dm thin metadata: fix __udivdi3 undefined on 32-bit
[linux/fpc-iii.git] / drivers / char / random.c
blob2916d08ee30e2946ffc85298815eee650aee8d44
1 /*
2 * random.c -- A strong random number generator
4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
7 * rights reserved.
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, and the entire permission notice in its entirety,
14 * including the disclaimer of warranties.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 * products derived from this software without specific prior
20 * written permission.
22 * ALTERNATIVELY, this product may be distributed under the terms of
23 * the GNU General Public License, in which case the provisions of the GPL are
24 * required INSTEAD OF the above restrictions. (This clause is
25 * necessary due to a potential bad interaction between the GPL and
26 * the restrictions contained in a BSD-style copyright.)
28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
43 * (now, with legal B.S. out of the way.....)
45 * This routine gathers environmental noise from device drivers, etc.,
46 * and returns good random numbers, suitable for cryptographic use.
47 * Besides the obvious cryptographic uses, these numbers are also good
48 * for seeding TCP sequence numbers, and other places where it is
49 * desirable to have numbers which are not only random, but hard to
50 * predict by an attacker.
52 * Theory of operation
53 * ===================
55 * Computers are very predictable devices. Hence it is extremely hard
56 * to produce truly random numbers on a computer --- as opposed to
57 * pseudo-random numbers, which can easily generated by using a
58 * algorithm. Unfortunately, it is very easy for attackers to guess
59 * the sequence of pseudo-random number generators, and for some
60 * applications this is not acceptable. So instead, we must try to
61 * gather "environmental noise" from the computer's environment, which
62 * must be hard for outside attackers to observe, and use that to
63 * generate random numbers. In a Unix environment, this is best done
64 * from inside the kernel.
66 * Sources of randomness from the environment include inter-keyboard
67 * timings, inter-interrupt timings from some interrupts, and other
68 * events which are both (a) non-deterministic and (b) hard for an
69 * outside observer to measure. Randomness from these sources are
70 * added to an "entropy pool", which is mixed using a CRC-like function.
71 * This is not cryptographically strong, but it is adequate assuming
72 * the randomness is not chosen maliciously, and it is fast enough that
73 * the overhead of doing it on every interrupt is very reasonable.
74 * As random bytes are mixed into the entropy pool, the routines keep
75 * an *estimate* of how many bits of randomness have been stored into
76 * the random number generator's internal state.
78 * When random bytes are desired, they are obtained by taking the SHA
79 * hash of the contents of the "entropy pool". The SHA hash avoids
80 * exposing the internal state of the entropy pool. It is believed to
81 * be computationally infeasible to derive any useful information
82 * about the input of SHA from its output. Even if it is possible to
83 * analyze SHA in some clever way, as long as the amount of data
84 * returned from the generator is less than the inherent entropy in
85 * the pool, the output data is totally unpredictable. For this
86 * reason, the routine decreases its internal estimate of how many
87 * bits of "true randomness" are contained in the entropy pool as it
88 * outputs random numbers.
90 * If this estimate goes to zero, the routine can still generate
91 * random numbers; however, an attacker may (at least in theory) be
92 * able to infer the future output of the generator from prior
93 * outputs. This requires successful cryptanalysis of SHA, which is
94 * not believed to be feasible, but there is a remote possibility.
95 * Nonetheless, these numbers should be useful for the vast majority
96 * of purposes.
98 * Exported interfaces ---- output
99 * ===============================
101 * There are three exported interfaces; the first is one designed to
102 * be used from within the kernel:
104 * void get_random_bytes(void *buf, int nbytes);
106 * This interface will return the requested number of random bytes,
107 * and place it in the requested buffer.
109 * The two other interfaces are two character devices /dev/random and
110 * /dev/urandom. /dev/random is suitable for use when very high
111 * quality randomness is desired (for example, for key generation or
112 * one-time pads), as it will only return a maximum of the number of
113 * bits of randomness (as estimated by the random number generator)
114 * contained in the entropy pool.
116 * The /dev/urandom device does not have this limit, and will return
117 * as many bytes as are requested. As more and more random bytes are
118 * requested without giving time for the entropy pool to recharge,
119 * this will result in random numbers that are merely cryptographically
120 * strong. For many applications, however, this is acceptable.
122 * Exported interfaces ---- input
123 * ==============================
125 * The current exported interfaces for gathering environmental noise
126 * from the devices are:
128 * void add_device_randomness(const void *buf, unsigned int size);
129 * void add_input_randomness(unsigned int type, unsigned int code,
130 * unsigned int value);
131 * void add_interrupt_randomness(int irq, int irq_flags);
132 * void add_disk_randomness(struct gendisk *disk);
134 * add_device_randomness() is for adding data to the random pool that
135 * is likely to differ between two devices (or possibly even per boot).
136 * This would be things like MAC addresses or serial numbers, or the
137 * read-out of the RTC. This does *not* add any actual entropy to the
138 * pool, but it initializes the pool to different values for devices
139 * that might otherwise be identical and have very little entropy
140 * available to them (particularly common in the embedded world).
142 * add_input_randomness() uses the input layer interrupt timing, as well as
143 * the event type information from the hardware.
145 * add_interrupt_randomness() uses the interrupt timing as random
146 * inputs to the entropy pool. Using the cycle counters and the irq source
147 * as inputs, it feeds the randomness roughly once a second.
149 * add_disk_randomness() uses what amounts to the seek time of block
150 * layer request events, on a per-disk_devt basis, as input to the
151 * entropy pool. Note that high-speed solid state drives with very low
152 * seek times do not make for good sources of entropy, as their seek
153 * times are usually fairly consistent.
155 * All of these routines try to estimate how many bits of randomness a
156 * particular randomness source. They do this by keeping track of the
157 * first and second order deltas of the event timings.
159 * Ensuring unpredictability at system startup
160 * ============================================
162 * When any operating system starts up, it will go through a sequence
163 * of actions that are fairly predictable by an adversary, especially
164 * if the start-up does not involve interaction with a human operator.
165 * This reduces the actual number of bits of unpredictability in the
166 * entropy pool below the value in entropy_count. In order to
167 * counteract this effect, it helps to carry information in the
168 * entropy pool across shut-downs and start-ups. To do this, put the
169 * following lines an appropriate script which is run during the boot
170 * sequence:
172 * echo "Initializing random number generator..."
173 * random_seed=/var/run/random-seed
174 * # Carry a random seed from start-up to start-up
175 * # Load and then save the whole entropy pool
176 * if [ -f $random_seed ]; then
177 * cat $random_seed >/dev/urandom
178 * else
179 * touch $random_seed
180 * fi
181 * chmod 600 $random_seed
182 * dd if=/dev/urandom of=$random_seed count=1 bs=512
184 * and the following lines in an appropriate script which is run as
185 * the system is shutdown:
187 * # Carry a random seed from shut-down to start-up
188 * # Save the whole entropy pool
189 * echo "Saving random seed..."
190 * random_seed=/var/run/random-seed
191 * touch $random_seed
192 * chmod 600 $random_seed
193 * dd if=/dev/urandom of=$random_seed count=1 bs=512
195 * For example, on most modern systems using the System V init
196 * scripts, such code fragments would be found in
197 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
198 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
200 * Effectively, these commands cause the contents of the entropy pool
201 * to be saved at shut-down time and reloaded into the entropy pool at
202 * start-up. (The 'dd' in the addition to the bootup script is to
203 * make sure that /etc/random-seed is different for every start-up,
204 * even if the system crashes without executing rc.0.) Even with
205 * complete knowledge of the start-up activities, predicting the state
206 * of the entropy pool requires knowledge of the previous history of
207 * the system.
209 * Configuring the /dev/random driver under Linux
210 * ==============================================
212 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
213 * the /dev/mem major number (#1). So if your system does not have
214 * /dev/random and /dev/urandom created already, they can be created
215 * by using the commands:
217 * mknod /dev/random c 1 8
218 * mknod /dev/urandom c 1 9
220 * Acknowledgements:
221 * =================
223 * Ideas for constructing this random number generator were derived
224 * from Pretty Good Privacy's random number generator, and from private
225 * discussions with Phil Karn. Colin Plumb provided a faster random
226 * number generator, which speed up the mixing function of the entropy
227 * pool, taken from PGPfone. Dale Worley has also contributed many
228 * useful ideas and suggestions to improve this driver.
230 * Any flaws in the design are solely my responsibility, and should
231 * not be attributed to the Phil, Colin, or any of authors of PGP.
233 * Further background information on this topic may be obtained from
234 * RFC 1750, "Randomness Recommendations for Security", by Donald
235 * Eastlake, Steve Crocker, and Jeff Schiller.
238 #include <linux/utsname.h>
239 #include <linux/module.h>
240 #include <linux/kernel.h>
241 #include <linux/major.h>
242 #include <linux/string.h>
243 #include <linux/fcntl.h>
244 #include <linux/slab.h>
245 #include <linux/random.h>
246 #include <linux/poll.h>
247 #include <linux/init.h>
248 #include <linux/fs.h>
249 #include <linux/genhd.h>
250 #include <linux/interrupt.h>
251 #include <linux/mm.h>
252 #include <linux/spinlock.h>
253 #include <linux/kthread.h>
254 #include <linux/percpu.h>
255 #include <linux/cryptohash.h>
256 #include <linux/fips.h>
257 #include <linux/ptrace.h>
258 #include <linux/kmemcheck.h>
259 #include <linux/workqueue.h>
260 #include <linux/irq.h>
261 #include <linux/syscalls.h>
262 #include <linux/completion.h>
264 #include <asm/processor.h>
265 #include <asm/uaccess.h>
266 #include <asm/irq.h>
267 #include <asm/irq_regs.h>
268 #include <asm/io.h>
270 #define CREATE_TRACE_POINTS
271 #include <trace/events/random.h>
273 /* #define ADD_INTERRUPT_BENCH */
276 * Configuration information
278 #define INPUT_POOL_SHIFT 12
279 #define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
280 #define OUTPUT_POOL_SHIFT 10
281 #define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
282 #define SEC_XFER_SIZE 512
283 #define EXTRACT_SIZE 10
285 #define DEBUG_RANDOM_BOOT 0
287 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
290 * To allow fractional bits to be tracked, the entropy_count field is
291 * denominated in units of 1/8th bits.
293 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
294 * credit_entropy_bits() needs to be 64 bits wide.
296 #define ENTROPY_SHIFT 3
297 #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
300 * The minimum number of bits of entropy before we wake up a read on
301 * /dev/random. Should be enough to do a significant reseed.
303 static int random_read_wakeup_bits = 64;
306 * If the entropy count falls under this number of bits, then we
307 * should wake up processes which are selecting or polling on write
308 * access to /dev/random.
310 static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
313 * The minimum number of seconds between urandom pool reseeding. We
314 * do this to limit the amount of entropy that can be drained from the
315 * input pool even if there are heavy demands on /dev/urandom.
317 static int random_min_urandom_seed = 60;
320 * Originally, we used a primitive polynomial of degree .poolwords
321 * over GF(2). The taps for various sizes are defined below. They
322 * were chosen to be evenly spaced except for the last tap, which is 1
323 * to get the twisting happening as fast as possible.
325 * For the purposes of better mixing, we use the CRC-32 polynomial as
326 * well to make a (modified) twisted Generalized Feedback Shift
327 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
328 * generators. ACM Transactions on Modeling and Computer Simulation
329 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
330 * GFSR generators II. ACM Transactions on Modeling and Computer
331 * Simulation 4:254-266)
333 * Thanks to Colin Plumb for suggesting this.
335 * The mixing operation is much less sensitive than the output hash,
336 * where we use SHA-1. All that we want of mixing operation is that
337 * it be a good non-cryptographic hash; i.e. it not produce collisions
338 * when fed "random" data of the sort we expect to see. As long as
339 * the pool state differs for different inputs, we have preserved the
340 * input entropy and done a good job. The fact that an intelligent
341 * attacker can construct inputs that will produce controlled
342 * alterations to the pool's state is not important because we don't
343 * consider such inputs to contribute any randomness. The only
344 * property we need with respect to them is that the attacker can't
345 * increase his/her knowledge of the pool's state. Since all
346 * additions are reversible (knowing the final state and the input,
347 * you can reconstruct the initial state), if an attacker has any
348 * uncertainty about the initial state, he/she can only shuffle that
349 * uncertainty about, but never cause any collisions (which would
350 * decrease the uncertainty).
352 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
353 * Videau in their paper, "The Linux Pseudorandom Number Generator
354 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
355 * paper, they point out that we are not using a true Twisted GFSR,
356 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
357 * is, with only three taps, instead of the six that we are using).
358 * As a result, the resulting polynomial is neither primitive nor
359 * irreducible, and hence does not have a maximal period over
360 * GF(2**32). They suggest a slight change to the generator
361 * polynomial which improves the resulting TGFSR polynomial to be
362 * irreducible, which we have made here.
364 static struct poolinfo {
365 int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
366 #define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
367 int tap1, tap2, tap3, tap4, tap5;
368 } poolinfo_table[] = {
369 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
370 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
371 { S(128), 104, 76, 51, 25, 1 },
372 /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
373 /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
374 { S(32), 26, 19, 14, 7, 1 },
375 #if 0
376 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
377 { S(2048), 1638, 1231, 819, 411, 1 },
379 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
380 { S(1024), 817, 615, 412, 204, 1 },
382 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
383 { S(1024), 819, 616, 410, 207, 2 },
385 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
386 { S(512), 411, 308, 208, 104, 1 },
388 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
389 { S(512), 409, 307, 206, 102, 2 },
390 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
391 { S(512), 409, 309, 205, 103, 2 },
393 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
394 { S(256), 205, 155, 101, 52, 1 },
396 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
397 { S(128), 103, 78, 51, 27, 2 },
399 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
400 { S(64), 52, 39, 26, 14, 1 },
401 #endif
405 * Static global variables
407 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
408 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
409 static DECLARE_WAIT_QUEUE_HEAD(urandom_init_wait);
410 static struct fasync_struct *fasync;
412 static DEFINE_SPINLOCK(random_ready_list_lock);
413 static LIST_HEAD(random_ready_list);
415 /**********************************************************************
417 * OS independent entropy store. Here are the functions which handle
418 * storing entropy in an entropy pool.
420 **********************************************************************/
422 struct entropy_store;
423 struct entropy_store {
424 /* read-only data: */
425 const struct poolinfo *poolinfo;
426 __u32 *pool;
427 const char *name;
428 struct entropy_store *pull;
429 struct work_struct push_work;
431 /* read-write data: */
432 unsigned long last_pulled;
433 spinlock_t lock;
434 unsigned short add_ptr;
435 unsigned short input_rotate;
436 int entropy_count;
437 int entropy_total;
438 unsigned int initialized:1;
439 unsigned int limit:1;
440 unsigned int last_data_init:1;
441 __u8 last_data[EXTRACT_SIZE];
444 static void push_to_pool(struct work_struct *work);
445 static __u32 input_pool_data[INPUT_POOL_WORDS];
446 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
447 static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
449 static struct entropy_store input_pool = {
450 .poolinfo = &poolinfo_table[0],
451 .name = "input",
452 .limit = 1,
453 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
454 .pool = input_pool_data
457 static struct entropy_store blocking_pool = {
458 .poolinfo = &poolinfo_table[1],
459 .name = "blocking",
460 .limit = 1,
461 .pull = &input_pool,
462 .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
463 .pool = blocking_pool_data,
464 .push_work = __WORK_INITIALIZER(blocking_pool.push_work,
465 push_to_pool),
468 static struct entropy_store nonblocking_pool = {
469 .poolinfo = &poolinfo_table[1],
470 .name = "nonblocking",
471 .pull = &input_pool,
472 .lock = __SPIN_LOCK_UNLOCKED(nonblocking_pool.lock),
473 .pool = nonblocking_pool_data,
474 .push_work = __WORK_INITIALIZER(nonblocking_pool.push_work,
475 push_to_pool),
478 static __u32 const twist_table[8] = {
479 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
480 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
483 * This function adds bytes into the entropy "pool". It does not
484 * update the entropy estimate. The caller should call
485 * credit_entropy_bits if this is appropriate.
487 * The pool is stirred with a primitive polynomial of the appropriate
488 * degree, and then twisted. We twist by three bits at a time because
489 * it's cheap to do so and helps slightly in the expected case where
490 * the entropy is concentrated in the low-order bits.
492 static void _mix_pool_bytes(struct entropy_store *r, const void *in,
493 int nbytes)
495 unsigned long i, tap1, tap2, tap3, tap4, tap5;
496 int input_rotate;
497 int wordmask = r->poolinfo->poolwords - 1;
498 const char *bytes = in;
499 __u32 w;
501 tap1 = r->poolinfo->tap1;
502 tap2 = r->poolinfo->tap2;
503 tap3 = r->poolinfo->tap3;
504 tap4 = r->poolinfo->tap4;
505 tap5 = r->poolinfo->tap5;
507 input_rotate = r->input_rotate;
508 i = r->add_ptr;
510 /* mix one byte at a time to simplify size handling and churn faster */
511 while (nbytes--) {
512 w = rol32(*bytes++, input_rotate);
513 i = (i - 1) & wordmask;
515 /* XOR in the various taps */
516 w ^= r->pool[i];
517 w ^= r->pool[(i + tap1) & wordmask];
518 w ^= r->pool[(i + tap2) & wordmask];
519 w ^= r->pool[(i + tap3) & wordmask];
520 w ^= r->pool[(i + tap4) & wordmask];
521 w ^= r->pool[(i + tap5) & wordmask];
523 /* Mix the result back in with a twist */
524 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
527 * Normally, we add 7 bits of rotation to the pool.
528 * At the beginning of the pool, add an extra 7 bits
529 * rotation, so that successive passes spread the
530 * input bits across the pool evenly.
532 input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
535 r->input_rotate = input_rotate;
536 r->add_ptr = i;
539 static void __mix_pool_bytes(struct entropy_store *r, const void *in,
540 int nbytes)
542 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
543 _mix_pool_bytes(r, in, nbytes);
546 static void mix_pool_bytes(struct entropy_store *r, const void *in,
547 int nbytes)
549 unsigned long flags;
551 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
552 spin_lock_irqsave(&r->lock, flags);
553 _mix_pool_bytes(r, in, nbytes);
554 spin_unlock_irqrestore(&r->lock, flags);
557 struct fast_pool {
558 __u32 pool[4];
559 unsigned long last;
560 unsigned short reg_idx;
561 unsigned char count;
565 * This is a fast mixing routine used by the interrupt randomness
566 * collector. It's hardcoded for an 128 bit pool and assumes that any
567 * locks that might be needed are taken by the caller.
569 static void fast_mix(struct fast_pool *f)
571 __u32 a = f->pool[0], b = f->pool[1];
572 __u32 c = f->pool[2], d = f->pool[3];
574 a += b; c += d;
575 b = rol32(b, 6); d = rol32(d, 27);
576 d ^= a; b ^= c;
578 a += b; c += d;
579 b = rol32(b, 16); d = rol32(d, 14);
580 d ^= a; b ^= c;
582 a += b; c += d;
583 b = rol32(b, 6); d = rol32(d, 27);
584 d ^= a; b ^= c;
586 a += b; c += d;
587 b = rol32(b, 16); d = rol32(d, 14);
588 d ^= a; b ^= c;
590 f->pool[0] = a; f->pool[1] = b;
591 f->pool[2] = c; f->pool[3] = d;
592 f->count++;
595 static void process_random_ready_list(void)
597 unsigned long flags;
598 struct random_ready_callback *rdy, *tmp;
600 spin_lock_irqsave(&random_ready_list_lock, flags);
601 list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
602 struct module *owner = rdy->owner;
604 list_del_init(&rdy->list);
605 rdy->func(rdy);
606 module_put(owner);
608 spin_unlock_irqrestore(&random_ready_list_lock, flags);
612 * Credit (or debit) the entropy store with n bits of entropy.
613 * Use credit_entropy_bits_safe() if the value comes from userspace
614 * or otherwise should be checked for extreme values.
616 static void credit_entropy_bits(struct entropy_store *r, int nbits)
618 int entropy_count, orig;
619 const int pool_size = r->poolinfo->poolfracbits;
620 int nfrac = nbits << ENTROPY_SHIFT;
622 if (!nbits)
623 return;
625 retry:
626 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
627 if (nfrac < 0) {
628 /* Debit */
629 entropy_count += nfrac;
630 } else {
632 * Credit: we have to account for the possibility of
633 * overwriting already present entropy. Even in the
634 * ideal case of pure Shannon entropy, new contributions
635 * approach the full value asymptotically:
637 * entropy <- entropy + (pool_size - entropy) *
638 * (1 - exp(-add_entropy/pool_size))
640 * For add_entropy <= pool_size/2 then
641 * (1 - exp(-add_entropy/pool_size)) >=
642 * (add_entropy/pool_size)*0.7869...
643 * so we can approximate the exponential with
644 * 3/4*add_entropy/pool_size and still be on the
645 * safe side by adding at most pool_size/2 at a time.
647 * The use of pool_size-2 in the while statement is to
648 * prevent rounding artifacts from making the loop
649 * arbitrarily long; this limits the loop to log2(pool_size)*2
650 * turns no matter how large nbits is.
652 int pnfrac = nfrac;
653 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
654 /* The +2 corresponds to the /4 in the denominator */
656 do {
657 unsigned int anfrac = min(pnfrac, pool_size/2);
658 unsigned int add =
659 ((pool_size - entropy_count)*anfrac*3) >> s;
661 entropy_count += add;
662 pnfrac -= anfrac;
663 } while (unlikely(entropy_count < pool_size-2 && pnfrac));
666 if (unlikely(entropy_count < 0)) {
667 pr_warn("random: negative entropy/overflow: pool %s count %d\n",
668 r->name, entropy_count);
669 WARN_ON(1);
670 entropy_count = 0;
671 } else if (entropy_count > pool_size)
672 entropy_count = pool_size;
673 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
674 goto retry;
676 r->entropy_total += nbits;
677 if (!r->initialized && r->entropy_total > 128) {
678 r->initialized = 1;
679 r->entropy_total = 0;
680 if (r == &nonblocking_pool) {
681 prandom_reseed_late();
682 process_random_ready_list();
683 wake_up_all(&urandom_init_wait);
684 pr_notice("random: %s pool is initialized\n", r->name);
688 trace_credit_entropy_bits(r->name, nbits,
689 entropy_count >> ENTROPY_SHIFT,
690 r->entropy_total, _RET_IP_);
692 if (r == &input_pool) {
693 int entropy_bits = entropy_count >> ENTROPY_SHIFT;
695 /* should we wake readers? */
696 if (entropy_bits >= random_read_wakeup_bits) {
697 wake_up_interruptible(&random_read_wait);
698 kill_fasync(&fasync, SIGIO, POLL_IN);
700 /* If the input pool is getting full, send some
701 * entropy to the two output pools, flipping back and
702 * forth between them, until the output pools are 75%
703 * full.
705 if (entropy_bits > random_write_wakeup_bits &&
706 r->initialized &&
707 r->entropy_total >= 2*random_read_wakeup_bits) {
708 static struct entropy_store *last = &blocking_pool;
709 struct entropy_store *other = &blocking_pool;
711 if (last == &blocking_pool)
712 other = &nonblocking_pool;
713 if (other->entropy_count <=
714 3 * other->poolinfo->poolfracbits / 4)
715 last = other;
716 if (last->entropy_count <=
717 3 * last->poolinfo->poolfracbits / 4) {
718 schedule_work(&last->push_work);
719 r->entropy_total = 0;
725 static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
727 const int nbits_max = r->poolinfo->poolwords * 32;
729 if (nbits < 0)
730 return -EINVAL;
732 /* Cap the value to avoid overflows */
733 nbits = min(nbits, nbits_max);
735 credit_entropy_bits(r, nbits);
736 return 0;
739 /*********************************************************************
741 * Entropy input management
743 *********************************************************************/
745 /* There is one of these per entropy source */
746 struct timer_rand_state {
747 cycles_t last_time;
748 long last_delta, last_delta2;
749 unsigned dont_count_entropy:1;
752 #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
755 * Add device- or boot-specific data to the input and nonblocking
756 * pools to help initialize them to unique values.
758 * None of this adds any entropy, it is meant to avoid the
759 * problem of the nonblocking pool having similar initial state
760 * across largely identical devices.
762 void add_device_randomness(const void *buf, unsigned int size)
764 unsigned long time = random_get_entropy() ^ jiffies;
765 unsigned long flags;
767 trace_add_device_randomness(size, _RET_IP_);
768 spin_lock_irqsave(&input_pool.lock, flags);
769 _mix_pool_bytes(&input_pool, buf, size);
770 _mix_pool_bytes(&input_pool, &time, sizeof(time));
771 spin_unlock_irqrestore(&input_pool.lock, flags);
773 spin_lock_irqsave(&nonblocking_pool.lock, flags);
774 _mix_pool_bytes(&nonblocking_pool, buf, size);
775 _mix_pool_bytes(&nonblocking_pool, &time, sizeof(time));
776 spin_unlock_irqrestore(&nonblocking_pool.lock, flags);
778 EXPORT_SYMBOL(add_device_randomness);
780 static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
783 * This function adds entropy to the entropy "pool" by using timing
784 * delays. It uses the timer_rand_state structure to make an estimate
785 * of how many bits of entropy this call has added to the pool.
787 * The number "num" is also added to the pool - it should somehow describe
788 * the type of event which just happened. This is currently 0-255 for
789 * keyboard scan codes, and 256 upwards for interrupts.
792 static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
794 struct entropy_store *r;
795 struct {
796 long jiffies;
797 unsigned cycles;
798 unsigned num;
799 } sample;
800 long delta, delta2, delta3;
802 preempt_disable();
804 sample.jiffies = jiffies;
805 sample.cycles = random_get_entropy();
806 sample.num = num;
807 r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
808 mix_pool_bytes(r, &sample, sizeof(sample));
811 * Calculate number of bits of randomness we probably added.
812 * We take into account the first, second and third-order deltas
813 * in order to make our estimate.
816 if (!state->dont_count_entropy) {
817 delta = sample.jiffies - state->last_time;
818 state->last_time = sample.jiffies;
820 delta2 = delta - state->last_delta;
821 state->last_delta = delta;
823 delta3 = delta2 - state->last_delta2;
824 state->last_delta2 = delta2;
826 if (delta < 0)
827 delta = -delta;
828 if (delta2 < 0)
829 delta2 = -delta2;
830 if (delta3 < 0)
831 delta3 = -delta3;
832 if (delta > delta2)
833 delta = delta2;
834 if (delta > delta3)
835 delta = delta3;
838 * delta is now minimum absolute delta.
839 * Round down by 1 bit on general principles,
840 * and limit entropy entimate to 12 bits.
842 credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
844 preempt_enable();
847 void add_input_randomness(unsigned int type, unsigned int code,
848 unsigned int value)
850 static unsigned char last_value;
852 /* ignore autorepeat and the like */
853 if (value == last_value)
854 return;
856 last_value = value;
857 add_timer_randomness(&input_timer_state,
858 (type << 4) ^ code ^ (code >> 4) ^ value);
859 trace_add_input_randomness(ENTROPY_BITS(&input_pool));
861 EXPORT_SYMBOL_GPL(add_input_randomness);
863 static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
865 #ifdef ADD_INTERRUPT_BENCH
866 static unsigned long avg_cycles, avg_deviation;
868 #define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
869 #define FIXED_1_2 (1 << (AVG_SHIFT-1))
871 static void add_interrupt_bench(cycles_t start)
873 long delta = random_get_entropy() - start;
875 /* Use a weighted moving average */
876 delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
877 avg_cycles += delta;
878 /* And average deviation */
879 delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
880 avg_deviation += delta;
882 #else
883 #define add_interrupt_bench(x)
884 #endif
886 static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
888 __u32 *ptr = (__u32 *) regs;
889 unsigned int idx;
891 if (regs == NULL)
892 return 0;
893 idx = READ_ONCE(f->reg_idx);
894 if (idx >= sizeof(struct pt_regs) / sizeof(__u32))
895 idx = 0;
896 ptr += idx++;
897 WRITE_ONCE(f->reg_idx, idx);
898 return *ptr;
901 void add_interrupt_randomness(int irq, int irq_flags)
903 struct entropy_store *r;
904 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
905 struct pt_regs *regs = get_irq_regs();
906 unsigned long now = jiffies;
907 cycles_t cycles = random_get_entropy();
908 __u32 c_high, j_high;
909 __u64 ip;
910 unsigned long seed;
911 int credit = 0;
913 if (cycles == 0)
914 cycles = get_reg(fast_pool, regs);
915 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
916 j_high = (sizeof(now) > 4) ? now >> 32 : 0;
917 fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
918 fast_pool->pool[1] ^= now ^ c_high;
919 ip = regs ? instruction_pointer(regs) : _RET_IP_;
920 fast_pool->pool[2] ^= ip;
921 fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
922 get_reg(fast_pool, regs);
924 fast_mix(fast_pool);
925 add_interrupt_bench(cycles);
927 if ((fast_pool->count < 64) &&
928 !time_after(now, fast_pool->last + HZ))
929 return;
931 r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
932 if (!spin_trylock(&r->lock))
933 return;
935 fast_pool->last = now;
936 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
939 * If we have architectural seed generator, produce a seed and
940 * add it to the pool. For the sake of paranoia don't let the
941 * architectural seed generator dominate the input from the
942 * interrupt noise.
944 if (arch_get_random_seed_long(&seed)) {
945 __mix_pool_bytes(r, &seed, sizeof(seed));
946 credit = 1;
948 spin_unlock(&r->lock);
950 fast_pool->count = 0;
952 /* award one bit for the contents of the fast pool */
953 credit_entropy_bits(r, credit + 1);
955 EXPORT_SYMBOL_GPL(add_interrupt_randomness);
957 #ifdef CONFIG_BLOCK
958 void add_disk_randomness(struct gendisk *disk)
960 if (!disk || !disk->random)
961 return;
962 /* first major is 1, so we get >= 0x200 here */
963 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
964 trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
966 EXPORT_SYMBOL_GPL(add_disk_randomness);
967 #endif
969 /*********************************************************************
971 * Entropy extraction routines
973 *********************************************************************/
975 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
976 size_t nbytes, int min, int rsvd);
979 * This utility inline function is responsible for transferring entropy
980 * from the primary pool to the secondary extraction pool. We make
981 * sure we pull enough for a 'catastrophic reseed'.
983 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
984 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
986 if (!r->pull ||
987 r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
988 r->entropy_count > r->poolinfo->poolfracbits)
989 return;
991 if (r->limit == 0 && random_min_urandom_seed) {
992 unsigned long now = jiffies;
994 if (time_before(now,
995 r->last_pulled + random_min_urandom_seed * HZ))
996 return;
997 r->last_pulled = now;
1000 _xfer_secondary_pool(r, nbytes);
1003 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1005 __u32 tmp[OUTPUT_POOL_WORDS];
1007 /* For /dev/random's pool, always leave two wakeups' worth */
1008 int rsvd_bytes = r->limit ? 0 : random_read_wakeup_bits / 4;
1009 int bytes = nbytes;
1011 /* pull at least as much as a wakeup */
1012 bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
1013 /* but never more than the buffer size */
1014 bytes = min_t(int, bytes, sizeof(tmp));
1016 trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
1017 ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
1018 bytes = extract_entropy(r->pull, tmp, bytes,
1019 random_read_wakeup_bits / 8, rsvd_bytes);
1020 mix_pool_bytes(r, tmp, bytes);
1021 credit_entropy_bits(r, bytes*8);
1025 * Used as a workqueue function so that when the input pool is getting
1026 * full, we can "spill over" some entropy to the output pools. That
1027 * way the output pools can store some of the excess entropy instead
1028 * of letting it go to waste.
1030 static void push_to_pool(struct work_struct *work)
1032 struct entropy_store *r = container_of(work, struct entropy_store,
1033 push_work);
1034 BUG_ON(!r);
1035 _xfer_secondary_pool(r, random_read_wakeup_bits/8);
1036 trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
1037 r->pull->entropy_count >> ENTROPY_SHIFT);
1041 * This function decides how many bytes to actually take from the
1042 * given pool, and also debits the entropy count accordingly.
1044 static size_t account(struct entropy_store *r, size_t nbytes, int min,
1045 int reserved)
1047 int entropy_count, orig;
1048 size_t ibytes, nfrac;
1050 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1052 /* Can we pull enough? */
1053 retry:
1054 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
1055 ibytes = nbytes;
1056 /* If limited, never pull more than available */
1057 if (r->limit) {
1058 int have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1060 if ((have_bytes -= reserved) < 0)
1061 have_bytes = 0;
1062 ibytes = min_t(size_t, ibytes, have_bytes);
1064 if (ibytes < min)
1065 ibytes = 0;
1067 if (unlikely(entropy_count < 0)) {
1068 pr_warn("random: negative entropy count: pool %s count %d\n",
1069 r->name, entropy_count);
1070 WARN_ON(1);
1071 entropy_count = 0;
1073 nfrac = ibytes << (ENTROPY_SHIFT + 3);
1074 if ((size_t) entropy_count > nfrac)
1075 entropy_count -= nfrac;
1076 else
1077 entropy_count = 0;
1079 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1080 goto retry;
1082 trace_debit_entropy(r->name, 8 * ibytes);
1083 if (ibytes &&
1084 (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
1085 wake_up_interruptible(&random_write_wait);
1086 kill_fasync(&fasync, SIGIO, POLL_OUT);
1089 return ibytes;
1093 * This function does the actual extraction for extract_entropy and
1094 * extract_entropy_user.
1096 * Note: we assume that .poolwords is a multiple of 16 words.
1098 static void extract_buf(struct entropy_store *r, __u8 *out)
1100 int i;
1101 union {
1102 __u32 w[5];
1103 unsigned long l[LONGS(20)];
1104 } hash;
1105 __u32 workspace[SHA_WORKSPACE_WORDS];
1106 unsigned long flags;
1109 * If we have an architectural hardware random number
1110 * generator, use it for SHA's initial vector
1112 sha_init(hash.w);
1113 for (i = 0; i < LONGS(20); i++) {
1114 unsigned long v;
1115 if (!arch_get_random_long(&v))
1116 break;
1117 hash.l[i] = v;
1120 /* Generate a hash across the pool, 16 words (512 bits) at a time */
1121 spin_lock_irqsave(&r->lock, flags);
1122 for (i = 0; i < r->poolinfo->poolwords; i += 16)
1123 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1126 * We mix the hash back into the pool to prevent backtracking
1127 * attacks (where the attacker knows the state of the pool
1128 * plus the current outputs, and attempts to find previous
1129 * ouputs), unless the hash function can be inverted. By
1130 * mixing at least a SHA1 worth of hash data back, we make
1131 * brute-forcing the feedback as hard as brute-forcing the
1132 * hash.
1134 __mix_pool_bytes(r, hash.w, sizeof(hash.w));
1135 spin_unlock_irqrestore(&r->lock, flags);
1137 memzero_explicit(workspace, sizeof(workspace));
1140 * In case the hash function has some recognizable output
1141 * pattern, we fold it in half. Thus, we always feed back
1142 * twice as much data as we output.
1144 hash.w[0] ^= hash.w[3];
1145 hash.w[1] ^= hash.w[4];
1146 hash.w[2] ^= rol32(hash.w[2], 16);
1148 memcpy(out, &hash, EXTRACT_SIZE);
1149 memzero_explicit(&hash, sizeof(hash));
1153 * This function extracts randomness from the "entropy pool", and
1154 * returns it in a buffer.
1156 * The min parameter specifies the minimum amount we can pull before
1157 * failing to avoid races that defeat catastrophic reseeding while the
1158 * reserved parameter indicates how much entropy we must leave in the
1159 * pool after each pull to avoid starving other readers.
1161 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1162 size_t nbytes, int min, int reserved)
1164 ssize_t ret = 0, i;
1165 __u8 tmp[EXTRACT_SIZE];
1166 unsigned long flags;
1168 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1169 if (fips_enabled) {
1170 spin_lock_irqsave(&r->lock, flags);
1171 if (!r->last_data_init) {
1172 r->last_data_init = 1;
1173 spin_unlock_irqrestore(&r->lock, flags);
1174 trace_extract_entropy(r->name, EXTRACT_SIZE,
1175 ENTROPY_BITS(r), _RET_IP_);
1176 xfer_secondary_pool(r, EXTRACT_SIZE);
1177 extract_buf(r, tmp);
1178 spin_lock_irqsave(&r->lock, flags);
1179 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1181 spin_unlock_irqrestore(&r->lock, flags);
1184 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1185 xfer_secondary_pool(r, nbytes);
1186 nbytes = account(r, nbytes, min, reserved);
1188 while (nbytes) {
1189 extract_buf(r, tmp);
1191 if (fips_enabled) {
1192 spin_lock_irqsave(&r->lock, flags);
1193 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1194 panic("Hardware RNG duplicated output!\n");
1195 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1196 spin_unlock_irqrestore(&r->lock, flags);
1198 i = min_t(int, nbytes, EXTRACT_SIZE);
1199 memcpy(buf, tmp, i);
1200 nbytes -= i;
1201 buf += i;
1202 ret += i;
1205 /* Wipe data just returned from memory */
1206 memzero_explicit(tmp, sizeof(tmp));
1208 return ret;
1212 * This function extracts randomness from the "entropy pool", and
1213 * returns it in a userspace buffer.
1215 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1216 size_t nbytes)
1218 ssize_t ret = 0, i;
1219 __u8 tmp[EXTRACT_SIZE];
1220 int large_request = (nbytes > 256);
1222 trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1223 xfer_secondary_pool(r, nbytes);
1224 nbytes = account(r, nbytes, 0, 0);
1226 while (nbytes) {
1227 if (large_request && need_resched()) {
1228 if (signal_pending(current)) {
1229 if (ret == 0)
1230 ret = -ERESTARTSYS;
1231 break;
1233 schedule();
1236 extract_buf(r, tmp);
1237 i = min_t(int, nbytes, EXTRACT_SIZE);
1238 if (copy_to_user(buf, tmp, i)) {
1239 ret = -EFAULT;
1240 break;
1243 nbytes -= i;
1244 buf += i;
1245 ret += i;
1248 /* Wipe data just returned from memory */
1249 memzero_explicit(tmp, sizeof(tmp));
1251 return ret;
1255 * This function is the exported kernel interface. It returns some
1256 * number of good random numbers, suitable for key generation, seeding
1257 * TCP sequence numbers, etc. It does not rely on the hardware random
1258 * number generator. For random bytes direct from the hardware RNG
1259 * (when available), use get_random_bytes_arch().
1261 void get_random_bytes(void *buf, int nbytes)
1263 #if DEBUG_RANDOM_BOOT > 0
1264 if (unlikely(nonblocking_pool.initialized == 0))
1265 printk(KERN_NOTICE "random: %pF get_random_bytes called "
1266 "with %d bits of entropy available\n",
1267 (void *) _RET_IP_,
1268 nonblocking_pool.entropy_total);
1269 #endif
1270 trace_get_random_bytes(nbytes, _RET_IP_);
1271 extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
1273 EXPORT_SYMBOL(get_random_bytes);
1276 * Add a callback function that will be invoked when the nonblocking
1277 * pool is initialised.
1279 * returns: 0 if callback is successfully added
1280 * -EALREADY if pool is already initialised (callback not called)
1281 * -ENOENT if module for callback is not alive
1283 int add_random_ready_callback(struct random_ready_callback *rdy)
1285 struct module *owner;
1286 unsigned long flags;
1287 int err = -EALREADY;
1289 if (likely(nonblocking_pool.initialized))
1290 return err;
1292 owner = rdy->owner;
1293 if (!try_module_get(owner))
1294 return -ENOENT;
1296 spin_lock_irqsave(&random_ready_list_lock, flags);
1297 if (nonblocking_pool.initialized)
1298 goto out;
1300 owner = NULL;
1302 list_add(&rdy->list, &random_ready_list);
1303 err = 0;
1305 out:
1306 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1308 module_put(owner);
1310 return err;
1312 EXPORT_SYMBOL(add_random_ready_callback);
1315 * Delete a previously registered readiness callback function.
1317 void del_random_ready_callback(struct random_ready_callback *rdy)
1319 unsigned long flags;
1320 struct module *owner = NULL;
1322 spin_lock_irqsave(&random_ready_list_lock, flags);
1323 if (!list_empty(&rdy->list)) {
1324 list_del_init(&rdy->list);
1325 owner = rdy->owner;
1327 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1329 module_put(owner);
1331 EXPORT_SYMBOL(del_random_ready_callback);
1334 * This function will use the architecture-specific hardware random
1335 * number generator if it is available. The arch-specific hw RNG will
1336 * almost certainly be faster than what we can do in software, but it
1337 * is impossible to verify that it is implemented securely (as
1338 * opposed, to, say, the AES encryption of a sequence number using a
1339 * key known by the NSA). So it's useful if we need the speed, but
1340 * only if we're willing to trust the hardware manufacturer not to
1341 * have put in a back door.
1343 void get_random_bytes_arch(void *buf, int nbytes)
1345 char *p = buf;
1347 trace_get_random_bytes_arch(nbytes, _RET_IP_);
1348 while (nbytes) {
1349 unsigned long v;
1350 int chunk = min(nbytes, (int)sizeof(unsigned long));
1352 if (!arch_get_random_long(&v))
1353 break;
1355 memcpy(p, &v, chunk);
1356 p += chunk;
1357 nbytes -= chunk;
1360 if (nbytes)
1361 extract_entropy(&nonblocking_pool, p, nbytes, 0, 0);
1363 EXPORT_SYMBOL(get_random_bytes_arch);
1367 * init_std_data - initialize pool with system data
1369 * @r: pool to initialize
1371 * This function clears the pool's entropy count and mixes some system
1372 * data into the pool to prepare it for use. The pool is not cleared
1373 * as that can only decrease the entropy in the pool.
1375 static void init_std_data(struct entropy_store *r)
1377 int i;
1378 ktime_t now = ktime_get_real();
1379 unsigned long rv;
1381 r->last_pulled = jiffies;
1382 mix_pool_bytes(r, &now, sizeof(now));
1383 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
1384 if (!arch_get_random_seed_long(&rv) &&
1385 !arch_get_random_long(&rv))
1386 rv = random_get_entropy();
1387 mix_pool_bytes(r, &rv, sizeof(rv));
1389 mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1393 * Note that setup_arch() may call add_device_randomness()
1394 * long before we get here. This allows seeding of the pools
1395 * with some platform dependent data very early in the boot
1396 * process. But it limits our options here. We must use
1397 * statically allocated structures that already have all
1398 * initializations complete at compile time. We should also
1399 * take care not to overwrite the precious per platform data
1400 * we were given.
1402 static int rand_initialize(void)
1404 init_std_data(&input_pool);
1405 init_std_data(&blocking_pool);
1406 init_std_data(&nonblocking_pool);
1407 return 0;
1409 early_initcall(rand_initialize);
1411 #ifdef CONFIG_BLOCK
1412 void rand_initialize_disk(struct gendisk *disk)
1414 struct timer_rand_state *state;
1417 * If kzalloc returns null, we just won't use that entropy
1418 * source.
1420 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1421 if (state) {
1422 state->last_time = INITIAL_JIFFIES;
1423 disk->random = state;
1426 #endif
1428 static ssize_t
1429 _random_read(int nonblock, char __user *buf, size_t nbytes)
1431 ssize_t n;
1433 if (nbytes == 0)
1434 return 0;
1436 nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
1437 while (1) {
1438 n = extract_entropy_user(&blocking_pool, buf, nbytes);
1439 if (n < 0)
1440 return n;
1441 trace_random_read(n*8, (nbytes-n)*8,
1442 ENTROPY_BITS(&blocking_pool),
1443 ENTROPY_BITS(&input_pool));
1444 if (n > 0)
1445 return n;
1447 /* Pool is (near) empty. Maybe wait and retry. */
1448 if (nonblock)
1449 return -EAGAIN;
1451 wait_event_interruptible(random_read_wait,
1452 ENTROPY_BITS(&input_pool) >=
1453 random_read_wakeup_bits);
1454 if (signal_pending(current))
1455 return -ERESTARTSYS;
1459 static ssize_t
1460 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1462 return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
1465 static ssize_t
1466 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1468 static int maxwarn = 10;
1469 int ret;
1471 if (unlikely(nonblocking_pool.initialized == 0) &&
1472 maxwarn > 0) {
1473 maxwarn--;
1474 printk(KERN_NOTICE "random: %s: uninitialized urandom read "
1475 "(%zd bytes read, %d bits of entropy available)\n",
1476 current->comm, nbytes, nonblocking_pool.entropy_total);
1479 nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
1480 ret = extract_entropy_user(&nonblocking_pool, buf, nbytes);
1482 trace_urandom_read(8 * nbytes, ENTROPY_BITS(&nonblocking_pool),
1483 ENTROPY_BITS(&input_pool));
1484 return ret;
1487 static unsigned int
1488 random_poll(struct file *file, poll_table * wait)
1490 unsigned int mask;
1492 poll_wait(file, &random_read_wait, wait);
1493 poll_wait(file, &random_write_wait, wait);
1494 mask = 0;
1495 if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
1496 mask |= POLLIN | POLLRDNORM;
1497 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1498 mask |= POLLOUT | POLLWRNORM;
1499 return mask;
1502 static int
1503 write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1505 size_t bytes;
1506 __u32 t, buf[16];
1507 const char __user *p = buffer;
1509 while (count > 0) {
1510 int b, i = 0;
1512 bytes = min(count, sizeof(buf));
1513 if (copy_from_user(&buf, p, bytes))
1514 return -EFAULT;
1516 for (b = bytes ; b > 0 ; b -= sizeof(__u32), i++) {
1517 if (!arch_get_random_int(&t))
1518 break;
1519 buf[i] ^= t;
1522 count -= bytes;
1523 p += bytes;
1525 mix_pool_bytes(r, buf, bytes);
1526 cond_resched();
1529 return 0;
1532 static ssize_t random_write(struct file *file, const char __user *buffer,
1533 size_t count, loff_t *ppos)
1535 size_t ret;
1537 ret = write_pool(&blocking_pool, buffer, count);
1538 if (ret)
1539 return ret;
1540 ret = write_pool(&nonblocking_pool, buffer, count);
1541 if (ret)
1542 return ret;
1544 return (ssize_t)count;
1547 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1549 int size, ent_count;
1550 int __user *p = (int __user *)arg;
1551 int retval;
1553 switch (cmd) {
1554 case RNDGETENTCNT:
1555 /* inherently racy, no point locking */
1556 ent_count = ENTROPY_BITS(&input_pool);
1557 if (put_user(ent_count, p))
1558 return -EFAULT;
1559 return 0;
1560 case RNDADDTOENTCNT:
1561 if (!capable(CAP_SYS_ADMIN))
1562 return -EPERM;
1563 if (get_user(ent_count, p))
1564 return -EFAULT;
1565 return credit_entropy_bits_safe(&input_pool, ent_count);
1566 case RNDADDENTROPY:
1567 if (!capable(CAP_SYS_ADMIN))
1568 return -EPERM;
1569 if (get_user(ent_count, p++))
1570 return -EFAULT;
1571 if (ent_count < 0)
1572 return -EINVAL;
1573 if (get_user(size, p++))
1574 return -EFAULT;
1575 retval = write_pool(&input_pool, (const char __user *)p,
1576 size);
1577 if (retval < 0)
1578 return retval;
1579 return credit_entropy_bits_safe(&input_pool, ent_count);
1580 case RNDZAPENTCNT:
1581 case RNDCLEARPOOL:
1583 * Clear the entropy pool counters. We no longer clear
1584 * the entropy pool, as that's silly.
1586 if (!capable(CAP_SYS_ADMIN))
1587 return -EPERM;
1588 input_pool.entropy_count = 0;
1589 nonblocking_pool.entropy_count = 0;
1590 blocking_pool.entropy_count = 0;
1591 return 0;
1592 default:
1593 return -EINVAL;
1597 static int random_fasync(int fd, struct file *filp, int on)
1599 return fasync_helper(fd, filp, on, &fasync);
1602 const struct file_operations random_fops = {
1603 .read = random_read,
1604 .write = random_write,
1605 .poll = random_poll,
1606 .unlocked_ioctl = random_ioctl,
1607 .fasync = random_fasync,
1608 .llseek = noop_llseek,
1611 const struct file_operations urandom_fops = {
1612 .read = urandom_read,
1613 .write = random_write,
1614 .unlocked_ioctl = random_ioctl,
1615 .fasync = random_fasync,
1616 .llseek = noop_llseek,
1619 SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
1620 unsigned int, flags)
1622 if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
1623 return -EINVAL;
1625 if (count > INT_MAX)
1626 count = INT_MAX;
1628 if (flags & GRND_RANDOM)
1629 return _random_read(flags & GRND_NONBLOCK, buf, count);
1631 if (unlikely(nonblocking_pool.initialized == 0)) {
1632 if (flags & GRND_NONBLOCK)
1633 return -EAGAIN;
1634 wait_event_interruptible(urandom_init_wait,
1635 nonblocking_pool.initialized);
1636 if (signal_pending(current))
1637 return -ERESTARTSYS;
1639 return urandom_read(NULL, buf, count, NULL);
1642 /***************************************************************
1643 * Random UUID interface
1645 * Used here for a Boot ID, but can be useful for other kernel
1646 * drivers.
1647 ***************************************************************/
1650 * Generate random UUID
1652 void generate_random_uuid(unsigned char uuid_out[16])
1654 get_random_bytes(uuid_out, 16);
1655 /* Set UUID version to 4 --- truly random generation */
1656 uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
1657 /* Set the UUID variant to DCE */
1658 uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
1660 EXPORT_SYMBOL(generate_random_uuid);
1662 /********************************************************************
1664 * Sysctl interface
1666 ********************************************************************/
1668 #ifdef CONFIG_SYSCTL
1670 #include <linux/sysctl.h>
1672 static int min_read_thresh = 8, min_write_thresh;
1673 static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
1674 static int max_write_thresh = INPUT_POOL_WORDS * 32;
1675 static char sysctl_bootid[16];
1678 * This function is used to return both the bootid UUID, and random
1679 * UUID. The difference is in whether table->data is NULL; if it is,
1680 * then a new UUID is generated and returned to the user.
1682 * If the user accesses this via the proc interface, the UUID will be
1683 * returned as an ASCII string in the standard UUID format; if via the
1684 * sysctl system call, as 16 bytes of binary data.
1686 static int proc_do_uuid(struct ctl_table *table, int write,
1687 void __user *buffer, size_t *lenp, loff_t *ppos)
1689 struct ctl_table fake_table;
1690 unsigned char buf[64], tmp_uuid[16], *uuid;
1692 uuid = table->data;
1693 if (!uuid) {
1694 uuid = tmp_uuid;
1695 generate_random_uuid(uuid);
1696 } else {
1697 static DEFINE_SPINLOCK(bootid_spinlock);
1699 spin_lock(&bootid_spinlock);
1700 if (!uuid[8])
1701 generate_random_uuid(uuid);
1702 spin_unlock(&bootid_spinlock);
1705 sprintf(buf, "%pU", uuid);
1707 fake_table.data = buf;
1708 fake_table.maxlen = sizeof(buf);
1710 return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1714 * Return entropy available scaled to integral bits
1716 static int proc_do_entropy(struct ctl_table *table, int write,
1717 void __user *buffer, size_t *lenp, loff_t *ppos)
1719 struct ctl_table fake_table;
1720 int entropy_count;
1722 entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
1724 fake_table.data = &entropy_count;
1725 fake_table.maxlen = sizeof(entropy_count);
1727 return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
1730 static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
1731 extern struct ctl_table random_table[];
1732 struct ctl_table random_table[] = {
1734 .procname = "poolsize",
1735 .data = &sysctl_poolsize,
1736 .maxlen = sizeof(int),
1737 .mode = 0444,
1738 .proc_handler = proc_dointvec,
1741 .procname = "entropy_avail",
1742 .maxlen = sizeof(int),
1743 .mode = 0444,
1744 .proc_handler = proc_do_entropy,
1745 .data = &input_pool.entropy_count,
1748 .procname = "read_wakeup_threshold",
1749 .data = &random_read_wakeup_bits,
1750 .maxlen = sizeof(int),
1751 .mode = 0644,
1752 .proc_handler = proc_dointvec_minmax,
1753 .extra1 = &min_read_thresh,
1754 .extra2 = &max_read_thresh,
1757 .procname = "write_wakeup_threshold",
1758 .data = &random_write_wakeup_bits,
1759 .maxlen = sizeof(int),
1760 .mode = 0644,
1761 .proc_handler = proc_dointvec_minmax,
1762 .extra1 = &min_write_thresh,
1763 .extra2 = &max_write_thresh,
1766 .procname = "urandom_min_reseed_secs",
1767 .data = &random_min_urandom_seed,
1768 .maxlen = sizeof(int),
1769 .mode = 0644,
1770 .proc_handler = proc_dointvec,
1773 .procname = "boot_id",
1774 .data = &sysctl_bootid,
1775 .maxlen = 16,
1776 .mode = 0444,
1777 .proc_handler = proc_do_uuid,
1780 .procname = "uuid",
1781 .maxlen = 16,
1782 .mode = 0444,
1783 .proc_handler = proc_do_uuid,
1785 #ifdef ADD_INTERRUPT_BENCH
1787 .procname = "add_interrupt_avg_cycles",
1788 .data = &avg_cycles,
1789 .maxlen = sizeof(avg_cycles),
1790 .mode = 0444,
1791 .proc_handler = proc_doulongvec_minmax,
1794 .procname = "add_interrupt_avg_deviation",
1795 .data = &avg_deviation,
1796 .maxlen = sizeof(avg_deviation),
1797 .mode = 0444,
1798 .proc_handler = proc_doulongvec_minmax,
1800 #endif
1803 #endif /* CONFIG_SYSCTL */
1805 static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
1807 int random_int_secret_init(void)
1809 get_random_bytes(random_int_secret, sizeof(random_int_secret));
1810 return 0;
1813 static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash)
1814 __aligned(sizeof(unsigned long));
1817 * Get a random word for internal kernel use only. Similar to urandom but
1818 * with the goal of minimal entropy pool depletion. As a result, the random
1819 * value is not cryptographically secure but for several uses the cost of
1820 * depleting entropy is too high
1822 unsigned int get_random_int(void)
1824 __u32 *hash;
1825 unsigned int ret;
1827 if (arch_get_random_int(&ret))
1828 return ret;
1830 hash = get_cpu_var(get_random_int_hash);
1832 hash[0] += current->pid + jiffies + random_get_entropy();
1833 md5_transform(hash, random_int_secret);
1834 ret = hash[0];
1835 put_cpu_var(get_random_int_hash);
1837 return ret;
1839 EXPORT_SYMBOL(get_random_int);
1842 * Same as get_random_int(), but returns unsigned long.
1844 unsigned long get_random_long(void)
1846 __u32 *hash;
1847 unsigned long ret;
1849 if (arch_get_random_long(&ret))
1850 return ret;
1852 hash = get_cpu_var(get_random_int_hash);
1854 hash[0] += current->pid + jiffies + random_get_entropy();
1855 md5_transform(hash, random_int_secret);
1856 ret = *(unsigned long *)hash;
1857 put_cpu_var(get_random_int_hash);
1859 return ret;
1861 EXPORT_SYMBOL(get_random_long);
1864 * randomize_range() returns a start address such that
1866 * [...... <range> .....]
1867 * start end
1869 * a <range> with size "len" starting at the return value is inside in the
1870 * area defined by [start, end], but is otherwise randomized.
1872 unsigned long
1873 randomize_range(unsigned long start, unsigned long end, unsigned long len)
1875 unsigned long range = end - len - start;
1877 if (end <= start + len)
1878 return 0;
1879 return PAGE_ALIGN(get_random_int() % range + start);
1882 /* Interface for in-kernel drivers of true hardware RNGs.
1883 * Those devices may produce endless random bits and will be throttled
1884 * when our pool is full.
1886 void add_hwgenerator_randomness(const char *buffer, size_t count,
1887 size_t entropy)
1889 struct entropy_store *poolp = &input_pool;
1891 if (unlikely(nonblocking_pool.initialized == 0))
1892 poolp = &nonblocking_pool;
1893 else {
1894 /* Suspend writing if we're above the trickle
1895 * threshold. We'll be woken up again once below
1896 * random_write_wakeup_thresh, or when the calling
1897 * thread is about to terminate.
1899 wait_event_interruptible(random_write_wait,
1900 kthread_should_stop() ||
1901 ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
1903 mix_pool_bytes(poolp, buffer, count);
1904 credit_entropy_bits(poolp, entropy);
1906 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);