2 * (C) Copyright 2009 Intel Corporation
3 * Author: Jacob Pan (jacob.jun.pan@intel.com)
5 * Shared with ARM platforms, Jamie Iles, Picochip 2011
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 * Support for the Synopsys DesignWare APB Timers.
13 #include <linux/dw_apb_timer.h>
14 #include <linux/delay.h>
15 #include <linux/kernel.h>
16 #include <linux/interrupt.h>
17 #include <linux/irq.h>
19 #include <linux/slab.h>
21 #define APBT_MIN_PERIOD 4
22 #define APBT_MIN_DELTA_USEC 200
24 #define APBTMR_N_LOAD_COUNT 0x00
25 #define APBTMR_N_CURRENT_VALUE 0x04
26 #define APBTMR_N_CONTROL 0x08
27 #define APBTMR_N_EOI 0x0c
28 #define APBTMR_N_INT_STATUS 0x10
30 #define APBTMRS_INT_STATUS 0xa0
31 #define APBTMRS_EOI 0xa4
32 #define APBTMRS_RAW_INT_STATUS 0xa8
33 #define APBTMRS_COMP_VERSION 0xac
35 #define APBTMR_CONTROL_ENABLE (1 << 0)
36 /* 1: periodic, 0:free running. */
37 #define APBTMR_CONTROL_MODE_PERIODIC (1 << 1)
38 #define APBTMR_CONTROL_INT (1 << 2)
40 static inline struct dw_apb_clock_event_device
*
41 ced_to_dw_apb_ced(struct clock_event_device
*evt
)
43 return container_of(evt
, struct dw_apb_clock_event_device
, ced
);
46 static inline struct dw_apb_clocksource
*
47 clocksource_to_dw_apb_clocksource(struct clocksource
*cs
)
49 return container_of(cs
, struct dw_apb_clocksource
, cs
);
52 static unsigned long apbt_readl(struct dw_apb_timer
*timer
, unsigned long offs
)
54 return readl(timer
->base
+ offs
);
57 static void apbt_writel(struct dw_apb_timer
*timer
, unsigned long val
,
60 writel(val
, timer
->base
+ offs
);
63 static void apbt_disable_int(struct dw_apb_timer
*timer
)
65 unsigned long ctrl
= apbt_readl(timer
, APBTMR_N_CONTROL
);
67 ctrl
|= APBTMR_CONTROL_INT
;
68 apbt_writel(timer
, ctrl
, APBTMR_N_CONTROL
);
72 * dw_apb_clockevent_pause() - stop the clock_event_device from running
74 * @dw_ced: The APB clock to stop generating events.
76 void dw_apb_clockevent_pause(struct dw_apb_clock_event_device
*dw_ced
)
78 disable_irq(dw_ced
->timer
.irq
);
79 apbt_disable_int(&dw_ced
->timer
);
82 static void apbt_eoi(struct dw_apb_timer
*timer
)
84 apbt_readl(timer
, APBTMR_N_EOI
);
87 static irqreturn_t
dw_apb_clockevent_irq(int irq
, void *data
)
89 struct clock_event_device
*evt
= data
;
90 struct dw_apb_clock_event_device
*dw_ced
= ced_to_dw_apb_ced(evt
);
92 if (!evt
->event_handler
) {
93 pr_info("Spurious APBT timer interrupt %d", irq
);
98 dw_ced
->eoi(&dw_ced
->timer
);
100 evt
->event_handler(evt
);
104 static void apbt_enable_int(struct dw_apb_timer
*timer
)
106 unsigned long ctrl
= apbt_readl(timer
, APBTMR_N_CONTROL
);
107 /* clear pending intr */
108 apbt_readl(timer
, APBTMR_N_EOI
);
109 ctrl
&= ~APBTMR_CONTROL_INT
;
110 apbt_writel(timer
, ctrl
, APBTMR_N_CONTROL
);
113 static int apbt_shutdown(struct clock_event_device
*evt
)
115 struct dw_apb_clock_event_device
*dw_ced
= ced_to_dw_apb_ced(evt
);
118 pr_debug("%s CPU %d state=shutdown\n", __func__
,
119 cpumask_first(evt
->cpumask
));
121 ctrl
= apbt_readl(&dw_ced
->timer
, APBTMR_N_CONTROL
);
122 ctrl
&= ~APBTMR_CONTROL_ENABLE
;
123 apbt_writel(&dw_ced
->timer
, ctrl
, APBTMR_N_CONTROL
);
127 static int apbt_set_oneshot(struct clock_event_device
*evt
)
129 struct dw_apb_clock_event_device
*dw_ced
= ced_to_dw_apb_ced(evt
);
132 pr_debug("%s CPU %d state=oneshot\n", __func__
,
133 cpumask_first(evt
->cpumask
));
135 ctrl
= apbt_readl(&dw_ced
->timer
, APBTMR_N_CONTROL
);
137 * set free running mode, this mode will let timer reload max
138 * timeout which will give time (3min on 25MHz clock) to rearm
139 * the next event, therefore emulate the one-shot mode.
141 ctrl
&= ~APBTMR_CONTROL_ENABLE
;
142 ctrl
&= ~APBTMR_CONTROL_MODE_PERIODIC
;
144 apbt_writel(&dw_ced
->timer
, ctrl
, APBTMR_N_CONTROL
);
145 /* write again to set free running mode */
146 apbt_writel(&dw_ced
->timer
, ctrl
, APBTMR_N_CONTROL
);
149 * DW APB p. 46, load counter with all 1s before starting free
152 apbt_writel(&dw_ced
->timer
, ~0, APBTMR_N_LOAD_COUNT
);
153 ctrl
&= ~APBTMR_CONTROL_INT
;
154 ctrl
|= APBTMR_CONTROL_ENABLE
;
155 apbt_writel(&dw_ced
->timer
, ctrl
, APBTMR_N_CONTROL
);
159 static int apbt_set_periodic(struct clock_event_device
*evt
)
161 struct dw_apb_clock_event_device
*dw_ced
= ced_to_dw_apb_ced(evt
);
162 unsigned long period
= DIV_ROUND_UP(dw_ced
->timer
.freq
, HZ
);
165 pr_debug("%s CPU %d state=periodic\n", __func__
,
166 cpumask_first(evt
->cpumask
));
168 ctrl
= apbt_readl(&dw_ced
->timer
, APBTMR_N_CONTROL
);
169 ctrl
|= APBTMR_CONTROL_MODE_PERIODIC
;
170 apbt_writel(&dw_ced
->timer
, ctrl
, APBTMR_N_CONTROL
);
172 * DW APB p. 46, have to disable timer before load counter,
173 * may cause sync problem.
175 ctrl
&= ~APBTMR_CONTROL_ENABLE
;
176 apbt_writel(&dw_ced
->timer
, ctrl
, APBTMR_N_CONTROL
);
178 pr_debug("Setting clock period %lu for HZ %d\n", period
, HZ
);
179 apbt_writel(&dw_ced
->timer
, period
, APBTMR_N_LOAD_COUNT
);
180 ctrl
|= APBTMR_CONTROL_ENABLE
;
181 apbt_writel(&dw_ced
->timer
, ctrl
, APBTMR_N_CONTROL
);
185 static int apbt_resume(struct clock_event_device
*evt
)
187 struct dw_apb_clock_event_device
*dw_ced
= ced_to_dw_apb_ced(evt
);
189 pr_debug("%s CPU %d state=resume\n", __func__
,
190 cpumask_first(evt
->cpumask
));
192 apbt_enable_int(&dw_ced
->timer
);
196 static int apbt_next_event(unsigned long delta
,
197 struct clock_event_device
*evt
)
200 struct dw_apb_clock_event_device
*dw_ced
= ced_to_dw_apb_ced(evt
);
203 ctrl
= apbt_readl(&dw_ced
->timer
, APBTMR_N_CONTROL
);
204 ctrl
&= ~APBTMR_CONTROL_ENABLE
;
205 apbt_writel(&dw_ced
->timer
, ctrl
, APBTMR_N_CONTROL
);
206 /* write new count */
207 apbt_writel(&dw_ced
->timer
, delta
, APBTMR_N_LOAD_COUNT
);
208 ctrl
|= APBTMR_CONTROL_ENABLE
;
209 apbt_writel(&dw_ced
->timer
, ctrl
, APBTMR_N_CONTROL
);
215 * dw_apb_clockevent_init() - use an APB timer as a clock_event_device
217 * @cpu: The CPU the events will be targeted at.
218 * @name: The name used for the timer and the IRQ for it.
219 * @rating: The rating to give the timer.
220 * @base: I/O base for the timer registers.
221 * @irq: The interrupt number to use for the timer.
222 * @freq: The frequency that the timer counts at.
224 * This creates a clock_event_device for using with the generic clock layer
225 * but does not start and register it. This should be done with
226 * dw_apb_clockevent_register() as the next step. If this is the first time
227 * it has been called for a timer then the IRQ will be requested, if not it
228 * just be enabled to allow CPU hotplug to avoid repeatedly requesting and
231 struct dw_apb_clock_event_device
*
232 dw_apb_clockevent_init(int cpu
, const char *name
, unsigned rating
,
233 void __iomem
*base
, int irq
, unsigned long freq
)
235 struct dw_apb_clock_event_device
*dw_ced
=
236 kzalloc(sizeof(*dw_ced
), GFP_KERNEL
);
242 dw_ced
->timer
.base
= base
;
243 dw_ced
->timer
.irq
= irq
;
244 dw_ced
->timer
.freq
= freq
;
246 clockevents_calc_mult_shift(&dw_ced
->ced
, freq
, APBT_MIN_PERIOD
);
247 dw_ced
->ced
.max_delta_ns
= clockevent_delta2ns(0x7fffffff,
249 dw_ced
->ced
.min_delta_ns
= clockevent_delta2ns(5000, &dw_ced
->ced
);
250 dw_ced
->ced
.cpumask
= cpumask_of(cpu
);
251 dw_ced
->ced
.features
= CLOCK_EVT_FEAT_PERIODIC
|
252 CLOCK_EVT_FEAT_ONESHOT
| CLOCK_EVT_FEAT_DYNIRQ
;
253 dw_ced
->ced
.set_state_shutdown
= apbt_shutdown
;
254 dw_ced
->ced
.set_state_periodic
= apbt_set_periodic
;
255 dw_ced
->ced
.set_state_oneshot
= apbt_set_oneshot
;
256 dw_ced
->ced
.tick_resume
= apbt_resume
;
257 dw_ced
->ced
.set_next_event
= apbt_next_event
;
258 dw_ced
->ced
.irq
= dw_ced
->timer
.irq
;
259 dw_ced
->ced
.rating
= rating
;
260 dw_ced
->ced
.name
= name
;
262 dw_ced
->irqaction
.name
= dw_ced
->ced
.name
;
263 dw_ced
->irqaction
.handler
= dw_apb_clockevent_irq
;
264 dw_ced
->irqaction
.dev_id
= &dw_ced
->ced
;
265 dw_ced
->irqaction
.irq
= irq
;
266 dw_ced
->irqaction
.flags
= IRQF_TIMER
| IRQF_IRQPOLL
|
269 dw_ced
->eoi
= apbt_eoi
;
270 err
= setup_irq(irq
, &dw_ced
->irqaction
);
272 pr_err("failed to request timer irq\n");
281 * dw_apb_clockevent_resume() - resume a clock that has been paused.
283 * @dw_ced: The APB clock to resume.
285 void dw_apb_clockevent_resume(struct dw_apb_clock_event_device
*dw_ced
)
287 enable_irq(dw_ced
->timer
.irq
);
291 * dw_apb_clockevent_stop() - stop the clock_event_device and release the IRQ.
293 * @dw_ced: The APB clock to stop generating the events.
295 void dw_apb_clockevent_stop(struct dw_apb_clock_event_device
*dw_ced
)
297 free_irq(dw_ced
->timer
.irq
, &dw_ced
->ced
);
301 * dw_apb_clockevent_register() - register the clock with the generic layer
303 * @dw_ced: The APB clock to register as a clock_event_device.
305 void dw_apb_clockevent_register(struct dw_apb_clock_event_device
*dw_ced
)
307 apbt_writel(&dw_ced
->timer
, 0, APBTMR_N_CONTROL
);
308 clockevents_register_device(&dw_ced
->ced
);
309 apbt_enable_int(&dw_ced
->timer
);
313 * dw_apb_clocksource_start() - start the clocksource counting.
315 * @dw_cs: The clocksource to start.
317 * This is used to start the clocksource before registration and can be used
318 * to enable calibration of timers.
320 void dw_apb_clocksource_start(struct dw_apb_clocksource
*dw_cs
)
323 * start count down from 0xffff_ffff. this is done by toggling the
324 * enable bit then load initial load count to ~0.
326 unsigned long ctrl
= apbt_readl(&dw_cs
->timer
, APBTMR_N_CONTROL
);
328 ctrl
&= ~APBTMR_CONTROL_ENABLE
;
329 apbt_writel(&dw_cs
->timer
, ctrl
, APBTMR_N_CONTROL
);
330 apbt_writel(&dw_cs
->timer
, ~0, APBTMR_N_LOAD_COUNT
);
331 /* enable, mask interrupt */
332 ctrl
&= ~APBTMR_CONTROL_MODE_PERIODIC
;
333 ctrl
|= (APBTMR_CONTROL_ENABLE
| APBTMR_CONTROL_INT
);
334 apbt_writel(&dw_cs
->timer
, ctrl
, APBTMR_N_CONTROL
);
335 /* read it once to get cached counter value initialized */
336 dw_apb_clocksource_read(dw_cs
);
339 static cycle_t
__apbt_read_clocksource(struct clocksource
*cs
)
341 unsigned long current_count
;
342 struct dw_apb_clocksource
*dw_cs
=
343 clocksource_to_dw_apb_clocksource(cs
);
345 current_count
= apbt_readl(&dw_cs
->timer
, APBTMR_N_CURRENT_VALUE
);
347 return (cycle_t
)~current_count
;
350 static void apbt_restart_clocksource(struct clocksource
*cs
)
352 struct dw_apb_clocksource
*dw_cs
=
353 clocksource_to_dw_apb_clocksource(cs
);
355 dw_apb_clocksource_start(dw_cs
);
359 * dw_apb_clocksource_init() - use an APB timer as a clocksource.
361 * @rating: The rating to give the clocksource.
362 * @name: The name for the clocksource.
363 * @base: The I/O base for the timer registers.
364 * @freq: The frequency that the timer counts at.
366 * This creates a clocksource using an APB timer but does not yet register it
367 * with the clocksource system. This should be done with
368 * dw_apb_clocksource_register() as the next step.
370 struct dw_apb_clocksource
*
371 dw_apb_clocksource_init(unsigned rating
, const char *name
, void __iomem
*base
,
374 struct dw_apb_clocksource
*dw_cs
= kzalloc(sizeof(*dw_cs
), GFP_KERNEL
);
379 dw_cs
->timer
.base
= base
;
380 dw_cs
->timer
.freq
= freq
;
381 dw_cs
->cs
.name
= name
;
382 dw_cs
->cs
.rating
= rating
;
383 dw_cs
->cs
.read
= __apbt_read_clocksource
;
384 dw_cs
->cs
.mask
= CLOCKSOURCE_MASK(32);
385 dw_cs
->cs
.flags
= CLOCK_SOURCE_IS_CONTINUOUS
;
386 dw_cs
->cs
.resume
= apbt_restart_clocksource
;
392 * dw_apb_clocksource_register() - register the APB clocksource.
394 * @dw_cs: The clocksource to register.
396 void dw_apb_clocksource_register(struct dw_apb_clocksource
*dw_cs
)
398 clocksource_register_hz(&dw_cs
->cs
, dw_cs
->timer
.freq
);
402 * dw_apb_clocksource_read() - read the current value of a clocksource.
404 * @dw_cs: The clocksource to read.
406 cycle_t
dw_apb_clocksource_read(struct dw_apb_clocksource
*dw_cs
)
408 return (cycle_t
)~apbt_readl(&dw_cs
->timer
, APBTMR_N_CURRENT_VALUE
);