dm thin metadata: fix __udivdi3 undefined on 32-bit
[linux/fpc-iii.git] / drivers / firmware / dmi_scan.c
blob053a23a7be940be12304d72fc796e0b50db438ee
1 #include <linux/types.h>
2 #include <linux/string.h>
3 #include <linux/init.h>
4 #include <linux/module.h>
5 #include <linux/ctype.h>
6 #include <linux/dmi.h>
7 #include <linux/efi.h>
8 #include <linux/bootmem.h>
9 #include <linux/random.h>
10 #include <asm/dmi.h>
11 #include <asm/unaligned.h>
13 struct kobject *dmi_kobj;
14 EXPORT_SYMBOL_GPL(dmi_kobj);
17 * DMI stands for "Desktop Management Interface". It is part
18 * of and an antecedent to, SMBIOS, which stands for System
19 * Management BIOS. See further: http://www.dmtf.org/standards
21 static const char dmi_empty_string[] = "";
23 static u32 dmi_ver __initdata;
24 static u32 dmi_len;
25 static u16 dmi_num;
26 static u8 smbios_entry_point[32];
27 static int smbios_entry_point_size;
30 * Catch too early calls to dmi_check_system():
32 static int dmi_initialized;
34 /* DMI system identification string used during boot */
35 static char dmi_ids_string[128] __initdata;
37 static struct dmi_memdev_info {
38 const char *device;
39 const char *bank;
40 u16 handle;
41 } *dmi_memdev;
42 static int dmi_memdev_nr;
44 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
46 const u8 *bp = ((u8 *) dm) + dm->length;
47 const u8 *nsp;
49 if (s) {
50 while (--s > 0 && *bp)
51 bp += strlen(bp) + 1;
53 /* Strings containing only spaces are considered empty */
54 nsp = bp;
55 while (*nsp == ' ')
56 nsp++;
57 if (*nsp != '\0')
58 return bp;
61 return dmi_empty_string;
64 static const char * __init dmi_string(const struct dmi_header *dm, u8 s)
66 const char *bp = dmi_string_nosave(dm, s);
67 char *str;
68 size_t len;
70 if (bp == dmi_empty_string)
71 return dmi_empty_string;
73 len = strlen(bp) + 1;
74 str = dmi_alloc(len);
75 if (str != NULL)
76 strcpy(str, bp);
78 return str;
82 * We have to be cautious here. We have seen BIOSes with DMI pointers
83 * pointing to completely the wrong place for example
85 static void dmi_decode_table(u8 *buf,
86 void (*decode)(const struct dmi_header *, void *),
87 void *private_data)
89 u8 *data = buf;
90 int i = 0;
93 * Stop when we have seen all the items the table claimed to have
94 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS
95 * >= 3.0 only) OR we run off the end of the table (should never
96 * happen but sometimes does on bogus implementations.)
98 while ((!dmi_num || i < dmi_num) &&
99 (data - buf + sizeof(struct dmi_header)) <= dmi_len) {
100 const struct dmi_header *dm = (const struct dmi_header *)data;
103 * We want to know the total length (formatted area and
104 * strings) before decoding to make sure we won't run off the
105 * table in dmi_decode or dmi_string
107 data += dm->length;
108 while ((data - buf < dmi_len - 1) && (data[0] || data[1]))
109 data++;
110 if (data - buf < dmi_len - 1)
111 decode(dm, private_data);
113 data += 2;
114 i++;
117 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0]
118 * For tables behind a 64-bit entry point, we have no item
119 * count and no exact table length, so stop on end-of-table
120 * marker. For tables behind a 32-bit entry point, we have
121 * seen OEM structures behind the end-of-table marker on
122 * some systems, so don't trust it.
124 if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE)
125 break;
128 /* Trim DMI table length if needed */
129 if (dmi_len > data - buf)
130 dmi_len = data - buf;
133 static phys_addr_t dmi_base;
135 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
136 void *))
138 u8 *buf;
139 u32 orig_dmi_len = dmi_len;
141 buf = dmi_early_remap(dmi_base, orig_dmi_len);
142 if (buf == NULL)
143 return -1;
145 dmi_decode_table(buf, decode, NULL);
147 add_device_randomness(buf, dmi_len);
149 dmi_early_unmap(buf, orig_dmi_len);
150 return 0;
153 static int __init dmi_checksum(const u8 *buf, u8 len)
155 u8 sum = 0;
156 int a;
158 for (a = 0; a < len; a++)
159 sum += buf[a];
161 return sum == 0;
164 static const char *dmi_ident[DMI_STRING_MAX];
165 static LIST_HEAD(dmi_devices);
166 int dmi_available;
169 * Save a DMI string
171 static void __init dmi_save_ident(const struct dmi_header *dm, int slot,
172 int string)
174 const char *d = (const char *) dm;
175 const char *p;
177 if (dmi_ident[slot])
178 return;
180 p = dmi_string(dm, d[string]);
181 if (p == NULL)
182 return;
184 dmi_ident[slot] = p;
187 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot,
188 int index)
190 const u8 *d = (u8 *) dm + index;
191 char *s;
192 int is_ff = 1, is_00 = 1, i;
194 if (dmi_ident[slot])
195 return;
197 for (i = 0; i < 16 && (is_ff || is_00); i++) {
198 if (d[i] != 0x00)
199 is_00 = 0;
200 if (d[i] != 0xFF)
201 is_ff = 0;
204 if (is_ff || is_00)
205 return;
207 s = dmi_alloc(16*2+4+1);
208 if (!s)
209 return;
212 * As of version 2.6 of the SMBIOS specification, the first 3 fields of
213 * the UUID are supposed to be little-endian encoded. The specification
214 * says that this is the defacto standard.
216 if (dmi_ver >= 0x020600)
217 sprintf(s, "%pUL", d);
218 else
219 sprintf(s, "%pUB", d);
221 dmi_ident[slot] = s;
224 static void __init dmi_save_type(const struct dmi_header *dm, int slot,
225 int index)
227 const u8 *d = (u8 *) dm + index;
228 char *s;
230 if (dmi_ident[slot])
231 return;
233 s = dmi_alloc(4);
234 if (!s)
235 return;
237 sprintf(s, "%u", *d & 0x7F);
238 dmi_ident[slot] = s;
241 static void __init dmi_save_one_device(int type, const char *name)
243 struct dmi_device *dev;
245 /* No duplicate device */
246 if (dmi_find_device(type, name, NULL))
247 return;
249 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
250 if (!dev)
251 return;
253 dev->type = type;
254 strcpy((char *)(dev + 1), name);
255 dev->name = (char *)(dev + 1);
256 dev->device_data = NULL;
257 list_add(&dev->list, &dmi_devices);
260 static void __init dmi_save_devices(const struct dmi_header *dm)
262 int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
264 for (i = 0; i < count; i++) {
265 const char *d = (char *)(dm + 1) + (i * 2);
267 /* Skip disabled device */
268 if ((*d & 0x80) == 0)
269 continue;
271 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
275 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
277 int i, count = *(u8 *)(dm + 1);
278 struct dmi_device *dev;
280 for (i = 1; i <= count; i++) {
281 const char *devname = dmi_string(dm, i);
283 if (devname == dmi_empty_string)
284 continue;
286 dev = dmi_alloc(sizeof(*dev));
287 if (!dev)
288 break;
290 dev->type = DMI_DEV_TYPE_OEM_STRING;
291 dev->name = devname;
292 dev->device_data = NULL;
294 list_add(&dev->list, &dmi_devices);
298 static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
300 struct dmi_device *dev;
301 void *data;
303 data = dmi_alloc(dm->length);
304 if (data == NULL)
305 return;
307 memcpy(data, dm, dm->length);
309 dev = dmi_alloc(sizeof(*dev));
310 if (!dev)
311 return;
313 dev->type = DMI_DEV_TYPE_IPMI;
314 dev->name = "IPMI controller";
315 dev->device_data = data;
317 list_add_tail(&dev->list, &dmi_devices);
320 static void __init dmi_save_dev_onboard(int instance, int segment, int bus,
321 int devfn, const char *name)
323 struct dmi_dev_onboard *onboard_dev;
325 onboard_dev = dmi_alloc(sizeof(*onboard_dev) + strlen(name) + 1);
326 if (!onboard_dev)
327 return;
329 onboard_dev->instance = instance;
330 onboard_dev->segment = segment;
331 onboard_dev->bus = bus;
332 onboard_dev->devfn = devfn;
334 strcpy((char *)&onboard_dev[1], name);
335 onboard_dev->dev.type = DMI_DEV_TYPE_DEV_ONBOARD;
336 onboard_dev->dev.name = (char *)&onboard_dev[1];
337 onboard_dev->dev.device_data = onboard_dev;
339 list_add(&onboard_dev->dev.list, &dmi_devices);
342 static void __init dmi_save_extended_devices(const struct dmi_header *dm)
344 const u8 *d = (u8 *) dm + 5;
346 /* Skip disabled device */
347 if ((*d & 0x80) == 0)
348 return;
350 dmi_save_dev_onboard(*(d+1), *(u16 *)(d+2), *(d+4), *(d+5),
351 dmi_string_nosave(dm, *(d-1)));
352 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d - 1)));
355 static void __init count_mem_devices(const struct dmi_header *dm, void *v)
357 if (dm->type != DMI_ENTRY_MEM_DEVICE)
358 return;
359 dmi_memdev_nr++;
362 static void __init save_mem_devices(const struct dmi_header *dm, void *v)
364 const char *d = (const char *)dm;
365 static int nr;
367 if (dm->type != DMI_ENTRY_MEM_DEVICE)
368 return;
369 if (nr >= dmi_memdev_nr) {
370 pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n");
371 return;
373 dmi_memdev[nr].handle = get_unaligned(&dm->handle);
374 dmi_memdev[nr].device = dmi_string(dm, d[0x10]);
375 dmi_memdev[nr].bank = dmi_string(dm, d[0x11]);
376 nr++;
379 void __init dmi_memdev_walk(void)
381 if (!dmi_available)
382 return;
384 if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) {
385 dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr);
386 if (dmi_memdev)
387 dmi_walk_early(save_mem_devices);
392 * Process a DMI table entry. Right now all we care about are the BIOS
393 * and machine entries. For 2.5 we should pull the smbus controller info
394 * out of here.
396 static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
398 switch (dm->type) {
399 case 0: /* BIOS Information */
400 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
401 dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
402 dmi_save_ident(dm, DMI_BIOS_DATE, 8);
403 break;
404 case 1: /* System Information */
405 dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
406 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
407 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
408 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
409 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
410 break;
411 case 2: /* Base Board Information */
412 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
413 dmi_save_ident(dm, DMI_BOARD_NAME, 5);
414 dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
415 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
416 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
417 break;
418 case 3: /* Chassis Information */
419 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
420 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
421 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
422 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
423 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
424 break;
425 case 10: /* Onboard Devices Information */
426 dmi_save_devices(dm);
427 break;
428 case 11: /* OEM Strings */
429 dmi_save_oem_strings_devices(dm);
430 break;
431 case 38: /* IPMI Device Information */
432 dmi_save_ipmi_device(dm);
433 break;
434 case 41: /* Onboard Devices Extended Information */
435 dmi_save_extended_devices(dm);
439 static int __init print_filtered(char *buf, size_t len, const char *info)
441 int c = 0;
442 const char *p;
444 if (!info)
445 return c;
447 for (p = info; *p; p++)
448 if (isprint(*p))
449 c += scnprintf(buf + c, len - c, "%c", *p);
450 else
451 c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff);
452 return c;
455 static void __init dmi_format_ids(char *buf, size_t len)
457 int c = 0;
458 const char *board; /* Board Name is optional */
460 c += print_filtered(buf + c, len - c,
461 dmi_get_system_info(DMI_SYS_VENDOR));
462 c += scnprintf(buf + c, len - c, " ");
463 c += print_filtered(buf + c, len - c,
464 dmi_get_system_info(DMI_PRODUCT_NAME));
466 board = dmi_get_system_info(DMI_BOARD_NAME);
467 if (board) {
468 c += scnprintf(buf + c, len - c, "/");
469 c += print_filtered(buf + c, len - c, board);
471 c += scnprintf(buf + c, len - c, ", BIOS ");
472 c += print_filtered(buf + c, len - c,
473 dmi_get_system_info(DMI_BIOS_VERSION));
474 c += scnprintf(buf + c, len - c, " ");
475 c += print_filtered(buf + c, len - c,
476 dmi_get_system_info(DMI_BIOS_DATE));
480 * Check for DMI/SMBIOS headers in the system firmware image. Any
481 * SMBIOS header must start 16 bytes before the DMI header, so take a
482 * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset
483 * 0. If the DMI header is present, set dmi_ver accordingly (SMBIOS
484 * takes precedence) and return 0. Otherwise return 1.
486 static int __init dmi_present(const u8 *buf)
488 u32 smbios_ver;
490 if (memcmp(buf, "_SM_", 4) == 0 &&
491 buf[5] < 32 && dmi_checksum(buf, buf[5])) {
492 smbios_ver = get_unaligned_be16(buf + 6);
493 smbios_entry_point_size = buf[5];
494 memcpy(smbios_entry_point, buf, smbios_entry_point_size);
496 /* Some BIOS report weird SMBIOS version, fix that up */
497 switch (smbios_ver) {
498 case 0x021F:
499 case 0x0221:
500 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n",
501 smbios_ver & 0xFF, 3);
502 smbios_ver = 0x0203;
503 break;
504 case 0x0233:
505 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6);
506 smbios_ver = 0x0206;
507 break;
509 } else {
510 smbios_ver = 0;
513 buf += 16;
515 if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) {
516 if (smbios_ver)
517 dmi_ver = smbios_ver;
518 else
519 dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F);
520 dmi_ver <<= 8;
521 dmi_num = get_unaligned_le16(buf + 12);
522 dmi_len = get_unaligned_le16(buf + 6);
523 dmi_base = get_unaligned_le32(buf + 8);
525 if (dmi_walk_early(dmi_decode) == 0) {
526 if (smbios_ver) {
527 pr_info("SMBIOS %d.%d present.\n",
528 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
529 } else {
530 smbios_entry_point_size = 15;
531 memcpy(smbios_entry_point, buf,
532 smbios_entry_point_size);
533 pr_info("Legacy DMI %d.%d present.\n",
534 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
536 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
537 printk(KERN_DEBUG "DMI: %s\n", dmi_ids_string);
538 return 0;
542 return 1;
546 * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy
547 * 32-bit entry point, there is no embedded DMI header (_DMI_) in here.
549 static int __init dmi_smbios3_present(const u8 *buf)
551 if (memcmp(buf, "_SM3_", 5) == 0 &&
552 buf[6] < 32 && dmi_checksum(buf, buf[6])) {
553 dmi_ver = get_unaligned_be32(buf + 6) & 0xFFFFFF;
554 dmi_num = 0; /* No longer specified */
555 dmi_len = get_unaligned_le32(buf + 12);
556 dmi_base = get_unaligned_le64(buf + 16);
557 smbios_entry_point_size = buf[6];
558 memcpy(smbios_entry_point, buf, smbios_entry_point_size);
560 if (dmi_walk_early(dmi_decode) == 0) {
561 pr_info("SMBIOS %d.%d.%d present.\n",
562 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF,
563 dmi_ver & 0xFF);
564 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
565 pr_debug("DMI: %s\n", dmi_ids_string);
566 return 0;
569 return 1;
572 void __init dmi_scan_machine(void)
574 char __iomem *p, *q;
575 char buf[32];
577 if (efi_enabled(EFI_CONFIG_TABLES)) {
579 * According to the DMTF SMBIOS reference spec v3.0.0, it is
580 * allowed to define both the 64-bit entry point (smbios3) and
581 * the 32-bit entry point (smbios), in which case they should
582 * either both point to the same SMBIOS structure table, or the
583 * table pointed to by the 64-bit entry point should contain a
584 * superset of the table contents pointed to by the 32-bit entry
585 * point (section 5.2)
586 * This implies that the 64-bit entry point should have
587 * precedence if it is defined and supported by the OS. If we
588 * have the 64-bit entry point, but fail to decode it, fall
589 * back to the legacy one (if available)
591 if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) {
592 p = dmi_early_remap(efi.smbios3, 32);
593 if (p == NULL)
594 goto error;
595 memcpy_fromio(buf, p, 32);
596 dmi_early_unmap(p, 32);
598 if (!dmi_smbios3_present(buf)) {
599 dmi_available = 1;
600 goto out;
603 if (efi.smbios == EFI_INVALID_TABLE_ADDR)
604 goto error;
606 /* This is called as a core_initcall() because it isn't
607 * needed during early boot. This also means we can
608 * iounmap the space when we're done with it.
610 p = dmi_early_remap(efi.smbios, 32);
611 if (p == NULL)
612 goto error;
613 memcpy_fromio(buf, p, 32);
614 dmi_early_unmap(p, 32);
616 if (!dmi_present(buf)) {
617 dmi_available = 1;
618 goto out;
620 } else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) {
621 p = dmi_early_remap(0xF0000, 0x10000);
622 if (p == NULL)
623 goto error;
626 * Iterate over all possible DMI header addresses q.
627 * Maintain the 32 bytes around q in buf. On the
628 * first iteration, substitute zero for the
629 * out-of-range bytes so there is no chance of falsely
630 * detecting an SMBIOS header.
632 memset(buf, 0, 16);
633 for (q = p; q < p + 0x10000; q += 16) {
634 memcpy_fromio(buf + 16, q, 16);
635 if (!dmi_smbios3_present(buf) || !dmi_present(buf)) {
636 dmi_available = 1;
637 dmi_early_unmap(p, 0x10000);
638 goto out;
640 memcpy(buf, buf + 16, 16);
642 dmi_early_unmap(p, 0x10000);
644 error:
645 pr_info("DMI not present or invalid.\n");
646 out:
647 dmi_initialized = 1;
650 static ssize_t raw_table_read(struct file *file, struct kobject *kobj,
651 struct bin_attribute *attr, char *buf,
652 loff_t pos, size_t count)
654 memcpy(buf, attr->private + pos, count);
655 return count;
658 static BIN_ATTR(smbios_entry_point, S_IRUSR, raw_table_read, NULL, 0);
659 static BIN_ATTR(DMI, S_IRUSR, raw_table_read, NULL, 0);
661 static int __init dmi_init(void)
663 struct kobject *tables_kobj;
664 u8 *dmi_table;
665 int ret = -ENOMEM;
667 if (!dmi_available) {
668 ret = -ENODATA;
669 goto err;
673 * Set up dmi directory at /sys/firmware/dmi. This entry should stay
674 * even after farther error, as it can be used by other modules like
675 * dmi-sysfs.
677 dmi_kobj = kobject_create_and_add("dmi", firmware_kobj);
678 if (!dmi_kobj)
679 goto err;
681 tables_kobj = kobject_create_and_add("tables", dmi_kobj);
682 if (!tables_kobj)
683 goto err;
685 dmi_table = dmi_remap(dmi_base, dmi_len);
686 if (!dmi_table)
687 goto err_tables;
689 bin_attr_smbios_entry_point.size = smbios_entry_point_size;
690 bin_attr_smbios_entry_point.private = smbios_entry_point;
691 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point);
692 if (ret)
693 goto err_unmap;
695 bin_attr_DMI.size = dmi_len;
696 bin_attr_DMI.private = dmi_table;
697 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI);
698 if (!ret)
699 return 0;
701 sysfs_remove_bin_file(tables_kobj,
702 &bin_attr_smbios_entry_point);
703 err_unmap:
704 dmi_unmap(dmi_table);
705 err_tables:
706 kobject_del(tables_kobj);
707 kobject_put(tables_kobj);
708 err:
709 pr_err("dmi: Firmware registration failed.\n");
711 return ret;
713 subsys_initcall(dmi_init);
716 * dmi_set_dump_stack_arch_desc - set arch description for dump_stack()
718 * Invoke dump_stack_set_arch_desc() with DMI system information so that
719 * DMI identifiers are printed out on task dumps. Arch boot code should
720 * call this function after dmi_scan_machine() if it wants to print out DMI
721 * identifiers on task dumps.
723 void __init dmi_set_dump_stack_arch_desc(void)
725 dump_stack_set_arch_desc("%s", dmi_ids_string);
729 * dmi_matches - check if dmi_system_id structure matches system DMI data
730 * @dmi: pointer to the dmi_system_id structure to check
732 static bool dmi_matches(const struct dmi_system_id *dmi)
734 int i;
736 WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n");
738 for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
739 int s = dmi->matches[i].slot;
740 if (s == DMI_NONE)
741 break;
742 if (dmi_ident[s]) {
743 if (!dmi->matches[i].exact_match &&
744 strstr(dmi_ident[s], dmi->matches[i].substr))
745 continue;
746 else if (dmi->matches[i].exact_match &&
747 !strcmp(dmi_ident[s], dmi->matches[i].substr))
748 continue;
751 /* No match */
752 return false;
754 return true;
758 * dmi_is_end_of_table - check for end-of-table marker
759 * @dmi: pointer to the dmi_system_id structure to check
761 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
763 return dmi->matches[0].slot == DMI_NONE;
767 * dmi_check_system - check system DMI data
768 * @list: array of dmi_system_id structures to match against
769 * All non-null elements of the list must match
770 * their slot's (field index's) data (i.e., each
771 * list string must be a substring of the specified
772 * DMI slot's string data) to be considered a
773 * successful match.
775 * Walk the blacklist table running matching functions until someone
776 * returns non zero or we hit the end. Callback function is called for
777 * each successful match. Returns the number of matches.
779 int dmi_check_system(const struct dmi_system_id *list)
781 int count = 0;
782 const struct dmi_system_id *d;
784 for (d = list; !dmi_is_end_of_table(d); d++)
785 if (dmi_matches(d)) {
786 count++;
787 if (d->callback && d->callback(d))
788 break;
791 return count;
793 EXPORT_SYMBOL(dmi_check_system);
796 * dmi_first_match - find dmi_system_id structure matching system DMI data
797 * @list: array of dmi_system_id structures to match against
798 * All non-null elements of the list must match
799 * their slot's (field index's) data (i.e., each
800 * list string must be a substring of the specified
801 * DMI slot's string data) to be considered a
802 * successful match.
804 * Walk the blacklist table until the first match is found. Return the
805 * pointer to the matching entry or NULL if there's no match.
807 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
809 const struct dmi_system_id *d;
811 for (d = list; !dmi_is_end_of_table(d); d++)
812 if (dmi_matches(d))
813 return d;
815 return NULL;
817 EXPORT_SYMBOL(dmi_first_match);
820 * dmi_get_system_info - return DMI data value
821 * @field: data index (see enum dmi_field)
823 * Returns one DMI data value, can be used to perform
824 * complex DMI data checks.
826 const char *dmi_get_system_info(int field)
828 return dmi_ident[field];
830 EXPORT_SYMBOL(dmi_get_system_info);
833 * dmi_name_in_serial - Check if string is in the DMI product serial information
834 * @str: string to check for
836 int dmi_name_in_serial(const char *str)
838 int f = DMI_PRODUCT_SERIAL;
839 if (dmi_ident[f] && strstr(dmi_ident[f], str))
840 return 1;
841 return 0;
845 * dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
846 * @str: Case sensitive Name
848 int dmi_name_in_vendors(const char *str)
850 static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
851 int i;
852 for (i = 0; fields[i] != DMI_NONE; i++) {
853 int f = fields[i];
854 if (dmi_ident[f] && strstr(dmi_ident[f], str))
855 return 1;
857 return 0;
859 EXPORT_SYMBOL(dmi_name_in_vendors);
862 * dmi_find_device - find onboard device by type/name
863 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types
864 * @name: device name string or %NULL to match all
865 * @from: previous device found in search, or %NULL for new search.
867 * Iterates through the list of known onboard devices. If a device is
868 * found with a matching @vendor and @device, a pointer to its device
869 * structure is returned. Otherwise, %NULL is returned.
870 * A new search is initiated by passing %NULL as the @from argument.
871 * If @from is not %NULL, searches continue from next device.
873 const struct dmi_device *dmi_find_device(int type, const char *name,
874 const struct dmi_device *from)
876 const struct list_head *head = from ? &from->list : &dmi_devices;
877 struct list_head *d;
879 for (d = head->next; d != &dmi_devices; d = d->next) {
880 const struct dmi_device *dev =
881 list_entry(d, struct dmi_device, list);
883 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
884 ((name == NULL) || (strcmp(dev->name, name) == 0)))
885 return dev;
888 return NULL;
890 EXPORT_SYMBOL(dmi_find_device);
893 * dmi_get_date - parse a DMI date
894 * @field: data index (see enum dmi_field)
895 * @yearp: optional out parameter for the year
896 * @monthp: optional out parameter for the month
897 * @dayp: optional out parameter for the day
899 * The date field is assumed to be in the form resembling
900 * [mm[/dd]]/yy[yy] and the result is stored in the out
901 * parameters any or all of which can be omitted.
903 * If the field doesn't exist, all out parameters are set to zero
904 * and false is returned. Otherwise, true is returned with any
905 * invalid part of date set to zero.
907 * On return, year, month and day are guaranteed to be in the
908 * range of [0,9999], [0,12] and [0,31] respectively.
910 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
912 int year = 0, month = 0, day = 0;
913 bool exists;
914 const char *s, *y;
915 char *e;
917 s = dmi_get_system_info(field);
918 exists = s;
919 if (!exists)
920 goto out;
923 * Determine year first. We assume the date string resembles
924 * mm/dd/yy[yy] but the original code extracted only the year
925 * from the end. Keep the behavior in the spirit of no
926 * surprises.
928 y = strrchr(s, '/');
929 if (!y)
930 goto out;
932 y++;
933 year = simple_strtoul(y, &e, 10);
934 if (y != e && year < 100) { /* 2-digit year */
935 year += 1900;
936 if (year < 1996) /* no dates < spec 1.0 */
937 year += 100;
939 if (year > 9999) /* year should fit in %04d */
940 year = 0;
942 /* parse the mm and dd */
943 month = simple_strtoul(s, &e, 10);
944 if (s == e || *e != '/' || !month || month > 12) {
945 month = 0;
946 goto out;
949 s = e + 1;
950 day = simple_strtoul(s, &e, 10);
951 if (s == y || s == e || *e != '/' || day > 31)
952 day = 0;
953 out:
954 if (yearp)
955 *yearp = year;
956 if (monthp)
957 *monthp = month;
958 if (dayp)
959 *dayp = day;
960 return exists;
962 EXPORT_SYMBOL(dmi_get_date);
965 * dmi_walk - Walk the DMI table and get called back for every record
966 * @decode: Callback function
967 * @private_data: Private data to be passed to the callback function
969 * Returns -1 when the DMI table can't be reached, 0 on success.
971 int dmi_walk(void (*decode)(const struct dmi_header *, void *),
972 void *private_data)
974 u8 *buf;
976 if (!dmi_available)
977 return -1;
979 buf = dmi_remap(dmi_base, dmi_len);
980 if (buf == NULL)
981 return -1;
983 dmi_decode_table(buf, decode, private_data);
985 dmi_unmap(buf);
986 return 0;
988 EXPORT_SYMBOL_GPL(dmi_walk);
991 * dmi_match - compare a string to the dmi field (if exists)
992 * @f: DMI field identifier
993 * @str: string to compare the DMI field to
995 * Returns true if the requested field equals to the str (including NULL).
997 bool dmi_match(enum dmi_field f, const char *str)
999 const char *info = dmi_get_system_info(f);
1001 if (info == NULL || str == NULL)
1002 return info == str;
1004 return !strcmp(info, str);
1006 EXPORT_SYMBOL_GPL(dmi_match);
1008 void dmi_memdev_name(u16 handle, const char **bank, const char **device)
1010 int n;
1012 if (dmi_memdev == NULL)
1013 return;
1015 for (n = 0; n < dmi_memdev_nr; n++) {
1016 if (handle == dmi_memdev[n].handle) {
1017 *bank = dmi_memdev[n].bank;
1018 *device = dmi_memdev[n].device;
1019 break;
1023 EXPORT_SYMBOL_GPL(dmi_memdev_name);