2 * libata-sff.c - helper library for PCI IDE BMDMA
4 * Maintained by: Tejun Heo <tj@kernel.org>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2006 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2006 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/gfp.h>
37 #include <linux/pci.h>
38 #include <linux/module.h>
39 #include <linux/libata.h>
40 #include <linux/highmem.h>
44 static struct workqueue_struct
*ata_sff_wq
;
46 const struct ata_port_operations ata_sff_port_ops
= {
47 .inherits
= &ata_base_port_ops
,
49 .qc_prep
= ata_noop_qc_prep
,
50 .qc_issue
= ata_sff_qc_issue
,
51 .qc_fill_rtf
= ata_sff_qc_fill_rtf
,
53 .freeze
= ata_sff_freeze
,
55 .prereset
= ata_sff_prereset
,
56 .softreset
= ata_sff_softreset
,
57 .hardreset
= sata_sff_hardreset
,
58 .postreset
= ata_sff_postreset
,
59 .error_handler
= ata_sff_error_handler
,
61 .sff_dev_select
= ata_sff_dev_select
,
62 .sff_check_status
= ata_sff_check_status
,
63 .sff_tf_load
= ata_sff_tf_load
,
64 .sff_tf_read
= ata_sff_tf_read
,
65 .sff_exec_command
= ata_sff_exec_command
,
66 .sff_data_xfer
= ata_sff_data_xfer
,
67 .sff_drain_fifo
= ata_sff_drain_fifo
,
69 .lost_interrupt
= ata_sff_lost_interrupt
,
71 EXPORT_SYMBOL_GPL(ata_sff_port_ops
);
74 * ata_sff_check_status - Read device status reg & clear interrupt
75 * @ap: port where the device is
77 * Reads ATA taskfile status register for currently-selected device
78 * and return its value. This also clears pending interrupts
82 * Inherited from caller.
84 u8
ata_sff_check_status(struct ata_port
*ap
)
86 return ioread8(ap
->ioaddr
.status_addr
);
88 EXPORT_SYMBOL_GPL(ata_sff_check_status
);
91 * ata_sff_altstatus - Read device alternate status reg
92 * @ap: port where the device is
94 * Reads ATA taskfile alternate status register for
95 * currently-selected device and return its value.
97 * Note: may NOT be used as the check_altstatus() entry in
98 * ata_port_operations.
101 * Inherited from caller.
103 static u8
ata_sff_altstatus(struct ata_port
*ap
)
105 if (ap
->ops
->sff_check_altstatus
)
106 return ap
->ops
->sff_check_altstatus(ap
);
108 return ioread8(ap
->ioaddr
.altstatus_addr
);
112 * ata_sff_irq_status - Check if the device is busy
113 * @ap: port where the device is
115 * Determine if the port is currently busy. Uses altstatus
116 * if available in order to avoid clearing shared IRQ status
117 * when finding an IRQ source. Non ctl capable devices don't
118 * share interrupt lines fortunately for us.
121 * Inherited from caller.
123 static u8
ata_sff_irq_status(struct ata_port
*ap
)
127 if (ap
->ops
->sff_check_altstatus
|| ap
->ioaddr
.altstatus_addr
) {
128 status
= ata_sff_altstatus(ap
);
129 /* Not us: We are busy */
130 if (status
& ATA_BUSY
)
133 /* Clear INTRQ latch */
134 status
= ap
->ops
->sff_check_status(ap
);
139 * ata_sff_sync - Flush writes
140 * @ap: Port to wait for.
143 * If we have an mmio device with no ctl and no altstatus
144 * method this will fail. No such devices are known to exist.
147 * Inherited from caller.
150 static void ata_sff_sync(struct ata_port
*ap
)
152 if (ap
->ops
->sff_check_altstatus
)
153 ap
->ops
->sff_check_altstatus(ap
);
154 else if (ap
->ioaddr
.altstatus_addr
)
155 ioread8(ap
->ioaddr
.altstatus_addr
);
159 * ata_sff_pause - Flush writes and wait 400nS
160 * @ap: Port to pause for.
163 * If we have an mmio device with no ctl and no altstatus
164 * method this will fail. No such devices are known to exist.
167 * Inherited from caller.
170 void ata_sff_pause(struct ata_port
*ap
)
175 EXPORT_SYMBOL_GPL(ata_sff_pause
);
178 * ata_sff_dma_pause - Pause before commencing DMA
179 * @ap: Port to pause for.
181 * Perform I/O fencing and ensure sufficient cycle delays occur
182 * for the HDMA1:0 transition
185 void ata_sff_dma_pause(struct ata_port
*ap
)
187 if (ap
->ops
->sff_check_altstatus
|| ap
->ioaddr
.altstatus_addr
) {
188 /* An altstatus read will cause the needed delay without
189 messing up the IRQ status */
190 ata_sff_altstatus(ap
);
193 /* There are no DMA controllers without ctl. BUG here to ensure
194 we never violate the HDMA1:0 transition timing and risk
198 EXPORT_SYMBOL_GPL(ata_sff_dma_pause
);
201 * ata_sff_busy_sleep - sleep until BSY clears, or timeout
202 * @ap: port containing status register to be polled
203 * @tmout_pat: impatience timeout in msecs
204 * @tmout: overall timeout in msecs
206 * Sleep until ATA Status register bit BSY clears,
207 * or a timeout occurs.
210 * Kernel thread context (may sleep).
213 * 0 on success, -errno otherwise.
215 int ata_sff_busy_sleep(struct ata_port
*ap
,
216 unsigned long tmout_pat
, unsigned long tmout
)
218 unsigned long timer_start
, timeout
;
221 status
= ata_sff_busy_wait(ap
, ATA_BUSY
, 300);
222 timer_start
= jiffies
;
223 timeout
= ata_deadline(timer_start
, tmout_pat
);
224 while (status
!= 0xff && (status
& ATA_BUSY
) &&
225 time_before(jiffies
, timeout
)) {
227 status
= ata_sff_busy_wait(ap
, ATA_BUSY
, 3);
230 if (status
!= 0xff && (status
& ATA_BUSY
))
232 "port is slow to respond, please be patient (Status 0x%x)\n",
235 timeout
= ata_deadline(timer_start
, tmout
);
236 while (status
!= 0xff && (status
& ATA_BUSY
) &&
237 time_before(jiffies
, timeout
)) {
239 status
= ap
->ops
->sff_check_status(ap
);
245 if (status
& ATA_BUSY
) {
247 "port failed to respond (%lu secs, Status 0x%x)\n",
248 DIV_ROUND_UP(tmout
, 1000), status
);
254 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep
);
256 static int ata_sff_check_ready(struct ata_link
*link
)
258 u8 status
= link
->ap
->ops
->sff_check_status(link
->ap
);
260 return ata_check_ready(status
);
264 * ata_sff_wait_ready - sleep until BSY clears, or timeout
265 * @link: SFF link to wait ready status for
266 * @deadline: deadline jiffies for the operation
268 * Sleep until ATA Status register bit BSY clears, or timeout
272 * Kernel thread context (may sleep).
275 * 0 on success, -errno otherwise.
277 int ata_sff_wait_ready(struct ata_link
*link
, unsigned long deadline
)
279 return ata_wait_ready(link
, deadline
, ata_sff_check_ready
);
281 EXPORT_SYMBOL_GPL(ata_sff_wait_ready
);
284 * ata_sff_set_devctl - Write device control reg
285 * @ap: port where the device is
286 * @ctl: value to write
288 * Writes ATA taskfile device control register.
290 * Note: may NOT be used as the sff_set_devctl() entry in
291 * ata_port_operations.
294 * Inherited from caller.
296 static void ata_sff_set_devctl(struct ata_port
*ap
, u8 ctl
)
298 if (ap
->ops
->sff_set_devctl
)
299 ap
->ops
->sff_set_devctl(ap
, ctl
);
301 iowrite8(ctl
, ap
->ioaddr
.ctl_addr
);
305 * ata_sff_dev_select - Select device 0/1 on ATA bus
306 * @ap: ATA channel to manipulate
307 * @device: ATA device (numbered from zero) to select
309 * Use the method defined in the ATA specification to
310 * make either device 0, or device 1, active on the
311 * ATA channel. Works with both PIO and MMIO.
313 * May be used as the dev_select() entry in ata_port_operations.
318 void ata_sff_dev_select(struct ata_port
*ap
, unsigned int device
)
323 tmp
= ATA_DEVICE_OBS
;
325 tmp
= ATA_DEVICE_OBS
| ATA_DEV1
;
327 iowrite8(tmp
, ap
->ioaddr
.device_addr
);
328 ata_sff_pause(ap
); /* needed; also flushes, for mmio */
330 EXPORT_SYMBOL_GPL(ata_sff_dev_select
);
333 * ata_dev_select - Select device 0/1 on ATA bus
334 * @ap: ATA channel to manipulate
335 * @device: ATA device (numbered from zero) to select
336 * @wait: non-zero to wait for Status register BSY bit to clear
337 * @can_sleep: non-zero if context allows sleeping
339 * Use the method defined in the ATA specification to
340 * make either device 0, or device 1, active on the
343 * This is a high-level version of ata_sff_dev_select(), which
344 * additionally provides the services of inserting the proper
345 * pauses and status polling, where needed.
350 static void ata_dev_select(struct ata_port
*ap
, unsigned int device
,
351 unsigned int wait
, unsigned int can_sleep
)
353 if (ata_msg_probe(ap
))
354 ata_port_info(ap
, "ata_dev_select: ENTER, device %u, wait %u\n",
360 ap
->ops
->sff_dev_select(ap
, device
);
363 if (can_sleep
&& ap
->link
.device
[device
].class == ATA_DEV_ATAPI
)
370 * ata_sff_irq_on - Enable interrupts on a port.
371 * @ap: Port on which interrupts are enabled.
373 * Enable interrupts on a legacy IDE device using MMIO or PIO,
374 * wait for idle, clear any pending interrupts.
376 * Note: may NOT be used as the sff_irq_on() entry in
377 * ata_port_operations.
380 * Inherited from caller.
382 void ata_sff_irq_on(struct ata_port
*ap
)
384 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
386 if (ap
->ops
->sff_irq_on
) {
387 ap
->ops
->sff_irq_on(ap
);
391 ap
->ctl
&= ~ATA_NIEN
;
392 ap
->last_ctl
= ap
->ctl
;
394 if (ap
->ops
->sff_set_devctl
|| ioaddr
->ctl_addr
)
395 ata_sff_set_devctl(ap
, ap
->ctl
);
398 if (ap
->ops
->sff_irq_clear
)
399 ap
->ops
->sff_irq_clear(ap
);
401 EXPORT_SYMBOL_GPL(ata_sff_irq_on
);
404 * ata_sff_tf_load - send taskfile registers to host controller
405 * @ap: Port to which output is sent
406 * @tf: ATA taskfile register set
408 * Outputs ATA taskfile to standard ATA host controller.
411 * Inherited from caller.
413 void ata_sff_tf_load(struct ata_port
*ap
, const struct ata_taskfile
*tf
)
415 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
416 unsigned int is_addr
= tf
->flags
& ATA_TFLAG_ISADDR
;
418 if (tf
->ctl
!= ap
->last_ctl
) {
419 if (ioaddr
->ctl_addr
)
420 iowrite8(tf
->ctl
, ioaddr
->ctl_addr
);
421 ap
->last_ctl
= tf
->ctl
;
425 if (is_addr
&& (tf
->flags
& ATA_TFLAG_LBA48
)) {
426 WARN_ON_ONCE(!ioaddr
->ctl_addr
);
427 iowrite8(tf
->hob_feature
, ioaddr
->feature_addr
);
428 iowrite8(tf
->hob_nsect
, ioaddr
->nsect_addr
);
429 iowrite8(tf
->hob_lbal
, ioaddr
->lbal_addr
);
430 iowrite8(tf
->hob_lbam
, ioaddr
->lbam_addr
);
431 iowrite8(tf
->hob_lbah
, ioaddr
->lbah_addr
);
432 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
441 iowrite8(tf
->feature
, ioaddr
->feature_addr
);
442 iowrite8(tf
->nsect
, ioaddr
->nsect_addr
);
443 iowrite8(tf
->lbal
, ioaddr
->lbal_addr
);
444 iowrite8(tf
->lbam
, ioaddr
->lbam_addr
);
445 iowrite8(tf
->lbah
, ioaddr
->lbah_addr
);
446 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
454 if (tf
->flags
& ATA_TFLAG_DEVICE
) {
455 iowrite8(tf
->device
, ioaddr
->device_addr
);
456 VPRINTK("device 0x%X\n", tf
->device
);
461 EXPORT_SYMBOL_GPL(ata_sff_tf_load
);
464 * ata_sff_tf_read - input device's ATA taskfile shadow registers
465 * @ap: Port from which input is read
466 * @tf: ATA taskfile register set for storing input
468 * Reads ATA taskfile registers for currently-selected device
469 * into @tf. Assumes the device has a fully SFF compliant task file
470 * layout and behaviour. If you device does not (eg has a different
471 * status method) then you will need to provide a replacement tf_read
474 * Inherited from caller.
476 void ata_sff_tf_read(struct ata_port
*ap
, struct ata_taskfile
*tf
)
478 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
480 tf
->command
= ata_sff_check_status(ap
);
481 tf
->feature
= ioread8(ioaddr
->error_addr
);
482 tf
->nsect
= ioread8(ioaddr
->nsect_addr
);
483 tf
->lbal
= ioread8(ioaddr
->lbal_addr
);
484 tf
->lbam
= ioread8(ioaddr
->lbam_addr
);
485 tf
->lbah
= ioread8(ioaddr
->lbah_addr
);
486 tf
->device
= ioread8(ioaddr
->device_addr
);
488 if (tf
->flags
& ATA_TFLAG_LBA48
) {
489 if (likely(ioaddr
->ctl_addr
)) {
490 iowrite8(tf
->ctl
| ATA_HOB
, ioaddr
->ctl_addr
);
491 tf
->hob_feature
= ioread8(ioaddr
->error_addr
);
492 tf
->hob_nsect
= ioread8(ioaddr
->nsect_addr
);
493 tf
->hob_lbal
= ioread8(ioaddr
->lbal_addr
);
494 tf
->hob_lbam
= ioread8(ioaddr
->lbam_addr
);
495 tf
->hob_lbah
= ioread8(ioaddr
->lbah_addr
);
496 iowrite8(tf
->ctl
, ioaddr
->ctl_addr
);
497 ap
->last_ctl
= tf
->ctl
;
502 EXPORT_SYMBOL_GPL(ata_sff_tf_read
);
505 * ata_sff_exec_command - issue ATA command to host controller
506 * @ap: port to which command is being issued
507 * @tf: ATA taskfile register set
509 * Issues ATA command, with proper synchronization with interrupt
510 * handler / other threads.
513 * spin_lock_irqsave(host lock)
515 void ata_sff_exec_command(struct ata_port
*ap
, const struct ata_taskfile
*tf
)
517 DPRINTK("ata%u: cmd 0x%X\n", ap
->print_id
, tf
->command
);
519 iowrite8(tf
->command
, ap
->ioaddr
.command_addr
);
522 EXPORT_SYMBOL_GPL(ata_sff_exec_command
);
525 * ata_tf_to_host - issue ATA taskfile to host controller
526 * @ap: port to which command is being issued
527 * @tf: ATA taskfile register set
529 * Issues ATA taskfile register set to ATA host controller,
530 * with proper synchronization with interrupt handler and
534 * spin_lock_irqsave(host lock)
536 static inline void ata_tf_to_host(struct ata_port
*ap
,
537 const struct ata_taskfile
*tf
)
539 ap
->ops
->sff_tf_load(ap
, tf
);
540 ap
->ops
->sff_exec_command(ap
, tf
);
544 * ata_sff_data_xfer - Transfer data by PIO
545 * @dev: device to target
547 * @buflen: buffer length
550 * Transfer data from/to the device data register by PIO.
553 * Inherited from caller.
558 unsigned int ata_sff_data_xfer(struct ata_device
*dev
, unsigned char *buf
,
559 unsigned int buflen
, int rw
)
561 struct ata_port
*ap
= dev
->link
->ap
;
562 void __iomem
*data_addr
= ap
->ioaddr
.data_addr
;
563 unsigned int words
= buflen
>> 1;
565 /* Transfer multiple of 2 bytes */
567 ioread16_rep(data_addr
, buf
, words
);
569 iowrite16_rep(data_addr
, buf
, words
);
571 /* Transfer trailing byte, if any. */
572 if (unlikely(buflen
& 0x01)) {
573 unsigned char pad
[2] = { };
575 /* Point buf to the tail of buffer */
579 * Use io*16_rep() accessors here as well to avoid pointlessly
580 * swapping bytes to and from on the big endian machines...
583 ioread16_rep(data_addr
, pad
, 1);
587 iowrite16_rep(data_addr
, pad
, 1);
594 EXPORT_SYMBOL_GPL(ata_sff_data_xfer
);
597 * ata_sff_data_xfer32 - Transfer data by PIO
598 * @dev: device to target
600 * @buflen: buffer length
603 * Transfer data from/to the device data register by PIO using 32bit
607 * Inherited from caller.
613 unsigned int ata_sff_data_xfer32(struct ata_device
*dev
, unsigned char *buf
,
614 unsigned int buflen
, int rw
)
616 struct ata_port
*ap
= dev
->link
->ap
;
617 void __iomem
*data_addr
= ap
->ioaddr
.data_addr
;
618 unsigned int words
= buflen
>> 2;
619 int slop
= buflen
& 3;
621 if (!(ap
->pflags
& ATA_PFLAG_PIO32
))
622 return ata_sff_data_xfer(dev
, buf
, buflen
, rw
);
624 /* Transfer multiple of 4 bytes */
626 ioread32_rep(data_addr
, buf
, words
);
628 iowrite32_rep(data_addr
, buf
, words
);
630 /* Transfer trailing bytes, if any */
631 if (unlikely(slop
)) {
632 unsigned char pad
[4] = { };
634 /* Point buf to the tail of buffer */
635 buf
+= buflen
- slop
;
638 * Use io*_rep() accessors here as well to avoid pointlessly
639 * swapping bytes to and from on the big endian machines...
643 ioread16_rep(data_addr
, pad
, 1);
645 ioread32_rep(data_addr
, pad
, 1);
646 memcpy(buf
, pad
, slop
);
648 memcpy(pad
, buf
, slop
);
650 iowrite16_rep(data_addr
, pad
, 1);
652 iowrite32_rep(data_addr
, pad
, 1);
655 return (buflen
+ 1) & ~1;
657 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32
);
660 * ata_sff_data_xfer_noirq - Transfer data by PIO
661 * @dev: device to target
663 * @buflen: buffer length
666 * Transfer data from/to the device data register by PIO. Do the
667 * transfer with interrupts disabled.
670 * Inherited from caller.
675 unsigned int ata_sff_data_xfer_noirq(struct ata_device
*dev
, unsigned char *buf
,
676 unsigned int buflen
, int rw
)
679 unsigned int consumed
;
681 local_irq_save(flags
);
682 consumed
= ata_sff_data_xfer32(dev
, buf
, buflen
, rw
);
683 local_irq_restore(flags
);
687 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq
);
690 * ata_pio_sector - Transfer a sector of data.
691 * @qc: Command on going
693 * Transfer qc->sect_size bytes of data from/to the ATA device.
696 * Inherited from caller.
698 static void ata_pio_sector(struct ata_queued_cmd
*qc
)
700 int do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
701 struct ata_port
*ap
= qc
->ap
;
706 if (qc
->curbytes
== qc
->nbytes
- qc
->sect_size
)
707 ap
->hsm_task_state
= HSM_ST_LAST
;
709 page
= sg_page(qc
->cursg
);
710 offset
= qc
->cursg
->offset
+ qc
->cursg_ofs
;
712 /* get the current page and offset */
713 page
= nth_page(page
, (offset
>> PAGE_SHIFT
));
716 DPRINTK("data %s\n", qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
718 if (PageHighMem(page
)) {
721 /* FIXME: use a bounce buffer */
722 local_irq_save(flags
);
723 buf
= kmap_atomic(page
);
725 /* do the actual data transfer */
726 ap
->ops
->sff_data_xfer(qc
->dev
, buf
+ offset
, qc
->sect_size
,
730 local_irq_restore(flags
);
732 buf
= page_address(page
);
733 ap
->ops
->sff_data_xfer(qc
->dev
, buf
+ offset
, qc
->sect_size
,
737 if (!do_write
&& !PageSlab(page
))
738 flush_dcache_page(page
);
740 qc
->curbytes
+= qc
->sect_size
;
741 qc
->cursg_ofs
+= qc
->sect_size
;
743 if (qc
->cursg_ofs
== qc
->cursg
->length
) {
744 qc
->cursg
= sg_next(qc
->cursg
);
750 * ata_pio_sectors - Transfer one or many sectors.
751 * @qc: Command on going
753 * Transfer one or many sectors of data from/to the
754 * ATA device for the DRQ request.
757 * Inherited from caller.
759 static void ata_pio_sectors(struct ata_queued_cmd
*qc
)
761 if (is_multi_taskfile(&qc
->tf
)) {
762 /* READ/WRITE MULTIPLE */
765 WARN_ON_ONCE(qc
->dev
->multi_count
== 0);
767 nsect
= min((qc
->nbytes
- qc
->curbytes
) / qc
->sect_size
,
768 qc
->dev
->multi_count
);
774 ata_sff_sync(qc
->ap
); /* flush */
778 * atapi_send_cdb - Write CDB bytes to hardware
779 * @ap: Port to which ATAPI device is attached.
780 * @qc: Taskfile currently active
782 * When device has indicated its readiness to accept
783 * a CDB, this function is called. Send the CDB.
788 static void atapi_send_cdb(struct ata_port
*ap
, struct ata_queued_cmd
*qc
)
791 DPRINTK("send cdb\n");
792 WARN_ON_ONCE(qc
->dev
->cdb_len
< 12);
794 ap
->ops
->sff_data_xfer(qc
->dev
, qc
->cdb
, qc
->dev
->cdb_len
, 1);
796 /* FIXME: If the CDB is for DMA do we need to do the transition delay
797 or is bmdma_start guaranteed to do it ? */
798 switch (qc
->tf
.protocol
) {
800 ap
->hsm_task_state
= HSM_ST
;
802 case ATAPI_PROT_NODATA
:
803 ap
->hsm_task_state
= HSM_ST_LAST
;
805 #ifdef CONFIG_ATA_BMDMA
807 ap
->hsm_task_state
= HSM_ST_LAST
;
809 ap
->ops
->bmdma_start(qc
);
811 #endif /* CONFIG_ATA_BMDMA */
818 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
819 * @qc: Command on going
820 * @bytes: number of bytes
822 * Transfer Transfer data from/to the ATAPI device.
825 * Inherited from caller.
828 static int __atapi_pio_bytes(struct ata_queued_cmd
*qc
, unsigned int bytes
)
830 int rw
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
) ? WRITE
: READ
;
831 struct ata_port
*ap
= qc
->ap
;
832 struct ata_device
*dev
= qc
->dev
;
833 struct ata_eh_info
*ehi
= &dev
->link
->eh_info
;
834 struct scatterlist
*sg
;
837 unsigned int offset
, count
, consumed
;
842 ata_ehi_push_desc(ehi
, "unexpected or too much trailing data "
843 "buf=%u cur=%u bytes=%u",
844 qc
->nbytes
, qc
->curbytes
, bytes
);
849 offset
= sg
->offset
+ qc
->cursg_ofs
;
851 /* get the current page and offset */
852 page
= nth_page(page
, (offset
>> PAGE_SHIFT
));
855 /* don't overrun current sg */
856 count
= min(sg
->length
- qc
->cursg_ofs
, bytes
);
858 /* don't cross page boundaries */
859 count
= min(count
, (unsigned int)PAGE_SIZE
- offset
);
861 DPRINTK("data %s\n", qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
863 if (PageHighMem(page
)) {
866 /* FIXME: use bounce buffer */
867 local_irq_save(flags
);
868 buf
= kmap_atomic(page
);
870 /* do the actual data transfer */
871 consumed
= ap
->ops
->sff_data_xfer(dev
, buf
+ offset
,
875 local_irq_restore(flags
);
877 buf
= page_address(page
);
878 consumed
= ap
->ops
->sff_data_xfer(dev
, buf
+ offset
,
882 bytes
-= min(bytes
, consumed
);
883 qc
->curbytes
+= count
;
884 qc
->cursg_ofs
+= count
;
886 if (qc
->cursg_ofs
== sg
->length
) {
887 qc
->cursg
= sg_next(qc
->cursg
);
892 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed);
893 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
894 * check correctly as it doesn't know if it is the last request being
895 * made. Somebody should implement a proper sanity check.
903 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
904 * @qc: Command on going
906 * Transfer Transfer data from/to the ATAPI device.
909 * Inherited from caller.
911 static void atapi_pio_bytes(struct ata_queued_cmd
*qc
)
913 struct ata_port
*ap
= qc
->ap
;
914 struct ata_device
*dev
= qc
->dev
;
915 struct ata_eh_info
*ehi
= &dev
->link
->eh_info
;
916 unsigned int ireason
, bc_lo
, bc_hi
, bytes
;
917 int i_write
, do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
919 /* Abuse qc->result_tf for temp storage of intermediate TF
920 * here to save some kernel stack usage.
921 * For normal completion, qc->result_tf is not relevant. For
922 * error, qc->result_tf is later overwritten by ata_qc_complete().
923 * So, the correctness of qc->result_tf is not affected.
925 ap
->ops
->sff_tf_read(ap
, &qc
->result_tf
);
926 ireason
= qc
->result_tf
.nsect
;
927 bc_lo
= qc
->result_tf
.lbam
;
928 bc_hi
= qc
->result_tf
.lbah
;
929 bytes
= (bc_hi
<< 8) | bc_lo
;
931 /* shall be cleared to zero, indicating xfer of data */
932 if (unlikely(ireason
& ATAPI_COD
))
935 /* make sure transfer direction matches expected */
936 i_write
= ((ireason
& ATAPI_IO
) == 0) ? 1 : 0;
937 if (unlikely(do_write
!= i_write
))
940 if (unlikely(!bytes
))
943 VPRINTK("ata%u: xfering %d bytes\n", ap
->print_id
, bytes
);
945 if (unlikely(__atapi_pio_bytes(qc
, bytes
)))
947 ata_sff_sync(ap
); /* flush */
952 ata_ehi_push_desc(ehi
, "ATAPI check failed (ireason=0x%x bytes=%u)",
955 qc
->err_mask
|= AC_ERR_HSM
;
956 ap
->hsm_task_state
= HSM_ST_ERR
;
960 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
961 * @ap: the target ata_port
965 * 1 if ok in workqueue, 0 otherwise.
967 static inline int ata_hsm_ok_in_wq(struct ata_port
*ap
,
968 struct ata_queued_cmd
*qc
)
970 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
973 if (ap
->hsm_task_state
== HSM_ST_FIRST
) {
974 if (qc
->tf
.protocol
== ATA_PROT_PIO
&&
975 (qc
->tf
.flags
& ATA_TFLAG_WRITE
))
978 if (ata_is_atapi(qc
->tf
.protocol
) &&
979 !(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
987 * ata_hsm_qc_complete - finish a qc running on standard HSM
988 * @qc: Command to complete
989 * @in_wq: 1 if called from workqueue, 0 otherwise
991 * Finish @qc which is running on standard HSM.
994 * If @in_wq is zero, spin_lock_irqsave(host lock).
995 * Otherwise, none on entry and grabs host lock.
997 static void ata_hsm_qc_complete(struct ata_queued_cmd
*qc
, int in_wq
)
999 struct ata_port
*ap
= qc
->ap
;
1001 if (ap
->ops
->error_handler
) {
1003 /* EH might have kicked in while host lock is
1006 qc
= ata_qc_from_tag(ap
, qc
->tag
);
1008 if (likely(!(qc
->err_mask
& AC_ERR_HSM
))) {
1010 ata_qc_complete(qc
);
1012 ata_port_freeze(ap
);
1015 if (likely(!(qc
->err_mask
& AC_ERR_HSM
)))
1016 ata_qc_complete(qc
);
1018 ata_port_freeze(ap
);
1023 ata_qc_complete(qc
);
1025 ata_qc_complete(qc
);
1030 * ata_sff_hsm_move - move the HSM to the next state.
1031 * @ap: the target ata_port
1033 * @status: current device status
1034 * @in_wq: 1 if called from workqueue, 0 otherwise
1037 * 1 when poll next status needed, 0 otherwise.
1039 int ata_sff_hsm_move(struct ata_port
*ap
, struct ata_queued_cmd
*qc
,
1040 u8 status
, int in_wq
)
1042 struct ata_link
*link
= qc
->dev
->link
;
1043 struct ata_eh_info
*ehi
= &link
->eh_info
;
1046 lockdep_assert_held(ap
->lock
);
1048 WARN_ON_ONCE((qc
->flags
& ATA_QCFLAG_ACTIVE
) == 0);
1050 /* Make sure ata_sff_qc_issue() does not throw things
1051 * like DMA polling into the workqueue. Notice that
1052 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1054 WARN_ON_ONCE(in_wq
!= ata_hsm_ok_in_wq(ap
, qc
));
1057 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1058 ap
->print_id
, qc
->tf
.protocol
, ap
->hsm_task_state
, status
);
1060 switch (ap
->hsm_task_state
) {
1062 /* Send first data block or PACKET CDB */
1064 /* If polling, we will stay in the work queue after
1065 * sending the data. Otherwise, interrupt handler
1066 * takes over after sending the data.
1068 poll_next
= (qc
->tf
.flags
& ATA_TFLAG_POLLING
);
1070 /* check device status */
1071 if (unlikely((status
& ATA_DRQ
) == 0)) {
1072 /* handle BSY=0, DRQ=0 as error */
1073 if (likely(status
& (ATA_ERR
| ATA_DF
)))
1074 /* device stops HSM for abort/error */
1075 qc
->err_mask
|= AC_ERR_DEV
;
1077 /* HSM violation. Let EH handle this */
1078 ata_ehi_push_desc(ehi
,
1079 "ST_FIRST: !(DRQ|ERR|DF)");
1080 qc
->err_mask
|= AC_ERR_HSM
;
1083 ap
->hsm_task_state
= HSM_ST_ERR
;
1087 /* Device should not ask for data transfer (DRQ=1)
1088 * when it finds something wrong.
1089 * We ignore DRQ here and stop the HSM by
1090 * changing hsm_task_state to HSM_ST_ERR and
1091 * let the EH abort the command or reset the device.
1093 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
1094 /* Some ATAPI tape drives forget to clear the ERR bit
1095 * when doing the next command (mostly request sense).
1096 * We ignore ERR here to workaround and proceed sending
1099 if (!(qc
->dev
->horkage
& ATA_HORKAGE_STUCK_ERR
)) {
1100 ata_ehi_push_desc(ehi
, "ST_FIRST: "
1101 "DRQ=1 with device error, "
1102 "dev_stat 0x%X", status
);
1103 qc
->err_mask
|= AC_ERR_HSM
;
1104 ap
->hsm_task_state
= HSM_ST_ERR
;
1109 if (qc
->tf
.protocol
== ATA_PROT_PIO
) {
1110 /* PIO data out protocol.
1111 * send first data block.
1114 /* ata_pio_sectors() might change the state
1115 * to HSM_ST_LAST. so, the state is changed here
1116 * before ata_pio_sectors().
1118 ap
->hsm_task_state
= HSM_ST
;
1119 ata_pio_sectors(qc
);
1122 atapi_send_cdb(ap
, qc
);
1124 /* if polling, ata_sff_pio_task() handles the rest.
1125 * otherwise, interrupt handler takes over from here.
1130 /* complete command or read/write the data register */
1131 if (qc
->tf
.protocol
== ATAPI_PROT_PIO
) {
1132 /* ATAPI PIO protocol */
1133 if ((status
& ATA_DRQ
) == 0) {
1134 /* No more data to transfer or device error.
1135 * Device error will be tagged in HSM_ST_LAST.
1137 ap
->hsm_task_state
= HSM_ST_LAST
;
1141 /* Device should not ask for data transfer (DRQ=1)
1142 * when it finds something wrong.
1143 * We ignore DRQ here and stop the HSM by
1144 * changing hsm_task_state to HSM_ST_ERR and
1145 * let the EH abort the command or reset the device.
1147 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
1148 ata_ehi_push_desc(ehi
, "ST-ATAPI: "
1149 "DRQ=1 with device error, "
1150 "dev_stat 0x%X", status
);
1151 qc
->err_mask
|= AC_ERR_HSM
;
1152 ap
->hsm_task_state
= HSM_ST_ERR
;
1156 atapi_pio_bytes(qc
);
1158 if (unlikely(ap
->hsm_task_state
== HSM_ST_ERR
))
1159 /* bad ireason reported by device */
1163 /* ATA PIO protocol */
1164 if (unlikely((status
& ATA_DRQ
) == 0)) {
1165 /* handle BSY=0, DRQ=0 as error */
1166 if (likely(status
& (ATA_ERR
| ATA_DF
))) {
1167 /* device stops HSM for abort/error */
1168 qc
->err_mask
|= AC_ERR_DEV
;
1170 /* If diagnostic failed and this is
1171 * IDENTIFY, it's likely a phantom
1172 * device. Mark hint.
1174 if (qc
->dev
->horkage
&
1175 ATA_HORKAGE_DIAGNOSTIC
)
1179 /* HSM violation. Let EH handle this.
1180 * Phantom devices also trigger this
1181 * condition. Mark hint.
1183 ata_ehi_push_desc(ehi
, "ST-ATA: "
1184 "DRQ=0 without device error, "
1185 "dev_stat 0x%X", status
);
1186 qc
->err_mask
|= AC_ERR_HSM
|
1190 ap
->hsm_task_state
= HSM_ST_ERR
;
1194 /* For PIO reads, some devices may ask for
1195 * data transfer (DRQ=1) alone with ERR=1.
1196 * We respect DRQ here and transfer one
1197 * block of junk data before changing the
1198 * hsm_task_state to HSM_ST_ERR.
1200 * For PIO writes, ERR=1 DRQ=1 doesn't make
1201 * sense since the data block has been
1202 * transferred to the device.
1204 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
1205 /* data might be corrputed */
1206 qc
->err_mask
|= AC_ERR_DEV
;
1208 if (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
)) {
1209 ata_pio_sectors(qc
);
1210 status
= ata_wait_idle(ap
);
1213 if (status
& (ATA_BUSY
| ATA_DRQ
)) {
1214 ata_ehi_push_desc(ehi
, "ST-ATA: "
1215 "BUSY|DRQ persists on ERR|DF, "
1216 "dev_stat 0x%X", status
);
1217 qc
->err_mask
|= AC_ERR_HSM
;
1220 /* There are oddball controllers with
1221 * status register stuck at 0x7f and
1222 * lbal/m/h at zero which makes it
1223 * pass all other presence detection
1224 * mechanisms we have. Set NODEV_HINT
1225 * for it. Kernel bz#7241.
1228 qc
->err_mask
|= AC_ERR_NODEV_HINT
;
1230 /* ata_pio_sectors() might change the
1231 * state to HSM_ST_LAST. so, the state
1232 * is changed after ata_pio_sectors().
1234 ap
->hsm_task_state
= HSM_ST_ERR
;
1238 ata_pio_sectors(qc
);
1240 if (ap
->hsm_task_state
== HSM_ST_LAST
&&
1241 (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
))) {
1243 status
= ata_wait_idle(ap
);
1252 if (unlikely(!ata_ok(status
))) {
1253 qc
->err_mask
|= __ac_err_mask(status
);
1254 ap
->hsm_task_state
= HSM_ST_ERR
;
1258 /* no more data to transfer */
1259 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1260 ap
->print_id
, qc
->dev
->devno
, status
);
1262 WARN_ON_ONCE(qc
->err_mask
& (AC_ERR_DEV
| AC_ERR_HSM
));
1264 ap
->hsm_task_state
= HSM_ST_IDLE
;
1266 /* complete taskfile transaction */
1267 ata_hsm_qc_complete(qc
, in_wq
);
1273 ap
->hsm_task_state
= HSM_ST_IDLE
;
1275 /* complete taskfile transaction */
1276 ata_hsm_qc_complete(qc
, in_wq
);
1287 EXPORT_SYMBOL_GPL(ata_sff_hsm_move
);
1289 void ata_sff_queue_work(struct work_struct
*work
)
1291 queue_work(ata_sff_wq
, work
);
1293 EXPORT_SYMBOL_GPL(ata_sff_queue_work
);
1295 void ata_sff_queue_delayed_work(struct delayed_work
*dwork
, unsigned long delay
)
1297 queue_delayed_work(ata_sff_wq
, dwork
, delay
);
1299 EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work
);
1301 void ata_sff_queue_pio_task(struct ata_link
*link
, unsigned long delay
)
1303 struct ata_port
*ap
= link
->ap
;
1305 WARN_ON((ap
->sff_pio_task_link
!= NULL
) &&
1306 (ap
->sff_pio_task_link
!= link
));
1307 ap
->sff_pio_task_link
= link
;
1309 /* may fail if ata_sff_flush_pio_task() in progress */
1310 ata_sff_queue_delayed_work(&ap
->sff_pio_task
, msecs_to_jiffies(delay
));
1312 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task
);
1314 void ata_sff_flush_pio_task(struct ata_port
*ap
)
1318 cancel_delayed_work_sync(&ap
->sff_pio_task
);
1321 * We wanna reset the HSM state to IDLE. If we do so without
1322 * grabbing the port lock, critical sections protected by it which
1323 * expect the HSM state to stay stable may get surprised. For
1324 * example, we may set IDLE in between the time
1325 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls
1326 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG().
1328 spin_lock_irq(ap
->lock
);
1329 ap
->hsm_task_state
= HSM_ST_IDLE
;
1330 spin_unlock_irq(ap
->lock
);
1332 ap
->sff_pio_task_link
= NULL
;
1334 if (ata_msg_ctl(ap
))
1335 ata_port_dbg(ap
, "%s: EXIT\n", __func__
);
1338 static void ata_sff_pio_task(struct work_struct
*work
)
1340 struct ata_port
*ap
=
1341 container_of(work
, struct ata_port
, sff_pio_task
.work
);
1342 struct ata_link
*link
= ap
->sff_pio_task_link
;
1343 struct ata_queued_cmd
*qc
;
1347 spin_lock_irq(ap
->lock
);
1349 BUG_ON(ap
->sff_pio_task_link
== NULL
);
1350 /* qc can be NULL if timeout occurred */
1351 qc
= ata_qc_from_tag(ap
, link
->active_tag
);
1353 ap
->sff_pio_task_link
= NULL
;
1358 WARN_ON_ONCE(ap
->hsm_task_state
== HSM_ST_IDLE
);
1361 * This is purely heuristic. This is a fast path.
1362 * Sometimes when we enter, BSY will be cleared in
1363 * a chk-status or two. If not, the drive is probably seeking
1364 * or something. Snooze for a couple msecs, then
1365 * chk-status again. If still busy, queue delayed work.
1367 status
= ata_sff_busy_wait(ap
, ATA_BUSY
, 5);
1368 if (status
& ATA_BUSY
) {
1369 spin_unlock_irq(ap
->lock
);
1371 spin_lock_irq(ap
->lock
);
1373 status
= ata_sff_busy_wait(ap
, ATA_BUSY
, 10);
1374 if (status
& ATA_BUSY
) {
1375 ata_sff_queue_pio_task(link
, ATA_SHORT_PAUSE
);
1381 * hsm_move() may trigger another command to be processed.
1382 * clean the link beforehand.
1384 ap
->sff_pio_task_link
= NULL
;
1386 poll_next
= ata_sff_hsm_move(ap
, qc
, status
, 1);
1388 /* another command or interrupt handler
1389 * may be running at this point.
1394 spin_unlock_irq(ap
->lock
);
1398 * ata_sff_qc_issue - issue taskfile to a SFF controller
1399 * @qc: command to issue to device
1401 * This function issues a PIO or NODATA command to a SFF
1405 * spin_lock_irqsave(host lock)
1408 * Zero on success, AC_ERR_* mask on failure
1410 unsigned int ata_sff_qc_issue(struct ata_queued_cmd
*qc
)
1412 struct ata_port
*ap
= qc
->ap
;
1413 struct ata_link
*link
= qc
->dev
->link
;
1415 /* Use polling pio if the LLD doesn't handle
1416 * interrupt driven pio and atapi CDB interrupt.
1418 if (ap
->flags
& ATA_FLAG_PIO_POLLING
)
1419 qc
->tf
.flags
|= ATA_TFLAG_POLLING
;
1421 /* select the device */
1422 ata_dev_select(ap
, qc
->dev
->devno
, 1, 0);
1424 /* start the command */
1425 switch (qc
->tf
.protocol
) {
1426 case ATA_PROT_NODATA
:
1427 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
1428 ata_qc_set_polling(qc
);
1430 ata_tf_to_host(ap
, &qc
->tf
);
1431 ap
->hsm_task_state
= HSM_ST_LAST
;
1433 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
1434 ata_sff_queue_pio_task(link
, 0);
1439 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
1440 ata_qc_set_polling(qc
);
1442 ata_tf_to_host(ap
, &qc
->tf
);
1444 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
) {
1445 /* PIO data out protocol */
1446 ap
->hsm_task_state
= HSM_ST_FIRST
;
1447 ata_sff_queue_pio_task(link
, 0);
1449 /* always send first data block using the
1450 * ata_sff_pio_task() codepath.
1453 /* PIO data in protocol */
1454 ap
->hsm_task_state
= HSM_ST
;
1456 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
1457 ata_sff_queue_pio_task(link
, 0);
1459 /* if polling, ata_sff_pio_task() handles the
1460 * rest. otherwise, interrupt handler takes
1467 case ATAPI_PROT_PIO
:
1468 case ATAPI_PROT_NODATA
:
1469 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
1470 ata_qc_set_polling(qc
);
1472 ata_tf_to_host(ap
, &qc
->tf
);
1474 ap
->hsm_task_state
= HSM_ST_FIRST
;
1476 /* send cdb by polling if no cdb interrupt */
1477 if ((!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
)) ||
1478 (qc
->tf
.flags
& ATA_TFLAG_POLLING
))
1479 ata_sff_queue_pio_task(link
, 0);
1483 return AC_ERR_SYSTEM
;
1488 EXPORT_SYMBOL_GPL(ata_sff_qc_issue
);
1491 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1492 * @qc: qc to fill result TF for
1494 * @qc is finished and result TF needs to be filled. Fill it
1495 * using ->sff_tf_read.
1498 * spin_lock_irqsave(host lock)
1501 * true indicating that result TF is successfully filled.
1503 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd
*qc
)
1505 qc
->ap
->ops
->sff_tf_read(qc
->ap
, &qc
->result_tf
);
1508 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf
);
1510 static unsigned int ata_sff_idle_irq(struct ata_port
*ap
)
1512 ap
->stats
.idle_irq
++;
1515 if ((ap
->stats
.idle_irq
% 1000) == 0) {
1516 ap
->ops
->sff_check_status(ap
);
1517 if (ap
->ops
->sff_irq_clear
)
1518 ap
->ops
->sff_irq_clear(ap
);
1519 ata_port_warn(ap
, "irq trap\n");
1523 return 0; /* irq not handled */
1526 static unsigned int __ata_sff_port_intr(struct ata_port
*ap
,
1527 struct ata_queued_cmd
*qc
,
1532 VPRINTK("ata%u: protocol %d task_state %d\n",
1533 ap
->print_id
, qc
->tf
.protocol
, ap
->hsm_task_state
);
1535 /* Check whether we are expecting interrupt in this state */
1536 switch (ap
->hsm_task_state
) {
1538 /* Some pre-ATAPI-4 devices assert INTRQ
1539 * at this state when ready to receive CDB.
1542 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1543 * The flag was turned on only for atapi devices. No
1544 * need to check ata_is_atapi(qc->tf.protocol) again.
1546 if (!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
1547 return ata_sff_idle_irq(ap
);
1550 return ata_sff_idle_irq(ap
);
1555 /* check main status, clearing INTRQ if needed */
1556 status
= ata_sff_irq_status(ap
);
1557 if (status
& ATA_BUSY
) {
1559 /* BMDMA engine is already stopped, we're screwed */
1560 qc
->err_mask
|= AC_ERR_HSM
;
1561 ap
->hsm_task_state
= HSM_ST_ERR
;
1563 return ata_sff_idle_irq(ap
);
1566 /* clear irq events */
1567 if (ap
->ops
->sff_irq_clear
)
1568 ap
->ops
->sff_irq_clear(ap
);
1570 ata_sff_hsm_move(ap
, qc
, status
, 0);
1572 return 1; /* irq handled */
1576 * ata_sff_port_intr - Handle SFF port interrupt
1577 * @ap: Port on which interrupt arrived (possibly...)
1578 * @qc: Taskfile currently active in engine
1580 * Handle port interrupt for given queued command.
1583 * spin_lock_irqsave(host lock)
1586 * One if interrupt was handled, zero if not (shared irq).
1588 unsigned int ata_sff_port_intr(struct ata_port
*ap
, struct ata_queued_cmd
*qc
)
1590 return __ata_sff_port_intr(ap
, qc
, false);
1592 EXPORT_SYMBOL_GPL(ata_sff_port_intr
);
1594 static inline irqreturn_t
__ata_sff_interrupt(int irq
, void *dev_instance
,
1595 unsigned int (*port_intr
)(struct ata_port
*, struct ata_queued_cmd
*))
1597 struct ata_host
*host
= dev_instance
;
1598 bool retried
= false;
1600 unsigned int handled
, idle
, polling
;
1601 unsigned long flags
;
1603 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1604 spin_lock_irqsave(&host
->lock
, flags
);
1607 handled
= idle
= polling
= 0;
1608 for (i
= 0; i
< host
->n_ports
; i
++) {
1609 struct ata_port
*ap
= host
->ports
[i
];
1610 struct ata_queued_cmd
*qc
;
1612 qc
= ata_qc_from_tag(ap
, ap
->link
.active_tag
);
1614 if (!(qc
->tf
.flags
& ATA_TFLAG_POLLING
))
1615 handled
|= port_intr(ap
, qc
);
1623 * If no port was expecting IRQ but the controller is actually
1624 * asserting IRQ line, nobody cared will ensue. Check IRQ
1625 * pending status if available and clear spurious IRQ.
1627 if (!handled
&& !retried
) {
1630 for (i
= 0; i
< host
->n_ports
; i
++) {
1631 struct ata_port
*ap
= host
->ports
[i
];
1633 if (polling
& (1 << i
))
1636 if (!ap
->ops
->sff_irq_check
||
1637 !ap
->ops
->sff_irq_check(ap
))
1640 if (idle
& (1 << i
)) {
1641 ap
->ops
->sff_check_status(ap
);
1642 if (ap
->ops
->sff_irq_clear
)
1643 ap
->ops
->sff_irq_clear(ap
);
1645 /* clear INTRQ and check if BUSY cleared */
1646 if (!(ap
->ops
->sff_check_status(ap
) & ATA_BUSY
))
1649 * With command in flight, we can't do
1650 * sff_irq_clear() w/o racing with completion.
1661 spin_unlock_irqrestore(&host
->lock
, flags
);
1663 return IRQ_RETVAL(handled
);
1667 * ata_sff_interrupt - Default SFF ATA host interrupt handler
1668 * @irq: irq line (unused)
1669 * @dev_instance: pointer to our ata_host information structure
1671 * Default interrupt handler for PCI IDE devices. Calls
1672 * ata_sff_port_intr() for each port that is not disabled.
1675 * Obtains host lock during operation.
1678 * IRQ_NONE or IRQ_HANDLED.
1680 irqreturn_t
ata_sff_interrupt(int irq
, void *dev_instance
)
1682 return __ata_sff_interrupt(irq
, dev_instance
, ata_sff_port_intr
);
1684 EXPORT_SYMBOL_GPL(ata_sff_interrupt
);
1687 * ata_sff_lost_interrupt - Check for an apparent lost interrupt
1688 * @ap: port that appears to have timed out
1690 * Called from the libata error handlers when the core code suspects
1691 * an interrupt has been lost. If it has complete anything we can and
1692 * then return. Interface must support altstatus for this faster
1693 * recovery to occur.
1696 * Caller holds host lock
1699 void ata_sff_lost_interrupt(struct ata_port
*ap
)
1702 struct ata_queued_cmd
*qc
;
1704 /* Only one outstanding command per SFF channel */
1705 qc
= ata_qc_from_tag(ap
, ap
->link
.active_tag
);
1706 /* We cannot lose an interrupt on a non-existent or polled command */
1707 if (!qc
|| qc
->tf
.flags
& ATA_TFLAG_POLLING
)
1709 /* See if the controller thinks it is still busy - if so the command
1710 isn't a lost IRQ but is still in progress */
1711 status
= ata_sff_altstatus(ap
);
1712 if (status
& ATA_BUSY
)
1715 /* There was a command running, we are no longer busy and we have
1717 ata_port_warn(ap
, "lost interrupt (Status 0x%x)\n",
1719 /* Run the host interrupt logic as if the interrupt had not been
1721 ata_sff_port_intr(ap
, qc
);
1723 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt
);
1726 * ata_sff_freeze - Freeze SFF controller port
1727 * @ap: port to freeze
1729 * Freeze SFF controller port.
1732 * Inherited from caller.
1734 void ata_sff_freeze(struct ata_port
*ap
)
1736 ap
->ctl
|= ATA_NIEN
;
1737 ap
->last_ctl
= ap
->ctl
;
1739 if (ap
->ops
->sff_set_devctl
|| ap
->ioaddr
.ctl_addr
)
1740 ata_sff_set_devctl(ap
, ap
->ctl
);
1742 /* Under certain circumstances, some controllers raise IRQ on
1743 * ATA_NIEN manipulation. Also, many controllers fail to mask
1744 * previously pending IRQ on ATA_NIEN assertion. Clear it.
1746 ap
->ops
->sff_check_status(ap
);
1748 if (ap
->ops
->sff_irq_clear
)
1749 ap
->ops
->sff_irq_clear(ap
);
1751 EXPORT_SYMBOL_GPL(ata_sff_freeze
);
1754 * ata_sff_thaw - Thaw SFF controller port
1757 * Thaw SFF controller port.
1760 * Inherited from caller.
1762 void ata_sff_thaw(struct ata_port
*ap
)
1764 /* clear & re-enable interrupts */
1765 ap
->ops
->sff_check_status(ap
);
1766 if (ap
->ops
->sff_irq_clear
)
1767 ap
->ops
->sff_irq_clear(ap
);
1770 EXPORT_SYMBOL_GPL(ata_sff_thaw
);
1773 * ata_sff_prereset - prepare SFF link for reset
1774 * @link: SFF link to be reset
1775 * @deadline: deadline jiffies for the operation
1777 * SFF link @link is about to be reset. Initialize it. It first
1778 * calls ata_std_prereset() and wait for !BSY if the port is
1782 * Kernel thread context (may sleep)
1785 * 0 on success, -errno otherwise.
1787 int ata_sff_prereset(struct ata_link
*link
, unsigned long deadline
)
1789 struct ata_eh_context
*ehc
= &link
->eh_context
;
1792 rc
= ata_std_prereset(link
, deadline
);
1796 /* if we're about to do hardreset, nothing more to do */
1797 if (ehc
->i
.action
& ATA_EH_HARDRESET
)
1800 /* wait for !BSY if we don't know that no device is attached */
1801 if (!ata_link_offline(link
)) {
1802 rc
= ata_sff_wait_ready(link
, deadline
);
1803 if (rc
&& rc
!= -ENODEV
) {
1805 "device not ready (errno=%d), forcing hardreset\n",
1807 ehc
->i
.action
|= ATA_EH_HARDRESET
;
1813 EXPORT_SYMBOL_GPL(ata_sff_prereset
);
1816 * ata_devchk - PATA device presence detection
1817 * @ap: ATA channel to examine
1818 * @device: Device to examine (starting at zero)
1820 * This technique was originally described in
1821 * Hale Landis's ATADRVR (www.ata-atapi.com), and
1822 * later found its way into the ATA/ATAPI spec.
1824 * Write a pattern to the ATA shadow registers,
1825 * and if a device is present, it will respond by
1826 * correctly storing and echoing back the
1827 * ATA shadow register contents.
1832 static unsigned int ata_devchk(struct ata_port
*ap
, unsigned int device
)
1834 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
1837 ap
->ops
->sff_dev_select(ap
, device
);
1839 iowrite8(0x55, ioaddr
->nsect_addr
);
1840 iowrite8(0xaa, ioaddr
->lbal_addr
);
1842 iowrite8(0xaa, ioaddr
->nsect_addr
);
1843 iowrite8(0x55, ioaddr
->lbal_addr
);
1845 iowrite8(0x55, ioaddr
->nsect_addr
);
1846 iowrite8(0xaa, ioaddr
->lbal_addr
);
1848 nsect
= ioread8(ioaddr
->nsect_addr
);
1849 lbal
= ioread8(ioaddr
->lbal_addr
);
1851 if ((nsect
== 0x55) && (lbal
== 0xaa))
1852 return 1; /* we found a device */
1854 return 0; /* nothing found */
1858 * ata_sff_dev_classify - Parse returned ATA device signature
1859 * @dev: ATA device to classify (starting at zero)
1860 * @present: device seems present
1861 * @r_err: Value of error register on completion
1863 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1864 * an ATA/ATAPI-defined set of values is placed in the ATA
1865 * shadow registers, indicating the results of device detection
1868 * Select the ATA device, and read the values from the ATA shadow
1869 * registers. Then parse according to the Error register value,
1870 * and the spec-defined values examined by ata_dev_classify().
1876 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1878 unsigned int ata_sff_dev_classify(struct ata_device
*dev
, int present
,
1881 struct ata_port
*ap
= dev
->link
->ap
;
1882 struct ata_taskfile tf
;
1886 ap
->ops
->sff_dev_select(ap
, dev
->devno
);
1888 memset(&tf
, 0, sizeof(tf
));
1890 ap
->ops
->sff_tf_read(ap
, &tf
);
1895 /* see if device passed diags: continue and warn later */
1897 /* diagnostic fail : do nothing _YET_ */
1898 dev
->horkage
|= ATA_HORKAGE_DIAGNOSTIC
;
1901 else if ((dev
->devno
== 0) && (err
== 0x81))
1904 return ATA_DEV_NONE
;
1906 /* determine if device is ATA or ATAPI */
1907 class = ata_dev_classify(&tf
);
1909 if (class == ATA_DEV_UNKNOWN
) {
1910 /* If the device failed diagnostic, it's likely to
1911 * have reported incorrect device signature too.
1912 * Assume ATA device if the device seems present but
1913 * device signature is invalid with diagnostic
1916 if (present
&& (dev
->horkage
& ATA_HORKAGE_DIAGNOSTIC
))
1917 class = ATA_DEV_ATA
;
1919 class = ATA_DEV_NONE
;
1920 } else if ((class == ATA_DEV_ATA
) &&
1921 (ap
->ops
->sff_check_status(ap
) == 0))
1922 class = ATA_DEV_NONE
;
1926 EXPORT_SYMBOL_GPL(ata_sff_dev_classify
);
1929 * ata_sff_wait_after_reset - wait for devices to become ready after reset
1930 * @link: SFF link which is just reset
1931 * @devmask: mask of present devices
1932 * @deadline: deadline jiffies for the operation
1934 * Wait devices attached to SFF @link to become ready after
1935 * reset. It contains preceding 150ms wait to avoid accessing TF
1936 * status register too early.
1939 * Kernel thread context (may sleep).
1942 * 0 on success, -ENODEV if some or all of devices in @devmask
1943 * don't seem to exist. -errno on other errors.
1945 int ata_sff_wait_after_reset(struct ata_link
*link
, unsigned int devmask
,
1946 unsigned long deadline
)
1948 struct ata_port
*ap
= link
->ap
;
1949 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
1950 unsigned int dev0
= devmask
& (1 << 0);
1951 unsigned int dev1
= devmask
& (1 << 1);
1954 ata_msleep(ap
, ATA_WAIT_AFTER_RESET
);
1956 /* always check readiness of the master device */
1957 rc
= ata_sff_wait_ready(link
, deadline
);
1958 /* -ENODEV means the odd clown forgot the D7 pulldown resistor
1959 * and TF status is 0xff, bail out on it too.
1964 /* if device 1 was found in ata_devchk, wait for register
1965 * access briefly, then wait for BSY to clear.
1970 ap
->ops
->sff_dev_select(ap
, 1);
1972 /* Wait for register access. Some ATAPI devices fail
1973 * to set nsect/lbal after reset, so don't waste too
1974 * much time on it. We're gonna wait for !BSY anyway.
1976 for (i
= 0; i
< 2; i
++) {
1979 nsect
= ioread8(ioaddr
->nsect_addr
);
1980 lbal
= ioread8(ioaddr
->lbal_addr
);
1981 if ((nsect
== 1) && (lbal
== 1))
1983 ata_msleep(ap
, 50); /* give drive a breather */
1986 rc
= ata_sff_wait_ready(link
, deadline
);
1994 /* is all this really necessary? */
1995 ap
->ops
->sff_dev_select(ap
, 0);
1997 ap
->ops
->sff_dev_select(ap
, 1);
1999 ap
->ops
->sff_dev_select(ap
, 0);
2003 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset
);
2005 static int ata_bus_softreset(struct ata_port
*ap
, unsigned int devmask
,
2006 unsigned long deadline
)
2008 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
2010 DPRINTK("ata%u: bus reset via SRST\n", ap
->print_id
);
2012 if (ap
->ioaddr
.ctl_addr
) {
2013 /* software reset. causes dev0 to be selected */
2014 iowrite8(ap
->ctl
, ioaddr
->ctl_addr
);
2015 udelay(20); /* FIXME: flush */
2016 iowrite8(ap
->ctl
| ATA_SRST
, ioaddr
->ctl_addr
);
2017 udelay(20); /* FIXME: flush */
2018 iowrite8(ap
->ctl
, ioaddr
->ctl_addr
);
2019 ap
->last_ctl
= ap
->ctl
;
2022 /* wait the port to become ready */
2023 return ata_sff_wait_after_reset(&ap
->link
, devmask
, deadline
);
2027 * ata_sff_softreset - reset host port via ATA SRST
2028 * @link: ATA link to reset
2029 * @classes: resulting classes of attached devices
2030 * @deadline: deadline jiffies for the operation
2032 * Reset host port using ATA SRST.
2035 * Kernel thread context (may sleep)
2038 * 0 on success, -errno otherwise.
2040 int ata_sff_softreset(struct ata_link
*link
, unsigned int *classes
,
2041 unsigned long deadline
)
2043 struct ata_port
*ap
= link
->ap
;
2044 unsigned int slave_possible
= ap
->flags
& ATA_FLAG_SLAVE_POSS
;
2045 unsigned int devmask
= 0;
2051 /* determine if device 0/1 are present */
2052 if (ata_devchk(ap
, 0))
2053 devmask
|= (1 << 0);
2054 if (slave_possible
&& ata_devchk(ap
, 1))
2055 devmask
|= (1 << 1);
2057 /* select device 0 again */
2058 ap
->ops
->sff_dev_select(ap
, 0);
2060 /* issue bus reset */
2061 DPRINTK("about to softreset, devmask=%x\n", devmask
);
2062 rc
= ata_bus_softreset(ap
, devmask
, deadline
);
2063 /* if link is occupied, -ENODEV too is an error */
2064 if (rc
&& (rc
!= -ENODEV
|| sata_scr_valid(link
))) {
2065 ata_link_err(link
, "SRST failed (errno=%d)\n", rc
);
2069 /* determine by signature whether we have ATA or ATAPI devices */
2070 classes
[0] = ata_sff_dev_classify(&link
->device
[0],
2071 devmask
& (1 << 0), &err
);
2072 if (slave_possible
&& err
!= 0x81)
2073 classes
[1] = ata_sff_dev_classify(&link
->device
[1],
2074 devmask
& (1 << 1), &err
);
2076 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes
[0], classes
[1]);
2079 EXPORT_SYMBOL_GPL(ata_sff_softreset
);
2082 * sata_sff_hardreset - reset host port via SATA phy reset
2083 * @link: link to reset
2084 * @class: resulting class of attached device
2085 * @deadline: deadline jiffies for the operation
2087 * SATA phy-reset host port using DET bits of SControl register,
2088 * wait for !BSY and classify the attached device.
2091 * Kernel thread context (may sleep)
2094 * 0 on success, -errno otherwise.
2096 int sata_sff_hardreset(struct ata_link
*link
, unsigned int *class,
2097 unsigned long deadline
)
2099 struct ata_eh_context
*ehc
= &link
->eh_context
;
2100 const unsigned long *timing
= sata_ehc_deb_timing(ehc
);
2104 rc
= sata_link_hardreset(link
, timing
, deadline
, &online
,
2105 ata_sff_check_ready
);
2107 *class = ata_sff_dev_classify(link
->device
, 1, NULL
);
2109 DPRINTK("EXIT, class=%u\n", *class);
2112 EXPORT_SYMBOL_GPL(sata_sff_hardreset
);
2115 * ata_sff_postreset - SFF postreset callback
2116 * @link: the target SFF ata_link
2117 * @classes: classes of attached devices
2119 * This function is invoked after a successful reset. It first
2120 * calls ata_std_postreset() and performs SFF specific postreset
2124 * Kernel thread context (may sleep)
2126 void ata_sff_postreset(struct ata_link
*link
, unsigned int *classes
)
2128 struct ata_port
*ap
= link
->ap
;
2130 ata_std_postreset(link
, classes
);
2132 /* is double-select really necessary? */
2133 if (classes
[0] != ATA_DEV_NONE
)
2134 ap
->ops
->sff_dev_select(ap
, 1);
2135 if (classes
[1] != ATA_DEV_NONE
)
2136 ap
->ops
->sff_dev_select(ap
, 0);
2138 /* bail out if no device is present */
2139 if (classes
[0] == ATA_DEV_NONE
&& classes
[1] == ATA_DEV_NONE
) {
2140 DPRINTK("EXIT, no device\n");
2144 /* set up device control */
2145 if (ap
->ops
->sff_set_devctl
|| ap
->ioaddr
.ctl_addr
) {
2146 ata_sff_set_devctl(ap
, ap
->ctl
);
2147 ap
->last_ctl
= ap
->ctl
;
2150 EXPORT_SYMBOL_GPL(ata_sff_postreset
);
2153 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2156 * Drain the FIFO and device of any stuck data following a command
2157 * failing to complete. In some cases this is necessary before a
2158 * reset will recover the device.
2162 void ata_sff_drain_fifo(struct ata_queued_cmd
*qc
)
2165 struct ata_port
*ap
;
2167 /* We only need to flush incoming data when a command was running */
2168 if (qc
== NULL
|| qc
->dma_dir
== DMA_TO_DEVICE
)
2172 /* Drain up to 64K of data before we give up this recovery method */
2173 for (count
= 0; (ap
->ops
->sff_check_status(ap
) & ATA_DRQ
)
2174 && count
< 65536; count
+= 2)
2175 ioread16(ap
->ioaddr
.data_addr
);
2177 /* Can become DEBUG later */
2179 ata_port_dbg(ap
, "drained %d bytes to clear DRQ\n", count
);
2182 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo
);
2185 * ata_sff_error_handler - Stock error handler for SFF controller
2186 * @ap: port to handle error for
2188 * Stock error handler for SFF controller. It can handle both
2189 * PATA and SATA controllers. Many controllers should be able to
2190 * use this EH as-is or with some added handling before and
2194 * Kernel thread context (may sleep)
2196 void ata_sff_error_handler(struct ata_port
*ap
)
2198 ata_reset_fn_t softreset
= ap
->ops
->softreset
;
2199 ata_reset_fn_t hardreset
= ap
->ops
->hardreset
;
2200 struct ata_queued_cmd
*qc
;
2201 unsigned long flags
;
2203 qc
= __ata_qc_from_tag(ap
, ap
->link
.active_tag
);
2204 if (qc
&& !(qc
->flags
& ATA_QCFLAG_FAILED
))
2207 spin_lock_irqsave(ap
->lock
, flags
);
2210 * We *MUST* do FIFO draining before we issue a reset as
2211 * several devices helpfully clear their internal state and
2212 * will lock solid if we touch the data port post reset. Pass
2213 * qc in case anyone wants to do different PIO/DMA recovery or
2214 * has per command fixups
2216 if (ap
->ops
->sff_drain_fifo
)
2217 ap
->ops
->sff_drain_fifo(qc
);
2219 spin_unlock_irqrestore(ap
->lock
, flags
);
2221 /* ignore built-in hardresets if SCR access is not available */
2222 if ((hardreset
== sata_std_hardreset
||
2223 hardreset
== sata_sff_hardreset
) && !sata_scr_valid(&ap
->link
))
2226 ata_do_eh(ap
, ap
->ops
->prereset
, softreset
, hardreset
,
2227 ap
->ops
->postreset
);
2229 EXPORT_SYMBOL_GPL(ata_sff_error_handler
);
2232 * ata_sff_std_ports - initialize ioaddr with standard port offsets.
2233 * @ioaddr: IO address structure to be initialized
2235 * Utility function which initializes data_addr, error_addr,
2236 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2237 * device_addr, status_addr, and command_addr to standard offsets
2238 * relative to cmd_addr.
2240 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2242 void ata_sff_std_ports(struct ata_ioports
*ioaddr
)
2244 ioaddr
->data_addr
= ioaddr
->cmd_addr
+ ATA_REG_DATA
;
2245 ioaddr
->error_addr
= ioaddr
->cmd_addr
+ ATA_REG_ERR
;
2246 ioaddr
->feature_addr
= ioaddr
->cmd_addr
+ ATA_REG_FEATURE
;
2247 ioaddr
->nsect_addr
= ioaddr
->cmd_addr
+ ATA_REG_NSECT
;
2248 ioaddr
->lbal_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAL
;
2249 ioaddr
->lbam_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAM
;
2250 ioaddr
->lbah_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAH
;
2251 ioaddr
->device_addr
= ioaddr
->cmd_addr
+ ATA_REG_DEVICE
;
2252 ioaddr
->status_addr
= ioaddr
->cmd_addr
+ ATA_REG_STATUS
;
2253 ioaddr
->command_addr
= ioaddr
->cmd_addr
+ ATA_REG_CMD
;
2255 EXPORT_SYMBOL_GPL(ata_sff_std_ports
);
2259 static int ata_resources_present(struct pci_dev
*pdev
, int port
)
2263 /* Check the PCI resources for this channel are enabled */
2265 for (i
= 0; i
< 2; i
++) {
2266 if (pci_resource_start(pdev
, port
+ i
) == 0 ||
2267 pci_resource_len(pdev
, port
+ i
) == 0)
2274 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2275 * @host: target ATA host
2277 * Acquire native PCI ATA resources for @host and initialize the
2278 * first two ports of @host accordingly. Ports marked dummy are
2279 * skipped and allocation failure makes the port dummy.
2281 * Note that native PCI resources are valid even for legacy hosts
2282 * as we fix up pdev resources array early in boot, so this
2283 * function can be used for both native and legacy SFF hosts.
2286 * Inherited from calling layer (may sleep).
2289 * 0 if at least one port is initialized, -ENODEV if no port is
2292 int ata_pci_sff_init_host(struct ata_host
*host
)
2294 struct device
*gdev
= host
->dev
;
2295 struct pci_dev
*pdev
= to_pci_dev(gdev
);
2296 unsigned int mask
= 0;
2299 /* request, iomap BARs and init port addresses accordingly */
2300 for (i
= 0; i
< 2; i
++) {
2301 struct ata_port
*ap
= host
->ports
[i
];
2303 void __iomem
* const *iomap
;
2305 if (ata_port_is_dummy(ap
))
2308 /* Discard disabled ports. Some controllers show
2309 * their unused channels this way. Disabled ports are
2312 if (!ata_resources_present(pdev
, i
)) {
2313 ap
->ops
= &ata_dummy_port_ops
;
2317 rc
= pcim_iomap_regions(pdev
, 0x3 << base
,
2318 dev_driver_string(gdev
));
2321 "failed to request/iomap BARs for port %d (errno=%d)\n",
2324 pcim_pin_device(pdev
);
2325 ap
->ops
= &ata_dummy_port_ops
;
2328 host
->iomap
= iomap
= pcim_iomap_table(pdev
);
2330 ap
->ioaddr
.cmd_addr
= iomap
[base
];
2331 ap
->ioaddr
.altstatus_addr
=
2332 ap
->ioaddr
.ctl_addr
= (void __iomem
*)
2333 ((unsigned long)iomap
[base
+ 1] | ATA_PCI_CTL_OFS
);
2334 ata_sff_std_ports(&ap
->ioaddr
);
2336 ata_port_desc(ap
, "cmd 0x%llx ctl 0x%llx",
2337 (unsigned long long)pci_resource_start(pdev
, base
),
2338 (unsigned long long)pci_resource_start(pdev
, base
+ 1));
2344 dev_err(gdev
, "no available native port\n");
2350 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host
);
2353 * ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2354 * @pdev: target PCI device
2355 * @ppi: array of port_info, must be enough for two ports
2356 * @r_host: out argument for the initialized ATA host
2358 * Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2359 * all PCI resources and initialize it accordingly in one go.
2362 * Inherited from calling layer (may sleep).
2365 * 0 on success, -errno otherwise.
2367 int ata_pci_sff_prepare_host(struct pci_dev
*pdev
,
2368 const struct ata_port_info
* const *ppi
,
2369 struct ata_host
**r_host
)
2371 struct ata_host
*host
;
2374 if (!devres_open_group(&pdev
->dev
, NULL
, GFP_KERNEL
))
2377 host
= ata_host_alloc_pinfo(&pdev
->dev
, ppi
, 2);
2379 dev_err(&pdev
->dev
, "failed to allocate ATA host\n");
2384 rc
= ata_pci_sff_init_host(host
);
2388 devres_remove_group(&pdev
->dev
, NULL
);
2393 devres_release_group(&pdev
->dev
, NULL
);
2396 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host
);
2399 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2400 * @host: target SFF ATA host
2401 * @irq_handler: irq_handler used when requesting IRQ(s)
2402 * @sht: scsi_host_template to use when registering the host
2404 * This is the counterpart of ata_host_activate() for SFF ATA
2405 * hosts. This separate helper is necessary because SFF hosts
2406 * use two separate interrupts in legacy mode.
2409 * Inherited from calling layer (may sleep).
2412 * 0 on success, -errno otherwise.
2414 int ata_pci_sff_activate_host(struct ata_host
*host
,
2415 irq_handler_t irq_handler
,
2416 struct scsi_host_template
*sht
)
2418 struct device
*dev
= host
->dev
;
2419 struct pci_dev
*pdev
= to_pci_dev(dev
);
2420 const char *drv_name
= dev_driver_string(host
->dev
);
2421 int legacy_mode
= 0, rc
;
2423 rc
= ata_host_start(host
);
2427 if ((pdev
->class >> 8) == PCI_CLASS_STORAGE_IDE
) {
2430 /* TODO: What if one channel is in native mode ... */
2431 pci_read_config_byte(pdev
, PCI_CLASS_PROG
, &tmp8
);
2432 mask
= (1 << 2) | (1 << 0);
2433 if ((tmp8
& mask
) != mask
)
2437 if (!devres_open_group(dev
, NULL
, GFP_KERNEL
))
2440 if (!legacy_mode
&& pdev
->irq
) {
2443 rc
= devm_request_irq(dev
, pdev
->irq
, irq_handler
,
2444 IRQF_SHARED
, drv_name
, host
);
2448 for (i
= 0; i
< 2; i
++) {
2449 if (ata_port_is_dummy(host
->ports
[i
]))
2451 ata_port_desc(host
->ports
[i
], "irq %d", pdev
->irq
);
2453 } else if (legacy_mode
) {
2454 if (!ata_port_is_dummy(host
->ports
[0])) {
2455 rc
= devm_request_irq(dev
, ATA_PRIMARY_IRQ(pdev
),
2456 irq_handler
, IRQF_SHARED
,
2461 ata_port_desc(host
->ports
[0], "irq %d",
2462 ATA_PRIMARY_IRQ(pdev
));
2465 if (!ata_port_is_dummy(host
->ports
[1])) {
2466 rc
= devm_request_irq(dev
, ATA_SECONDARY_IRQ(pdev
),
2467 irq_handler
, IRQF_SHARED
,
2472 ata_port_desc(host
->ports
[1], "irq %d",
2473 ATA_SECONDARY_IRQ(pdev
));
2477 rc
= ata_host_register(host
, sht
);
2480 devres_remove_group(dev
, NULL
);
2482 devres_release_group(dev
, NULL
);
2486 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host
);
2488 static const struct ata_port_info
*ata_sff_find_valid_pi(
2489 const struct ata_port_info
* const *ppi
)
2493 /* look up the first valid port_info */
2494 for (i
= 0; i
< 2 && ppi
[i
]; i
++)
2495 if (ppi
[i
]->port_ops
!= &ata_dummy_port_ops
)
2501 static int ata_pci_init_one(struct pci_dev
*pdev
,
2502 const struct ata_port_info
* const *ppi
,
2503 struct scsi_host_template
*sht
, void *host_priv
,
2504 int hflags
, bool bmdma
)
2506 struct device
*dev
= &pdev
->dev
;
2507 const struct ata_port_info
*pi
;
2508 struct ata_host
*host
= NULL
;
2513 pi
= ata_sff_find_valid_pi(ppi
);
2515 dev_err(&pdev
->dev
, "no valid port_info specified\n");
2519 if (!devres_open_group(dev
, NULL
, GFP_KERNEL
))
2522 rc
= pcim_enable_device(pdev
);
2526 #ifdef CONFIG_ATA_BMDMA
2528 /* prepare and activate BMDMA host */
2529 rc
= ata_pci_bmdma_prepare_host(pdev
, ppi
, &host
);
2532 /* prepare and activate SFF host */
2533 rc
= ata_pci_sff_prepare_host(pdev
, ppi
, &host
);
2536 host
->private_data
= host_priv
;
2537 host
->flags
|= hflags
;
2539 #ifdef CONFIG_ATA_BMDMA
2541 pci_set_master(pdev
);
2542 rc
= ata_pci_sff_activate_host(host
, ata_bmdma_interrupt
, sht
);
2545 rc
= ata_pci_sff_activate_host(host
, ata_sff_interrupt
, sht
);
2548 devres_remove_group(&pdev
->dev
, NULL
);
2550 devres_release_group(&pdev
->dev
, NULL
);
2556 * ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2557 * @pdev: Controller to be initialized
2558 * @ppi: array of port_info, must be enough for two ports
2559 * @sht: scsi_host_template to use when registering the host
2560 * @host_priv: host private_data
2561 * @hflag: host flags
2563 * This is a helper function which can be called from a driver's
2564 * xxx_init_one() probe function if the hardware uses traditional
2565 * IDE taskfile registers and is PIO only.
2568 * Nobody makes a single channel controller that appears solely as
2569 * the secondary legacy port on PCI.
2572 * Inherited from PCI layer (may sleep).
2575 * Zero on success, negative on errno-based value on error.
2577 int ata_pci_sff_init_one(struct pci_dev
*pdev
,
2578 const struct ata_port_info
* const *ppi
,
2579 struct scsi_host_template
*sht
, void *host_priv
, int hflag
)
2581 return ata_pci_init_one(pdev
, ppi
, sht
, host_priv
, hflag
, 0);
2583 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one
);
2585 #endif /* CONFIG_PCI */
2591 #ifdef CONFIG_ATA_BMDMA
2593 const struct ata_port_operations ata_bmdma_port_ops
= {
2594 .inherits
= &ata_sff_port_ops
,
2596 .error_handler
= ata_bmdma_error_handler
,
2597 .post_internal_cmd
= ata_bmdma_post_internal_cmd
,
2599 .qc_prep
= ata_bmdma_qc_prep
,
2600 .qc_issue
= ata_bmdma_qc_issue
,
2602 .sff_irq_clear
= ata_bmdma_irq_clear
,
2603 .bmdma_setup
= ata_bmdma_setup
,
2604 .bmdma_start
= ata_bmdma_start
,
2605 .bmdma_stop
= ata_bmdma_stop
,
2606 .bmdma_status
= ata_bmdma_status
,
2608 .port_start
= ata_bmdma_port_start
,
2610 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops
);
2612 const struct ata_port_operations ata_bmdma32_port_ops
= {
2613 .inherits
= &ata_bmdma_port_ops
,
2615 .sff_data_xfer
= ata_sff_data_xfer32
,
2616 .port_start
= ata_bmdma_port_start32
,
2618 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops
);
2621 * ata_bmdma_fill_sg - Fill PCI IDE PRD table
2622 * @qc: Metadata associated with taskfile to be transferred
2624 * Fill PCI IDE PRD (scatter-gather) table with segments
2625 * associated with the current disk command.
2628 * spin_lock_irqsave(host lock)
2631 static void ata_bmdma_fill_sg(struct ata_queued_cmd
*qc
)
2633 struct ata_port
*ap
= qc
->ap
;
2634 struct ata_bmdma_prd
*prd
= ap
->bmdma_prd
;
2635 struct scatterlist
*sg
;
2636 unsigned int si
, pi
;
2639 for_each_sg(qc
->sg
, sg
, qc
->n_elem
, si
) {
2643 /* determine if physical DMA addr spans 64K boundary.
2644 * Note h/w doesn't support 64-bit, so we unconditionally
2645 * truncate dma_addr_t to u32.
2647 addr
= (u32
) sg_dma_address(sg
);
2648 sg_len
= sg_dma_len(sg
);
2651 offset
= addr
& 0xffff;
2653 if ((offset
+ sg_len
) > 0x10000)
2654 len
= 0x10000 - offset
;
2656 prd
[pi
].addr
= cpu_to_le32(addr
);
2657 prd
[pi
].flags_len
= cpu_to_le32(len
& 0xffff);
2658 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi
, addr
, len
);
2666 prd
[pi
- 1].flags_len
|= cpu_to_le32(ATA_PRD_EOT
);
2670 * ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2671 * @qc: Metadata associated with taskfile to be transferred
2673 * Fill PCI IDE PRD (scatter-gather) table with segments
2674 * associated with the current disk command. Perform the fill
2675 * so that we avoid writing any length 64K records for
2676 * controllers that don't follow the spec.
2679 * spin_lock_irqsave(host lock)
2682 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd
*qc
)
2684 struct ata_port
*ap
= qc
->ap
;
2685 struct ata_bmdma_prd
*prd
= ap
->bmdma_prd
;
2686 struct scatterlist
*sg
;
2687 unsigned int si
, pi
;
2690 for_each_sg(qc
->sg
, sg
, qc
->n_elem
, si
) {
2692 u32 sg_len
, len
, blen
;
2694 /* determine if physical DMA addr spans 64K boundary.
2695 * Note h/w doesn't support 64-bit, so we unconditionally
2696 * truncate dma_addr_t to u32.
2698 addr
= (u32
) sg_dma_address(sg
);
2699 sg_len
= sg_dma_len(sg
);
2702 offset
= addr
& 0xffff;
2704 if ((offset
+ sg_len
) > 0x10000)
2705 len
= 0x10000 - offset
;
2707 blen
= len
& 0xffff;
2708 prd
[pi
].addr
= cpu_to_le32(addr
);
2710 /* Some PATA chipsets like the CS5530 can't
2711 cope with 0x0000 meaning 64K as the spec
2713 prd
[pi
].flags_len
= cpu_to_le32(0x8000);
2715 prd
[++pi
].addr
= cpu_to_le32(addr
+ 0x8000);
2717 prd
[pi
].flags_len
= cpu_to_le32(blen
);
2718 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi
, addr
, len
);
2726 prd
[pi
- 1].flags_len
|= cpu_to_le32(ATA_PRD_EOT
);
2730 * ata_bmdma_qc_prep - Prepare taskfile for submission
2731 * @qc: Metadata associated with taskfile to be prepared
2733 * Prepare ATA taskfile for submission.
2736 * spin_lock_irqsave(host lock)
2738 void ata_bmdma_qc_prep(struct ata_queued_cmd
*qc
)
2740 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
2743 ata_bmdma_fill_sg(qc
);
2745 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep
);
2748 * ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2749 * @qc: Metadata associated with taskfile to be prepared
2751 * Prepare ATA taskfile for submission.
2754 * spin_lock_irqsave(host lock)
2756 void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd
*qc
)
2758 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
2761 ata_bmdma_fill_sg_dumb(qc
);
2763 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep
);
2766 * ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2767 * @qc: command to issue to device
2769 * This function issues a PIO, NODATA or DMA command to a
2770 * SFF/BMDMA controller. PIO and NODATA are handled by
2771 * ata_sff_qc_issue().
2774 * spin_lock_irqsave(host lock)
2777 * Zero on success, AC_ERR_* mask on failure
2779 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd
*qc
)
2781 struct ata_port
*ap
= qc
->ap
;
2782 struct ata_link
*link
= qc
->dev
->link
;
2784 /* defer PIO handling to sff_qc_issue */
2785 if (!ata_is_dma(qc
->tf
.protocol
))
2786 return ata_sff_qc_issue(qc
);
2788 /* select the device */
2789 ata_dev_select(ap
, qc
->dev
->devno
, 1, 0);
2791 /* start the command */
2792 switch (qc
->tf
.protocol
) {
2794 WARN_ON_ONCE(qc
->tf
.flags
& ATA_TFLAG_POLLING
);
2796 ap
->ops
->sff_tf_load(ap
, &qc
->tf
); /* load tf registers */
2797 ap
->ops
->bmdma_setup(qc
); /* set up bmdma */
2798 ap
->ops
->bmdma_start(qc
); /* initiate bmdma */
2799 ap
->hsm_task_state
= HSM_ST_LAST
;
2802 case ATAPI_PROT_DMA
:
2803 WARN_ON_ONCE(qc
->tf
.flags
& ATA_TFLAG_POLLING
);
2805 ap
->ops
->sff_tf_load(ap
, &qc
->tf
); /* load tf registers */
2806 ap
->ops
->bmdma_setup(qc
); /* set up bmdma */
2807 ap
->hsm_task_state
= HSM_ST_FIRST
;
2809 /* send cdb by polling if no cdb interrupt */
2810 if (!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
2811 ata_sff_queue_pio_task(link
, 0);
2816 return AC_ERR_SYSTEM
;
2821 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue
);
2824 * ata_bmdma_port_intr - Handle BMDMA port interrupt
2825 * @ap: Port on which interrupt arrived (possibly...)
2826 * @qc: Taskfile currently active in engine
2828 * Handle port interrupt for given queued command.
2831 * spin_lock_irqsave(host lock)
2834 * One if interrupt was handled, zero if not (shared irq).
2836 unsigned int ata_bmdma_port_intr(struct ata_port
*ap
, struct ata_queued_cmd
*qc
)
2838 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
2840 bool bmdma_stopped
= false;
2841 unsigned int handled
;
2843 if (ap
->hsm_task_state
== HSM_ST_LAST
&& ata_is_dma(qc
->tf
.protocol
)) {
2844 /* check status of DMA engine */
2845 host_stat
= ap
->ops
->bmdma_status(ap
);
2846 VPRINTK("ata%u: host_stat 0x%X\n", ap
->print_id
, host_stat
);
2848 /* if it's not our irq... */
2849 if (!(host_stat
& ATA_DMA_INTR
))
2850 return ata_sff_idle_irq(ap
);
2852 /* before we do anything else, clear DMA-Start bit */
2853 ap
->ops
->bmdma_stop(qc
);
2854 bmdma_stopped
= true;
2856 if (unlikely(host_stat
& ATA_DMA_ERR
)) {
2857 /* error when transferring data to/from memory */
2858 qc
->err_mask
|= AC_ERR_HOST_BUS
;
2859 ap
->hsm_task_state
= HSM_ST_ERR
;
2863 handled
= __ata_sff_port_intr(ap
, qc
, bmdma_stopped
);
2865 if (unlikely(qc
->err_mask
) && ata_is_dma(qc
->tf
.protocol
))
2866 ata_ehi_push_desc(ehi
, "BMDMA stat 0x%x", host_stat
);
2870 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr
);
2873 * ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2874 * @irq: irq line (unused)
2875 * @dev_instance: pointer to our ata_host information structure
2877 * Default interrupt handler for PCI IDE devices. Calls
2878 * ata_bmdma_port_intr() for each port that is not disabled.
2881 * Obtains host lock during operation.
2884 * IRQ_NONE or IRQ_HANDLED.
2886 irqreturn_t
ata_bmdma_interrupt(int irq
, void *dev_instance
)
2888 return __ata_sff_interrupt(irq
, dev_instance
, ata_bmdma_port_intr
);
2890 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt
);
2893 * ata_bmdma_error_handler - Stock error handler for BMDMA controller
2894 * @ap: port to handle error for
2896 * Stock error handler for BMDMA controller. It can handle both
2897 * PATA and SATA controllers. Most BMDMA controllers should be
2898 * able to use this EH as-is or with some added handling before
2902 * Kernel thread context (may sleep)
2904 void ata_bmdma_error_handler(struct ata_port
*ap
)
2906 struct ata_queued_cmd
*qc
;
2907 unsigned long flags
;
2910 qc
= __ata_qc_from_tag(ap
, ap
->link
.active_tag
);
2911 if (qc
&& !(qc
->flags
& ATA_QCFLAG_FAILED
))
2914 /* reset PIO HSM and stop DMA engine */
2915 spin_lock_irqsave(ap
->lock
, flags
);
2917 if (qc
&& ata_is_dma(qc
->tf
.protocol
)) {
2920 host_stat
= ap
->ops
->bmdma_status(ap
);
2922 /* BMDMA controllers indicate host bus error by
2923 * setting DMA_ERR bit and timing out. As it wasn't
2924 * really a timeout event, adjust error mask and
2925 * cancel frozen state.
2927 if (qc
->err_mask
== AC_ERR_TIMEOUT
&& (host_stat
& ATA_DMA_ERR
)) {
2928 qc
->err_mask
= AC_ERR_HOST_BUS
;
2932 ap
->ops
->bmdma_stop(qc
);
2934 /* if we're gonna thaw, make sure IRQ is clear */
2936 ap
->ops
->sff_check_status(ap
);
2937 if (ap
->ops
->sff_irq_clear
)
2938 ap
->ops
->sff_irq_clear(ap
);
2942 spin_unlock_irqrestore(ap
->lock
, flags
);
2945 ata_eh_thaw_port(ap
);
2947 ata_sff_error_handler(ap
);
2949 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler
);
2952 * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2953 * @qc: internal command to clean up
2956 * Kernel thread context (may sleep)
2958 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd
*qc
)
2960 struct ata_port
*ap
= qc
->ap
;
2961 unsigned long flags
;
2963 if (ata_is_dma(qc
->tf
.protocol
)) {
2964 spin_lock_irqsave(ap
->lock
, flags
);
2965 ap
->ops
->bmdma_stop(qc
);
2966 spin_unlock_irqrestore(ap
->lock
, flags
);
2969 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd
);
2972 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2973 * @ap: Port associated with this ATA transaction.
2975 * Clear interrupt and error flags in DMA status register.
2977 * May be used as the irq_clear() entry in ata_port_operations.
2980 * spin_lock_irqsave(host lock)
2982 void ata_bmdma_irq_clear(struct ata_port
*ap
)
2984 void __iomem
*mmio
= ap
->ioaddr
.bmdma_addr
;
2989 iowrite8(ioread8(mmio
+ ATA_DMA_STATUS
), mmio
+ ATA_DMA_STATUS
);
2991 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear
);
2994 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2995 * @qc: Info associated with this ATA transaction.
2998 * spin_lock_irqsave(host lock)
3000 void ata_bmdma_setup(struct ata_queued_cmd
*qc
)
3002 struct ata_port
*ap
= qc
->ap
;
3003 unsigned int rw
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
3006 /* load PRD table addr. */
3007 mb(); /* make sure PRD table writes are visible to controller */
3008 iowrite32(ap
->bmdma_prd_dma
, ap
->ioaddr
.bmdma_addr
+ ATA_DMA_TABLE_OFS
);
3010 /* specify data direction, triple-check start bit is clear */
3011 dmactl
= ioread8(ap
->ioaddr
.bmdma_addr
+ ATA_DMA_CMD
);
3012 dmactl
&= ~(ATA_DMA_WR
| ATA_DMA_START
);
3014 dmactl
|= ATA_DMA_WR
;
3015 iowrite8(dmactl
, ap
->ioaddr
.bmdma_addr
+ ATA_DMA_CMD
);
3017 /* issue r/w command */
3018 ap
->ops
->sff_exec_command(ap
, &qc
->tf
);
3020 EXPORT_SYMBOL_GPL(ata_bmdma_setup
);
3023 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
3024 * @qc: Info associated with this ATA transaction.
3027 * spin_lock_irqsave(host lock)
3029 void ata_bmdma_start(struct ata_queued_cmd
*qc
)
3031 struct ata_port
*ap
= qc
->ap
;
3034 /* start host DMA transaction */
3035 dmactl
= ioread8(ap
->ioaddr
.bmdma_addr
+ ATA_DMA_CMD
);
3036 iowrite8(dmactl
| ATA_DMA_START
, ap
->ioaddr
.bmdma_addr
+ ATA_DMA_CMD
);
3038 /* Strictly, one may wish to issue an ioread8() here, to
3039 * flush the mmio write. However, control also passes
3040 * to the hardware at this point, and it will interrupt
3041 * us when we are to resume control. So, in effect,
3042 * we don't care when the mmio write flushes.
3043 * Further, a read of the DMA status register _immediately_
3044 * following the write may not be what certain flaky hardware
3045 * is expected, so I think it is best to not add a readb()
3046 * without first all the MMIO ATA cards/mobos.
3047 * Or maybe I'm just being paranoid.
3049 * FIXME: The posting of this write means I/O starts are
3050 * unnecessarily delayed for MMIO
3053 EXPORT_SYMBOL_GPL(ata_bmdma_start
);
3056 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3057 * @qc: Command we are ending DMA for
3059 * Clears the ATA_DMA_START flag in the dma control register
3061 * May be used as the bmdma_stop() entry in ata_port_operations.
3064 * spin_lock_irqsave(host lock)
3066 void ata_bmdma_stop(struct ata_queued_cmd
*qc
)
3068 struct ata_port
*ap
= qc
->ap
;
3069 void __iomem
*mmio
= ap
->ioaddr
.bmdma_addr
;
3071 /* clear start/stop bit */
3072 iowrite8(ioread8(mmio
+ ATA_DMA_CMD
) & ~ATA_DMA_START
,
3073 mmio
+ ATA_DMA_CMD
);
3075 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3076 ata_sff_dma_pause(ap
);
3078 EXPORT_SYMBOL_GPL(ata_bmdma_stop
);
3081 * ata_bmdma_status - Read PCI IDE BMDMA status
3082 * @ap: Port associated with this ATA transaction.
3084 * Read and return BMDMA status register.
3086 * May be used as the bmdma_status() entry in ata_port_operations.
3089 * spin_lock_irqsave(host lock)
3091 u8
ata_bmdma_status(struct ata_port
*ap
)
3093 return ioread8(ap
->ioaddr
.bmdma_addr
+ ATA_DMA_STATUS
);
3095 EXPORT_SYMBOL_GPL(ata_bmdma_status
);
3099 * ata_bmdma_port_start - Set port up for bmdma.
3100 * @ap: Port to initialize
3102 * Called just after data structures for each port are
3103 * initialized. Allocates space for PRD table.
3105 * May be used as the port_start() entry in ata_port_operations.
3108 * Inherited from caller.
3110 int ata_bmdma_port_start(struct ata_port
*ap
)
3112 if (ap
->mwdma_mask
|| ap
->udma_mask
) {
3114 dmam_alloc_coherent(ap
->host
->dev
, ATA_PRD_TBL_SZ
,
3115 &ap
->bmdma_prd_dma
, GFP_KERNEL
);
3122 EXPORT_SYMBOL_GPL(ata_bmdma_port_start
);
3125 * ata_bmdma_port_start32 - Set port up for dma.
3126 * @ap: Port to initialize
3128 * Called just after data structures for each port are
3129 * initialized. Enables 32bit PIO and allocates space for PRD
3132 * May be used as the port_start() entry in ata_port_operations for
3133 * devices that are capable of 32bit PIO.
3136 * Inherited from caller.
3138 int ata_bmdma_port_start32(struct ata_port
*ap
)
3140 ap
->pflags
|= ATA_PFLAG_PIO32
| ATA_PFLAG_PIO32CHANGE
;
3141 return ata_bmdma_port_start(ap
);
3143 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32
);
3148 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex
3151 * Some PCI ATA devices report simplex mode but in fact can be told to
3152 * enter non simplex mode. This implements the necessary logic to
3153 * perform the task on such devices. Calling it on other devices will
3154 * have -undefined- behaviour.
3156 int ata_pci_bmdma_clear_simplex(struct pci_dev
*pdev
)
3158 unsigned long bmdma
= pci_resource_start(pdev
, 4);
3164 simplex
= inb(bmdma
+ 0x02);
3165 outb(simplex
& 0x60, bmdma
+ 0x02);
3166 simplex
= inb(bmdma
+ 0x02);
3171 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex
);
3173 static void ata_bmdma_nodma(struct ata_host
*host
, const char *reason
)
3177 dev_err(host
->dev
, "BMDMA: %s, falling back to PIO\n", reason
);
3179 for (i
= 0; i
< 2; i
++) {
3180 host
->ports
[i
]->mwdma_mask
= 0;
3181 host
->ports
[i
]->udma_mask
= 0;
3186 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3187 * @host: target ATA host
3189 * Acquire PCI BMDMA resources and initialize @host accordingly.
3192 * Inherited from calling layer (may sleep).
3194 void ata_pci_bmdma_init(struct ata_host
*host
)
3196 struct device
*gdev
= host
->dev
;
3197 struct pci_dev
*pdev
= to_pci_dev(gdev
);
3200 /* No BAR4 allocation: No DMA */
3201 if (pci_resource_start(pdev
, 4) == 0) {
3202 ata_bmdma_nodma(host
, "BAR4 is zero");
3207 * Some controllers require BMDMA region to be initialized
3208 * even if DMA is not in use to clear IRQ status via
3209 * ->sff_irq_clear method. Try to initialize bmdma_addr
3210 * regardless of dma masks.
3212 rc
= dma_set_mask(&pdev
->dev
, ATA_DMA_MASK
);
3214 ata_bmdma_nodma(host
, "failed to set dma mask");
3216 rc
= dma_set_coherent_mask(&pdev
->dev
, ATA_DMA_MASK
);
3218 ata_bmdma_nodma(host
,
3219 "failed to set consistent dma mask");
3222 /* request and iomap DMA region */
3223 rc
= pcim_iomap_regions(pdev
, 1 << 4, dev_driver_string(gdev
));
3225 ata_bmdma_nodma(host
, "failed to request/iomap BAR4");
3228 host
->iomap
= pcim_iomap_table(pdev
);
3230 for (i
= 0; i
< 2; i
++) {
3231 struct ata_port
*ap
= host
->ports
[i
];
3232 void __iomem
*bmdma
= host
->iomap
[4] + 8 * i
;
3234 if (ata_port_is_dummy(ap
))
3237 ap
->ioaddr
.bmdma_addr
= bmdma
;
3238 if ((!(ap
->flags
& ATA_FLAG_IGN_SIMPLEX
)) &&
3239 (ioread8(bmdma
+ 2) & 0x80))
3240 host
->flags
|= ATA_HOST_SIMPLEX
;
3242 ata_port_desc(ap
, "bmdma 0x%llx",
3243 (unsigned long long)pci_resource_start(pdev
, 4) + 8 * i
);
3246 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init
);
3249 * ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3250 * @pdev: target PCI device
3251 * @ppi: array of port_info, must be enough for two ports
3252 * @r_host: out argument for the initialized ATA host
3254 * Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3255 * resources and initialize it accordingly in one go.
3258 * Inherited from calling layer (may sleep).
3261 * 0 on success, -errno otherwise.
3263 int ata_pci_bmdma_prepare_host(struct pci_dev
*pdev
,
3264 const struct ata_port_info
* const * ppi
,
3265 struct ata_host
**r_host
)
3269 rc
= ata_pci_sff_prepare_host(pdev
, ppi
, r_host
);
3273 ata_pci_bmdma_init(*r_host
);
3276 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host
);
3279 * ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3280 * @pdev: Controller to be initialized
3281 * @ppi: array of port_info, must be enough for two ports
3282 * @sht: scsi_host_template to use when registering the host
3283 * @host_priv: host private_data
3284 * @hflags: host flags
3286 * This function is similar to ata_pci_sff_init_one() but also
3287 * takes care of BMDMA initialization.
3290 * Inherited from PCI layer (may sleep).
3293 * Zero on success, negative on errno-based value on error.
3295 int ata_pci_bmdma_init_one(struct pci_dev
*pdev
,
3296 const struct ata_port_info
* const * ppi
,
3297 struct scsi_host_template
*sht
, void *host_priv
,
3300 return ata_pci_init_one(pdev
, ppi
, sht
, host_priv
, hflags
, 1);
3302 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one
);
3304 #endif /* CONFIG_PCI */
3305 #endif /* CONFIG_ATA_BMDMA */
3308 * ata_sff_port_init - Initialize SFF/BMDMA ATA port
3309 * @ap: Port to initialize
3311 * Called on port allocation to initialize SFF/BMDMA specific
3317 void ata_sff_port_init(struct ata_port
*ap
)
3319 INIT_DELAYED_WORK(&ap
->sff_pio_task
, ata_sff_pio_task
);
3320 ap
->ctl
= ATA_DEVCTL_OBS
;
3321 ap
->last_ctl
= 0xFF;
3324 int __init
ata_sff_init(void)
3326 ata_sff_wq
= alloc_workqueue("ata_sff", WQ_MEM_RECLAIM
, WQ_MAX_ACTIVE
);
3333 void ata_sff_exit(void)
3335 destroy_workqueue(ata_sff_wq
);