dm thin metadata: fix __udivdi3 undefined on 32-bit
[linux/fpc-iii.git] / drivers / hv / vmbus_drv.c
blob802dcb409030806e99a10d77e7a3692135617168
1 /*
2 * Copyright (c) 2009, Microsoft Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 * Authors:
18 * Haiyang Zhang <haiyangz@microsoft.com>
19 * Hank Janssen <hjanssen@microsoft.com>
20 * K. Y. Srinivasan <kys@microsoft.com>
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/interrupt.h>
29 #include <linux/sysctl.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <linux/completion.h>
33 #include <linux/hyperv.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/clockchips.h>
36 #include <linux/cpu.h>
37 #include <asm/hyperv.h>
38 #include <asm/hypervisor.h>
39 #include <asm/mshyperv.h>
40 #include <linux/notifier.h>
41 #include <linux/ptrace.h>
42 #include <linux/screen_info.h>
43 #include <linux/kdebug.h>
44 #include <linux/random.h>
45 #include "hyperv_vmbus.h"
47 static struct acpi_device *hv_acpi_dev;
49 static struct tasklet_struct msg_dpc;
50 static struct completion probe_event;
51 static int irq;
54 static void hyperv_report_panic(struct pt_regs *regs)
56 static bool panic_reported;
59 * We prefer to report panic on 'die' chain as we have proper
60 * registers to report, but if we miss it (e.g. on BUG()) we need
61 * to report it on 'panic'.
63 if (panic_reported)
64 return;
65 panic_reported = true;
67 wrmsrl(HV_X64_MSR_CRASH_P0, regs->ip);
68 wrmsrl(HV_X64_MSR_CRASH_P1, regs->ax);
69 wrmsrl(HV_X64_MSR_CRASH_P2, regs->bx);
70 wrmsrl(HV_X64_MSR_CRASH_P3, regs->cx);
71 wrmsrl(HV_X64_MSR_CRASH_P4, regs->dx);
74 * Let Hyper-V know there is crash data available
76 wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY);
79 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
80 void *args)
82 struct pt_regs *regs;
84 regs = current_pt_regs();
86 hyperv_report_panic(regs);
87 return NOTIFY_DONE;
90 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
91 void *args)
93 struct die_args *die = (struct die_args *)args;
94 struct pt_regs *regs = die->regs;
96 hyperv_report_panic(regs);
97 return NOTIFY_DONE;
100 static struct notifier_block hyperv_die_block = {
101 .notifier_call = hyperv_die_event,
103 static struct notifier_block hyperv_panic_block = {
104 .notifier_call = hyperv_panic_event,
107 struct resource *hyperv_mmio;
108 DEFINE_SEMAPHORE(hyperv_mmio_lock);
110 static int vmbus_exists(void)
112 if (hv_acpi_dev == NULL)
113 return -ENODEV;
115 return 0;
118 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
119 static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
121 int i;
122 for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
123 sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
126 static u8 channel_monitor_group(struct vmbus_channel *channel)
128 return (u8)channel->offermsg.monitorid / 32;
131 static u8 channel_monitor_offset(struct vmbus_channel *channel)
133 return (u8)channel->offermsg.monitorid % 32;
136 static u32 channel_pending(struct vmbus_channel *channel,
137 struct hv_monitor_page *monitor_page)
139 u8 monitor_group = channel_monitor_group(channel);
140 return monitor_page->trigger_group[monitor_group].pending;
143 static u32 channel_latency(struct vmbus_channel *channel,
144 struct hv_monitor_page *monitor_page)
146 u8 monitor_group = channel_monitor_group(channel);
147 u8 monitor_offset = channel_monitor_offset(channel);
148 return monitor_page->latency[monitor_group][monitor_offset];
151 static u32 channel_conn_id(struct vmbus_channel *channel,
152 struct hv_monitor_page *monitor_page)
154 u8 monitor_group = channel_monitor_group(channel);
155 u8 monitor_offset = channel_monitor_offset(channel);
156 return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
159 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
160 char *buf)
162 struct hv_device *hv_dev = device_to_hv_device(dev);
164 if (!hv_dev->channel)
165 return -ENODEV;
166 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
168 static DEVICE_ATTR_RO(id);
170 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
171 char *buf)
173 struct hv_device *hv_dev = device_to_hv_device(dev);
175 if (!hv_dev->channel)
176 return -ENODEV;
177 return sprintf(buf, "%d\n", hv_dev->channel->state);
179 static DEVICE_ATTR_RO(state);
181 static ssize_t monitor_id_show(struct device *dev,
182 struct device_attribute *dev_attr, char *buf)
184 struct hv_device *hv_dev = device_to_hv_device(dev);
186 if (!hv_dev->channel)
187 return -ENODEV;
188 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
190 static DEVICE_ATTR_RO(monitor_id);
192 static ssize_t class_id_show(struct device *dev,
193 struct device_attribute *dev_attr, char *buf)
195 struct hv_device *hv_dev = device_to_hv_device(dev);
197 if (!hv_dev->channel)
198 return -ENODEV;
199 return sprintf(buf, "{%pUl}\n",
200 hv_dev->channel->offermsg.offer.if_type.b);
202 static DEVICE_ATTR_RO(class_id);
204 static ssize_t device_id_show(struct device *dev,
205 struct device_attribute *dev_attr, char *buf)
207 struct hv_device *hv_dev = device_to_hv_device(dev);
209 if (!hv_dev->channel)
210 return -ENODEV;
211 return sprintf(buf, "{%pUl}\n",
212 hv_dev->channel->offermsg.offer.if_instance.b);
214 static DEVICE_ATTR_RO(device_id);
216 static ssize_t modalias_show(struct device *dev,
217 struct device_attribute *dev_attr, char *buf)
219 struct hv_device *hv_dev = device_to_hv_device(dev);
220 char alias_name[VMBUS_ALIAS_LEN + 1];
222 print_alias_name(hv_dev, alias_name);
223 return sprintf(buf, "vmbus:%s\n", alias_name);
225 static DEVICE_ATTR_RO(modalias);
227 static ssize_t server_monitor_pending_show(struct device *dev,
228 struct device_attribute *dev_attr,
229 char *buf)
231 struct hv_device *hv_dev = device_to_hv_device(dev);
233 if (!hv_dev->channel)
234 return -ENODEV;
235 return sprintf(buf, "%d\n",
236 channel_pending(hv_dev->channel,
237 vmbus_connection.monitor_pages[1]));
239 static DEVICE_ATTR_RO(server_monitor_pending);
241 static ssize_t client_monitor_pending_show(struct device *dev,
242 struct device_attribute *dev_attr,
243 char *buf)
245 struct hv_device *hv_dev = device_to_hv_device(dev);
247 if (!hv_dev->channel)
248 return -ENODEV;
249 return sprintf(buf, "%d\n",
250 channel_pending(hv_dev->channel,
251 vmbus_connection.monitor_pages[1]));
253 static DEVICE_ATTR_RO(client_monitor_pending);
255 static ssize_t server_monitor_latency_show(struct device *dev,
256 struct device_attribute *dev_attr,
257 char *buf)
259 struct hv_device *hv_dev = device_to_hv_device(dev);
261 if (!hv_dev->channel)
262 return -ENODEV;
263 return sprintf(buf, "%d\n",
264 channel_latency(hv_dev->channel,
265 vmbus_connection.monitor_pages[0]));
267 static DEVICE_ATTR_RO(server_monitor_latency);
269 static ssize_t client_monitor_latency_show(struct device *dev,
270 struct device_attribute *dev_attr,
271 char *buf)
273 struct hv_device *hv_dev = device_to_hv_device(dev);
275 if (!hv_dev->channel)
276 return -ENODEV;
277 return sprintf(buf, "%d\n",
278 channel_latency(hv_dev->channel,
279 vmbus_connection.monitor_pages[1]));
281 static DEVICE_ATTR_RO(client_monitor_latency);
283 static ssize_t server_monitor_conn_id_show(struct device *dev,
284 struct device_attribute *dev_attr,
285 char *buf)
287 struct hv_device *hv_dev = device_to_hv_device(dev);
289 if (!hv_dev->channel)
290 return -ENODEV;
291 return sprintf(buf, "%d\n",
292 channel_conn_id(hv_dev->channel,
293 vmbus_connection.monitor_pages[0]));
295 static DEVICE_ATTR_RO(server_monitor_conn_id);
297 static ssize_t client_monitor_conn_id_show(struct device *dev,
298 struct device_attribute *dev_attr,
299 char *buf)
301 struct hv_device *hv_dev = device_to_hv_device(dev);
303 if (!hv_dev->channel)
304 return -ENODEV;
305 return sprintf(buf, "%d\n",
306 channel_conn_id(hv_dev->channel,
307 vmbus_connection.monitor_pages[1]));
309 static DEVICE_ATTR_RO(client_monitor_conn_id);
311 static ssize_t out_intr_mask_show(struct device *dev,
312 struct device_attribute *dev_attr, char *buf)
314 struct hv_device *hv_dev = device_to_hv_device(dev);
315 struct hv_ring_buffer_debug_info outbound;
317 if (!hv_dev->channel)
318 return -ENODEV;
319 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
320 return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
322 static DEVICE_ATTR_RO(out_intr_mask);
324 static ssize_t out_read_index_show(struct device *dev,
325 struct device_attribute *dev_attr, char *buf)
327 struct hv_device *hv_dev = device_to_hv_device(dev);
328 struct hv_ring_buffer_debug_info outbound;
330 if (!hv_dev->channel)
331 return -ENODEV;
332 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
333 return sprintf(buf, "%d\n", outbound.current_read_index);
335 static DEVICE_ATTR_RO(out_read_index);
337 static ssize_t out_write_index_show(struct device *dev,
338 struct device_attribute *dev_attr,
339 char *buf)
341 struct hv_device *hv_dev = device_to_hv_device(dev);
342 struct hv_ring_buffer_debug_info outbound;
344 if (!hv_dev->channel)
345 return -ENODEV;
346 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
347 return sprintf(buf, "%d\n", outbound.current_write_index);
349 static DEVICE_ATTR_RO(out_write_index);
351 static ssize_t out_read_bytes_avail_show(struct device *dev,
352 struct device_attribute *dev_attr,
353 char *buf)
355 struct hv_device *hv_dev = device_to_hv_device(dev);
356 struct hv_ring_buffer_debug_info outbound;
358 if (!hv_dev->channel)
359 return -ENODEV;
360 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
361 return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
363 static DEVICE_ATTR_RO(out_read_bytes_avail);
365 static ssize_t out_write_bytes_avail_show(struct device *dev,
366 struct device_attribute *dev_attr,
367 char *buf)
369 struct hv_device *hv_dev = device_to_hv_device(dev);
370 struct hv_ring_buffer_debug_info outbound;
372 if (!hv_dev->channel)
373 return -ENODEV;
374 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
375 return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
377 static DEVICE_ATTR_RO(out_write_bytes_avail);
379 static ssize_t in_intr_mask_show(struct device *dev,
380 struct device_attribute *dev_attr, char *buf)
382 struct hv_device *hv_dev = device_to_hv_device(dev);
383 struct hv_ring_buffer_debug_info inbound;
385 if (!hv_dev->channel)
386 return -ENODEV;
387 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
388 return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
390 static DEVICE_ATTR_RO(in_intr_mask);
392 static ssize_t in_read_index_show(struct device *dev,
393 struct device_attribute *dev_attr, char *buf)
395 struct hv_device *hv_dev = device_to_hv_device(dev);
396 struct hv_ring_buffer_debug_info inbound;
398 if (!hv_dev->channel)
399 return -ENODEV;
400 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
401 return sprintf(buf, "%d\n", inbound.current_read_index);
403 static DEVICE_ATTR_RO(in_read_index);
405 static ssize_t in_write_index_show(struct device *dev,
406 struct device_attribute *dev_attr, char *buf)
408 struct hv_device *hv_dev = device_to_hv_device(dev);
409 struct hv_ring_buffer_debug_info inbound;
411 if (!hv_dev->channel)
412 return -ENODEV;
413 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
414 return sprintf(buf, "%d\n", inbound.current_write_index);
416 static DEVICE_ATTR_RO(in_write_index);
418 static ssize_t in_read_bytes_avail_show(struct device *dev,
419 struct device_attribute *dev_attr,
420 char *buf)
422 struct hv_device *hv_dev = device_to_hv_device(dev);
423 struct hv_ring_buffer_debug_info inbound;
425 if (!hv_dev->channel)
426 return -ENODEV;
427 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
428 return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
430 static DEVICE_ATTR_RO(in_read_bytes_avail);
432 static ssize_t in_write_bytes_avail_show(struct device *dev,
433 struct device_attribute *dev_attr,
434 char *buf)
436 struct hv_device *hv_dev = device_to_hv_device(dev);
437 struct hv_ring_buffer_debug_info inbound;
439 if (!hv_dev->channel)
440 return -ENODEV;
441 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
442 return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
444 static DEVICE_ATTR_RO(in_write_bytes_avail);
446 static ssize_t channel_vp_mapping_show(struct device *dev,
447 struct device_attribute *dev_attr,
448 char *buf)
450 struct hv_device *hv_dev = device_to_hv_device(dev);
451 struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
452 unsigned long flags;
453 int buf_size = PAGE_SIZE, n_written, tot_written;
454 struct list_head *cur;
456 if (!channel)
457 return -ENODEV;
459 tot_written = snprintf(buf, buf_size, "%u:%u\n",
460 channel->offermsg.child_relid, channel->target_cpu);
462 spin_lock_irqsave(&channel->lock, flags);
464 list_for_each(cur, &channel->sc_list) {
465 if (tot_written >= buf_size - 1)
466 break;
468 cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
469 n_written = scnprintf(buf + tot_written,
470 buf_size - tot_written,
471 "%u:%u\n",
472 cur_sc->offermsg.child_relid,
473 cur_sc->target_cpu);
474 tot_written += n_written;
477 spin_unlock_irqrestore(&channel->lock, flags);
479 return tot_written;
481 static DEVICE_ATTR_RO(channel_vp_mapping);
483 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
484 static struct attribute *vmbus_attrs[] = {
485 &dev_attr_id.attr,
486 &dev_attr_state.attr,
487 &dev_attr_monitor_id.attr,
488 &dev_attr_class_id.attr,
489 &dev_attr_device_id.attr,
490 &dev_attr_modalias.attr,
491 &dev_attr_server_monitor_pending.attr,
492 &dev_attr_client_monitor_pending.attr,
493 &dev_attr_server_monitor_latency.attr,
494 &dev_attr_client_monitor_latency.attr,
495 &dev_attr_server_monitor_conn_id.attr,
496 &dev_attr_client_monitor_conn_id.attr,
497 &dev_attr_out_intr_mask.attr,
498 &dev_attr_out_read_index.attr,
499 &dev_attr_out_write_index.attr,
500 &dev_attr_out_read_bytes_avail.attr,
501 &dev_attr_out_write_bytes_avail.attr,
502 &dev_attr_in_intr_mask.attr,
503 &dev_attr_in_read_index.attr,
504 &dev_attr_in_write_index.attr,
505 &dev_attr_in_read_bytes_avail.attr,
506 &dev_attr_in_write_bytes_avail.attr,
507 &dev_attr_channel_vp_mapping.attr,
508 NULL,
510 ATTRIBUTE_GROUPS(vmbus);
513 * vmbus_uevent - add uevent for our device
515 * This routine is invoked when a device is added or removed on the vmbus to
516 * generate a uevent to udev in the userspace. The udev will then look at its
517 * rule and the uevent generated here to load the appropriate driver
519 * The alias string will be of the form vmbus:guid where guid is the string
520 * representation of the device guid (each byte of the guid will be
521 * represented with two hex characters.
523 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
525 struct hv_device *dev = device_to_hv_device(device);
526 int ret;
527 char alias_name[VMBUS_ALIAS_LEN + 1];
529 print_alias_name(dev, alias_name);
530 ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
531 return ret;
534 static const uuid_le null_guid;
536 static inline bool is_null_guid(const __u8 *guid)
538 if (memcmp(guid, &null_guid, sizeof(uuid_le)))
539 return false;
540 return true;
544 * Return a matching hv_vmbus_device_id pointer.
545 * If there is no match, return NULL.
547 static const struct hv_vmbus_device_id *hv_vmbus_get_id(
548 const struct hv_vmbus_device_id *id,
549 const __u8 *guid)
551 for (; !is_null_guid(id->guid); id++)
552 if (!memcmp(&id->guid, guid, sizeof(uuid_le)))
553 return id;
555 return NULL;
561 * vmbus_match - Attempt to match the specified device to the specified driver
563 static int vmbus_match(struct device *device, struct device_driver *driver)
565 struct hv_driver *drv = drv_to_hv_drv(driver);
566 struct hv_device *hv_dev = device_to_hv_device(device);
568 if (hv_vmbus_get_id(drv->id_table, hv_dev->dev_type.b))
569 return 1;
571 return 0;
575 * vmbus_probe - Add the new vmbus's child device
577 static int vmbus_probe(struct device *child_device)
579 int ret = 0;
580 struct hv_driver *drv =
581 drv_to_hv_drv(child_device->driver);
582 struct hv_device *dev = device_to_hv_device(child_device);
583 const struct hv_vmbus_device_id *dev_id;
585 dev_id = hv_vmbus_get_id(drv->id_table, dev->dev_type.b);
586 if (drv->probe) {
587 ret = drv->probe(dev, dev_id);
588 if (ret != 0)
589 pr_err("probe failed for device %s (%d)\n",
590 dev_name(child_device), ret);
592 } else {
593 pr_err("probe not set for driver %s\n",
594 dev_name(child_device));
595 ret = -ENODEV;
597 return ret;
601 * vmbus_remove - Remove a vmbus device
603 static int vmbus_remove(struct device *child_device)
605 struct hv_driver *drv;
606 struct hv_device *dev = device_to_hv_device(child_device);
608 if (child_device->driver) {
609 drv = drv_to_hv_drv(child_device->driver);
610 if (drv->remove)
611 drv->remove(dev);
614 return 0;
619 * vmbus_shutdown - Shutdown a vmbus device
621 static void vmbus_shutdown(struct device *child_device)
623 struct hv_driver *drv;
624 struct hv_device *dev = device_to_hv_device(child_device);
627 /* The device may not be attached yet */
628 if (!child_device->driver)
629 return;
631 drv = drv_to_hv_drv(child_device->driver);
633 if (drv->shutdown)
634 drv->shutdown(dev);
636 return;
641 * vmbus_device_release - Final callback release of the vmbus child device
643 static void vmbus_device_release(struct device *device)
645 struct hv_device *hv_dev = device_to_hv_device(device);
646 struct vmbus_channel *channel = hv_dev->channel;
648 hv_process_channel_removal(channel,
649 channel->offermsg.child_relid);
650 kfree(hv_dev);
654 /* The one and only one */
655 static struct bus_type hv_bus = {
656 .name = "vmbus",
657 .match = vmbus_match,
658 .shutdown = vmbus_shutdown,
659 .remove = vmbus_remove,
660 .probe = vmbus_probe,
661 .uevent = vmbus_uevent,
662 .dev_groups = vmbus_groups,
665 struct onmessage_work_context {
666 struct work_struct work;
667 struct hv_message msg;
670 static void vmbus_onmessage_work(struct work_struct *work)
672 struct onmessage_work_context *ctx;
674 /* Do not process messages if we're in DISCONNECTED state */
675 if (vmbus_connection.conn_state == DISCONNECTED)
676 return;
678 ctx = container_of(work, struct onmessage_work_context,
679 work);
680 vmbus_onmessage(&ctx->msg);
681 kfree(ctx);
684 static void hv_process_timer_expiration(struct hv_message *msg, int cpu)
686 struct clock_event_device *dev = hv_context.clk_evt[cpu];
688 if (dev->event_handler)
689 dev->event_handler(dev);
691 msg->header.message_type = HVMSG_NONE;
694 * Make sure the write to MessageType (ie set to
695 * HVMSG_NONE) happens before we read the
696 * MessagePending and EOMing. Otherwise, the EOMing
697 * will not deliver any more messages since there is
698 * no empty slot
700 mb();
702 if (msg->header.message_flags.msg_pending) {
704 * This will cause message queue rescan to
705 * possibly deliver another msg from the
706 * hypervisor
708 wrmsrl(HV_X64_MSR_EOM, 0);
712 static void vmbus_on_msg_dpc(unsigned long data)
714 int cpu = smp_processor_id();
715 void *page_addr = hv_context.synic_message_page[cpu];
716 struct hv_message *msg = (struct hv_message *)page_addr +
717 VMBUS_MESSAGE_SINT;
718 struct vmbus_channel_message_header *hdr;
719 struct vmbus_channel_message_table_entry *entry;
720 struct onmessage_work_context *ctx;
722 while (1) {
723 if (msg->header.message_type == HVMSG_NONE)
724 /* no msg */
725 break;
727 hdr = (struct vmbus_channel_message_header *)msg->u.payload;
729 if (hdr->msgtype >= CHANNELMSG_COUNT) {
730 WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
731 goto msg_handled;
734 entry = &channel_message_table[hdr->msgtype];
735 if (entry->handler_type == VMHT_BLOCKING) {
736 ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
737 if (ctx == NULL)
738 continue;
740 INIT_WORK(&ctx->work, vmbus_onmessage_work);
741 memcpy(&ctx->msg, msg, sizeof(*msg));
743 queue_work(vmbus_connection.work_queue, &ctx->work);
744 } else
745 entry->message_handler(hdr);
747 msg_handled:
748 msg->header.message_type = HVMSG_NONE;
751 * Make sure the write to MessageType (ie set to
752 * HVMSG_NONE) happens before we read the
753 * MessagePending and EOMing. Otherwise, the EOMing
754 * will not deliver any more messages since there is
755 * no empty slot
757 mb();
759 if (msg->header.message_flags.msg_pending) {
761 * This will cause message queue rescan to
762 * possibly deliver another msg from the
763 * hypervisor
765 wrmsrl(HV_X64_MSR_EOM, 0);
770 static void vmbus_isr(void)
772 int cpu = smp_processor_id();
773 void *page_addr;
774 struct hv_message *msg;
775 union hv_synic_event_flags *event;
776 bool handled = false;
778 page_addr = hv_context.synic_event_page[cpu];
779 if (page_addr == NULL)
780 return;
782 event = (union hv_synic_event_flags *)page_addr +
783 VMBUS_MESSAGE_SINT;
785 * Check for events before checking for messages. This is the order
786 * in which events and messages are checked in Windows guests on
787 * Hyper-V, and the Windows team suggested we do the same.
790 if ((vmbus_proto_version == VERSION_WS2008) ||
791 (vmbus_proto_version == VERSION_WIN7)) {
793 /* Since we are a child, we only need to check bit 0 */
794 if (sync_test_and_clear_bit(0,
795 (unsigned long *) &event->flags32[0])) {
796 handled = true;
798 } else {
800 * Our host is win8 or above. The signaling mechanism
801 * has changed and we can directly look at the event page.
802 * If bit n is set then we have an interrup on the channel
803 * whose id is n.
805 handled = true;
808 if (handled)
809 tasklet_schedule(hv_context.event_dpc[cpu]);
812 page_addr = hv_context.synic_message_page[cpu];
813 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
815 /* Check if there are actual msgs to be processed */
816 if (msg->header.message_type != HVMSG_NONE) {
817 if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
818 hv_process_timer_expiration(msg, cpu);
819 else
820 tasklet_schedule(&msg_dpc);
823 add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
828 * vmbus_bus_init -Main vmbus driver initialization routine.
830 * Here, we
831 * - initialize the vmbus driver context
832 * - invoke the vmbus hv main init routine
833 * - get the irq resource
834 * - retrieve the channel offers
836 static int vmbus_bus_init(int irq)
838 int ret;
840 /* Hypervisor initialization...setup hypercall page..etc */
841 ret = hv_init();
842 if (ret != 0) {
843 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
844 return ret;
847 tasklet_init(&msg_dpc, vmbus_on_msg_dpc, 0);
849 ret = bus_register(&hv_bus);
850 if (ret)
851 goto err_cleanup;
853 hv_setup_vmbus_irq(vmbus_isr);
855 ret = hv_synic_alloc();
856 if (ret)
857 goto err_alloc;
859 * Initialize the per-cpu interrupt state and
860 * connect to the host.
862 on_each_cpu(hv_synic_init, NULL, 1);
863 ret = vmbus_connect();
864 if (ret)
865 goto err_connect;
867 if (vmbus_proto_version > VERSION_WIN7)
868 cpu_hotplug_disable();
871 * Only register if the crash MSRs are available
873 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
874 register_die_notifier(&hyperv_die_block);
875 atomic_notifier_chain_register(&panic_notifier_list,
876 &hyperv_panic_block);
879 vmbus_request_offers();
881 return 0;
883 err_connect:
884 on_each_cpu(hv_synic_cleanup, NULL, 1);
885 err_alloc:
886 hv_synic_free();
887 hv_remove_vmbus_irq();
889 bus_unregister(&hv_bus);
891 err_cleanup:
892 hv_cleanup(false);
894 return ret;
898 * __vmbus_child_driver_register() - Register a vmbus's driver
899 * @hv_driver: Pointer to driver structure you want to register
900 * @owner: owner module of the drv
901 * @mod_name: module name string
903 * Registers the given driver with Linux through the 'driver_register()' call
904 * and sets up the hyper-v vmbus handling for this driver.
905 * It will return the state of the 'driver_register()' call.
908 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
910 int ret;
912 pr_info("registering driver %s\n", hv_driver->name);
914 ret = vmbus_exists();
915 if (ret < 0)
916 return ret;
918 hv_driver->driver.name = hv_driver->name;
919 hv_driver->driver.owner = owner;
920 hv_driver->driver.mod_name = mod_name;
921 hv_driver->driver.bus = &hv_bus;
923 ret = driver_register(&hv_driver->driver);
925 return ret;
927 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
930 * vmbus_driver_unregister() - Unregister a vmbus's driver
931 * @hv_driver: Pointer to driver structure you want to
932 * un-register
934 * Un-register the given driver that was previous registered with a call to
935 * vmbus_driver_register()
937 void vmbus_driver_unregister(struct hv_driver *hv_driver)
939 pr_info("unregistering driver %s\n", hv_driver->name);
941 if (!vmbus_exists())
942 driver_unregister(&hv_driver->driver);
944 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
947 * vmbus_device_create - Creates and registers a new child device
948 * on the vmbus.
950 struct hv_device *vmbus_device_create(const uuid_le *type,
951 const uuid_le *instance,
952 struct vmbus_channel *channel)
954 struct hv_device *child_device_obj;
956 child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
957 if (!child_device_obj) {
958 pr_err("Unable to allocate device object for child device\n");
959 return NULL;
962 child_device_obj->channel = channel;
963 memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le));
964 memcpy(&child_device_obj->dev_instance, instance,
965 sizeof(uuid_le));
968 return child_device_obj;
972 * vmbus_device_register - Register the child device
974 int vmbus_device_register(struct hv_device *child_device_obj)
976 int ret = 0;
978 dev_set_name(&child_device_obj->device, "vmbus_%d",
979 child_device_obj->channel->id);
981 child_device_obj->device.bus = &hv_bus;
982 child_device_obj->device.parent = &hv_acpi_dev->dev;
983 child_device_obj->device.release = vmbus_device_release;
986 * Register with the LDM. This will kick off the driver/device
987 * binding...which will eventually call vmbus_match() and vmbus_probe()
989 ret = device_register(&child_device_obj->device);
991 if (ret)
992 pr_err("Unable to register child device\n");
993 else
994 pr_debug("child device %s registered\n",
995 dev_name(&child_device_obj->device));
997 return ret;
1001 * vmbus_device_unregister - Remove the specified child device
1002 * from the vmbus.
1004 void vmbus_device_unregister(struct hv_device *device_obj)
1006 pr_debug("child device %s unregistered\n",
1007 dev_name(&device_obj->device));
1010 * Kick off the process of unregistering the device.
1011 * This will call vmbus_remove() and eventually vmbus_device_release()
1013 device_unregister(&device_obj->device);
1018 * VMBUS is an acpi enumerated device. Get the information we
1019 * need from DSDT.
1021 #define VTPM_BASE_ADDRESS 0xfed40000
1022 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1024 resource_size_t start = 0;
1025 resource_size_t end = 0;
1026 struct resource *new_res;
1027 struct resource **old_res = &hyperv_mmio;
1028 struct resource **prev_res = NULL;
1030 switch (res->type) {
1031 case ACPI_RESOURCE_TYPE_IRQ:
1032 irq = res->data.irq.interrupts[0];
1033 return AE_OK;
1036 * "Address" descriptors are for bus windows. Ignore
1037 * "memory" descriptors, which are for registers on
1038 * devices.
1040 case ACPI_RESOURCE_TYPE_ADDRESS32:
1041 start = res->data.address32.address.minimum;
1042 end = res->data.address32.address.maximum;
1043 break;
1045 case ACPI_RESOURCE_TYPE_ADDRESS64:
1046 start = res->data.address64.address.minimum;
1047 end = res->data.address64.address.maximum;
1048 break;
1050 default:
1051 /* Unused resource type */
1052 return AE_OK;
1056 * Ignore ranges that are below 1MB, as they're not
1057 * necessary or useful here.
1059 if (end < 0x100000)
1060 return AE_OK;
1062 new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
1063 if (!new_res)
1064 return AE_NO_MEMORY;
1066 /* If this range overlaps the virtual TPM, truncate it. */
1067 if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
1068 end = VTPM_BASE_ADDRESS;
1070 new_res->name = "hyperv mmio";
1071 new_res->flags = IORESOURCE_MEM;
1072 new_res->start = start;
1073 new_res->end = end;
1075 do {
1076 if (!*old_res) {
1077 *old_res = new_res;
1078 break;
1081 if ((*old_res)->end < new_res->start) {
1082 new_res->sibling = *old_res;
1083 if (prev_res)
1084 (*prev_res)->sibling = new_res;
1085 *old_res = new_res;
1086 break;
1089 prev_res = old_res;
1090 old_res = &(*old_res)->sibling;
1092 } while (1);
1094 return AE_OK;
1097 static int vmbus_acpi_remove(struct acpi_device *device)
1099 struct resource *cur_res;
1100 struct resource *next_res;
1102 if (hyperv_mmio) {
1103 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
1104 next_res = cur_res->sibling;
1105 kfree(cur_res);
1109 return 0;
1113 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
1114 * @new: If successful, supplied a pointer to the
1115 * allocated MMIO space.
1116 * @device_obj: Identifies the caller
1117 * @min: Minimum guest physical address of the
1118 * allocation
1119 * @max: Maximum guest physical address
1120 * @size: Size of the range to be allocated
1121 * @align: Alignment of the range to be allocated
1122 * @fb_overlap_ok: Whether this allocation can be allowed
1123 * to overlap the video frame buffer.
1125 * This function walks the resources granted to VMBus by the
1126 * _CRS object in the ACPI namespace underneath the parent
1127 * "bridge" whether that's a root PCI bus in the Generation 1
1128 * case or a Module Device in the Generation 2 case. It then
1129 * attempts to allocate from the global MMIO pool in a way that
1130 * matches the constraints supplied in these parameters and by
1131 * that _CRS.
1133 * Return: 0 on success, -errno on failure
1135 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1136 resource_size_t min, resource_size_t max,
1137 resource_size_t size, resource_size_t align,
1138 bool fb_overlap_ok)
1140 struct resource *iter;
1141 resource_size_t range_min, range_max, start, local_min, local_max;
1142 const char *dev_n = dev_name(&device_obj->device);
1143 u32 fb_end = screen_info.lfb_base + (screen_info.lfb_size << 1);
1144 int i, retval;
1146 retval = -ENXIO;
1147 down(&hyperv_mmio_lock);
1149 for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1150 if ((iter->start >= max) || (iter->end <= min))
1151 continue;
1153 range_min = iter->start;
1154 range_max = iter->end;
1156 /* If this range overlaps the frame buffer, split it into
1157 two tries. */
1158 for (i = 0; i < 2; i++) {
1159 local_min = range_min;
1160 local_max = range_max;
1161 if (fb_overlap_ok || (range_min >= fb_end) ||
1162 (range_max <= screen_info.lfb_base)) {
1163 i++;
1164 } else {
1165 if ((range_min <= screen_info.lfb_base) &&
1166 (range_max >= screen_info.lfb_base)) {
1168 * The frame buffer is in this window,
1169 * so trim this into the part that
1170 * preceeds the frame buffer.
1172 local_max = screen_info.lfb_base - 1;
1173 range_min = fb_end;
1174 } else {
1175 range_min = fb_end;
1176 continue;
1180 start = (local_min + align - 1) & ~(align - 1);
1181 for (; start + size - 1 <= local_max; start += align) {
1182 *new = request_mem_region_exclusive(start, size,
1183 dev_n);
1184 if (*new) {
1185 retval = 0;
1186 goto exit;
1192 exit:
1193 up(&hyperv_mmio_lock);
1194 return retval;
1196 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
1198 static int vmbus_acpi_add(struct acpi_device *device)
1200 acpi_status result;
1201 int ret_val = -ENODEV;
1202 struct acpi_device *ancestor;
1204 hv_acpi_dev = device;
1206 result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1207 vmbus_walk_resources, NULL);
1209 if (ACPI_FAILURE(result))
1210 goto acpi_walk_err;
1212 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
1213 * firmware) is the VMOD that has the mmio ranges. Get that.
1215 for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
1216 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
1217 vmbus_walk_resources, NULL);
1219 if (ACPI_FAILURE(result))
1220 continue;
1221 if (hyperv_mmio)
1222 break;
1224 ret_val = 0;
1226 acpi_walk_err:
1227 complete(&probe_event);
1228 if (ret_val)
1229 vmbus_acpi_remove(device);
1230 return ret_val;
1233 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
1234 {"VMBUS", 0},
1235 {"VMBus", 0},
1236 {"", 0},
1238 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
1240 static struct acpi_driver vmbus_acpi_driver = {
1241 .name = "vmbus",
1242 .ids = vmbus_acpi_device_ids,
1243 .ops = {
1244 .add = vmbus_acpi_add,
1245 .remove = vmbus_acpi_remove,
1249 static void hv_kexec_handler(void)
1251 int cpu;
1253 hv_synic_clockevents_cleanup();
1254 vmbus_initiate_unload();
1255 for_each_online_cpu(cpu)
1256 smp_call_function_single(cpu, hv_synic_cleanup, NULL, 1);
1257 hv_cleanup(false);
1260 static void hv_crash_handler(struct pt_regs *regs)
1262 vmbus_initiate_unload();
1264 * In crash handler we can't schedule synic cleanup for all CPUs,
1265 * doing the cleanup for current CPU only. This should be sufficient
1266 * for kdump.
1268 hv_synic_cleanup(NULL);
1269 hv_cleanup(true);
1272 static int __init hv_acpi_init(void)
1274 int ret, t;
1276 if (x86_hyper != &x86_hyper_ms_hyperv)
1277 return -ENODEV;
1279 init_completion(&probe_event);
1282 * Get irq resources first.
1284 ret = acpi_bus_register_driver(&vmbus_acpi_driver);
1286 if (ret)
1287 return ret;
1289 t = wait_for_completion_timeout(&probe_event, 5*HZ);
1290 if (t == 0) {
1291 ret = -ETIMEDOUT;
1292 goto cleanup;
1295 if (irq <= 0) {
1296 ret = -ENODEV;
1297 goto cleanup;
1300 ret = vmbus_bus_init(irq);
1301 if (ret)
1302 goto cleanup;
1304 hv_setup_kexec_handler(hv_kexec_handler);
1305 hv_setup_crash_handler(hv_crash_handler);
1307 return 0;
1309 cleanup:
1310 acpi_bus_unregister_driver(&vmbus_acpi_driver);
1311 hv_acpi_dev = NULL;
1312 return ret;
1315 static void __exit vmbus_exit(void)
1317 int cpu;
1319 hv_remove_kexec_handler();
1320 hv_remove_crash_handler();
1321 vmbus_connection.conn_state = DISCONNECTED;
1322 hv_synic_clockevents_cleanup();
1323 vmbus_disconnect();
1324 hv_remove_vmbus_irq();
1325 tasklet_kill(&msg_dpc);
1326 vmbus_free_channels();
1327 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1328 unregister_die_notifier(&hyperv_die_block);
1329 atomic_notifier_chain_unregister(&panic_notifier_list,
1330 &hyperv_panic_block);
1332 bus_unregister(&hv_bus);
1333 hv_cleanup(false);
1334 for_each_online_cpu(cpu) {
1335 tasklet_kill(hv_context.event_dpc[cpu]);
1336 smp_call_function_single(cpu, hv_synic_cleanup, NULL, 1);
1338 hv_synic_free();
1339 acpi_bus_unregister_driver(&vmbus_acpi_driver);
1340 if (vmbus_proto_version > VERSION_WIN7)
1341 cpu_hotplug_enable();
1345 MODULE_LICENSE("GPL");
1347 subsys_initcall(hv_acpi_init);
1348 module_exit(vmbus_exit);