERSION
" loaded.\n");
6697 static void __exit
ata_exit(void)
6699 ata_release_transport(ata_scsi_transport_template
);
6700 libata_transport_exit();
6702 kfree(ata_force_tbl
);
6705 subsys_initcall(ata_init
);
6706 module_exit(ata_exit
);
6708 static DEFINE_RATELIMIT_STATE(ratelimit
, HZ
/ 5, 1);
6710 int ata_ratelimit(void)
6712 return __ratelimit(&ratelimit
);
6716 * ata_msleep - ATA EH owner aware msleep
6717 * @ap: ATA port to attribute the sleep to
6718 * @msecs: duration to sleep in milliseconds
6720 * Sleeps @msecs. If the current task is owner of @ap's EH, the
6721 * ownership is released before going to sleep and reacquired
6722 * after the sleep is complete. IOW, other ports sharing the
6723 * @ap->host will be allowed to own the EH while this task is
6729 void ata_msleep(struct ata_port
*ap
, unsigned int msecs
)
6731 bool owns_eh
= ap
&& ap
->host
->eh_owner
== current
;
6743 * ata_wait_register - wait until register value changes
6744 * @ap: ATA port to wait register for, can be NULL
6745 * @reg: IO-mapped register
6746 * @mask: Mask to apply to read register value
6747 * @val: Wait condition
6748 * @interval: polling interval in milliseconds
6749 * @timeout: timeout in milliseconds
6751 * Waiting for some bits of register to change is a common
6752 * operation for ATA controllers. This function reads 32bit LE
6753 * IO-mapped register @reg and tests for the following condition.
6755 * (*@reg & mask) != val
6757 * If the condition is met, it returns; otherwise, the process is
6758 * repeated after @interval_msec until timeout.
6761 * Kernel thread context (may sleep)
6764 * The final register value.
6766 u32
ata_wait_register(struct ata_port
*ap
, void __iomem
*reg
, u32 mask
, u32 val
,
6767 unsigned long interval
, unsigned long timeout
)
6769 unsigned long deadline
;
6772 tmp
= ioread32(reg
);
6774 /* Calculate timeout _after_ the first read to make sure
6775 * preceding writes reach the controller before starting to
6776 * eat away the timeout.
6778 deadline
= ata_deadline(jiffies
, timeout
);
6780 while ((tmp
& mask
) == val
&& time_before(jiffies
, deadline
)) {
6781 ata_msleep(ap
, interval
);
6782 tmp
= ioread32(reg
);
6789 * sata_lpm_ignore_phy_events - test if PHY event should be ignored
6790 * @link: Link receiving the event
6792 * Test whether the received PHY event has to be ignored or not.
6798 * True if the event has to be ignored.
6800 bool sata_lpm_ignore_phy_events(struct ata_link
*link
)
6802 unsigned long lpm_timeout
= link
->last_lpm_change
+
6803 msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY
);
6805 /* if LPM is enabled, PHYRDY doesn't mean anything */
6806 if (link
->lpm_policy
> ATA_LPM_MAX_POWER
)
6809 /* ignore the first PHY event after the LPM policy changed
6810 * as it is might be spurious
6812 if ((link
->flags
& ATA_LFLAG_CHANGED
) &&
6813 time_before(jiffies
, lpm_timeout
))
6818 EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events
);
6823 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd
*qc
)
6825 return AC_ERR_SYSTEM
;
6828 static void ata_dummy_error_handler(struct ata_port
*ap
)
6833 struct ata_port_operations ata_dummy_port_ops
= {
6834 .qc_prep
= ata_noop_qc_prep
,
6835 .qc_issue
= ata_dummy_qc_issue
,
6836 .error_handler
= ata_dummy_error_handler
,
6837 .sched_eh
= ata_std_sched_eh
,
6838 .end_eh
= ata_std_end_eh
,
6841 const struct ata_port_info ata_dummy_port_info
= {
6842 .port_ops
= &ata_dummy_port_ops
,
6846 * Utility print functions
6848 void ata_port_printk(const struct ata_port
*ap
, const char *level
,
6849 const char *fmt
, ...)
6851 struct va_format vaf
;
6854 va_start(args
, fmt
);
6859 printk("%sata%u: %pV", level
, ap
->print_id
, &vaf
);
6863 EXPORT_SYMBOL(ata_port_printk
);
6865 void ata_link_printk(const struct ata_link
*link
, const char *level
,
6866 const char *fmt
, ...)
6868 struct va_format vaf
;
6871 va_start(args
, fmt
);
6876 if (sata_pmp_attached(link
->ap
) || link
->ap
->slave_link
)
6877 printk("%sata%u.%02u: %pV",
6878 level
, link
->ap
->print_id
, link
->pmp
, &vaf
);
6880 printk("%sata%u: %pV",
6881 level
, link
->ap
->print_id
, &vaf
);
6885 EXPORT_SYMBOL(ata_link_printk
);
6887 void ata_dev_printk(const struct ata_device
*dev
, const char *level
,
6888 const char *fmt
, ...)
6890 struct va_format vaf
;
6893 va_start(args
, fmt
);
6898 printk("%sata%u.%02u: %pV",
6899 level
, dev
->link
->ap
->print_id
, dev
->link
->pmp
+ dev
->devno
,
6904 EXPORT_SYMBOL(ata_dev_printk
);
6906 void ata_print_version(const struct device
*dev
, const char *version
)
6908 dev_printk(KERN_DEBUG
, dev
, "version %s\n", version
);
6910 EXPORT_SYMBOL(ata_print_version
);
6913 * libata is essentially a library of internal helper functions for
6914 * low-level ATA host controller drivers. As such, the API/ABI is
6915 * likely to change as new drivers are added and updated.
6916 * Do not depend on ABI/API stability.
6918 EXPORT_SYMBOL_GPL(sata_deb_timing_normal
);
6919 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug
);
6920 EXPORT_SYMBOL_GPL(sata_deb_timing_long
);
6921 EXPORT_SYMBOL_GPL(ata_base_port_ops
);
6922 EXPORT_SYMBOL_GPL(sata_port_ops
);
6923 EXPORT_SYMBOL_GPL(ata_dummy_port_ops
);
6924 EXPORT_SYMBOL_GPL(ata_dummy_port_info
);
6925 EXPORT_SYMBOL_GPL(ata_link_next
);
6926 EXPORT_SYMBOL_GPL(ata_dev_next
);
6927 EXPORT_SYMBOL_GPL(ata_std_bios_param
);
6928 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity
);
6929 EXPORT_SYMBOL_GPL(ata_host_init
);
6930 EXPORT_SYMBOL_GPL(ata_host_alloc
);
6931 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo
);
6932 EXPORT_SYMBOL_GPL(ata_slave_link_init
);
6933 EXPORT_SYMBOL_GPL(ata_host_start
);
6934 EXPORT_SYMBOL_GPL(ata_host_register
);
6935 EXPORT_SYMBOL_GPL(ata_host_activate
);
6936 EXPORT_SYMBOL_GPL(ata_host_detach
);
6937 EXPORT_SYMBOL_GPL(ata_sg_init
);
6938 EXPORT_SYMBOL_GPL(ata_qc_complete
);
6939 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple
);
6940 EXPORT_SYMBOL_GPL(atapi_cmd_type
);
6941 EXPORT_SYMBOL_GPL(ata_tf_to_fis
);
6942 EXPORT_SYMBOL_GPL(ata_tf_from_fis
);
6943 EXPORT_SYMBOL_GPL(ata_pack_xfermask
);
6944 EXPORT_SYMBOL_GPL(ata_unpack_xfermask
);
6945 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode
);
6946 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask
);
6947 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift
);
6948 EXPORT_SYMBOL_GPL(ata_mode_string
);
6949 EXPORT_SYMBOL_GPL(ata_id_xfermask
);
6950 EXPORT_SYMBOL_GPL(ata_do_set_mode
);
6951 EXPORT_SYMBOL_GPL(ata_std_qc_defer
);
6952 EXPORT_SYMBOL_GPL(ata_noop_qc_prep
);
6953 EXPORT_SYMBOL_GPL(ata_dev_disable
);
6954 EXPORT_SYMBOL_GPL(sata_set_spd
);
6955 EXPORT_SYMBOL_GPL(ata_wait_after_reset
);
6956 EXPORT_SYMBOL_GPL(sata_link_debounce
);
6957 EXPORT_SYMBOL_GPL(sata_link_resume
);
6958 EXPORT_SYMBOL_GPL(sata_link_scr_lpm
);
6959 EXPORT_SYMBOL_GPL(ata_std_prereset
);
6960 EXPORT_SYMBOL_GPL(sata_link_hardreset
);
6961 EXPORT_SYMBOL_GPL(sata_std_hardreset
);
6962 EXPORT_SYMBOL_GPL(ata_std_postreset
);
6963 EXPORT_SYMBOL_GPL(ata_dev_classify
);
6964 EXPORT_SYMBOL_GPL(ata_dev_pair
);
6965 EXPORT_SYMBOL_GPL(ata_ratelimit
);
6966 EXPORT_SYMBOL_GPL(ata_msleep
);
6967 EXPORT_SYMBOL_GPL(ata_wait_register
);
6968 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd
);
6969 EXPORT_SYMBOL_GPL(ata_scsi_slave_config
);
6970 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy
);
6971 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth
);
6972 EXPORT_SYMBOL_GPL(__ata_change_queue_depth
);
6973 EXPORT_SYMBOL_GPL(sata_scr_valid
);
6974 EXPORT_SYMBOL_GPL(sata_scr_read
);
6975 EXPORT_SYMBOL_GPL(sata_scr_write
);
6976 EXPORT_SYMBOL_GPL(sata_scr_write_flush
);
6977 EXPORT_SYMBOL_GPL(ata_link_online
);
6978 EXPORT_SYMBOL_GPL(ata_link_offline
);
6980 EXPORT_SYMBOL_GPL(ata_host_suspend
);
6981 EXPORT_SYMBOL_GPL(ata_host_resume
);
6982 #endif /* CONFIG_PM */
6983 EXPORT_SYMBOL_GPL(ata_id_string
);
6984 EXPORT_SYMBOL_GPL(ata_id_c_string
);
6985 EXPORT_SYMBOL_GPL(ata_do_dev_read_id
);
6986 EXPORT_SYMBOL_GPL(ata_scsi_simulate
);
6988 EXPORT_SYMBOL_GPL(ata_pio_need_iordy
);
6989 EXPORT_SYMBOL_GPL(ata_timing_find_mode
);
6990 EXPORT_SYMBOL_GPL(ata_timing_compute
);
6991 EXPORT_SYMBOL_GPL(ata_timing_merge
);
6992 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode
);
6995 EXPORT_SYMBOL_GPL(pci_test_config_bits
);
6996 EXPORT_SYMBOL_GPL(ata_pci_remove_one
);
6998 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend
);
6999 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume
);
7000 EXPORT_SYMBOL_GPL(ata_pci_device_suspend
);
7001 EXPORT_SYMBOL_GPL(ata_pci_device_resume
);
7002 #endif /* CONFIG_PM */
7003 #endif /* CONFIG_PCI */
7005 EXPORT_SYMBOL_GPL(ata_platform_remove_one
);
7007 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc
);
7008 EXPORT_SYMBOL_GPL(ata_ehi_push_desc
);
7009 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc
);
7010 EXPORT_SYMBOL_GPL(ata_port_desc
);
7012 EXPORT_SYMBOL_GPL(ata_port_pbar_desc
);
7013 #endif /* CONFIG_PCI */
7014 EXPORT_SYMBOL_GPL(ata_port_schedule_eh
);
7015 EXPORT_SYMBOL_GPL(ata_link_abort
);
7016 EXPORT_SYMBOL_GPL(ata_port_abort
);
7017 EXPORT_SYMBOL_GPL(ata_port_freeze
);
7018 EXPORT_SYMBOL_GPL(sata_async_notification
);
7019 EXPORT_SYMBOL_GPL(ata_eh_freeze_port
);
7020 EXPORT_SYMBOL_GPL(ata_eh_thaw_port
);
7021 EXPORT_SYMBOL_GPL(ata_eh_qc_complete
);
7022 EXPORT_SYMBOL_GPL(ata_eh_qc_retry
);
7023 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error
);
7024 EXPORT_SYMBOL_GPL(ata_do_eh
);
7025 EXPORT_SYMBOL_GPL(ata_std_error_handler
);
7027 EXPORT_SYMBOL_GPL(ata_cable_40wire
);
7028 EXPORT_SYMBOL_GPL(ata_cable_80wire
);
7029 EXPORT_SYMBOL_GPL(ata_cable_unknown
);
7030 EXPORT_SYMBOL_GPL(ata_cable_ignore
);
7031 EXPORT_SYMBOL_GPL(ata_cable_sata
);