1 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
3 * This driver supports the memory controllers found on the Intel
4 * processor family Sandy Bridge.
6 * This file may be distributed under the terms of the
7 * GNU General Public License version 2 only.
9 * Copyright (c) 2011 by:
10 * Mauro Carvalho Chehab
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/pci_ids.h>
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/edac.h>
20 #include <linux/mmzone.h>
21 #include <linux/smp.h>
22 #include <linux/bitmap.h>
23 #include <linux/math64.h>
24 #include <asm/processor.h>
27 #include "edac_core.h"
30 static LIST_HEAD(sbridge_edac_list
);
31 static DEFINE_MUTEX(sbridge_edac_lock
);
35 * Alter this version for the module when modifications are made
37 #define SBRIDGE_REVISION " Ver: 1.1.1 "
38 #define EDAC_MOD_STR "sbridge_edac"
43 #define sbridge_printk(level, fmt, arg...) \
44 edac_printk(level, "sbridge", fmt, ##arg)
46 #define sbridge_mc_printk(mci, level, fmt, arg...) \
47 edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
50 * Get a bit field at register value <v>, from bit <lo> to bit <hi>
52 #define GET_BITFIELD(v, lo, hi) \
53 (((v) & GENMASK_ULL(hi, lo)) >> (lo))
55 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
56 static const u32 sbridge_dram_rule
[] = {
57 0x80, 0x88, 0x90, 0x98, 0xa0,
58 0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
61 static const u32 ibridge_dram_rule
[] = {
62 0x60, 0x68, 0x70, 0x78, 0x80,
63 0x88, 0x90, 0x98, 0xa0, 0xa8,
64 0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
65 0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
68 #define SAD_LIMIT(reg) ((GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff)
69 #define DRAM_ATTR(reg) GET_BITFIELD(reg, 2, 3)
70 #define INTERLEAVE_MODE(reg) GET_BITFIELD(reg, 1, 1)
71 #define DRAM_RULE_ENABLE(reg) GET_BITFIELD(reg, 0, 0)
72 #define A7MODE(reg) GET_BITFIELD(reg, 26, 26)
74 static char *get_dram_attr(u32 reg
)
76 switch(DRAM_ATTR(reg
)) {
88 static const u32 sbridge_interleave_list
[] = {
89 0x84, 0x8c, 0x94, 0x9c, 0xa4,
90 0xac, 0xb4, 0xbc, 0xc4, 0xcc,
93 static const u32 ibridge_interleave_list
[] = {
94 0x64, 0x6c, 0x74, 0x7c, 0x84,
95 0x8c, 0x94, 0x9c, 0xa4, 0xac,
96 0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
97 0xdc, 0xe4, 0xec, 0xf4, 0xfc,
100 struct interleave_pkg
{
105 static const struct interleave_pkg sbridge_interleave_pkg
[] = {
116 static const struct interleave_pkg ibridge_interleave_pkg
[] = {
127 static inline int sad_pkg(const struct interleave_pkg
*table
, u32 reg
,
130 return GET_BITFIELD(reg
, table
[interleave
].start
,
131 table
[interleave
].end
);
134 /* Devices 12 Function 7 */
138 #define HASWELL_TOLM 0xd0
139 #define HASWELL_TOHM_0 0xd4
140 #define HASWELL_TOHM_1 0xd8
142 #define GET_TOLM(reg) ((GET_BITFIELD(reg, 0, 3) << 28) | 0x3ffffff)
143 #define GET_TOHM(reg) ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
145 /* Device 13 Function 6 */
147 #define SAD_TARGET 0xf0
149 #define SOURCE_ID(reg) GET_BITFIELD(reg, 9, 11)
151 #define SAD_CONTROL 0xf4
153 /* Device 14 function 0 */
155 static const u32 tad_dram_rule
[] = {
156 0x40, 0x44, 0x48, 0x4c,
157 0x50, 0x54, 0x58, 0x5c,
158 0x60, 0x64, 0x68, 0x6c,
160 #define MAX_TAD ARRAY_SIZE(tad_dram_rule)
162 #define TAD_LIMIT(reg) ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
163 #define TAD_SOCK(reg) GET_BITFIELD(reg, 10, 11)
164 #define TAD_CH(reg) GET_BITFIELD(reg, 8, 9)
165 #define TAD_TGT3(reg) GET_BITFIELD(reg, 6, 7)
166 #define TAD_TGT2(reg) GET_BITFIELD(reg, 4, 5)
167 #define TAD_TGT1(reg) GET_BITFIELD(reg, 2, 3)
168 #define TAD_TGT0(reg) GET_BITFIELD(reg, 0, 1)
170 /* Device 15, function 0 */
174 #define IS_ECC_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 2, 2)
175 #define IS_LOCKSTEP_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 1, 1)
176 #define IS_CLOSE_PG(mcmtr) GET_BITFIELD(mcmtr, 0, 0)
178 /* Device 15, function 1 */
180 #define RASENABLES 0xac
181 #define IS_MIRROR_ENABLED(reg) GET_BITFIELD(reg, 0, 0)
183 /* Device 15, functions 2-5 */
185 static const int mtr_regs
[] = {
189 #define RANK_DISABLE(mtr) GET_BITFIELD(mtr, 16, 19)
190 #define IS_DIMM_PRESENT(mtr) GET_BITFIELD(mtr, 14, 14)
191 #define RANK_CNT_BITS(mtr) GET_BITFIELD(mtr, 12, 13)
192 #define RANK_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 2, 4)
193 #define COL_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 0, 1)
195 static const u32 tad_ch_nilv_offset
[] = {
196 0x90, 0x94, 0x98, 0x9c,
197 0xa0, 0xa4, 0xa8, 0xac,
198 0xb0, 0xb4, 0xb8, 0xbc,
200 #define CHN_IDX_OFFSET(reg) GET_BITFIELD(reg, 28, 29)
201 #define TAD_OFFSET(reg) (GET_BITFIELD(reg, 6, 25) << 26)
203 static const u32 rir_way_limit
[] = {
204 0x108, 0x10c, 0x110, 0x114, 0x118,
206 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
208 #define IS_RIR_VALID(reg) GET_BITFIELD(reg, 31, 31)
209 #define RIR_WAY(reg) GET_BITFIELD(reg, 28, 29)
211 #define MAX_RIR_WAY 8
213 static const u32 rir_offset
[MAX_RIR_RANGES
][MAX_RIR_WAY
] = {
214 { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
215 { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
216 { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
217 { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
218 { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
221 #define RIR_RNK_TGT(type, reg) (((type) == BROADWELL) ? \
222 GET_BITFIELD(reg, 20, 23) : GET_BITFIELD(reg, 16, 19))
224 #define RIR_OFFSET(type, reg) (((type) == HASWELL || (type) == BROADWELL) ? \
225 GET_BITFIELD(reg, 2, 15) : GET_BITFIELD(reg, 2, 14))
227 /* Device 16, functions 2-7 */
230 * FIXME: Implement the error count reads directly
233 static const u32 correrrcnt
[] = {
234 0x104, 0x108, 0x10c, 0x110,
237 #define RANK_ODD_OV(reg) GET_BITFIELD(reg, 31, 31)
238 #define RANK_ODD_ERR_CNT(reg) GET_BITFIELD(reg, 16, 30)
239 #define RANK_EVEN_OV(reg) GET_BITFIELD(reg, 15, 15)
240 #define RANK_EVEN_ERR_CNT(reg) GET_BITFIELD(reg, 0, 14)
242 static const u32 correrrthrsld
[] = {
243 0x11c, 0x120, 0x124, 0x128,
246 #define RANK_ODD_ERR_THRSLD(reg) GET_BITFIELD(reg, 16, 30)
247 #define RANK_EVEN_ERR_THRSLD(reg) GET_BITFIELD(reg, 0, 14)
250 /* Device 17, function 0 */
252 #define SB_RANK_CFG_A 0x0328
254 #define IB_RANK_CFG_A 0x0320
260 #define NUM_CHANNELS 8 /* 2MC per socket, four chan per MC */
261 #define MAX_DIMMS 3 /* Max DIMMS per channel */
262 #define CHANNEL_UNSPECIFIED 0xf /* Intel IA32 SDM 15-14 */
272 struct sbridge_info
{
276 u64 (*get_tolm
)(struct sbridge_pvt
*pvt
);
277 u64 (*get_tohm
)(struct sbridge_pvt
*pvt
);
278 u64 (*rir_limit
)(u32 reg
);
279 const u32
*dram_rule
;
280 const u32
*interleave_list
;
281 const struct interleave_pkg
*interleave_pkg
;
284 u8 (*get_node_id
)(struct sbridge_pvt
*pvt
);
285 enum mem_type (*get_memory_type
)(struct sbridge_pvt
*pvt
);
286 enum dev_type (*get_width
)(struct sbridge_pvt
*pvt
, u32 mtr
);
287 struct pci_dev
*pci_vtd
;
290 struct sbridge_channel
{
295 struct pci_id_descr
{
300 struct pci_id_table
{
301 const struct pci_id_descr
*descr
;
306 struct list_head list
;
308 u8 node_id
, source_id
;
309 struct pci_dev
**pdev
;
311 struct mem_ctl_info
*mci
;
315 struct pci_dev
*pci_ta
, *pci_ddrio
, *pci_ras
;
316 struct pci_dev
*pci_sad0
, *pci_sad1
;
317 struct pci_dev
*pci_ha0
, *pci_ha1
;
318 struct pci_dev
*pci_br0
, *pci_br1
;
319 struct pci_dev
*pci_ha1_ta
;
320 struct pci_dev
*pci_tad
[NUM_CHANNELS
];
322 struct sbridge_dev
*sbridge_dev
;
324 struct sbridge_info info
;
325 struct sbridge_channel channel
[NUM_CHANNELS
];
327 /* Memory type detection */
328 bool is_mirrored
, is_lockstep
, is_close_pg
;
330 /* Fifo double buffers */
331 struct mce mce_entry
[MCE_LOG_LEN
];
332 struct mce mce_outentry
[MCE_LOG_LEN
];
334 /* Fifo in/out counters */
335 unsigned mce_in
, mce_out
;
337 /* Count indicator to show errors not got */
338 unsigned mce_overrun
;
340 /* Memory description */
344 #define PCI_DESCR(device_id, opt) \
345 .dev_id = (device_id), \
348 static const struct pci_id_descr pci_dev_descr_sbridge
[] = {
349 /* Processor Home Agent */
350 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0
, 0) },
352 /* Memory controller */
353 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA
, 0) },
354 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS
, 0) },
355 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0
, 0) },
356 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1
, 0) },
357 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2
, 0) },
358 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3
, 0) },
359 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO
, 1) },
361 /* System Address Decoder */
362 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0
, 0) },
363 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1
, 0) },
365 /* Broadcast Registers */
366 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR
, 0) },
369 #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
370 static const struct pci_id_table pci_dev_descr_sbridge_table
[] = {
371 PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge
),
372 {0,} /* 0 terminated list. */
375 /* This changes depending if 1HA or 2HA:
377 * 0x0eb8 (17.0) is DDRIO0
379 * 0x0ebc (17.4) is DDRIO0
381 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0 0x0eb8
382 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0 0x0ebc
385 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0 0x0ea0
386 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA 0x0ea8
387 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS 0x0e71
388 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0 0x0eaa
389 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1 0x0eab
390 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2 0x0eac
391 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3 0x0ead
392 #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD 0x0ec8
393 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0 0x0ec9
394 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1 0x0eca
395 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1 0x0e60
396 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA 0x0e68
397 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS 0x0e79
398 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 0x0e6a
399 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1 0x0e6b
400 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2 0x0e6c
401 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3 0x0e6d
403 static const struct pci_id_descr pci_dev_descr_ibridge
[] = {
404 /* Processor Home Agent */
405 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0
, 0) },
407 /* Memory controller */
408 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA
, 0) },
409 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS
, 0) },
410 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0
, 0) },
411 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1
, 0) },
412 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2
, 0) },
413 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3
, 0) },
415 /* System Address Decoder */
416 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD
, 0) },
418 /* Broadcast Registers */
419 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0
, 1) },
420 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1
, 0) },
422 /* Optional, mode 2HA */
423 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1
, 1) },
425 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA
, 1) },
426 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS
, 1) },
428 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0
, 1) },
429 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1
, 1) },
430 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2
, 1) },
431 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3
, 1) },
433 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0
, 1) },
434 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0
, 1) },
437 static const struct pci_id_table pci_dev_descr_ibridge_table
[] = {
438 PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge
),
439 {0,} /* 0 terminated list. */
442 /* Haswell support */
445 * - 3 DDR3 channels, 2 DPC per channel
448 * - 4 DDR4 channels, 3 DPC per channel
451 * - 4 DDR4 channels, 3 DPC per channel
454 * - each IMC interfaces with a SMI 2 channel
455 * - each SMI channel interfaces with a scalable memory buffer
456 * - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
458 #define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
459 #define HASWELL_HASYSDEFEATURE2 0x84
460 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
461 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0 0x2fa0
462 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1 0x2f60
463 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA 0x2fa8
464 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL 0x2f71
465 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA 0x2f68
466 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL 0x2f79
467 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
468 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
469 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
470 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
471 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
472 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
473 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
474 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
475 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
476 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
477 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
478 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
479 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
480 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
481 static const struct pci_id_descr pci_dev_descr_haswell
[] = {
482 /* first item must be the HA */
483 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0
, 0) },
485 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0
, 0) },
486 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1
, 0) },
488 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1
, 1) },
490 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA
, 0) },
491 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL
, 0) },
492 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0
, 0) },
493 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1
, 0) },
494 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2
, 1) },
495 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3
, 1) },
497 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0
, 1) },
498 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1
, 1) },
499 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2
, 1) },
500 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3
, 1) },
502 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA
, 1) },
503 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL
, 1) },
504 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0
, 1) },
505 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1
, 1) },
506 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2
, 1) },
507 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3
, 1) },
510 static const struct pci_id_table pci_dev_descr_haswell_table
[] = {
511 PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell
),
512 {0,} /* 0 terminated list. */
520 * - 2 DDR3 channels, 2 DPC per channel
523 * - 4 DDR4 channels, 3 DPC per channel
526 * - 4 DDR4 channels, 3 DPC per channel
529 * - each IMC interfaces with a SMI 2 channel
530 * - each SMI channel interfaces with a scalable memory buffer
531 * - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
533 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
534 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0 0x6fa0
535 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1 0x6f60
536 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA 0x6fa8
537 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL 0x6f71
538 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA 0x6f68
539 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_THERMAL 0x6f79
540 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
541 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
542 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
543 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
544 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
545 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
546 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
547 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
548 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
549 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
550 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
552 static const struct pci_id_descr pci_dev_descr_broadwell
[] = {
553 /* first item must be the HA */
554 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0
, 0) },
556 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0
, 0) },
557 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1
, 0) },
559 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1
, 1) },
561 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA
, 0) },
562 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL
, 0) },
563 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0
, 0) },
564 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1
, 0) },
565 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2
, 1) },
566 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3
, 1) },
568 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0
, 1) },
570 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA
, 1) },
571 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_THERMAL
, 1) },
572 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0
, 1) },
573 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1
, 1) },
574 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2
, 1) },
575 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3
, 1) },
578 static const struct pci_id_table pci_dev_descr_broadwell_table
[] = {
579 PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell
),
580 {0,} /* 0 terminated list. */
584 * pci_device_id table for which devices we are looking for
586 static const struct pci_device_id sbridge_pci_tbl
[] = {
587 {PCI_DEVICE(PCI_VENDOR_ID_INTEL
, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0
)},
588 {PCI_DEVICE(PCI_VENDOR_ID_INTEL
, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA
)},
589 {PCI_DEVICE(PCI_VENDOR_ID_INTEL
, PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0
)},
590 {PCI_DEVICE(PCI_VENDOR_ID_INTEL
, PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0
)},
591 {0,} /* 0 terminated list. */
595 /****************************************************************************
596 Ancillary status routines
597 ****************************************************************************/
599 static inline int numrank(enum type type
, u32 mtr
)
601 int ranks
= (1 << RANK_CNT_BITS(mtr
));
604 if (type
== HASWELL
|| type
== BROADWELL
)
608 edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
609 ranks
, max
, (unsigned int)RANK_CNT_BITS(mtr
), mtr
);
616 static inline int numrow(u32 mtr
)
618 int rows
= (RANK_WIDTH_BITS(mtr
) + 12);
620 if (rows
< 13 || rows
> 18) {
621 edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
622 rows
, (unsigned int)RANK_WIDTH_BITS(mtr
), mtr
);
629 static inline int numcol(u32 mtr
)
631 int cols
= (COL_WIDTH_BITS(mtr
) + 10);
634 edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
635 cols
, (unsigned int)COL_WIDTH_BITS(mtr
), mtr
);
642 static struct sbridge_dev
*get_sbridge_dev(u8 bus
)
644 struct sbridge_dev
*sbridge_dev
;
646 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
) {
647 if (sbridge_dev
->bus
== bus
)
654 static struct sbridge_dev
*alloc_sbridge_dev(u8 bus
,
655 const struct pci_id_table
*table
)
657 struct sbridge_dev
*sbridge_dev
;
659 sbridge_dev
= kzalloc(sizeof(*sbridge_dev
), GFP_KERNEL
);
663 sbridge_dev
->pdev
= kzalloc(sizeof(*sbridge_dev
->pdev
) * table
->n_devs
,
665 if (!sbridge_dev
->pdev
) {
670 sbridge_dev
->bus
= bus
;
671 sbridge_dev
->n_devs
= table
->n_devs
;
672 list_add_tail(&sbridge_dev
->list
, &sbridge_edac_list
);
677 static void free_sbridge_dev(struct sbridge_dev
*sbridge_dev
)
679 list_del(&sbridge_dev
->list
);
680 kfree(sbridge_dev
->pdev
);
684 static u64
sbridge_get_tolm(struct sbridge_pvt
*pvt
)
688 /* Address range is 32:28 */
689 pci_read_config_dword(pvt
->pci_sad1
, TOLM
, ®
);
690 return GET_TOLM(reg
);
693 static u64
sbridge_get_tohm(struct sbridge_pvt
*pvt
)
697 pci_read_config_dword(pvt
->pci_sad1
, TOHM
, ®
);
698 return GET_TOHM(reg
);
701 static u64
ibridge_get_tolm(struct sbridge_pvt
*pvt
)
705 pci_read_config_dword(pvt
->pci_br1
, TOLM
, ®
);
707 return GET_TOLM(reg
);
710 static u64
ibridge_get_tohm(struct sbridge_pvt
*pvt
)
714 pci_read_config_dword(pvt
->pci_br1
, TOHM
, ®
);
716 return GET_TOHM(reg
);
719 static u64
rir_limit(u32 reg
)
721 return ((u64
)GET_BITFIELD(reg
, 1, 10) << 29) | 0x1fffffff;
724 static enum mem_type
get_memory_type(struct sbridge_pvt
*pvt
)
729 if (pvt
->pci_ddrio
) {
730 pci_read_config_dword(pvt
->pci_ddrio
, pvt
->info
.rankcfgr
,
732 if (GET_BITFIELD(reg
, 11, 11))
733 /* FIXME: Can also be LRDIMM */
743 static enum mem_type
haswell_get_memory_type(struct sbridge_pvt
*pvt
)
746 bool registered
= false;
747 enum mem_type mtype
= MEM_UNKNOWN
;
752 pci_read_config_dword(pvt
->pci_ddrio
,
753 HASWELL_DDRCRCLKCONTROLS
, ®
);
755 if (GET_BITFIELD(reg
, 16, 16))
758 pci_read_config_dword(pvt
->pci_ta
, MCMTR
, ®
);
759 if (GET_BITFIELD(reg
, 14, 14)) {
775 static enum dev_type
sbridge_get_width(struct sbridge_pvt
*pvt
, u32 mtr
)
777 /* there's no way to figure out */
781 static enum dev_type
__ibridge_get_width(u32 mtr
)
803 static enum dev_type
ibridge_get_width(struct sbridge_pvt
*pvt
, u32 mtr
)
806 * ddr3_width on the documentation but also valid for DDR4 on
809 return __ibridge_get_width(GET_BITFIELD(mtr
, 7, 8));
812 static enum dev_type
broadwell_get_width(struct sbridge_pvt
*pvt
, u32 mtr
)
814 /* ddr3_width on the documentation but also valid for DDR4 */
815 return __ibridge_get_width(GET_BITFIELD(mtr
, 8, 9));
818 static u8
get_node_id(struct sbridge_pvt
*pvt
)
821 pci_read_config_dword(pvt
->pci_br0
, SAD_CONTROL
, ®
);
822 return GET_BITFIELD(reg
, 0, 2);
825 static u8
haswell_get_node_id(struct sbridge_pvt
*pvt
)
829 pci_read_config_dword(pvt
->pci_sad1
, SAD_CONTROL
, ®
);
830 return GET_BITFIELD(reg
, 0, 3);
833 static u64
haswell_get_tolm(struct sbridge_pvt
*pvt
)
837 pci_read_config_dword(pvt
->info
.pci_vtd
, HASWELL_TOLM
, ®
);
838 return (GET_BITFIELD(reg
, 26, 31) << 26) | 0x3ffffff;
841 static u64
haswell_get_tohm(struct sbridge_pvt
*pvt
)
846 pci_read_config_dword(pvt
->info
.pci_vtd
, HASWELL_TOHM_0
, ®
);
847 rc
= GET_BITFIELD(reg
, 26, 31);
848 pci_read_config_dword(pvt
->info
.pci_vtd
, HASWELL_TOHM_1
, ®
);
849 rc
= ((reg
<< 6) | rc
) << 26;
851 return rc
| 0x1ffffff;
854 static u64
haswell_rir_limit(u32 reg
)
856 return (((u64
)GET_BITFIELD(reg
, 1, 11) + 1) << 29) - 1;
859 static inline u8
sad_pkg_socket(u8 pkg
)
861 /* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
862 return ((pkg
>> 3) << 2) | (pkg
& 0x3);
865 static inline u8
sad_pkg_ha(u8 pkg
)
867 return (pkg
>> 2) & 0x1;
870 /****************************************************************************
871 Memory check routines
872 ****************************************************************************/
873 static struct pci_dev
*get_pdev_same_bus(u8 bus
, u32 id
)
875 struct pci_dev
*pdev
= NULL
;
878 pdev
= pci_get_device(PCI_VENDOR_ID_INTEL
, id
, pdev
);
879 if (pdev
&& pdev
->bus
->number
== bus
)
887 * check_if_ecc_is_active() - Checks if ECC is active
889 * @type: Memory controller type
890 * returns: 0 in case ECC is active, -ENODEV if it can't be determined or
893 static int check_if_ecc_is_active(const u8 bus
, enum type type
)
895 struct pci_dev
*pdev
= NULL
;
900 id
= PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA
;
903 id
= PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA
;
906 id
= PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA
;
909 id
= PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA
;
915 pdev
= get_pdev_same_bus(bus
, id
);
917 sbridge_printk(KERN_ERR
, "Couldn't find PCI device "
918 "%04x:%04x! on bus %02d\n",
919 PCI_VENDOR_ID_INTEL
, id
, bus
);
923 pci_read_config_dword(pdev
, MCMTR
, &mcmtr
);
924 if (!IS_ECC_ENABLED(mcmtr
)) {
925 sbridge_printk(KERN_ERR
, "ECC is disabled. Aborting\n");
931 static int get_dimm_config(struct mem_ctl_info
*mci
)
933 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
934 struct dimm_info
*dimm
;
935 unsigned i
, j
, banks
, ranks
, rows
, cols
, npages
;
941 if (pvt
->info
.type
== HASWELL
|| pvt
->info
.type
== BROADWELL
)
942 pci_read_config_dword(pvt
->pci_sad1
, SAD_TARGET
, ®
);
944 pci_read_config_dword(pvt
->pci_br0
, SAD_TARGET
, ®
);
946 pvt
->sbridge_dev
->source_id
= SOURCE_ID(reg
);
948 pvt
->sbridge_dev
->node_id
= pvt
->info
.get_node_id(pvt
);
949 edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
950 pvt
->sbridge_dev
->mc
,
951 pvt
->sbridge_dev
->node_id
,
952 pvt
->sbridge_dev
->source_id
);
954 pci_read_config_dword(pvt
->pci_ras
, RASENABLES
, ®
);
955 if (IS_MIRROR_ENABLED(reg
)) {
956 edac_dbg(0, "Memory mirror is enabled\n");
957 pvt
->is_mirrored
= true;
959 edac_dbg(0, "Memory mirror is disabled\n");
960 pvt
->is_mirrored
= false;
963 pci_read_config_dword(pvt
->pci_ta
, MCMTR
, &pvt
->info
.mcmtr
);
964 if (IS_LOCKSTEP_ENABLED(pvt
->info
.mcmtr
)) {
965 edac_dbg(0, "Lockstep is enabled\n");
966 mode
= EDAC_S8ECD8ED
;
967 pvt
->is_lockstep
= true;
969 edac_dbg(0, "Lockstep is disabled\n");
970 mode
= EDAC_S4ECD4ED
;
971 pvt
->is_lockstep
= false;
973 if (IS_CLOSE_PG(pvt
->info
.mcmtr
)) {
974 edac_dbg(0, "address map is on closed page mode\n");
975 pvt
->is_close_pg
= true;
977 edac_dbg(0, "address map is on open page mode\n");
978 pvt
->is_close_pg
= false;
981 mtype
= pvt
->info
.get_memory_type(pvt
);
982 if (mtype
== MEM_RDDR3
|| mtype
== MEM_RDDR4
)
983 edac_dbg(0, "Memory is registered\n");
984 else if (mtype
== MEM_UNKNOWN
)
985 edac_dbg(0, "Cannot determine memory type\n");
987 edac_dbg(0, "Memory is unregistered\n");
989 if (mtype
== MEM_DDR4
|| mtype
== MEM_RDDR4
)
994 for (i
= 0; i
< NUM_CHANNELS
; i
++) {
997 if (!pvt
->pci_tad
[i
])
999 for (j
= 0; j
< ARRAY_SIZE(mtr_regs
); j
++) {
1000 dimm
= EDAC_DIMM_PTR(mci
->layers
, mci
->dimms
, mci
->n_layers
,
1002 pci_read_config_dword(pvt
->pci_tad
[i
],
1004 edac_dbg(4, "Channel #%d MTR%d = %x\n", i
, j
, mtr
);
1005 if (IS_DIMM_PRESENT(mtr
)) {
1006 pvt
->channel
[i
].dimms
++;
1008 ranks
= numrank(pvt
->info
.type
, mtr
);
1012 size
= ((u64
)rows
* cols
* banks
* ranks
) >> (20 - 3);
1013 npages
= MiB_TO_PAGES(size
);
1015 edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
1016 pvt
->sbridge_dev
->mc
, i
/4, i
%4, j
,
1018 banks
, ranks
, rows
, cols
);
1020 dimm
->nr_pages
= npages
;
1022 dimm
->dtype
= pvt
->info
.get_width(pvt
, mtr
);
1023 dimm
->mtype
= mtype
;
1024 dimm
->edac_mode
= mode
;
1025 snprintf(dimm
->label
, sizeof(dimm
->label
),
1026 "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
1027 pvt
->sbridge_dev
->source_id
, i
/4, i
%4, j
);
1035 static void get_memory_layout(const struct mem_ctl_info
*mci
)
1037 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1038 int i
, j
, k
, n_sads
, n_tads
, sad_interl
;
1046 * Step 1) Get TOLM/TOHM ranges
1049 pvt
->tolm
= pvt
->info
.get_tolm(pvt
);
1050 tmp_mb
= (1 + pvt
->tolm
) >> 20;
1052 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1053 edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
1054 gb
, (mb
*1000)/1024, (u64
)pvt
->tolm
);
1056 /* Address range is already 45:25 */
1057 pvt
->tohm
= pvt
->info
.get_tohm(pvt
);
1058 tmp_mb
= (1 + pvt
->tohm
) >> 20;
1060 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1061 edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
1062 gb
, (mb
*1000)/1024, (u64
)pvt
->tohm
);
1065 * Step 2) Get SAD range and SAD Interleave list
1066 * TAD registers contain the interleave wayness. However, it
1067 * seems simpler to just discover it indirectly, with the
1071 for (n_sads
= 0; n_sads
< pvt
->info
.max_sad
; n_sads
++) {
1072 /* SAD_LIMIT Address range is 45:26 */
1073 pci_read_config_dword(pvt
->pci_sad0
, pvt
->info
.dram_rule
[n_sads
],
1075 limit
= SAD_LIMIT(reg
);
1077 if (!DRAM_RULE_ENABLE(reg
))
1083 tmp_mb
= (limit
+ 1) >> 20;
1084 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1085 edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
1089 ((u64
)tmp_mb
) << 20L,
1090 INTERLEAVE_MODE(reg
) ? "8:6" : "[8:6]XOR[18:16]",
1094 pci_read_config_dword(pvt
->pci_sad0
, pvt
->info
.interleave_list
[n_sads
],
1096 sad_interl
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, 0);
1097 for (j
= 0; j
< 8; j
++) {
1098 u32 pkg
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, j
);
1099 if (j
> 0 && sad_interl
== pkg
)
1102 edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
1108 * Step 3) Get TAD range
1111 for (n_tads
= 0; n_tads
< MAX_TAD
; n_tads
++) {
1112 pci_read_config_dword(pvt
->pci_ha0
, tad_dram_rule
[n_tads
],
1114 limit
= TAD_LIMIT(reg
);
1117 tmp_mb
= (limit
+ 1) >> 20;
1119 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1120 edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1121 n_tads
, gb
, (mb
*1000)/1024,
1122 ((u64
)tmp_mb
) << 20L,
1123 (u32
)(1 << TAD_SOCK(reg
)),
1124 (u32
)TAD_CH(reg
) + 1,
1134 * Step 4) Get TAD offsets, per each channel
1136 for (i
= 0; i
< NUM_CHANNELS
; i
++) {
1137 if (!pvt
->channel
[i
].dimms
)
1139 for (j
= 0; j
< n_tads
; j
++) {
1140 pci_read_config_dword(pvt
->pci_tad
[i
],
1141 tad_ch_nilv_offset
[j
],
1143 tmp_mb
= TAD_OFFSET(reg
) >> 20;
1144 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1145 edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
1148 ((u64
)tmp_mb
) << 20L,
1154 * Step 6) Get RIR Wayness/Limit, per each channel
1156 for (i
= 0; i
< NUM_CHANNELS
; i
++) {
1157 if (!pvt
->channel
[i
].dimms
)
1159 for (j
= 0; j
< MAX_RIR_RANGES
; j
++) {
1160 pci_read_config_dword(pvt
->pci_tad
[i
],
1164 if (!IS_RIR_VALID(reg
))
1167 tmp_mb
= pvt
->info
.rir_limit(reg
) >> 20;
1168 rir_way
= 1 << RIR_WAY(reg
);
1169 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1170 edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
1173 ((u64
)tmp_mb
) << 20L,
1177 for (k
= 0; k
< rir_way
; k
++) {
1178 pci_read_config_dword(pvt
->pci_tad
[i
],
1181 tmp_mb
= RIR_OFFSET(pvt
->info
.type
, reg
) << 6;
1183 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1184 edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
1187 ((u64
)tmp_mb
) << 20L,
1188 (u32
)RIR_RNK_TGT(pvt
->info
.type
, reg
),
1195 static struct mem_ctl_info
*get_mci_for_node_id(u8 node_id
)
1197 struct sbridge_dev
*sbridge_dev
;
1199 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
) {
1200 if (sbridge_dev
->node_id
== node_id
)
1201 return sbridge_dev
->mci
;
1206 static int get_memory_error_data(struct mem_ctl_info
*mci
,
1211 char **area_type
, char *msg
)
1213 struct mem_ctl_info
*new_mci
;
1214 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1215 struct pci_dev
*pci_ha
;
1216 int n_rir
, n_sads
, n_tads
, sad_way
, sck_xch
;
1217 int sad_interl
, idx
, base_ch
;
1218 int interleave_mode
, shiftup
= 0;
1219 unsigned sad_interleave
[pvt
->info
.max_interleave
];
1221 u8 ch_way
, sck_way
, pkg
, sad_ha
= 0, ch_add
= 0;
1225 u64 ch_addr
, offset
, limit
= 0, prv
= 0;
1229 * Step 0) Check if the address is at special memory ranges
1230 * The check bellow is probably enough to fill all cases where
1231 * the error is not inside a memory, except for the legacy
1232 * range (e. g. VGA addresses). It is unlikely, however, that the
1233 * memory controller would generate an error on that range.
1235 if ((addr
> (u64
) pvt
->tolm
) && (addr
< (1LL << 32))) {
1236 sprintf(msg
, "Error at TOLM area, on addr 0x%08Lx", addr
);
1239 if (addr
>= (u64
)pvt
->tohm
) {
1240 sprintf(msg
, "Error at MMIOH area, on addr 0x%016Lx", addr
);
1245 * Step 1) Get socket
1247 for (n_sads
= 0; n_sads
< pvt
->info
.max_sad
; n_sads
++) {
1248 pci_read_config_dword(pvt
->pci_sad0
, pvt
->info
.dram_rule
[n_sads
],
1251 if (!DRAM_RULE_ENABLE(reg
))
1254 limit
= SAD_LIMIT(reg
);
1256 sprintf(msg
, "Can't discover the memory socket");
1263 if (n_sads
== pvt
->info
.max_sad
) {
1264 sprintf(msg
, "Can't discover the memory socket");
1268 *area_type
= get_dram_attr(dram_rule
);
1269 interleave_mode
= INTERLEAVE_MODE(dram_rule
);
1271 pci_read_config_dword(pvt
->pci_sad0
, pvt
->info
.interleave_list
[n_sads
],
1274 if (pvt
->info
.type
== SANDY_BRIDGE
) {
1275 sad_interl
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, 0);
1276 for (sad_way
= 0; sad_way
< 8; sad_way
++) {
1277 u32 pkg
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, sad_way
);
1278 if (sad_way
> 0 && sad_interl
== pkg
)
1280 sad_interleave
[sad_way
] = pkg
;
1281 edac_dbg(0, "SAD interleave #%d: %d\n",
1282 sad_way
, sad_interleave
[sad_way
]);
1284 edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
1285 pvt
->sbridge_dev
->mc
,
1290 !interleave_mode
? "" : "XOR[18:16]");
1291 if (interleave_mode
)
1292 idx
= ((addr
>> 6) ^ (addr
>> 16)) & 7;
1294 idx
= (addr
>> 6) & 7;
1308 sprintf(msg
, "Can't discover socket interleave");
1311 *socket
= sad_interleave
[idx
];
1312 edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
1313 idx
, sad_way
, *socket
);
1314 } else if (pvt
->info
.type
== HASWELL
|| pvt
->info
.type
== BROADWELL
) {
1315 int bits
, a7mode
= A7MODE(dram_rule
);
1318 /* A7 mode swaps P9 with P6 */
1319 bits
= GET_BITFIELD(addr
, 7, 8) << 1;
1320 bits
|= GET_BITFIELD(addr
, 9, 9);
1322 bits
= GET_BITFIELD(addr
, 6, 8);
1324 if (interleave_mode
== 0) {
1325 /* interleave mode will XOR {8,7,6} with {18,17,16} */
1326 idx
= GET_BITFIELD(addr
, 16, 18);
1331 pkg
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, idx
);
1332 *socket
= sad_pkg_socket(pkg
);
1333 sad_ha
= sad_pkg_ha(pkg
);
1338 /* MCChanShiftUpEnable */
1339 pci_read_config_dword(pvt
->pci_ha0
,
1340 HASWELL_HASYSDEFEATURE2
, ®
);
1341 shiftup
= GET_BITFIELD(reg
, 22, 22);
1344 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
1345 idx
, *socket
, sad_ha
, shiftup
);
1347 /* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
1348 idx
= (addr
>> 6) & 7;
1349 pkg
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, idx
);
1350 *socket
= sad_pkg_socket(pkg
);
1351 sad_ha
= sad_pkg_ha(pkg
);
1354 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
1355 idx
, *socket
, sad_ha
);
1361 * Move to the proper node structure, in order to access the
1362 * right PCI registers
1364 new_mci
= get_mci_for_node_id(*socket
);
1366 sprintf(msg
, "Struct for socket #%u wasn't initialized",
1371 pvt
= mci
->pvt_info
;
1374 * Step 2) Get memory channel
1377 if (pvt
->info
.type
== SANDY_BRIDGE
)
1378 pci_ha
= pvt
->pci_ha0
;
1381 pci_ha
= pvt
->pci_ha1
;
1383 pci_ha
= pvt
->pci_ha0
;
1385 for (n_tads
= 0; n_tads
< MAX_TAD
; n_tads
++) {
1386 pci_read_config_dword(pci_ha
, tad_dram_rule
[n_tads
], ®
);
1387 limit
= TAD_LIMIT(reg
);
1389 sprintf(msg
, "Can't discover the memory channel");
1396 if (n_tads
== MAX_TAD
) {
1397 sprintf(msg
, "Can't discover the memory channel");
1401 ch_way
= TAD_CH(reg
) + 1;
1402 sck_way
= TAD_SOCK(reg
);
1407 idx
= (addr
>> (6 + sck_way
+ shiftup
)) & 0x3;
1411 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
1415 base_ch
= TAD_TGT0(reg
);
1418 base_ch
= TAD_TGT1(reg
);
1421 base_ch
= TAD_TGT2(reg
);
1424 base_ch
= TAD_TGT3(reg
);
1427 sprintf(msg
, "Can't discover the TAD target");
1430 *channel_mask
= 1 << base_ch
;
1432 pci_read_config_dword(pvt
->pci_tad
[ch_add
+ base_ch
],
1433 tad_ch_nilv_offset
[n_tads
],
1436 if (pvt
->is_mirrored
) {
1437 *channel_mask
|= 1 << ((base_ch
+ 2) % 4);
1441 sck_xch
= (1 << sck_way
) * (ch_way
>> 1);
1444 sprintf(msg
, "Invalid mirror set. Can't decode addr");
1448 sck_xch
= (1 << sck_way
) * ch_way
;
1450 if (pvt
->is_lockstep
)
1451 *channel_mask
|= 1 << ((base_ch
+ 1) % 4);
1453 offset
= TAD_OFFSET(tad_offset
);
1455 edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
1466 /* Calculate channel address */
1467 /* Remove the TAD offset */
1469 if (offset
> addr
) {
1470 sprintf(msg
, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
1475 ch_addr
= addr
- offset
;
1476 ch_addr
>>= (6 + shiftup
);
1478 ch_addr
<<= (6 + shiftup
);
1479 ch_addr
|= addr
& ((1 << (6 + shiftup
)) - 1);
1482 * Step 3) Decode rank
1484 for (n_rir
= 0; n_rir
< MAX_RIR_RANGES
; n_rir
++) {
1485 pci_read_config_dword(pvt
->pci_tad
[ch_add
+ base_ch
],
1486 rir_way_limit
[n_rir
],
1489 if (!IS_RIR_VALID(reg
))
1492 limit
= pvt
->info
.rir_limit(reg
);
1493 gb
= div_u64_rem(limit
>> 20, 1024, &mb
);
1494 edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
1499 if (ch_addr
<= limit
)
1502 if (n_rir
== MAX_RIR_RANGES
) {
1503 sprintf(msg
, "Can't discover the memory rank for ch addr 0x%08Lx",
1507 rir_way
= RIR_WAY(reg
);
1509 if (pvt
->is_close_pg
)
1510 idx
= (ch_addr
>> 6);
1512 idx
= (ch_addr
>> 13); /* FIXME: Datasheet says to shift by 15 */
1513 idx
%= 1 << rir_way
;
1515 pci_read_config_dword(pvt
->pci_tad
[ch_add
+ base_ch
],
1516 rir_offset
[n_rir
][idx
],
1518 *rank
= RIR_RNK_TGT(pvt
->info
.type
, reg
);
1520 edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
1530 /****************************************************************************
1531 Device initialization routines: put/get, init/exit
1532 ****************************************************************************/
1535 * sbridge_put_all_devices 'put' all the devices that we have
1536 * reserved via 'get'
1538 static void sbridge_put_devices(struct sbridge_dev
*sbridge_dev
)
1543 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
1544 struct pci_dev
*pdev
= sbridge_dev
->pdev
[i
];
1547 edac_dbg(0, "Removing dev %02x:%02x.%d\n",
1549 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
));
1554 static void sbridge_put_all_devices(void)
1556 struct sbridge_dev
*sbridge_dev
, *tmp
;
1558 list_for_each_entry_safe(sbridge_dev
, tmp
, &sbridge_edac_list
, list
) {
1559 sbridge_put_devices(sbridge_dev
);
1560 free_sbridge_dev(sbridge_dev
);
1564 static int sbridge_get_onedevice(struct pci_dev
**prev
,
1566 const struct pci_id_table
*table
,
1567 const unsigned devno
)
1569 struct sbridge_dev
*sbridge_dev
;
1570 const struct pci_id_descr
*dev_descr
= &table
->descr
[devno
];
1571 struct pci_dev
*pdev
= NULL
;
1574 sbridge_printk(KERN_DEBUG
,
1575 "Seeking for: PCI ID %04x:%04x\n",
1576 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
1578 pdev
= pci_get_device(PCI_VENDOR_ID_INTEL
,
1579 dev_descr
->dev_id
, *prev
);
1587 if (dev_descr
->optional
)
1590 /* if the HA wasn't found */
1594 sbridge_printk(KERN_INFO
,
1595 "Device not found: %04x:%04x\n",
1596 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
1598 /* End of list, leave */
1601 bus
= pdev
->bus
->number
;
1603 sbridge_dev
= get_sbridge_dev(bus
);
1605 sbridge_dev
= alloc_sbridge_dev(bus
, table
);
1613 if (sbridge_dev
->pdev
[devno
]) {
1614 sbridge_printk(KERN_ERR
,
1615 "Duplicated device for %04x:%04x\n",
1616 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
1621 sbridge_dev
->pdev
[devno
] = pdev
;
1623 /* Be sure that the device is enabled */
1624 if (unlikely(pci_enable_device(pdev
) < 0)) {
1625 sbridge_printk(KERN_ERR
,
1626 "Couldn't enable %04x:%04x\n",
1627 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
1631 edac_dbg(0, "Detected %04x:%04x\n",
1632 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
1635 * As stated on drivers/pci/search.c, the reference count for
1636 * @from is always decremented if it is not %NULL. So, as we need
1637 * to get all devices up to null, we need to do a get for the device
1647 * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
1648 * devices we want to reference for this driver.
1649 * @num_mc: pointer to the memory controllers count, to be incremented in case
1651 * @table: model specific table
1653 * returns 0 in case of success or error code
1655 static int sbridge_get_all_devices(u8
*num_mc
,
1656 const struct pci_id_table
*table
)
1659 struct pci_dev
*pdev
= NULL
;
1661 while (table
&& table
->descr
) {
1662 for (i
= 0; i
< table
->n_devs
; i
++) {
1665 rc
= sbridge_get_onedevice(&pdev
, num_mc
,
1672 sbridge_put_all_devices();
1683 static int sbridge_mci_bind_devs(struct mem_ctl_info
*mci
,
1684 struct sbridge_dev
*sbridge_dev
)
1686 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1687 struct pci_dev
*pdev
;
1688 u8 saw_chan_mask
= 0;
1691 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
1692 pdev
= sbridge_dev
->pdev
[i
];
1696 switch (pdev
->device
) {
1697 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0
:
1698 pvt
->pci_sad0
= pdev
;
1700 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1
:
1701 pvt
->pci_sad1
= pdev
;
1703 case PCI_DEVICE_ID_INTEL_SBRIDGE_BR
:
1704 pvt
->pci_br0
= pdev
;
1706 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0
:
1707 pvt
->pci_ha0
= pdev
;
1709 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA
:
1712 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS
:
1713 pvt
->pci_ras
= pdev
;
1715 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0
:
1716 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1
:
1717 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2
:
1718 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3
:
1720 int id
= pdev
->device
- PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0
;
1721 pvt
->pci_tad
[id
] = pdev
;
1722 saw_chan_mask
|= 1 << id
;
1725 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO
:
1726 pvt
->pci_ddrio
= pdev
;
1732 edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
1733 pdev
->vendor
, pdev
->device
,
1738 /* Check if everything were registered */
1739 if (!pvt
->pci_sad0
|| !pvt
->pci_sad1
|| !pvt
->pci_ha0
||
1740 !pvt
-> pci_tad
|| !pvt
->pci_ras
|| !pvt
->pci_ta
)
1743 if (saw_chan_mask
!= 0x0f)
1748 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
1752 sbridge_printk(KERN_ERR
, "Unexpected device %02x:%02x\n",
1753 PCI_VENDOR_ID_INTEL
, pdev
->device
);
1757 static int ibridge_mci_bind_devs(struct mem_ctl_info
*mci
,
1758 struct sbridge_dev
*sbridge_dev
)
1760 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1761 struct pci_dev
*pdev
;
1762 u8 saw_chan_mask
= 0;
1765 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
1766 pdev
= sbridge_dev
->pdev
[i
];
1770 switch (pdev
->device
) {
1771 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0
:
1772 pvt
->pci_ha0
= pdev
;
1774 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA
:
1777 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS
:
1778 pvt
->pci_ras
= pdev
;
1780 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0
:
1781 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1
:
1782 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2
:
1783 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3
:
1785 int id
= pdev
->device
- PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0
;
1786 pvt
->pci_tad
[id
] = pdev
;
1787 saw_chan_mask
|= 1 << id
;
1790 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0
:
1791 pvt
->pci_ddrio
= pdev
;
1793 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0
:
1794 pvt
->pci_ddrio
= pdev
;
1796 case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD
:
1797 pvt
->pci_sad0
= pdev
;
1799 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0
:
1800 pvt
->pci_br0
= pdev
;
1802 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1
:
1803 pvt
->pci_br1
= pdev
;
1805 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1
:
1806 pvt
->pci_ha1
= pdev
;
1808 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0
:
1809 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1
:
1810 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2
:
1811 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3
:
1813 int id
= pdev
->device
- PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0
+ 4;
1814 pvt
->pci_tad
[id
] = pdev
;
1815 saw_chan_mask
|= 1 << id
;
1822 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
1824 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
),
1828 /* Check if everything were registered */
1829 if (!pvt
->pci_sad0
|| !pvt
->pci_ha0
|| !pvt
->pci_br0
||
1830 !pvt
->pci_br1
|| !pvt
->pci_tad
|| !pvt
->pci_ras
||
1834 if (saw_chan_mask
!= 0x0f && /* -EN */
1835 saw_chan_mask
!= 0x33 && /* -EP */
1836 saw_chan_mask
!= 0xff) /* -EX */
1841 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
1845 sbridge_printk(KERN_ERR
,
1846 "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL
,
1851 static int haswell_mci_bind_devs(struct mem_ctl_info
*mci
,
1852 struct sbridge_dev
*sbridge_dev
)
1854 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1855 struct pci_dev
*pdev
;
1856 u8 saw_chan_mask
= 0;
1859 /* there's only one device per system; not tied to any bus */
1860 if (pvt
->info
.pci_vtd
== NULL
)
1861 /* result will be checked later */
1862 pvt
->info
.pci_vtd
= pci_get_device(PCI_VENDOR_ID_INTEL
,
1863 PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC
,
1866 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
1867 pdev
= sbridge_dev
->pdev
[i
];
1871 switch (pdev
->device
) {
1872 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0
:
1873 pvt
->pci_sad0
= pdev
;
1875 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1
:
1876 pvt
->pci_sad1
= pdev
;
1878 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0
:
1879 pvt
->pci_ha0
= pdev
;
1881 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA
:
1884 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL
:
1885 pvt
->pci_ras
= pdev
;
1887 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0
:
1888 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1
:
1889 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2
:
1890 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3
:
1892 int id
= pdev
->device
- PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0
;
1894 pvt
->pci_tad
[id
] = pdev
;
1895 saw_chan_mask
|= 1 << id
;
1898 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0
:
1899 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1
:
1900 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2
:
1901 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3
:
1903 int id
= pdev
->device
- PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0
+ 4;
1905 pvt
->pci_tad
[id
] = pdev
;
1906 saw_chan_mask
|= 1 << id
;
1909 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0
:
1910 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1
:
1911 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2
:
1912 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3
:
1913 if (!pvt
->pci_ddrio
)
1914 pvt
->pci_ddrio
= pdev
;
1916 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1
:
1917 pvt
->pci_ha1
= pdev
;
1919 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA
:
1920 pvt
->pci_ha1_ta
= pdev
;
1926 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
1928 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
),
1932 /* Check if everything were registered */
1933 if (!pvt
->pci_sad0
|| !pvt
->pci_ha0
|| !pvt
->pci_sad1
||
1934 !pvt
->pci_ras
|| !pvt
->pci_ta
|| !pvt
->info
.pci_vtd
)
1937 if (saw_chan_mask
!= 0x0f && /* -EN */
1938 saw_chan_mask
!= 0x33 && /* -EP */
1939 saw_chan_mask
!= 0xff) /* -EX */
1944 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
1948 static int broadwell_mci_bind_devs(struct mem_ctl_info
*mci
,
1949 struct sbridge_dev
*sbridge_dev
)
1951 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1952 struct pci_dev
*pdev
;
1953 u8 saw_chan_mask
= 0;
1956 /* there's only one device per system; not tied to any bus */
1957 if (pvt
->info
.pci_vtd
== NULL
)
1958 /* result will be checked later */
1959 pvt
->info
.pci_vtd
= pci_get_device(PCI_VENDOR_ID_INTEL
,
1960 PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC
,
1963 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
1964 pdev
= sbridge_dev
->pdev
[i
];
1968 switch (pdev
->device
) {
1969 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0
:
1970 pvt
->pci_sad0
= pdev
;
1972 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1
:
1973 pvt
->pci_sad1
= pdev
;
1975 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0
:
1976 pvt
->pci_ha0
= pdev
;
1978 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA
:
1981 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL
:
1982 pvt
->pci_ras
= pdev
;
1984 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0
:
1985 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1
:
1986 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2
:
1987 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3
:
1989 int id
= pdev
->device
- PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0
;
1990 pvt
->pci_tad
[id
] = pdev
;
1991 saw_chan_mask
|= 1 << id
;
1994 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0
:
1995 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1
:
1996 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2
:
1997 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3
:
1999 int id
= pdev
->device
- PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0
+ 4;
2000 pvt
->pci_tad
[id
] = pdev
;
2001 saw_chan_mask
|= 1 << id
;
2004 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0
:
2005 pvt
->pci_ddrio
= pdev
;
2007 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1
:
2008 pvt
->pci_ha1
= pdev
;
2010 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA
:
2011 pvt
->pci_ha1_ta
= pdev
;
2017 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2019 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
),
2023 /* Check if everything were registered */
2024 if (!pvt
->pci_sad0
|| !pvt
->pci_ha0
|| !pvt
->pci_sad1
||
2025 !pvt
->pci_ras
|| !pvt
->pci_ta
|| !pvt
->info
.pci_vtd
)
2028 if (saw_chan_mask
!= 0x0f && /* -EN */
2029 saw_chan_mask
!= 0x33 && /* -EP */
2030 saw_chan_mask
!= 0xff) /* -EX */
2035 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
2039 /****************************************************************************
2040 Error check routines
2041 ****************************************************************************/
2044 * While Sandy Bridge has error count registers, SMI BIOS read values from
2045 * and resets the counters. So, they are not reliable for the OS to read
2046 * from them. So, we have no option but to just trust on whatever MCE is
2047 * telling us about the errors.
2049 static void sbridge_mce_output_error(struct mem_ctl_info
*mci
,
2050 const struct mce
*m
)
2052 struct mem_ctl_info
*new_mci
;
2053 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
2054 enum hw_event_mc_err_type tp_event
;
2055 char *type
, *optype
, msg
[256];
2056 bool ripv
= GET_BITFIELD(m
->mcgstatus
, 0, 0);
2057 bool overflow
= GET_BITFIELD(m
->status
, 62, 62);
2058 bool uncorrected_error
= GET_BITFIELD(m
->status
, 61, 61);
2060 u32 core_err_cnt
= GET_BITFIELD(m
->status
, 38, 52);
2061 u32 mscod
= GET_BITFIELD(m
->status
, 16, 31);
2062 u32 errcode
= GET_BITFIELD(m
->status
, 0, 15);
2063 u32 channel
= GET_BITFIELD(m
->status
, 0, 3);
2064 u32 optypenum
= GET_BITFIELD(m
->status
, 4, 6);
2065 long channel_mask
, first_channel
;
2066 u8 rank
, socket
, ha
;
2068 char *area_type
= NULL
;
2070 if (pvt
->info
.type
!= SANDY_BRIDGE
)
2073 recoverable
= GET_BITFIELD(m
->status
, 56, 56);
2075 if (uncorrected_error
) {
2078 tp_event
= HW_EVENT_ERR_FATAL
;
2081 tp_event
= HW_EVENT_ERR_UNCORRECTED
;
2085 tp_event
= HW_EVENT_ERR_CORRECTED
;
2089 * According with Table 15-9 of the Intel Architecture spec vol 3A,
2090 * memory errors should fit in this mask:
2091 * 000f 0000 1mmm cccc (binary)
2093 * f = Correction Report Filtering Bit. If 1, subsequent errors
2097 * If the mask doesn't match, report an error to the parsing logic
2099 if (! ((errcode
& 0xef80) == 0x80)) {
2100 optype
= "Can't parse: it is not a mem";
2102 switch (optypenum
) {
2104 optype
= "generic undef request error";
2107 optype
= "memory read error";
2110 optype
= "memory write error";
2113 optype
= "addr/cmd error";
2116 optype
= "memory scrubbing error";
2119 optype
= "reserved";
2124 /* Only decode errors with an valid address (ADDRV) */
2125 if (!GET_BITFIELD(m
->status
, 58, 58))
2128 rc
= get_memory_error_data(mci
, m
->addr
, &socket
, &ha
,
2129 &channel_mask
, &rank
, &area_type
, msg
);
2132 new_mci
= get_mci_for_node_id(socket
);
2134 strcpy(msg
, "Error: socket got corrupted!");
2138 pvt
= mci
->pvt_info
;
2140 first_channel
= find_first_bit(&channel_mask
, NUM_CHANNELS
);
2151 * FIXME: On some memory configurations (mirror, lockstep), the
2152 * Memory Controller can't point the error to a single DIMM. The
2153 * EDAC core should be handling the channel mask, in order to point
2154 * to the group of dimm's where the error may be happening.
2156 if (!pvt
->is_lockstep
&& !pvt
->is_mirrored
&& !pvt
->is_close_pg
)
2157 channel
= first_channel
;
2159 snprintf(msg
, sizeof(msg
),
2160 "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d",
2161 overflow
? " OVERFLOW" : "",
2162 (uncorrected_error
&& recoverable
) ? " recoverable" : "",
2169 edac_dbg(0, "%s\n", msg
);
2171 /* FIXME: need support for channel mask */
2173 if (channel
== CHANNEL_UNSPECIFIED
)
2176 /* Call the helper to output message */
2177 edac_mc_handle_error(tp_event
, mci
, core_err_cnt
,
2178 m
->addr
>> PAGE_SHIFT
, m
->addr
& ~PAGE_MASK
, 0,
2179 4*ha
+channel
, dimm
, -1,
2183 edac_mc_handle_error(tp_event
, mci
, core_err_cnt
, 0, 0, 0,
2190 * sbridge_check_error Retrieve and process errors reported by the
2191 * hardware. Called by the Core module.
2193 static void sbridge_check_error(struct mem_ctl_info
*mci
)
2195 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
2201 * MCE first step: Copy all mce errors into a temporary buffer
2202 * We use a double buffering here, to reduce the risk of
2206 count
= (pvt
->mce_out
+ MCE_LOG_LEN
- pvt
->mce_in
)
2211 m
= pvt
->mce_outentry
;
2212 if (pvt
->mce_in
+ count
> MCE_LOG_LEN
) {
2213 unsigned l
= MCE_LOG_LEN
- pvt
->mce_in
;
2215 memcpy(m
, &pvt
->mce_entry
[pvt
->mce_in
], sizeof(*m
) * l
);
2221 memcpy(m
, &pvt
->mce_entry
[pvt
->mce_in
], sizeof(*m
) * count
);
2223 pvt
->mce_in
+= count
;
2226 if (pvt
->mce_overrun
) {
2227 sbridge_printk(KERN_ERR
, "Lost %d memory errors\n",
2230 pvt
->mce_overrun
= 0;
2234 * MCE second step: parse errors and display
2236 for (i
= 0; i
< count
; i
++)
2237 sbridge_mce_output_error(mci
, &pvt
->mce_outentry
[i
]);
2241 * sbridge_mce_check_error Replicates mcelog routine to get errors
2242 * This routine simply queues mcelog errors, and
2243 * return. The error itself should be handled later
2244 * by sbridge_check_error.
2245 * WARNING: As this routine should be called at NMI time, extra care should
2246 * be taken to avoid deadlocks, and to be as fast as possible.
2248 static int sbridge_mce_check_error(struct notifier_block
*nb
, unsigned long val
,
2251 struct mce
*mce
= (struct mce
*)data
;
2252 struct mem_ctl_info
*mci
;
2253 struct sbridge_pvt
*pvt
;
2256 if (get_edac_report_status() == EDAC_REPORTING_DISABLED
)
2259 mci
= get_mci_for_node_id(mce
->socketid
);
2262 pvt
= mci
->pvt_info
;
2265 * Just let mcelog handle it if the error is
2266 * outside the memory controller. A memory error
2267 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
2268 * bit 12 has an special meaning.
2270 if ((mce
->status
& 0xefff) >> 7 != 1)
2273 if (mce
->mcgstatus
& MCG_STATUS_MCIP
)
2278 sbridge_mc_printk(mci
, KERN_DEBUG
, "HANDLING MCE MEMORY ERROR\n");
2280 sbridge_mc_printk(mci
, KERN_DEBUG
, "CPU %d: Machine Check %s: %Lx "
2281 "Bank %d: %016Lx\n", mce
->extcpu
, type
,
2282 mce
->mcgstatus
, mce
->bank
, mce
->status
);
2283 sbridge_mc_printk(mci
, KERN_DEBUG
, "TSC %llx ", mce
->tsc
);
2284 sbridge_mc_printk(mci
, KERN_DEBUG
, "ADDR %llx ", mce
->addr
);
2285 sbridge_mc_printk(mci
, KERN_DEBUG
, "MISC %llx ", mce
->misc
);
2287 sbridge_mc_printk(mci
, KERN_DEBUG
, "PROCESSOR %u:%x TIME %llu SOCKET "
2288 "%u APIC %x\n", mce
->cpuvendor
, mce
->cpuid
,
2289 mce
->time
, mce
->socketid
, mce
->apicid
);
2292 if ((pvt
->mce_out
+ 1) % MCE_LOG_LEN
== pvt
->mce_in
) {
2298 /* Copy memory error at the ringbuffer */
2299 memcpy(&pvt
->mce_entry
[pvt
->mce_out
], mce
, sizeof(*mce
));
2301 pvt
->mce_out
= (pvt
->mce_out
+ 1) % MCE_LOG_LEN
;
2303 /* Handle fatal errors immediately */
2304 if (mce
->mcgstatus
& 1)
2305 sbridge_check_error(mci
);
2307 /* Advice mcelog that the error were handled */
2311 static struct notifier_block sbridge_mce_dec
= {
2312 .notifier_call
= sbridge_mce_check_error
,
2315 /****************************************************************************
2316 EDAC register/unregister logic
2317 ****************************************************************************/
2319 static void sbridge_unregister_mci(struct sbridge_dev
*sbridge_dev
)
2321 struct mem_ctl_info
*mci
= sbridge_dev
->mci
;
2322 struct sbridge_pvt
*pvt
;
2324 if (unlikely(!mci
|| !mci
->pvt_info
)) {
2325 edac_dbg(0, "MC: dev = %p\n", &sbridge_dev
->pdev
[0]->dev
);
2327 sbridge_printk(KERN_ERR
, "Couldn't find mci handler\n");
2331 pvt
= mci
->pvt_info
;
2333 edac_dbg(0, "MC: mci = %p, dev = %p\n",
2334 mci
, &sbridge_dev
->pdev
[0]->dev
);
2336 /* Remove MC sysfs nodes */
2337 edac_mc_del_mc(mci
->pdev
);
2339 edac_dbg(1, "%s: free mci struct\n", mci
->ctl_name
);
2340 kfree(mci
->ctl_name
);
2342 sbridge_dev
->mci
= NULL
;
2345 static int sbridge_register_mci(struct sbridge_dev
*sbridge_dev
, enum type type
)
2347 struct mem_ctl_info
*mci
;
2348 struct edac_mc_layer layers
[2];
2349 struct sbridge_pvt
*pvt
;
2350 struct pci_dev
*pdev
= sbridge_dev
->pdev
[0];
2353 /* Check the number of active and not disabled channels */
2354 rc
= check_if_ecc_is_active(sbridge_dev
->bus
, type
);
2355 if (unlikely(rc
< 0))
2358 /* allocate a new MC control structure */
2359 layers
[0].type
= EDAC_MC_LAYER_CHANNEL
;
2360 layers
[0].size
= NUM_CHANNELS
;
2361 layers
[0].is_virt_csrow
= false;
2362 layers
[1].type
= EDAC_MC_LAYER_SLOT
;
2363 layers
[1].size
= MAX_DIMMS
;
2364 layers
[1].is_virt_csrow
= true;
2365 mci
= edac_mc_alloc(sbridge_dev
->mc
, ARRAY_SIZE(layers
), layers
,
2371 edac_dbg(0, "MC: mci = %p, dev = %p\n",
2374 pvt
= mci
->pvt_info
;
2375 memset(pvt
, 0, sizeof(*pvt
));
2377 /* Associate sbridge_dev and mci for future usage */
2378 pvt
->sbridge_dev
= sbridge_dev
;
2379 sbridge_dev
->mci
= mci
;
2381 mci
->mtype_cap
= MEM_FLAG_DDR3
;
2382 mci
->edac_ctl_cap
= EDAC_FLAG_NONE
;
2383 mci
->edac_cap
= EDAC_FLAG_NONE
;
2384 mci
->mod_name
= "sbridge_edac.c";
2385 mci
->mod_ver
= SBRIDGE_REVISION
;
2386 mci
->dev_name
= pci_name(pdev
);
2387 mci
->ctl_page_to_phys
= NULL
;
2389 /* Set the function pointer to an actual operation function */
2390 mci
->edac_check
= sbridge_check_error
;
2392 pvt
->info
.type
= type
;
2395 pvt
->info
.rankcfgr
= IB_RANK_CFG_A
;
2396 pvt
->info
.get_tolm
= ibridge_get_tolm
;
2397 pvt
->info
.get_tohm
= ibridge_get_tohm
;
2398 pvt
->info
.dram_rule
= ibridge_dram_rule
;
2399 pvt
->info
.get_memory_type
= get_memory_type
;
2400 pvt
->info
.get_node_id
= get_node_id
;
2401 pvt
->info
.rir_limit
= rir_limit
;
2402 pvt
->info
.max_sad
= ARRAY_SIZE(ibridge_dram_rule
);
2403 pvt
->info
.interleave_list
= ibridge_interleave_list
;
2404 pvt
->info
.max_interleave
= ARRAY_SIZE(ibridge_interleave_list
);
2405 pvt
->info
.interleave_pkg
= ibridge_interleave_pkg
;
2406 pvt
->info
.get_width
= ibridge_get_width
;
2407 mci
->ctl_name
= kasprintf(GFP_KERNEL
, "Ivy Bridge Socket#%d", mci
->mc_idx
);
2409 /* Store pci devices at mci for faster access */
2410 rc
= ibridge_mci_bind_devs(mci
, sbridge_dev
);
2411 if (unlikely(rc
< 0))
2415 pvt
->info
.rankcfgr
= SB_RANK_CFG_A
;
2416 pvt
->info
.get_tolm
= sbridge_get_tolm
;
2417 pvt
->info
.get_tohm
= sbridge_get_tohm
;
2418 pvt
->info
.dram_rule
= sbridge_dram_rule
;
2419 pvt
->info
.get_memory_type
= get_memory_type
;
2420 pvt
->info
.get_node_id
= get_node_id
;
2421 pvt
->info
.rir_limit
= rir_limit
;
2422 pvt
->info
.max_sad
= ARRAY_SIZE(sbridge_dram_rule
);
2423 pvt
->info
.interleave_list
= sbridge_interleave_list
;
2424 pvt
->info
.max_interleave
= ARRAY_SIZE(sbridge_interleave_list
);
2425 pvt
->info
.interleave_pkg
= sbridge_interleave_pkg
;
2426 pvt
->info
.get_width
= sbridge_get_width
;
2427 mci
->ctl_name
= kasprintf(GFP_KERNEL
, "Sandy Bridge Socket#%d", mci
->mc_idx
);
2429 /* Store pci devices at mci for faster access */
2430 rc
= sbridge_mci_bind_devs(mci
, sbridge_dev
);
2431 if (unlikely(rc
< 0))
2435 /* rankcfgr isn't used */
2436 pvt
->info
.get_tolm
= haswell_get_tolm
;
2437 pvt
->info
.get_tohm
= haswell_get_tohm
;
2438 pvt
->info
.dram_rule
= ibridge_dram_rule
;
2439 pvt
->info
.get_memory_type
= haswell_get_memory_type
;
2440 pvt
->info
.get_node_id
= haswell_get_node_id
;
2441 pvt
->info
.rir_limit
= haswell_rir_limit
;
2442 pvt
->info
.max_sad
= ARRAY_SIZE(ibridge_dram_rule
);
2443 pvt
->info
.interleave_list
= ibridge_interleave_list
;
2444 pvt
->info
.max_interleave
= ARRAY_SIZE(ibridge_interleave_list
);
2445 pvt
->info
.interleave_pkg
= ibridge_interleave_pkg
;
2446 pvt
->info
.get_width
= ibridge_get_width
;
2447 mci
->ctl_name
= kasprintf(GFP_KERNEL
, "Haswell Socket#%d", mci
->mc_idx
);
2449 /* Store pci devices at mci for faster access */
2450 rc
= haswell_mci_bind_devs(mci
, sbridge_dev
);
2451 if (unlikely(rc
< 0))
2455 /* rankcfgr isn't used */
2456 pvt
->info
.get_tolm
= haswell_get_tolm
;
2457 pvt
->info
.get_tohm
= haswell_get_tohm
;
2458 pvt
->info
.dram_rule
= ibridge_dram_rule
;
2459 pvt
->info
.get_memory_type
= haswell_get_memory_type
;
2460 pvt
->info
.get_node_id
= haswell_get_node_id
;
2461 pvt
->info
.rir_limit
= haswell_rir_limit
;
2462 pvt
->info
.max_sad
= ARRAY_SIZE(ibridge_dram_rule
);
2463 pvt
->info
.interleave_list
= ibridge_interleave_list
;
2464 pvt
->info
.max_interleave
= ARRAY_SIZE(ibridge_interleave_list
);
2465 pvt
->info
.interleave_pkg
= ibridge_interleave_pkg
;
2466 pvt
->info
.get_width
= broadwell_get_width
;
2467 mci
->ctl_name
= kasprintf(GFP_KERNEL
, "Broadwell Socket#%d", mci
->mc_idx
);
2469 /* Store pci devices at mci for faster access */
2470 rc
= broadwell_mci_bind_devs(mci
, sbridge_dev
);
2471 if (unlikely(rc
< 0))
2476 /* Get dimm basic config and the memory layout */
2477 get_dimm_config(mci
);
2478 get_memory_layout(mci
);
2480 /* record ptr to the generic device */
2481 mci
->pdev
= &pdev
->dev
;
2483 /* add this new MC control structure to EDAC's list of MCs */
2484 if (unlikely(edac_mc_add_mc(mci
))) {
2485 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
2493 kfree(mci
->ctl_name
);
2495 sbridge_dev
->mci
= NULL
;
2500 * sbridge_probe Probe for ONE instance of device to see if it is
2503 * 0 for FOUND a device
2504 * < 0 for error code
2507 static int sbridge_probe(struct pci_dev
*pdev
, const struct pci_device_id
*id
)
2511 struct sbridge_dev
*sbridge_dev
;
2512 enum type type
= SANDY_BRIDGE
;
2514 /* get the pci devices we want to reserve for our use */
2515 mutex_lock(&sbridge_edac_lock
);
2518 * All memory controllers are allocated at the first pass.
2520 if (unlikely(probed
>= 1)) {
2521 mutex_unlock(&sbridge_edac_lock
);
2526 switch (pdev
->device
) {
2527 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA
:
2528 rc
= sbridge_get_all_devices(&num_mc
, pci_dev_descr_ibridge_table
);
2531 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0
:
2532 rc
= sbridge_get_all_devices(&num_mc
, pci_dev_descr_sbridge_table
);
2533 type
= SANDY_BRIDGE
;
2535 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0
:
2536 rc
= sbridge_get_all_devices(&num_mc
, pci_dev_descr_haswell_table
);
2539 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0
:
2540 rc
= sbridge_get_all_devices(&num_mc
, pci_dev_descr_broadwell_table
);
2544 if (unlikely(rc
< 0)) {
2545 edac_dbg(0, "couldn't get all devices for 0x%x\n", pdev
->device
);
2551 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
) {
2552 edac_dbg(0, "Registering MC#%d (%d of %d)\n",
2553 mc
, mc
+ 1, num_mc
);
2555 sbridge_dev
->mc
= mc
++;
2556 rc
= sbridge_register_mci(sbridge_dev
, type
);
2557 if (unlikely(rc
< 0))
2561 sbridge_printk(KERN_INFO
, "%s\n", SBRIDGE_REVISION
);
2563 mutex_unlock(&sbridge_edac_lock
);
2567 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
)
2568 sbridge_unregister_mci(sbridge_dev
);
2570 sbridge_put_all_devices();
2572 mutex_unlock(&sbridge_edac_lock
);
2577 * sbridge_remove destructor for one instance of device
2580 static void sbridge_remove(struct pci_dev
*pdev
)
2582 struct sbridge_dev
*sbridge_dev
;
2587 * we have a trouble here: pdev value for removal will be wrong, since
2588 * it will point to the X58 register used to detect that the machine
2589 * is a Nehalem or upper design. However, due to the way several PCI
2590 * devices are grouped together to provide MC functionality, we need
2591 * to use a different method for releasing the devices
2594 mutex_lock(&sbridge_edac_lock
);
2596 if (unlikely(!probed
)) {
2597 mutex_unlock(&sbridge_edac_lock
);
2601 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
)
2602 sbridge_unregister_mci(sbridge_dev
);
2604 /* Release PCI resources */
2605 sbridge_put_all_devices();
2609 mutex_unlock(&sbridge_edac_lock
);
2612 MODULE_DEVICE_TABLE(pci
, sbridge_pci_tbl
);
2615 * sbridge_driver pci_driver structure for this module
2618 static struct pci_driver sbridge_driver
= {
2619 .name
= "sbridge_edac",
2620 .probe
= sbridge_probe
,
2621 .remove
= sbridge_remove
,
2622 .id_table
= sbridge_pci_tbl
,
2626 * sbridge_init Module entry function
2627 * Try to initialize this module for its devices
2629 static int __init
sbridge_init(void)
2635 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
2638 pci_rc
= pci_register_driver(&sbridge_driver
);
2640 mce_register_decode_chain(&sbridge_mce_dec
);
2641 if (get_edac_report_status() == EDAC_REPORTING_DISABLED
)
2642 sbridge_printk(KERN_WARNING
, "Loading driver, error reporting disabled.\n");
2646 sbridge_printk(KERN_ERR
, "Failed to register device with error %d.\n",
2653 * sbridge_exit() Module exit function
2654 * Unregister the driver
2656 static void __exit
sbridge_exit(void)
2659 pci_unregister_driver(&sbridge_driver
);
2660 mce_unregister_decode_chain(&sbridge_mce_dec
);
2663 module_init(sbridge_init
);
2664 module_exit(sbridge_exit
);
2666 module_param(edac_op_state
, int, 0444);
2667 MODULE_PARM_DESC(edac_op_state
, "EDAC Error Reporting state: 0=Poll,1=NMI");
2669 MODULE_LICENSE("GPL");
2670 MODULE_AUTHOR("Mauro Carvalho Chehab");
2671 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
2672 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "