2 * EFI stub implementation that is shared by arm and arm64 architectures.
3 * This should be #included by the EFI stub implementation files.
5 * Copyright (C) 2013,2014 Linaro Limited
6 * Roy Franz <roy.franz@linaro.org
7 * Copyright (C) 2013 Red Hat, Inc.
8 * Mark Salter <msalter@redhat.com>
10 * This file is part of the Linux kernel, and is made available under the
11 * terms of the GNU General Public License version 2.
15 #include <linux/efi.h>
16 #include <linux/sort.h>
21 static int efi_secureboot_enabled(efi_system_table_t
*sys_table_arg
)
23 static efi_guid_t
const var_guid
= EFI_GLOBAL_VARIABLE_GUID
;
24 static efi_char16_t
const var_name
[] = {
25 'S', 'e', 'c', 'u', 'r', 'e', 'B', 'o', 'o', 't', 0 };
27 efi_get_variable_t
*f_getvar
= sys_table_arg
->runtime
->get_variable
;
28 unsigned long size
= sizeof(u8
);
32 status
= f_getvar((efi_char16_t
*)var_name
, (efi_guid_t
*)&var_guid
,
45 efi_status_t
efi_open_volume(efi_system_table_t
*sys_table_arg
,
46 void *__image
, void **__fh
)
48 efi_file_io_interface_t
*io
;
49 efi_loaded_image_t
*image
= __image
;
50 efi_file_handle_t
*fh
;
51 efi_guid_t fs_proto
= EFI_FILE_SYSTEM_GUID
;
53 void *handle
= (void *)(unsigned long)image
->device_handle
;
55 status
= sys_table_arg
->boottime
->handle_protocol(handle
,
56 &fs_proto
, (void **)&io
);
57 if (status
!= EFI_SUCCESS
) {
58 efi_printk(sys_table_arg
, "Failed to handle fs_proto\n");
62 status
= io
->open_volume(io
, &fh
);
63 if (status
!= EFI_SUCCESS
)
64 efi_printk(sys_table_arg
, "Failed to open volume\n");
70 efi_status_t
efi_file_close(void *handle
)
72 efi_file_handle_t
*fh
= handle
;
74 return fh
->close(handle
);
78 efi_file_read(void *handle
, unsigned long *size
, void *addr
)
80 efi_file_handle_t
*fh
= handle
;
82 return fh
->read(handle
, size
, addr
);
87 efi_file_size(efi_system_table_t
*sys_table_arg
, void *__fh
,
88 efi_char16_t
*filename_16
, void **handle
, u64
*file_sz
)
90 efi_file_handle_t
*h
, *fh
= __fh
;
91 efi_file_info_t
*info
;
93 efi_guid_t info_guid
= EFI_FILE_INFO_ID
;
94 unsigned long info_sz
;
96 status
= fh
->open(fh
, &h
, filename_16
, EFI_FILE_MODE_READ
, (u64
)0);
97 if (status
!= EFI_SUCCESS
) {
98 efi_printk(sys_table_arg
, "Failed to open file: ");
99 efi_char16_printk(sys_table_arg
, filename_16
);
100 efi_printk(sys_table_arg
, "\n");
107 status
= h
->get_info(h
, &info_guid
, &info_sz
, NULL
);
108 if (status
!= EFI_BUFFER_TOO_SMALL
) {
109 efi_printk(sys_table_arg
, "Failed to get file info size\n");
114 status
= sys_table_arg
->boottime
->allocate_pool(EFI_LOADER_DATA
,
115 info_sz
, (void **)&info
);
116 if (status
!= EFI_SUCCESS
) {
117 efi_printk(sys_table_arg
, "Failed to alloc mem for file info\n");
121 status
= h
->get_info(h
, &info_guid
, &info_sz
,
123 if (status
== EFI_BUFFER_TOO_SMALL
) {
124 sys_table_arg
->boottime
->free_pool(info
);
128 *file_sz
= info
->file_size
;
129 sys_table_arg
->boottime
->free_pool(info
);
131 if (status
!= EFI_SUCCESS
)
132 efi_printk(sys_table_arg
, "Failed to get initrd info\n");
139 void efi_char16_printk(efi_system_table_t
*sys_table_arg
,
142 struct efi_simple_text_output_protocol
*out
;
144 out
= (struct efi_simple_text_output_protocol
*)sys_table_arg
->con_out
;
145 out
->output_string(out
, str
);
150 * This function handles the architcture specific differences between arm and
151 * arm64 regarding where the kernel image must be loaded and any memory that
152 * must be reserved. On failure it is required to free all
153 * all allocations it has made.
155 efi_status_t
handle_kernel_image(efi_system_table_t
*sys_table
,
156 unsigned long *image_addr
,
157 unsigned long *image_size
,
158 unsigned long *reserve_addr
,
159 unsigned long *reserve_size
,
160 unsigned long dram_base
,
161 efi_loaded_image_t
*image
);
163 * EFI entry point for the arm/arm64 EFI stubs. This is the entrypoint
164 * that is described in the PE/COFF header. Most of the code is the same
165 * for both archictectures, with the arch-specific code provided in the
166 * handle_kernel_image() function.
168 unsigned long efi_entry(void *handle
, efi_system_table_t
*sys_table
,
169 unsigned long *image_addr
)
171 efi_loaded_image_t
*image
;
173 unsigned long image_size
= 0;
174 unsigned long dram_base
;
175 /* addr/point and size pairs for memory management*/
176 unsigned long initrd_addr
;
178 unsigned long fdt_addr
= 0; /* Original DTB */
179 unsigned long fdt_size
= 0;
180 char *cmdline_ptr
= NULL
;
181 int cmdline_size
= 0;
182 unsigned long new_fdt_addr
;
183 efi_guid_t loaded_image_proto
= LOADED_IMAGE_PROTOCOL_GUID
;
184 unsigned long reserve_addr
= 0;
185 unsigned long reserve_size
= 0;
187 /* Check if we were booted by the EFI firmware */
188 if (sys_table
->hdr
.signature
!= EFI_SYSTEM_TABLE_SIGNATURE
)
191 pr_efi(sys_table
, "Booting Linux Kernel...\n");
194 * Get a handle to the loaded image protocol. This is used to get
195 * information about the running image, such as size and the command
198 status
= sys_table
->boottime
->handle_protocol(handle
,
199 &loaded_image_proto
, (void *)&image
);
200 if (status
!= EFI_SUCCESS
) {
201 pr_efi_err(sys_table
, "Failed to get loaded image protocol\n");
205 dram_base
= get_dram_base(sys_table
);
206 if (dram_base
== EFI_ERROR
) {
207 pr_efi_err(sys_table
, "Failed to find DRAM base\n");
210 status
= handle_kernel_image(sys_table
, image_addr
, &image_size
,
214 if (status
!= EFI_SUCCESS
) {
215 pr_efi_err(sys_table
, "Failed to relocate kernel\n");
220 * Get the command line from EFI, using the LOADED_IMAGE
221 * protocol. We are going to copy the command line into the
222 * device tree, so this can be allocated anywhere.
224 cmdline_ptr
= efi_convert_cmdline(sys_table
, image
, &cmdline_size
);
226 pr_efi_err(sys_table
, "getting command line via LOADED_IMAGE_PROTOCOL\n");
227 goto fail_free_image
;
230 status
= efi_parse_options(cmdline_ptr
);
231 if (status
!= EFI_SUCCESS
)
232 pr_efi_err(sys_table
, "Failed to parse EFI cmdline options\n");
235 * Unauthenticated device tree data is a security hazard, so
236 * ignore 'dtb=' unless UEFI Secure Boot is disabled.
238 if (efi_secureboot_enabled(sys_table
)) {
239 pr_efi(sys_table
, "UEFI Secure Boot is enabled.\n");
241 status
= handle_cmdline_files(sys_table
, image
, cmdline_ptr
,
243 ~0UL, &fdt_addr
, &fdt_size
);
245 if (status
!= EFI_SUCCESS
) {
246 pr_efi_err(sys_table
, "Failed to load device tree!\n");
247 goto fail_free_cmdline
;
252 pr_efi(sys_table
, "Using DTB from command line\n");
254 /* Look for a device tree configuration table entry. */
255 fdt_addr
= (uintptr_t)get_fdt(sys_table
, &fdt_size
);
257 pr_efi(sys_table
, "Using DTB from configuration table\n");
261 pr_efi(sys_table
, "Generating empty DTB\n");
263 status
= handle_cmdline_files(sys_table
, image
, cmdline_ptr
,
264 "initrd=", dram_base
+ SZ_512M
,
265 (unsigned long *)&initrd_addr
,
266 (unsigned long *)&initrd_size
);
267 if (status
!= EFI_SUCCESS
)
268 pr_efi_err(sys_table
, "Failed initrd from command line!\n");
270 new_fdt_addr
= fdt_addr
;
271 status
= allocate_new_fdt_and_exit_boot(sys_table
, handle
,
272 &new_fdt_addr
, dram_base
+ MAX_FDT_OFFSET
,
273 initrd_addr
, initrd_size
, cmdline_ptr
,
277 * If all went well, we need to return the FDT address to the
278 * calling function so it can be passed to kernel as part of
279 * the kernel boot protocol.
281 if (status
== EFI_SUCCESS
)
284 pr_efi_err(sys_table
, "Failed to update FDT and exit boot services\n");
286 efi_free(sys_table
, initrd_size
, initrd_addr
);
287 efi_free(sys_table
, fdt_size
, fdt_addr
);
290 efi_free(sys_table
, cmdline_size
, (unsigned long)cmdline_ptr
);
293 efi_free(sys_table
, image_size
, *image_addr
);
294 efi_free(sys_table
, reserve_size
, reserve_addr
);
300 * This is the base address at which to start allocating virtual memory ranges
301 * for UEFI Runtime Services. This is in the low TTBR0 range so that we can use
302 * any allocation we choose, and eliminate the risk of a conflict after kexec.
303 * The value chosen is the largest non-zero power of 2 suitable for this purpose
304 * both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can
305 * be mapped efficiently.
307 #define EFI_RT_VIRTUAL_BASE 0x40000000
309 static int cmp_mem_desc(const void *l
, const void *r
)
311 const efi_memory_desc_t
*left
= l
, *right
= r
;
313 return (left
->phys_addr
> right
->phys_addr
) ? 1 : -1;
317 * Returns whether region @left ends exactly where region @right starts,
318 * or false if either argument is NULL.
320 static bool regions_are_adjacent(efi_memory_desc_t
*left
,
321 efi_memory_desc_t
*right
)
325 if (left
== NULL
|| right
== NULL
)
328 left_end
= left
->phys_addr
+ left
->num_pages
* EFI_PAGE_SIZE
;
330 return left_end
== right
->phys_addr
;
334 * Returns whether region @left and region @right have compatible memory type
335 * mapping attributes, and are both EFI_MEMORY_RUNTIME regions.
337 static bool regions_have_compatible_memory_type_attrs(efi_memory_desc_t
*left
,
338 efi_memory_desc_t
*right
)
340 static const u64 mem_type_mask
= EFI_MEMORY_WB
| EFI_MEMORY_WT
|
341 EFI_MEMORY_WC
| EFI_MEMORY_UC
|
344 return ((left
->attribute
^ right
->attribute
) & mem_type_mask
) == 0;
348 * efi_get_virtmap() - create a virtual mapping for the EFI memory map
350 * This function populates the virt_addr fields of all memory region descriptors
351 * in @memory_map whose EFI_MEMORY_RUNTIME attribute is set. Those descriptors
352 * are also copied to @runtime_map, and their total count is returned in @count.
354 void efi_get_virtmap(efi_memory_desc_t
*memory_map
, unsigned long map_size
,
355 unsigned long desc_size
, efi_memory_desc_t
*runtime_map
,
358 u64 efi_virt_base
= EFI_RT_VIRTUAL_BASE
;
359 efi_memory_desc_t
*in
, *prev
= NULL
, *out
= runtime_map
;
363 * To work around potential issues with the Properties Table feature
364 * introduced in UEFI 2.5, which may split PE/COFF executable images
365 * in memory into several RuntimeServicesCode and RuntimeServicesData
366 * regions, we need to preserve the relative offsets between adjacent
367 * EFI_MEMORY_RUNTIME regions with the same memory type attributes.
368 * The easiest way to find adjacent regions is to sort the memory map
369 * before traversing it.
371 sort(memory_map
, map_size
/ desc_size
, desc_size
, cmp_mem_desc
, NULL
);
373 for (l
= 0; l
< map_size
; l
+= desc_size
, prev
= in
) {
376 in
= (void *)memory_map
+ l
;
377 if (!(in
->attribute
& EFI_MEMORY_RUNTIME
))
380 paddr
= in
->phys_addr
;
381 size
= in
->num_pages
* EFI_PAGE_SIZE
;
384 * Make the mapping compatible with 64k pages: this allows
385 * a 4k page size kernel to kexec a 64k page size kernel and
388 if (!regions_are_adjacent(prev
, in
) ||
389 !regions_have_compatible_memory_type_attrs(prev
, in
)) {
391 paddr
= round_down(in
->phys_addr
, SZ_64K
);
392 size
+= in
->phys_addr
- paddr
;
395 * Avoid wasting memory on PTEs by choosing a virtual
396 * base that is compatible with section mappings if this
397 * region has the appropriate size and physical
398 * alignment. (Sections are 2 MB on 4k granule kernels)
400 if (IS_ALIGNED(in
->phys_addr
, SZ_2M
) && size
>= SZ_2M
)
401 efi_virt_base
= round_up(efi_virt_base
, SZ_2M
);
403 efi_virt_base
= round_up(efi_virt_base
, SZ_64K
);
406 in
->virt_addr
= efi_virt_base
+ in
->phys_addr
- paddr
;
407 efi_virt_base
+= size
;
409 memcpy(out
, in
, desc_size
);
410 out
= (void *)out
+ desc_size
;