2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <jroedel@suse.de>
4 * Leo Duran <leo.duran@amd.com>
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include <linux/ratelimit.h>
21 #include <linux/pci.h>
22 #include <linux/pci-ats.h>
23 #include <linux/bitmap.h>
24 #include <linux/slab.h>
25 #include <linux/debugfs.h>
26 #include <linux/scatterlist.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/iommu-helper.h>
29 #include <linux/iommu.h>
30 #include <linux/delay.h>
31 #include <linux/amd-iommu.h>
32 #include <linux/notifier.h>
33 #include <linux/export.h>
34 #include <linux/irq.h>
35 #include <linux/msi.h>
36 #include <linux/dma-contiguous.h>
37 #include <linux/irqdomain.h>
38 #include <asm/irq_remapping.h>
39 #include <asm/io_apic.h>
41 #include <asm/hw_irq.h>
42 #include <asm/msidef.h>
43 #include <asm/proto.h>
44 #include <asm/iommu.h>
48 #include "amd_iommu_proto.h"
49 #include "amd_iommu_types.h"
50 #include "irq_remapping.h"
52 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
54 #define LOOP_TIMEOUT 100000
57 * This bitmap is used to advertise the page sizes our hardware support
58 * to the IOMMU core, which will then use this information to split
59 * physically contiguous memory regions it is mapping into page sizes
62 * 512GB Pages are not supported due to a hardware bug
64 #define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
66 static DEFINE_RWLOCK(amd_iommu_devtable_lock
);
68 /* List of all available dev_data structures */
69 static LIST_HEAD(dev_data_list
);
70 static DEFINE_SPINLOCK(dev_data_list_lock
);
72 LIST_HEAD(ioapic_map
);
76 * Domain for untranslated devices - only allocated
77 * if iommu=pt passed on kernel cmd line.
79 static const struct iommu_ops amd_iommu_ops
;
81 static ATOMIC_NOTIFIER_HEAD(ppr_notifier
);
82 int amd_iommu_max_glx_val
= -1;
84 static struct dma_map_ops amd_iommu_dma_ops
;
87 * This struct contains device specific data for the IOMMU
89 struct iommu_dev_data
{
90 struct list_head list
; /* For domain->dev_list */
91 struct list_head dev_data_list
; /* For global dev_data_list */
92 struct protection_domain
*domain
; /* Domain the device is bound to */
93 u16 devid
; /* PCI Device ID */
94 u16 alias
; /* Alias Device ID */
95 bool iommu_v2
; /* Device can make use of IOMMUv2 */
96 bool passthrough
; /* Device is identity mapped */
100 } ats
; /* ATS state */
101 bool pri_tlp
; /* PASID TLB required for
103 u32 errata
; /* Bitmap for errata to apply */
107 * general struct to manage commands send to an IOMMU
113 struct kmem_cache
*amd_iommu_irq_cache
;
115 static void update_domain(struct protection_domain
*domain
);
116 static int protection_domain_init(struct protection_domain
*domain
);
118 /****************************************************************************
122 ****************************************************************************/
124 static struct protection_domain
*to_pdomain(struct iommu_domain
*dom
)
126 return container_of(dom
, struct protection_domain
, domain
);
129 static inline u16
get_device_id(struct device
*dev
)
131 struct pci_dev
*pdev
= to_pci_dev(dev
);
133 return PCI_DEVID(pdev
->bus
->number
, pdev
->devfn
);
136 static struct iommu_dev_data
*alloc_dev_data(u16 devid
)
138 struct iommu_dev_data
*dev_data
;
141 dev_data
= kzalloc(sizeof(*dev_data
), GFP_KERNEL
);
145 dev_data
->devid
= devid
;
147 spin_lock_irqsave(&dev_data_list_lock
, flags
);
148 list_add_tail(&dev_data
->dev_data_list
, &dev_data_list
);
149 spin_unlock_irqrestore(&dev_data_list_lock
, flags
);
154 static struct iommu_dev_data
*search_dev_data(u16 devid
)
156 struct iommu_dev_data
*dev_data
;
159 spin_lock_irqsave(&dev_data_list_lock
, flags
);
160 list_for_each_entry(dev_data
, &dev_data_list
, dev_data_list
) {
161 if (dev_data
->devid
== devid
)
168 spin_unlock_irqrestore(&dev_data_list_lock
, flags
);
173 static int __last_alias(struct pci_dev
*pdev
, u16 alias
, void *data
)
175 *(u16
*)data
= alias
;
179 static u16
get_alias(struct device
*dev
)
181 struct pci_dev
*pdev
= to_pci_dev(dev
);
182 u16 devid
, ivrs_alias
, pci_alias
;
184 devid
= get_device_id(dev
);
185 ivrs_alias
= amd_iommu_alias_table
[devid
];
186 pci_for_each_dma_alias(pdev
, __last_alias
, &pci_alias
);
188 if (ivrs_alias
== pci_alias
)
194 * The IVRS is fairly reliable in telling us about aliases, but it
195 * can't know about every screwy device. If we don't have an IVRS
196 * reported alias, use the PCI reported alias. In that case we may
197 * still need to initialize the rlookup and dev_table entries if the
198 * alias is to a non-existent device.
200 if (ivrs_alias
== devid
) {
201 if (!amd_iommu_rlookup_table
[pci_alias
]) {
202 amd_iommu_rlookup_table
[pci_alias
] =
203 amd_iommu_rlookup_table
[devid
];
204 memcpy(amd_iommu_dev_table
[pci_alias
].data
,
205 amd_iommu_dev_table
[devid
].data
,
206 sizeof(amd_iommu_dev_table
[pci_alias
].data
));
212 pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
213 "for device %s[%04x:%04x], kernel reported alias "
214 "%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias
), PCI_SLOT(ivrs_alias
),
215 PCI_FUNC(ivrs_alias
), dev_name(dev
), pdev
->vendor
, pdev
->device
,
216 PCI_BUS_NUM(pci_alias
), PCI_SLOT(pci_alias
),
217 PCI_FUNC(pci_alias
));
220 * If we don't have a PCI DMA alias and the IVRS alias is on the same
221 * bus, then the IVRS table may know about a quirk that we don't.
223 if (pci_alias
== devid
&&
224 PCI_BUS_NUM(ivrs_alias
) == pdev
->bus
->number
) {
225 pdev
->dev_flags
|= PCI_DEV_FLAGS_DMA_ALIAS_DEVFN
;
226 pdev
->dma_alias_devfn
= ivrs_alias
& 0xff;
227 pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
228 PCI_SLOT(ivrs_alias
), PCI_FUNC(ivrs_alias
),
235 static struct iommu_dev_data
*find_dev_data(u16 devid
)
237 struct iommu_dev_data
*dev_data
;
239 dev_data
= search_dev_data(devid
);
241 if (dev_data
== NULL
)
242 dev_data
= alloc_dev_data(devid
);
247 static struct iommu_dev_data
*get_dev_data(struct device
*dev
)
249 return dev
->archdata
.iommu
;
252 static bool pci_iommuv2_capable(struct pci_dev
*pdev
)
254 static const int caps
[] = {
257 PCI_EXT_CAP_ID_PASID
,
261 for (i
= 0; i
< 3; ++i
) {
262 pos
= pci_find_ext_capability(pdev
, caps
[i
]);
270 static bool pdev_pri_erratum(struct pci_dev
*pdev
, u32 erratum
)
272 struct iommu_dev_data
*dev_data
;
274 dev_data
= get_dev_data(&pdev
->dev
);
276 return dev_data
->errata
& (1 << erratum
) ? true : false;
280 * This function actually applies the mapping to the page table of the
283 static void alloc_unity_mapping(struct dma_ops_domain
*dma_dom
,
284 struct unity_map_entry
*e
)
288 for (addr
= e
->address_start
; addr
< e
->address_end
;
290 if (addr
< dma_dom
->aperture_size
)
291 __set_bit(addr
>> PAGE_SHIFT
,
292 dma_dom
->aperture
[0]->bitmap
);
297 * Inits the unity mappings required for a specific device
299 static void init_unity_mappings_for_device(struct device
*dev
,
300 struct dma_ops_domain
*dma_dom
)
302 struct unity_map_entry
*e
;
305 devid
= get_device_id(dev
);
307 list_for_each_entry(e
, &amd_iommu_unity_map
, list
) {
308 if (!(devid
>= e
->devid_start
&& devid
<= e
->devid_end
))
310 alloc_unity_mapping(dma_dom
, e
);
315 * This function checks if the driver got a valid device from the caller to
316 * avoid dereferencing invalid pointers.
318 static bool check_device(struct device
*dev
)
322 if (!dev
|| !dev
->dma_mask
)
326 if (!dev_is_pci(dev
))
329 devid
= get_device_id(dev
);
331 /* Out of our scope? */
332 if (devid
> amd_iommu_last_bdf
)
335 if (amd_iommu_rlookup_table
[devid
] == NULL
)
341 static void init_iommu_group(struct device
*dev
)
343 struct dma_ops_domain
*dma_domain
;
344 struct iommu_domain
*domain
;
345 struct iommu_group
*group
;
347 group
= iommu_group_get_for_dev(dev
);
351 domain
= iommu_group_default_domain(group
);
355 if (to_pdomain(domain
)->flags
== PD_DMA_OPS_MASK
) {
356 dma_domain
= to_pdomain(domain
)->priv
;
357 init_unity_mappings_for_device(dev
, dma_domain
);
361 iommu_group_put(group
);
364 static int iommu_init_device(struct device
*dev
)
366 struct pci_dev
*pdev
= to_pci_dev(dev
);
367 struct iommu_dev_data
*dev_data
;
369 if (dev
->archdata
.iommu
)
372 dev_data
= find_dev_data(get_device_id(dev
));
376 dev_data
->alias
= get_alias(dev
);
378 if (pci_iommuv2_capable(pdev
)) {
379 struct amd_iommu
*iommu
;
381 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
382 dev_data
->iommu_v2
= iommu
->is_iommu_v2
;
385 dev
->archdata
.iommu
= dev_data
;
387 iommu_device_link(amd_iommu_rlookup_table
[dev_data
->devid
]->iommu_dev
,
393 static void iommu_ignore_device(struct device
*dev
)
397 devid
= get_device_id(dev
);
398 alias
= get_alias(dev
);
400 memset(&amd_iommu_dev_table
[devid
], 0, sizeof(struct dev_table_entry
));
401 memset(&amd_iommu_dev_table
[alias
], 0, sizeof(struct dev_table_entry
));
403 amd_iommu_rlookup_table
[devid
] = NULL
;
404 amd_iommu_rlookup_table
[alias
] = NULL
;
407 static void iommu_uninit_device(struct device
*dev
)
409 struct iommu_dev_data
*dev_data
= search_dev_data(get_device_id(dev
));
414 iommu_device_unlink(amd_iommu_rlookup_table
[dev_data
->devid
]->iommu_dev
,
417 iommu_group_remove_device(dev
);
420 dev
->archdata
.dma_ops
= NULL
;
423 * We keep dev_data around for unplugged devices and reuse it when the
424 * device is re-plugged - not doing so would introduce a ton of races.
428 #ifdef CONFIG_AMD_IOMMU_STATS
431 * Initialization code for statistics collection
434 DECLARE_STATS_COUNTER(compl_wait
);
435 DECLARE_STATS_COUNTER(cnt_map_single
);
436 DECLARE_STATS_COUNTER(cnt_unmap_single
);
437 DECLARE_STATS_COUNTER(cnt_map_sg
);
438 DECLARE_STATS_COUNTER(cnt_unmap_sg
);
439 DECLARE_STATS_COUNTER(cnt_alloc_coherent
);
440 DECLARE_STATS_COUNTER(cnt_free_coherent
);
441 DECLARE_STATS_COUNTER(cross_page
);
442 DECLARE_STATS_COUNTER(domain_flush_single
);
443 DECLARE_STATS_COUNTER(domain_flush_all
);
444 DECLARE_STATS_COUNTER(alloced_io_mem
);
445 DECLARE_STATS_COUNTER(total_map_requests
);
446 DECLARE_STATS_COUNTER(complete_ppr
);
447 DECLARE_STATS_COUNTER(invalidate_iotlb
);
448 DECLARE_STATS_COUNTER(invalidate_iotlb_all
);
449 DECLARE_STATS_COUNTER(pri_requests
);
451 static struct dentry
*stats_dir
;
452 static struct dentry
*de_fflush
;
454 static void amd_iommu_stats_add(struct __iommu_counter
*cnt
)
456 if (stats_dir
== NULL
)
459 cnt
->dent
= debugfs_create_u64(cnt
->name
, 0444, stats_dir
,
463 static void amd_iommu_stats_init(void)
465 stats_dir
= debugfs_create_dir("amd-iommu", NULL
);
466 if (stats_dir
== NULL
)
469 de_fflush
= debugfs_create_bool("fullflush", 0444, stats_dir
,
470 &amd_iommu_unmap_flush
);
472 amd_iommu_stats_add(&compl_wait
);
473 amd_iommu_stats_add(&cnt_map_single
);
474 amd_iommu_stats_add(&cnt_unmap_single
);
475 amd_iommu_stats_add(&cnt_map_sg
);
476 amd_iommu_stats_add(&cnt_unmap_sg
);
477 amd_iommu_stats_add(&cnt_alloc_coherent
);
478 amd_iommu_stats_add(&cnt_free_coherent
);
479 amd_iommu_stats_add(&cross_page
);
480 amd_iommu_stats_add(&domain_flush_single
);
481 amd_iommu_stats_add(&domain_flush_all
);
482 amd_iommu_stats_add(&alloced_io_mem
);
483 amd_iommu_stats_add(&total_map_requests
);
484 amd_iommu_stats_add(&complete_ppr
);
485 amd_iommu_stats_add(&invalidate_iotlb
);
486 amd_iommu_stats_add(&invalidate_iotlb_all
);
487 amd_iommu_stats_add(&pri_requests
);
492 /****************************************************************************
494 * Interrupt handling functions
496 ****************************************************************************/
498 static void dump_dte_entry(u16 devid
)
502 for (i
= 0; i
< 4; ++i
)
503 pr_err("AMD-Vi: DTE[%d]: %016llx\n", i
,
504 amd_iommu_dev_table
[devid
].data
[i
]);
507 static void dump_command(unsigned long phys_addr
)
509 struct iommu_cmd
*cmd
= phys_to_virt(phys_addr
);
512 for (i
= 0; i
< 4; ++i
)
513 pr_err("AMD-Vi: CMD[%d]: %08x\n", i
, cmd
->data
[i
]);
516 static void iommu_print_event(struct amd_iommu
*iommu
, void *__evt
)
518 int type
, devid
, domid
, flags
;
519 volatile u32
*event
= __evt
;
524 type
= (event
[1] >> EVENT_TYPE_SHIFT
) & EVENT_TYPE_MASK
;
525 devid
= (event
[0] >> EVENT_DEVID_SHIFT
) & EVENT_DEVID_MASK
;
526 domid
= (event
[1] >> EVENT_DOMID_SHIFT
) & EVENT_DOMID_MASK
;
527 flags
= (event
[1] >> EVENT_FLAGS_SHIFT
) & EVENT_FLAGS_MASK
;
528 address
= (u64
)(((u64
)event
[3]) << 32) | event
[2];
531 /* Did we hit the erratum? */
532 if (++count
== LOOP_TIMEOUT
) {
533 pr_err("AMD-Vi: No event written to event log\n");
540 printk(KERN_ERR
"AMD-Vi: Event logged [");
543 case EVENT_TYPE_ILL_DEV
:
544 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
545 "address=0x%016llx flags=0x%04x]\n",
546 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
548 dump_dte_entry(devid
);
550 case EVENT_TYPE_IO_FAULT
:
551 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
552 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
553 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
554 domid
, address
, flags
);
556 case EVENT_TYPE_DEV_TAB_ERR
:
557 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
558 "address=0x%016llx flags=0x%04x]\n",
559 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
562 case EVENT_TYPE_PAGE_TAB_ERR
:
563 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
564 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
565 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
566 domid
, address
, flags
);
568 case EVENT_TYPE_ILL_CMD
:
569 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address
);
570 dump_command(address
);
572 case EVENT_TYPE_CMD_HARD_ERR
:
573 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
574 "flags=0x%04x]\n", address
, flags
);
576 case EVENT_TYPE_IOTLB_INV_TO
:
577 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
578 "address=0x%016llx]\n",
579 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
582 case EVENT_TYPE_INV_DEV_REQ
:
583 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
584 "address=0x%016llx flags=0x%04x]\n",
585 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
589 printk(KERN_ERR
"UNKNOWN type=0x%02x]\n", type
);
592 memset(__evt
, 0, 4 * sizeof(u32
));
595 static void iommu_poll_events(struct amd_iommu
*iommu
)
599 head
= readl(iommu
->mmio_base
+ MMIO_EVT_HEAD_OFFSET
);
600 tail
= readl(iommu
->mmio_base
+ MMIO_EVT_TAIL_OFFSET
);
602 while (head
!= tail
) {
603 iommu_print_event(iommu
, iommu
->evt_buf
+ head
);
604 head
= (head
+ EVENT_ENTRY_SIZE
) % EVT_BUFFER_SIZE
;
607 writel(head
, iommu
->mmio_base
+ MMIO_EVT_HEAD_OFFSET
);
610 static void iommu_handle_ppr_entry(struct amd_iommu
*iommu
, u64
*raw
)
612 struct amd_iommu_fault fault
;
614 INC_STATS_COUNTER(pri_requests
);
616 if (PPR_REQ_TYPE(raw
[0]) != PPR_REQ_FAULT
) {
617 pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
621 fault
.address
= raw
[1];
622 fault
.pasid
= PPR_PASID(raw
[0]);
623 fault
.device_id
= PPR_DEVID(raw
[0]);
624 fault
.tag
= PPR_TAG(raw
[0]);
625 fault
.flags
= PPR_FLAGS(raw
[0]);
627 atomic_notifier_call_chain(&ppr_notifier
, 0, &fault
);
630 static void iommu_poll_ppr_log(struct amd_iommu
*iommu
)
634 if (iommu
->ppr_log
== NULL
)
637 head
= readl(iommu
->mmio_base
+ MMIO_PPR_HEAD_OFFSET
);
638 tail
= readl(iommu
->mmio_base
+ MMIO_PPR_TAIL_OFFSET
);
640 while (head
!= tail
) {
645 raw
= (u64
*)(iommu
->ppr_log
+ head
);
648 * Hardware bug: Interrupt may arrive before the entry is
649 * written to memory. If this happens we need to wait for the
652 for (i
= 0; i
< LOOP_TIMEOUT
; ++i
) {
653 if (PPR_REQ_TYPE(raw
[0]) != 0)
658 /* Avoid memcpy function-call overhead */
663 * To detect the hardware bug we need to clear the entry
666 raw
[0] = raw
[1] = 0UL;
668 /* Update head pointer of hardware ring-buffer */
669 head
= (head
+ PPR_ENTRY_SIZE
) % PPR_LOG_SIZE
;
670 writel(head
, iommu
->mmio_base
+ MMIO_PPR_HEAD_OFFSET
);
672 /* Handle PPR entry */
673 iommu_handle_ppr_entry(iommu
, entry
);
675 /* Refresh ring-buffer information */
676 head
= readl(iommu
->mmio_base
+ MMIO_PPR_HEAD_OFFSET
);
677 tail
= readl(iommu
->mmio_base
+ MMIO_PPR_TAIL_OFFSET
);
681 irqreturn_t
amd_iommu_int_thread(int irq
, void *data
)
683 struct amd_iommu
*iommu
= (struct amd_iommu
*) data
;
684 u32 status
= readl(iommu
->mmio_base
+ MMIO_STATUS_OFFSET
);
686 while (status
& (MMIO_STATUS_EVT_INT_MASK
| MMIO_STATUS_PPR_INT_MASK
)) {
687 /* Enable EVT and PPR interrupts again */
688 writel((MMIO_STATUS_EVT_INT_MASK
| MMIO_STATUS_PPR_INT_MASK
),
689 iommu
->mmio_base
+ MMIO_STATUS_OFFSET
);
691 if (status
& MMIO_STATUS_EVT_INT_MASK
) {
692 pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
693 iommu_poll_events(iommu
);
696 if (status
& MMIO_STATUS_PPR_INT_MASK
) {
697 pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
698 iommu_poll_ppr_log(iommu
);
702 * Hardware bug: ERBT1312
703 * When re-enabling interrupt (by writing 1
704 * to clear the bit), the hardware might also try to set
705 * the interrupt bit in the event status register.
706 * In this scenario, the bit will be set, and disable
707 * subsequent interrupts.
709 * Workaround: The IOMMU driver should read back the
710 * status register and check if the interrupt bits are cleared.
711 * If not, driver will need to go through the interrupt handler
712 * again and re-clear the bits
714 status
= readl(iommu
->mmio_base
+ MMIO_STATUS_OFFSET
);
719 irqreturn_t
amd_iommu_int_handler(int irq
, void *data
)
721 return IRQ_WAKE_THREAD
;
724 /****************************************************************************
726 * IOMMU command queuing functions
728 ****************************************************************************/
730 static int wait_on_sem(volatile u64
*sem
)
734 while (*sem
== 0 && i
< LOOP_TIMEOUT
) {
739 if (i
== LOOP_TIMEOUT
) {
740 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
747 static void copy_cmd_to_buffer(struct amd_iommu
*iommu
,
748 struct iommu_cmd
*cmd
,
753 target
= iommu
->cmd_buf
+ tail
;
754 tail
= (tail
+ sizeof(*cmd
)) % CMD_BUFFER_SIZE
;
756 /* Copy command to buffer */
757 memcpy(target
, cmd
, sizeof(*cmd
));
759 /* Tell the IOMMU about it */
760 writel(tail
, iommu
->mmio_base
+ MMIO_CMD_TAIL_OFFSET
);
763 static void build_completion_wait(struct iommu_cmd
*cmd
, u64 address
)
765 WARN_ON(address
& 0x7ULL
);
767 memset(cmd
, 0, sizeof(*cmd
));
768 cmd
->data
[0] = lower_32_bits(__pa(address
)) | CMD_COMPL_WAIT_STORE_MASK
;
769 cmd
->data
[1] = upper_32_bits(__pa(address
));
771 CMD_SET_TYPE(cmd
, CMD_COMPL_WAIT
);
774 static void build_inv_dte(struct iommu_cmd
*cmd
, u16 devid
)
776 memset(cmd
, 0, sizeof(*cmd
));
777 cmd
->data
[0] = devid
;
778 CMD_SET_TYPE(cmd
, CMD_INV_DEV_ENTRY
);
781 static void build_inv_iommu_pages(struct iommu_cmd
*cmd
, u64 address
,
782 size_t size
, u16 domid
, int pde
)
787 pages
= iommu_num_pages(address
, size
, PAGE_SIZE
);
792 * If we have to flush more than one page, flush all
793 * TLB entries for this domain
795 address
= CMD_INV_IOMMU_ALL_PAGES_ADDRESS
;
799 address
&= PAGE_MASK
;
801 memset(cmd
, 0, sizeof(*cmd
));
802 cmd
->data
[1] |= domid
;
803 cmd
->data
[2] = lower_32_bits(address
);
804 cmd
->data
[3] = upper_32_bits(address
);
805 CMD_SET_TYPE(cmd
, CMD_INV_IOMMU_PAGES
);
806 if (s
) /* size bit - we flush more than one 4kb page */
807 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
808 if (pde
) /* PDE bit - we want to flush everything, not only the PTEs */
809 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK
;
812 static void build_inv_iotlb_pages(struct iommu_cmd
*cmd
, u16 devid
, int qdep
,
813 u64 address
, size_t size
)
818 pages
= iommu_num_pages(address
, size
, PAGE_SIZE
);
823 * If we have to flush more than one page, flush all
824 * TLB entries for this domain
826 address
= CMD_INV_IOMMU_ALL_PAGES_ADDRESS
;
830 address
&= PAGE_MASK
;
832 memset(cmd
, 0, sizeof(*cmd
));
833 cmd
->data
[0] = devid
;
834 cmd
->data
[0] |= (qdep
& 0xff) << 24;
835 cmd
->data
[1] = devid
;
836 cmd
->data
[2] = lower_32_bits(address
);
837 cmd
->data
[3] = upper_32_bits(address
);
838 CMD_SET_TYPE(cmd
, CMD_INV_IOTLB_PAGES
);
840 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
843 static void build_inv_iommu_pasid(struct iommu_cmd
*cmd
, u16 domid
, int pasid
,
844 u64 address
, bool size
)
846 memset(cmd
, 0, sizeof(*cmd
));
848 address
&= ~(0xfffULL
);
850 cmd
->data
[0] = pasid
;
851 cmd
->data
[1] = domid
;
852 cmd
->data
[2] = lower_32_bits(address
);
853 cmd
->data
[3] = upper_32_bits(address
);
854 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK
;
855 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_GN_MASK
;
857 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
858 CMD_SET_TYPE(cmd
, CMD_INV_IOMMU_PAGES
);
861 static void build_inv_iotlb_pasid(struct iommu_cmd
*cmd
, u16 devid
, int pasid
,
862 int qdep
, u64 address
, bool size
)
864 memset(cmd
, 0, sizeof(*cmd
));
866 address
&= ~(0xfffULL
);
868 cmd
->data
[0] = devid
;
869 cmd
->data
[0] |= ((pasid
>> 8) & 0xff) << 16;
870 cmd
->data
[0] |= (qdep
& 0xff) << 24;
871 cmd
->data
[1] = devid
;
872 cmd
->data
[1] |= (pasid
& 0xff) << 16;
873 cmd
->data
[2] = lower_32_bits(address
);
874 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_GN_MASK
;
875 cmd
->data
[3] = upper_32_bits(address
);
877 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
878 CMD_SET_TYPE(cmd
, CMD_INV_IOTLB_PAGES
);
881 static void build_complete_ppr(struct iommu_cmd
*cmd
, u16 devid
, int pasid
,
882 int status
, int tag
, bool gn
)
884 memset(cmd
, 0, sizeof(*cmd
));
886 cmd
->data
[0] = devid
;
888 cmd
->data
[1] = pasid
;
889 cmd
->data
[2] = CMD_INV_IOMMU_PAGES_GN_MASK
;
891 cmd
->data
[3] = tag
& 0x1ff;
892 cmd
->data
[3] |= (status
& PPR_STATUS_MASK
) << PPR_STATUS_SHIFT
;
894 CMD_SET_TYPE(cmd
, CMD_COMPLETE_PPR
);
897 static void build_inv_all(struct iommu_cmd
*cmd
)
899 memset(cmd
, 0, sizeof(*cmd
));
900 CMD_SET_TYPE(cmd
, CMD_INV_ALL
);
903 static void build_inv_irt(struct iommu_cmd
*cmd
, u16 devid
)
905 memset(cmd
, 0, sizeof(*cmd
));
906 cmd
->data
[0] = devid
;
907 CMD_SET_TYPE(cmd
, CMD_INV_IRT
);
911 * Writes the command to the IOMMUs command buffer and informs the
912 * hardware about the new command.
914 static int iommu_queue_command_sync(struct amd_iommu
*iommu
,
915 struct iommu_cmd
*cmd
,
918 u32 left
, tail
, head
, next_tail
;
922 spin_lock_irqsave(&iommu
->lock
, flags
);
924 head
= readl(iommu
->mmio_base
+ MMIO_CMD_HEAD_OFFSET
);
925 tail
= readl(iommu
->mmio_base
+ MMIO_CMD_TAIL_OFFSET
);
926 next_tail
= (tail
+ sizeof(*cmd
)) % CMD_BUFFER_SIZE
;
927 left
= (head
- next_tail
) % CMD_BUFFER_SIZE
;
930 struct iommu_cmd sync_cmd
;
931 volatile u64 sem
= 0;
934 build_completion_wait(&sync_cmd
, (u64
)&sem
);
935 copy_cmd_to_buffer(iommu
, &sync_cmd
, tail
);
937 spin_unlock_irqrestore(&iommu
->lock
, flags
);
939 if ((ret
= wait_on_sem(&sem
)) != 0)
945 copy_cmd_to_buffer(iommu
, cmd
, tail
);
947 /* We need to sync now to make sure all commands are processed */
948 iommu
->need_sync
= sync
;
950 spin_unlock_irqrestore(&iommu
->lock
, flags
);
955 static int iommu_queue_command(struct amd_iommu
*iommu
, struct iommu_cmd
*cmd
)
957 return iommu_queue_command_sync(iommu
, cmd
, true);
961 * This function queues a completion wait command into the command
964 static int iommu_completion_wait(struct amd_iommu
*iommu
)
966 struct iommu_cmd cmd
;
967 volatile u64 sem
= 0;
970 if (!iommu
->need_sync
)
973 build_completion_wait(&cmd
, (u64
)&sem
);
975 ret
= iommu_queue_command_sync(iommu
, &cmd
, false);
979 return wait_on_sem(&sem
);
982 static int iommu_flush_dte(struct amd_iommu
*iommu
, u16 devid
)
984 struct iommu_cmd cmd
;
986 build_inv_dte(&cmd
, devid
);
988 return iommu_queue_command(iommu
, &cmd
);
991 static void iommu_flush_dte_all(struct amd_iommu
*iommu
)
995 for (devid
= 0; devid
<= 0xffff; ++devid
)
996 iommu_flush_dte(iommu
, devid
);
998 iommu_completion_wait(iommu
);
1002 * This function uses heavy locking and may disable irqs for some time. But
1003 * this is no issue because it is only called during resume.
1005 static void iommu_flush_tlb_all(struct amd_iommu
*iommu
)
1009 for (dom_id
= 0; dom_id
<= 0xffff; ++dom_id
) {
1010 struct iommu_cmd cmd
;
1011 build_inv_iommu_pages(&cmd
, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
,
1013 iommu_queue_command(iommu
, &cmd
);
1016 iommu_completion_wait(iommu
);
1019 static void iommu_flush_all(struct amd_iommu
*iommu
)
1021 struct iommu_cmd cmd
;
1023 build_inv_all(&cmd
);
1025 iommu_queue_command(iommu
, &cmd
);
1026 iommu_completion_wait(iommu
);
1029 static void iommu_flush_irt(struct amd_iommu
*iommu
, u16 devid
)
1031 struct iommu_cmd cmd
;
1033 build_inv_irt(&cmd
, devid
);
1035 iommu_queue_command(iommu
, &cmd
);
1038 static void iommu_flush_irt_all(struct amd_iommu
*iommu
)
1042 for (devid
= 0; devid
<= MAX_DEV_TABLE_ENTRIES
; devid
++)
1043 iommu_flush_irt(iommu
, devid
);
1045 iommu_completion_wait(iommu
);
1048 void iommu_flush_all_caches(struct amd_iommu
*iommu
)
1050 if (iommu_feature(iommu
, FEATURE_IA
)) {
1051 iommu_flush_all(iommu
);
1053 iommu_flush_dte_all(iommu
);
1054 iommu_flush_irt_all(iommu
);
1055 iommu_flush_tlb_all(iommu
);
1060 * Command send function for flushing on-device TLB
1062 static int device_flush_iotlb(struct iommu_dev_data
*dev_data
,
1063 u64 address
, size_t size
)
1065 struct amd_iommu
*iommu
;
1066 struct iommu_cmd cmd
;
1069 qdep
= dev_data
->ats
.qdep
;
1070 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
1072 build_inv_iotlb_pages(&cmd
, dev_data
->devid
, qdep
, address
, size
);
1074 return iommu_queue_command(iommu
, &cmd
);
1078 * Command send function for invalidating a device table entry
1080 static int device_flush_dte(struct iommu_dev_data
*dev_data
)
1082 struct amd_iommu
*iommu
;
1086 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
1087 alias
= dev_data
->alias
;
1089 ret
= iommu_flush_dte(iommu
, dev_data
->devid
);
1090 if (!ret
&& alias
!= dev_data
->devid
)
1091 ret
= iommu_flush_dte(iommu
, alias
);
1095 if (dev_data
->ats
.enabled
)
1096 ret
= device_flush_iotlb(dev_data
, 0, ~0UL);
1102 * TLB invalidation function which is called from the mapping functions.
1103 * It invalidates a single PTE if the range to flush is within a single
1104 * page. Otherwise it flushes the whole TLB of the IOMMU.
1106 static void __domain_flush_pages(struct protection_domain
*domain
,
1107 u64 address
, size_t size
, int pde
)
1109 struct iommu_dev_data
*dev_data
;
1110 struct iommu_cmd cmd
;
1113 build_inv_iommu_pages(&cmd
, address
, size
, domain
->id
, pde
);
1115 for (i
= 0; i
< amd_iommus_present
; ++i
) {
1116 if (!domain
->dev_iommu
[i
])
1120 * Devices of this domain are behind this IOMMU
1121 * We need a TLB flush
1123 ret
|= iommu_queue_command(amd_iommus
[i
], &cmd
);
1126 list_for_each_entry(dev_data
, &domain
->dev_list
, list
) {
1128 if (!dev_data
->ats
.enabled
)
1131 ret
|= device_flush_iotlb(dev_data
, address
, size
);
1137 static void domain_flush_pages(struct protection_domain
*domain
,
1138 u64 address
, size_t size
)
1140 __domain_flush_pages(domain
, address
, size
, 0);
1143 /* Flush the whole IO/TLB for a given protection domain */
1144 static void domain_flush_tlb(struct protection_domain
*domain
)
1146 __domain_flush_pages(domain
, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
, 0);
1149 /* Flush the whole IO/TLB for a given protection domain - including PDE */
1150 static void domain_flush_tlb_pde(struct protection_domain
*domain
)
1152 __domain_flush_pages(domain
, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
, 1);
1155 static void domain_flush_complete(struct protection_domain
*domain
)
1159 for (i
= 0; i
< amd_iommus_present
; ++i
) {
1160 if (!domain
->dev_iommu
[i
])
1164 * Devices of this domain are behind this IOMMU
1165 * We need to wait for completion of all commands.
1167 iommu_completion_wait(amd_iommus
[i
]);
1173 * This function flushes the DTEs for all devices in domain
1175 static void domain_flush_devices(struct protection_domain
*domain
)
1177 struct iommu_dev_data
*dev_data
;
1179 list_for_each_entry(dev_data
, &domain
->dev_list
, list
)
1180 device_flush_dte(dev_data
);
1183 /****************************************************************************
1185 * The functions below are used the create the page table mappings for
1186 * unity mapped regions.
1188 ****************************************************************************/
1191 * This function is used to add another level to an IO page table. Adding
1192 * another level increases the size of the address space by 9 bits to a size up
1195 static bool increase_address_space(struct protection_domain
*domain
,
1200 if (domain
->mode
== PAGE_MODE_6_LEVEL
)
1201 /* address space already 64 bit large */
1204 pte
= (void *)get_zeroed_page(gfp
);
1208 *pte
= PM_LEVEL_PDE(domain
->mode
,
1209 virt_to_phys(domain
->pt_root
));
1210 domain
->pt_root
= pte
;
1212 domain
->updated
= true;
1217 static u64
*alloc_pte(struct protection_domain
*domain
,
1218 unsigned long address
,
1219 unsigned long page_size
,
1226 BUG_ON(!is_power_of_2(page_size
));
1228 while (address
> PM_LEVEL_SIZE(domain
->mode
))
1229 increase_address_space(domain
, gfp
);
1231 level
= domain
->mode
- 1;
1232 pte
= &domain
->pt_root
[PM_LEVEL_INDEX(level
, address
)];
1233 address
= PAGE_SIZE_ALIGN(address
, page_size
);
1234 end_lvl
= PAGE_SIZE_LEVEL(page_size
);
1236 while (level
> end_lvl
) {
1237 if (!IOMMU_PTE_PRESENT(*pte
)) {
1238 page
= (u64
*)get_zeroed_page(gfp
);
1241 *pte
= PM_LEVEL_PDE(level
, virt_to_phys(page
));
1244 /* No level skipping support yet */
1245 if (PM_PTE_LEVEL(*pte
) != level
)
1250 pte
= IOMMU_PTE_PAGE(*pte
);
1252 if (pte_page
&& level
== end_lvl
)
1255 pte
= &pte
[PM_LEVEL_INDEX(level
, address
)];
1262 * This function checks if there is a PTE for a given dma address. If
1263 * there is one, it returns the pointer to it.
1265 static u64
*fetch_pte(struct protection_domain
*domain
,
1266 unsigned long address
,
1267 unsigned long *page_size
)
1272 if (address
> PM_LEVEL_SIZE(domain
->mode
))
1275 level
= domain
->mode
- 1;
1276 pte
= &domain
->pt_root
[PM_LEVEL_INDEX(level
, address
)];
1277 *page_size
= PTE_LEVEL_PAGE_SIZE(level
);
1282 if (!IOMMU_PTE_PRESENT(*pte
))
1286 if (PM_PTE_LEVEL(*pte
) == 7 ||
1287 PM_PTE_LEVEL(*pte
) == 0)
1290 /* No level skipping support yet */
1291 if (PM_PTE_LEVEL(*pte
) != level
)
1296 /* Walk to the next level */
1297 pte
= IOMMU_PTE_PAGE(*pte
);
1298 pte
= &pte
[PM_LEVEL_INDEX(level
, address
)];
1299 *page_size
= PTE_LEVEL_PAGE_SIZE(level
);
1302 if (PM_PTE_LEVEL(*pte
) == 0x07) {
1303 unsigned long pte_mask
;
1306 * If we have a series of large PTEs, make
1307 * sure to return a pointer to the first one.
1309 *page_size
= pte_mask
= PTE_PAGE_SIZE(*pte
);
1310 pte_mask
= ~((PAGE_SIZE_PTE_COUNT(pte_mask
) << 3) - 1);
1311 pte
= (u64
*)(((unsigned long)pte
) & pte_mask
);
1318 * Generic mapping functions. It maps a physical address into a DMA
1319 * address space. It allocates the page table pages if necessary.
1320 * In the future it can be extended to a generic mapping function
1321 * supporting all features of AMD IOMMU page tables like level skipping
1322 * and full 64 bit address spaces.
1324 static int iommu_map_page(struct protection_domain
*dom
,
1325 unsigned long bus_addr
,
1326 unsigned long phys_addr
,
1328 unsigned long page_size
)
1333 BUG_ON(!IS_ALIGNED(bus_addr
, page_size
));
1334 BUG_ON(!IS_ALIGNED(phys_addr
, page_size
));
1336 if (!(prot
& IOMMU_PROT_MASK
))
1339 count
= PAGE_SIZE_PTE_COUNT(page_size
);
1340 pte
= alloc_pte(dom
, bus_addr
, page_size
, NULL
, GFP_KERNEL
);
1345 for (i
= 0; i
< count
; ++i
)
1346 if (IOMMU_PTE_PRESENT(pte
[i
]))
1350 __pte
= PAGE_SIZE_PTE(phys_addr
, page_size
);
1351 __pte
|= PM_LEVEL_ENC(7) | IOMMU_PTE_P
| IOMMU_PTE_FC
;
1353 __pte
= phys_addr
| IOMMU_PTE_P
| IOMMU_PTE_FC
;
1355 if (prot
& IOMMU_PROT_IR
)
1356 __pte
|= IOMMU_PTE_IR
;
1357 if (prot
& IOMMU_PROT_IW
)
1358 __pte
|= IOMMU_PTE_IW
;
1360 for (i
= 0; i
< count
; ++i
)
1368 static unsigned long iommu_unmap_page(struct protection_domain
*dom
,
1369 unsigned long bus_addr
,
1370 unsigned long page_size
)
1372 unsigned long long unmapped
;
1373 unsigned long unmap_size
;
1376 BUG_ON(!is_power_of_2(page_size
));
1380 while (unmapped
< page_size
) {
1382 pte
= fetch_pte(dom
, bus_addr
, &unmap_size
);
1387 count
= PAGE_SIZE_PTE_COUNT(unmap_size
);
1388 for (i
= 0; i
< count
; i
++)
1392 bus_addr
= (bus_addr
& ~(unmap_size
- 1)) + unmap_size
;
1393 unmapped
+= unmap_size
;
1396 BUG_ON(unmapped
&& !is_power_of_2(unmapped
));
1401 /****************************************************************************
1403 * The next functions belong to the address allocator for the dma_ops
1404 * interface functions. They work like the allocators in the other IOMMU
1405 * drivers. Its basically a bitmap which marks the allocated pages in
1406 * the aperture. Maybe it could be enhanced in the future to a more
1407 * efficient allocator.
1409 ****************************************************************************/
1412 * The address allocator core functions.
1414 * called with domain->lock held
1418 * Used to reserve address ranges in the aperture (e.g. for exclusion
1421 static void dma_ops_reserve_addresses(struct dma_ops_domain
*dom
,
1422 unsigned long start_page
,
1425 unsigned int i
, last_page
= dom
->aperture_size
>> PAGE_SHIFT
;
1427 if (start_page
+ pages
> last_page
)
1428 pages
= last_page
- start_page
;
1430 for (i
= start_page
; i
< start_page
+ pages
; ++i
) {
1431 int index
= i
/ APERTURE_RANGE_PAGES
;
1432 int page
= i
% APERTURE_RANGE_PAGES
;
1433 __set_bit(page
, dom
->aperture
[index
]->bitmap
);
1438 * This function is used to add a new aperture range to an existing
1439 * aperture in case of dma_ops domain allocation or address allocation
1442 static int alloc_new_range(struct dma_ops_domain
*dma_dom
,
1443 bool populate
, gfp_t gfp
)
1445 int index
= dma_dom
->aperture_size
>> APERTURE_RANGE_SHIFT
;
1446 struct amd_iommu
*iommu
;
1447 unsigned long i
, old_size
, pte_pgsize
;
1449 #ifdef CONFIG_IOMMU_STRESS
1453 if (index
>= APERTURE_MAX_RANGES
)
1456 dma_dom
->aperture
[index
] = kzalloc(sizeof(struct aperture_range
), gfp
);
1457 if (!dma_dom
->aperture
[index
])
1460 dma_dom
->aperture
[index
]->bitmap
= (void *)get_zeroed_page(gfp
);
1461 if (!dma_dom
->aperture
[index
]->bitmap
)
1464 dma_dom
->aperture
[index
]->offset
= dma_dom
->aperture_size
;
1467 unsigned long address
= dma_dom
->aperture_size
;
1468 int i
, num_ptes
= APERTURE_RANGE_PAGES
/ 512;
1469 u64
*pte
, *pte_page
;
1471 for (i
= 0; i
< num_ptes
; ++i
) {
1472 pte
= alloc_pte(&dma_dom
->domain
, address
, PAGE_SIZE
,
1477 dma_dom
->aperture
[index
]->pte_pages
[i
] = pte_page
;
1479 address
+= APERTURE_RANGE_SIZE
/ 64;
1483 old_size
= dma_dom
->aperture_size
;
1484 dma_dom
->aperture_size
+= APERTURE_RANGE_SIZE
;
1486 /* Reserve address range used for MSI messages */
1487 if (old_size
< MSI_ADDR_BASE_LO
&&
1488 dma_dom
->aperture_size
> MSI_ADDR_BASE_LO
) {
1489 unsigned long spage
;
1492 pages
= iommu_num_pages(MSI_ADDR_BASE_LO
, 0x10000, PAGE_SIZE
);
1493 spage
= MSI_ADDR_BASE_LO
>> PAGE_SHIFT
;
1495 dma_ops_reserve_addresses(dma_dom
, spage
, pages
);
1498 /* Initialize the exclusion range if necessary */
1499 for_each_iommu(iommu
) {
1500 if (iommu
->exclusion_start
&&
1501 iommu
->exclusion_start
>= dma_dom
->aperture
[index
]->offset
1502 && iommu
->exclusion_start
< dma_dom
->aperture_size
) {
1503 unsigned long startpage
;
1504 int pages
= iommu_num_pages(iommu
->exclusion_start
,
1505 iommu
->exclusion_length
,
1507 startpage
= iommu
->exclusion_start
>> PAGE_SHIFT
;
1508 dma_ops_reserve_addresses(dma_dom
, startpage
, pages
);
1513 * Check for areas already mapped as present in the new aperture
1514 * range and mark those pages as reserved in the allocator. Such
1515 * mappings may already exist as a result of requested unity
1516 * mappings for devices.
1518 for (i
= dma_dom
->aperture
[index
]->offset
;
1519 i
< dma_dom
->aperture_size
;
1521 u64
*pte
= fetch_pte(&dma_dom
->domain
, i
, &pte_pgsize
);
1522 if (!pte
|| !IOMMU_PTE_PRESENT(*pte
))
1525 dma_ops_reserve_addresses(dma_dom
, i
>> PAGE_SHIFT
,
1529 update_domain(&dma_dom
->domain
);
1534 update_domain(&dma_dom
->domain
);
1536 free_page((unsigned long)dma_dom
->aperture
[index
]->bitmap
);
1538 kfree(dma_dom
->aperture
[index
]);
1539 dma_dom
->aperture
[index
] = NULL
;
1544 static unsigned long dma_ops_area_alloc(struct device
*dev
,
1545 struct dma_ops_domain
*dom
,
1547 unsigned long align_mask
,
1549 unsigned long start
)
1551 unsigned long next_bit
= dom
->next_address
% APERTURE_RANGE_SIZE
;
1552 int max_index
= dom
->aperture_size
>> APERTURE_RANGE_SHIFT
;
1553 int i
= start
>> APERTURE_RANGE_SHIFT
;
1554 unsigned long boundary_size
, mask
;
1555 unsigned long address
= -1;
1556 unsigned long limit
;
1558 next_bit
>>= PAGE_SHIFT
;
1560 mask
= dma_get_seg_boundary(dev
);
1562 boundary_size
= mask
+ 1 ? ALIGN(mask
+ 1, PAGE_SIZE
) >> PAGE_SHIFT
:
1563 1UL << (BITS_PER_LONG
- PAGE_SHIFT
);
1565 for (;i
< max_index
; ++i
) {
1566 unsigned long offset
= dom
->aperture
[i
]->offset
>> PAGE_SHIFT
;
1568 if (dom
->aperture
[i
]->offset
>= dma_mask
)
1571 limit
= iommu_device_max_index(APERTURE_RANGE_PAGES
, offset
,
1572 dma_mask
>> PAGE_SHIFT
);
1574 address
= iommu_area_alloc(dom
->aperture
[i
]->bitmap
,
1575 limit
, next_bit
, pages
, 0,
1576 boundary_size
, align_mask
);
1577 if (address
!= -1) {
1578 address
= dom
->aperture
[i
]->offset
+
1579 (address
<< PAGE_SHIFT
);
1580 dom
->next_address
= address
+ (pages
<< PAGE_SHIFT
);
1590 static unsigned long dma_ops_alloc_addresses(struct device
*dev
,
1591 struct dma_ops_domain
*dom
,
1593 unsigned long align_mask
,
1596 unsigned long address
;
1598 #ifdef CONFIG_IOMMU_STRESS
1599 dom
->next_address
= 0;
1600 dom
->need_flush
= true;
1603 address
= dma_ops_area_alloc(dev
, dom
, pages
, align_mask
,
1604 dma_mask
, dom
->next_address
);
1606 if (address
== -1) {
1607 dom
->next_address
= 0;
1608 address
= dma_ops_area_alloc(dev
, dom
, pages
, align_mask
,
1610 dom
->need_flush
= true;
1613 if (unlikely(address
== -1))
1614 address
= DMA_ERROR_CODE
;
1616 WARN_ON((address
+ (PAGE_SIZE
*pages
)) > dom
->aperture_size
);
1622 * The address free function.
1624 * called with domain->lock held
1626 static void dma_ops_free_addresses(struct dma_ops_domain
*dom
,
1627 unsigned long address
,
1630 unsigned i
= address
>> APERTURE_RANGE_SHIFT
;
1631 struct aperture_range
*range
= dom
->aperture
[i
];
1633 BUG_ON(i
>= APERTURE_MAX_RANGES
|| range
== NULL
);
1635 #ifdef CONFIG_IOMMU_STRESS
1640 if (address
>= dom
->next_address
)
1641 dom
->need_flush
= true;
1643 address
= (address
% APERTURE_RANGE_SIZE
) >> PAGE_SHIFT
;
1645 bitmap_clear(range
->bitmap
, address
, pages
);
1649 /****************************************************************************
1651 * The next functions belong to the domain allocation. A domain is
1652 * allocated for every IOMMU as the default domain. If device isolation
1653 * is enabled, every device get its own domain. The most important thing
1654 * about domains is the page table mapping the DMA address space they
1657 ****************************************************************************/
1660 * This function adds a protection domain to the global protection domain list
1662 static void add_domain_to_list(struct protection_domain
*domain
)
1664 unsigned long flags
;
1666 spin_lock_irqsave(&amd_iommu_pd_lock
, flags
);
1667 list_add(&domain
->list
, &amd_iommu_pd_list
);
1668 spin_unlock_irqrestore(&amd_iommu_pd_lock
, flags
);
1672 * This function removes a protection domain to the global
1673 * protection domain list
1675 static void del_domain_from_list(struct protection_domain
*domain
)
1677 unsigned long flags
;
1679 spin_lock_irqsave(&amd_iommu_pd_lock
, flags
);
1680 list_del(&domain
->list
);
1681 spin_unlock_irqrestore(&amd_iommu_pd_lock
, flags
);
1684 static u16
domain_id_alloc(void)
1686 unsigned long flags
;
1689 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
1690 id
= find_first_zero_bit(amd_iommu_pd_alloc_bitmap
, MAX_DOMAIN_ID
);
1692 if (id
> 0 && id
< MAX_DOMAIN_ID
)
1693 __set_bit(id
, amd_iommu_pd_alloc_bitmap
);
1696 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
1701 static void domain_id_free(int id
)
1703 unsigned long flags
;
1705 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
1706 if (id
> 0 && id
< MAX_DOMAIN_ID
)
1707 __clear_bit(id
, amd_iommu_pd_alloc_bitmap
);
1708 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
1711 #define DEFINE_FREE_PT_FN(LVL, FN) \
1712 static void free_pt_##LVL (unsigned long __pt) \
1720 for (i = 0; i < 512; ++i) { \
1721 /* PTE present? */ \
1722 if (!IOMMU_PTE_PRESENT(pt[i])) \
1726 if (PM_PTE_LEVEL(pt[i]) == 0 || \
1727 PM_PTE_LEVEL(pt[i]) == 7) \
1730 p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \
1733 free_page((unsigned long)pt); \
1736 DEFINE_FREE_PT_FN(l2
, free_page
)
1737 DEFINE_FREE_PT_FN(l3
, free_pt_l2
)
1738 DEFINE_FREE_PT_FN(l4
, free_pt_l3
)
1739 DEFINE_FREE_PT_FN(l5
, free_pt_l4
)
1740 DEFINE_FREE_PT_FN(l6
, free_pt_l5
)
1742 static void free_pagetable(struct protection_domain
*domain
)
1744 unsigned long root
= (unsigned long)domain
->pt_root
;
1746 switch (domain
->mode
) {
1747 case PAGE_MODE_NONE
:
1749 case PAGE_MODE_1_LEVEL
:
1752 case PAGE_MODE_2_LEVEL
:
1755 case PAGE_MODE_3_LEVEL
:
1758 case PAGE_MODE_4_LEVEL
:
1761 case PAGE_MODE_5_LEVEL
:
1764 case PAGE_MODE_6_LEVEL
:
1772 static void free_gcr3_tbl_level1(u64
*tbl
)
1777 for (i
= 0; i
< 512; ++i
) {
1778 if (!(tbl
[i
] & GCR3_VALID
))
1781 ptr
= __va(tbl
[i
] & PAGE_MASK
);
1783 free_page((unsigned long)ptr
);
1787 static void free_gcr3_tbl_level2(u64
*tbl
)
1792 for (i
= 0; i
< 512; ++i
) {
1793 if (!(tbl
[i
] & GCR3_VALID
))
1796 ptr
= __va(tbl
[i
] & PAGE_MASK
);
1798 free_gcr3_tbl_level1(ptr
);
1802 static void free_gcr3_table(struct protection_domain
*domain
)
1804 if (domain
->glx
== 2)
1805 free_gcr3_tbl_level2(domain
->gcr3_tbl
);
1806 else if (domain
->glx
== 1)
1807 free_gcr3_tbl_level1(domain
->gcr3_tbl
);
1809 BUG_ON(domain
->glx
!= 0);
1811 free_page((unsigned long)domain
->gcr3_tbl
);
1815 * Free a domain, only used if something went wrong in the
1816 * allocation path and we need to free an already allocated page table
1818 static void dma_ops_domain_free(struct dma_ops_domain
*dom
)
1825 del_domain_from_list(&dom
->domain
);
1827 free_pagetable(&dom
->domain
);
1829 for (i
= 0; i
< APERTURE_MAX_RANGES
; ++i
) {
1830 if (!dom
->aperture
[i
])
1832 free_page((unsigned long)dom
->aperture
[i
]->bitmap
);
1833 kfree(dom
->aperture
[i
]);
1837 domain_id_free(dom
->domain
.id
);
1843 * Allocates a new protection domain usable for the dma_ops functions.
1844 * It also initializes the page table and the address allocator data
1845 * structures required for the dma_ops interface
1847 static struct dma_ops_domain
*dma_ops_domain_alloc(void)
1849 struct dma_ops_domain
*dma_dom
;
1851 dma_dom
= kzalloc(sizeof(struct dma_ops_domain
), GFP_KERNEL
);
1855 if (protection_domain_init(&dma_dom
->domain
))
1858 dma_dom
->domain
.mode
= PAGE_MODE_2_LEVEL
;
1859 dma_dom
->domain
.pt_root
= (void *)get_zeroed_page(GFP_KERNEL
);
1860 dma_dom
->domain
.flags
= PD_DMA_OPS_MASK
;
1861 dma_dom
->domain
.priv
= dma_dom
;
1862 if (!dma_dom
->domain
.pt_root
)
1865 dma_dom
->need_flush
= false;
1867 add_domain_to_list(&dma_dom
->domain
);
1869 if (alloc_new_range(dma_dom
, true, GFP_KERNEL
))
1873 * mark the first page as allocated so we never return 0 as
1874 * a valid dma-address. So we can use 0 as error value
1876 dma_dom
->aperture
[0]->bitmap
[0] = 1;
1877 dma_dom
->next_address
= 0;
1883 dma_ops_domain_free(dma_dom
);
1889 * little helper function to check whether a given protection domain is a
1892 static bool dma_ops_domain(struct protection_domain
*domain
)
1894 return domain
->flags
& PD_DMA_OPS_MASK
;
1897 static void set_dte_entry(u16 devid
, struct protection_domain
*domain
, bool ats
)
1902 if (domain
->mode
!= PAGE_MODE_NONE
)
1903 pte_root
= virt_to_phys(domain
->pt_root
);
1905 pte_root
|= (domain
->mode
& DEV_ENTRY_MODE_MASK
)
1906 << DEV_ENTRY_MODE_SHIFT
;
1907 pte_root
|= IOMMU_PTE_IR
| IOMMU_PTE_IW
| IOMMU_PTE_P
| IOMMU_PTE_TV
;
1909 flags
= amd_iommu_dev_table
[devid
].data
[1];
1912 flags
|= DTE_FLAG_IOTLB
;
1914 if (domain
->flags
& PD_IOMMUV2_MASK
) {
1915 u64 gcr3
= __pa(domain
->gcr3_tbl
);
1916 u64 glx
= domain
->glx
;
1919 pte_root
|= DTE_FLAG_GV
;
1920 pte_root
|= (glx
& DTE_GLX_MASK
) << DTE_GLX_SHIFT
;
1922 /* First mask out possible old values for GCR3 table */
1923 tmp
= DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B
;
1926 tmp
= DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C
;
1929 /* Encode GCR3 table into DTE */
1930 tmp
= DTE_GCR3_VAL_A(gcr3
) << DTE_GCR3_SHIFT_A
;
1933 tmp
= DTE_GCR3_VAL_B(gcr3
) << DTE_GCR3_SHIFT_B
;
1936 tmp
= DTE_GCR3_VAL_C(gcr3
) << DTE_GCR3_SHIFT_C
;
1940 flags
&= ~(0xffffUL
);
1941 flags
|= domain
->id
;
1943 amd_iommu_dev_table
[devid
].data
[1] = flags
;
1944 amd_iommu_dev_table
[devid
].data
[0] = pte_root
;
1947 static void clear_dte_entry(u16 devid
)
1949 /* remove entry from the device table seen by the hardware */
1950 amd_iommu_dev_table
[devid
].data
[0] = IOMMU_PTE_P
| IOMMU_PTE_TV
;
1951 amd_iommu_dev_table
[devid
].data
[1] &= DTE_FLAG_MASK
;
1953 amd_iommu_apply_erratum_63(devid
);
1956 static void do_attach(struct iommu_dev_data
*dev_data
,
1957 struct protection_domain
*domain
)
1959 struct amd_iommu
*iommu
;
1963 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
1964 alias
= dev_data
->alias
;
1965 ats
= dev_data
->ats
.enabled
;
1967 /* Update data structures */
1968 dev_data
->domain
= domain
;
1969 list_add(&dev_data
->list
, &domain
->dev_list
);
1971 /* Do reference counting */
1972 domain
->dev_iommu
[iommu
->index
] += 1;
1973 domain
->dev_cnt
+= 1;
1975 /* Update device table */
1976 set_dte_entry(dev_data
->devid
, domain
, ats
);
1977 if (alias
!= dev_data
->devid
)
1978 set_dte_entry(alias
, domain
, ats
);
1980 device_flush_dte(dev_data
);
1983 static void do_detach(struct iommu_dev_data
*dev_data
)
1985 struct amd_iommu
*iommu
;
1989 * First check if the device is still attached. It might already
1990 * be detached from its domain because the generic
1991 * iommu_detach_group code detached it and we try again here in
1992 * our alias handling.
1994 if (!dev_data
->domain
)
1997 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
1998 alias
= dev_data
->alias
;
2000 /* decrease reference counters */
2001 dev_data
->domain
->dev_iommu
[iommu
->index
] -= 1;
2002 dev_data
->domain
->dev_cnt
-= 1;
2004 /* Update data structures */
2005 dev_data
->domain
= NULL
;
2006 list_del(&dev_data
->list
);
2007 clear_dte_entry(dev_data
->devid
);
2008 if (alias
!= dev_data
->devid
)
2009 clear_dte_entry(alias
);
2011 /* Flush the DTE entry */
2012 device_flush_dte(dev_data
);
2016 * If a device is not yet associated with a domain, this function does
2017 * assigns it visible for the hardware
2019 static int __attach_device(struct iommu_dev_data
*dev_data
,
2020 struct protection_domain
*domain
)
2025 * Must be called with IRQs disabled. Warn here to detect early
2028 WARN_ON(!irqs_disabled());
2031 spin_lock(&domain
->lock
);
2034 if (dev_data
->domain
!= NULL
)
2037 /* Attach alias group root */
2038 do_attach(dev_data
, domain
);
2045 spin_unlock(&domain
->lock
);
2051 static void pdev_iommuv2_disable(struct pci_dev
*pdev
)
2053 pci_disable_ats(pdev
);
2054 pci_disable_pri(pdev
);
2055 pci_disable_pasid(pdev
);
2058 /* FIXME: Change generic reset-function to do the same */
2059 static int pri_reset_while_enabled(struct pci_dev
*pdev
)
2064 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_PRI
);
2068 pci_read_config_word(pdev
, pos
+ PCI_PRI_CTRL
, &control
);
2069 control
|= PCI_PRI_CTRL_RESET
;
2070 pci_write_config_word(pdev
, pos
+ PCI_PRI_CTRL
, control
);
2075 static int pdev_iommuv2_enable(struct pci_dev
*pdev
)
2080 /* FIXME: Hardcode number of outstanding requests for now */
2082 if (pdev_pri_erratum(pdev
, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE
))
2084 reset_enable
= pdev_pri_erratum(pdev
, AMD_PRI_DEV_ERRATUM_ENABLE_RESET
);
2086 /* Only allow access to user-accessible pages */
2087 ret
= pci_enable_pasid(pdev
, 0);
2091 /* First reset the PRI state of the device */
2092 ret
= pci_reset_pri(pdev
);
2097 ret
= pci_enable_pri(pdev
, reqs
);
2102 ret
= pri_reset_while_enabled(pdev
);
2107 ret
= pci_enable_ats(pdev
, PAGE_SHIFT
);
2114 pci_disable_pri(pdev
);
2115 pci_disable_pasid(pdev
);
2120 /* FIXME: Move this to PCI code */
2121 #define PCI_PRI_TLP_OFF (1 << 15)
2123 static bool pci_pri_tlp_required(struct pci_dev
*pdev
)
2128 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_PRI
);
2132 pci_read_config_word(pdev
, pos
+ PCI_PRI_STATUS
, &status
);
2134 return (status
& PCI_PRI_TLP_OFF
) ? true : false;
2138 * If a device is not yet associated with a domain, this function
2139 * assigns it visible for the hardware
2141 static int attach_device(struct device
*dev
,
2142 struct protection_domain
*domain
)
2144 struct pci_dev
*pdev
= to_pci_dev(dev
);
2145 struct iommu_dev_data
*dev_data
;
2146 unsigned long flags
;
2149 dev_data
= get_dev_data(dev
);
2151 if (domain
->flags
& PD_IOMMUV2_MASK
) {
2152 if (!dev_data
->passthrough
)
2155 if (dev_data
->iommu_v2
) {
2156 if (pdev_iommuv2_enable(pdev
) != 0)
2159 dev_data
->ats
.enabled
= true;
2160 dev_data
->ats
.qdep
= pci_ats_queue_depth(pdev
);
2161 dev_data
->pri_tlp
= pci_pri_tlp_required(pdev
);
2163 } else if (amd_iommu_iotlb_sup
&&
2164 pci_enable_ats(pdev
, PAGE_SHIFT
) == 0) {
2165 dev_data
->ats
.enabled
= true;
2166 dev_data
->ats
.qdep
= pci_ats_queue_depth(pdev
);
2169 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
2170 ret
= __attach_device(dev_data
, domain
);
2171 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
2174 * We might boot into a crash-kernel here. The crashed kernel
2175 * left the caches in the IOMMU dirty. So we have to flush
2176 * here to evict all dirty stuff.
2178 domain_flush_tlb_pde(domain
);
2184 * Removes a device from a protection domain (unlocked)
2186 static void __detach_device(struct iommu_dev_data
*dev_data
)
2188 struct protection_domain
*domain
;
2191 * Must be called with IRQs disabled. Warn here to detect early
2194 WARN_ON(!irqs_disabled());
2196 if (WARN_ON(!dev_data
->domain
))
2199 domain
= dev_data
->domain
;
2201 spin_lock(&domain
->lock
);
2203 do_detach(dev_data
);
2205 spin_unlock(&domain
->lock
);
2209 * Removes a device from a protection domain (with devtable_lock held)
2211 static void detach_device(struct device
*dev
)
2213 struct protection_domain
*domain
;
2214 struct iommu_dev_data
*dev_data
;
2215 unsigned long flags
;
2217 dev_data
= get_dev_data(dev
);
2218 domain
= dev_data
->domain
;
2220 /* lock device table */
2221 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
2222 __detach_device(dev_data
);
2223 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
2225 if (domain
->flags
& PD_IOMMUV2_MASK
&& dev_data
->iommu_v2
)
2226 pdev_iommuv2_disable(to_pci_dev(dev
));
2227 else if (dev_data
->ats
.enabled
)
2228 pci_disable_ats(to_pci_dev(dev
));
2230 dev_data
->ats
.enabled
= false;
2233 static int amd_iommu_add_device(struct device
*dev
)
2235 struct iommu_dev_data
*dev_data
;
2236 struct iommu_domain
*domain
;
2237 struct amd_iommu
*iommu
;
2241 if (!check_device(dev
) || get_dev_data(dev
))
2244 devid
= get_device_id(dev
);
2245 iommu
= amd_iommu_rlookup_table
[devid
];
2247 ret
= iommu_init_device(dev
);
2249 if (ret
!= -ENOTSUPP
)
2250 pr_err("Failed to initialize device %s - trying to proceed anyway\n",
2253 iommu_ignore_device(dev
);
2254 dev
->archdata
.dma_ops
= &nommu_dma_ops
;
2257 init_iommu_group(dev
);
2259 dev_data
= get_dev_data(dev
);
2263 if (iommu_pass_through
|| dev_data
->iommu_v2
)
2264 iommu_request_dm_for_dev(dev
);
2266 /* Domains are initialized for this device - have a look what we ended up with */
2267 domain
= iommu_get_domain_for_dev(dev
);
2268 if (domain
->type
== IOMMU_DOMAIN_IDENTITY
)
2269 dev_data
->passthrough
= true;
2271 dev
->archdata
.dma_ops
= &amd_iommu_dma_ops
;
2274 iommu_completion_wait(iommu
);
2279 static void amd_iommu_remove_device(struct device
*dev
)
2281 struct amd_iommu
*iommu
;
2284 if (!check_device(dev
))
2287 devid
= get_device_id(dev
);
2288 iommu
= amd_iommu_rlookup_table
[devid
];
2290 iommu_uninit_device(dev
);
2291 iommu_completion_wait(iommu
);
2294 /*****************************************************************************
2296 * The next functions belong to the dma_ops mapping/unmapping code.
2298 *****************************************************************************/
2301 * In the dma_ops path we only have the struct device. This function
2302 * finds the corresponding IOMMU, the protection domain and the
2303 * requestor id for a given device.
2304 * If the device is not yet associated with a domain this is also done
2307 static struct protection_domain
*get_domain(struct device
*dev
)
2309 struct protection_domain
*domain
;
2310 struct iommu_domain
*io_domain
;
2312 if (!check_device(dev
))
2313 return ERR_PTR(-EINVAL
);
2315 io_domain
= iommu_get_domain_for_dev(dev
);
2319 domain
= to_pdomain(io_domain
);
2320 if (!dma_ops_domain(domain
))
2321 return ERR_PTR(-EBUSY
);
2326 static void update_device_table(struct protection_domain
*domain
)
2328 struct iommu_dev_data
*dev_data
;
2330 list_for_each_entry(dev_data
, &domain
->dev_list
, list
) {
2331 set_dte_entry(dev_data
->devid
, domain
, dev_data
->ats
.enabled
);
2333 if (dev_data
->devid
== dev_data
->alias
)
2336 /* There is an alias, update device table entry for it */
2337 set_dte_entry(dev_data
->alias
, domain
, dev_data
->ats
.enabled
);
2341 static void update_domain(struct protection_domain
*domain
)
2343 if (!domain
->updated
)
2346 update_device_table(domain
);
2348 domain_flush_devices(domain
);
2349 domain_flush_tlb_pde(domain
);
2351 domain
->updated
= false;
2355 * This function fetches the PTE for a given address in the aperture
2357 static u64
* dma_ops_get_pte(struct dma_ops_domain
*dom
,
2358 unsigned long address
)
2360 struct aperture_range
*aperture
;
2361 u64
*pte
, *pte_page
;
2363 aperture
= dom
->aperture
[APERTURE_RANGE_INDEX(address
)];
2367 pte
= aperture
->pte_pages
[APERTURE_PAGE_INDEX(address
)];
2369 pte
= alloc_pte(&dom
->domain
, address
, PAGE_SIZE
, &pte_page
,
2371 aperture
->pte_pages
[APERTURE_PAGE_INDEX(address
)] = pte_page
;
2373 pte
+= PM_LEVEL_INDEX(0, address
);
2375 update_domain(&dom
->domain
);
2381 * This is the generic map function. It maps one 4kb page at paddr to
2382 * the given address in the DMA address space for the domain.
2384 static dma_addr_t
dma_ops_domain_map(struct dma_ops_domain
*dom
,
2385 unsigned long address
,
2391 WARN_ON(address
> dom
->aperture_size
);
2395 pte
= dma_ops_get_pte(dom
, address
);
2397 return DMA_ERROR_CODE
;
2399 __pte
= paddr
| IOMMU_PTE_P
| IOMMU_PTE_FC
;
2401 if (direction
== DMA_TO_DEVICE
)
2402 __pte
|= IOMMU_PTE_IR
;
2403 else if (direction
== DMA_FROM_DEVICE
)
2404 __pte
|= IOMMU_PTE_IW
;
2405 else if (direction
== DMA_BIDIRECTIONAL
)
2406 __pte
|= IOMMU_PTE_IR
| IOMMU_PTE_IW
;
2412 return (dma_addr_t
)address
;
2416 * The generic unmapping function for on page in the DMA address space.
2418 static void dma_ops_domain_unmap(struct dma_ops_domain
*dom
,
2419 unsigned long address
)
2421 struct aperture_range
*aperture
;
2424 if (address
>= dom
->aperture_size
)
2427 aperture
= dom
->aperture
[APERTURE_RANGE_INDEX(address
)];
2431 pte
= aperture
->pte_pages
[APERTURE_PAGE_INDEX(address
)];
2435 pte
+= PM_LEVEL_INDEX(0, address
);
2443 * This function contains common code for mapping of a physically
2444 * contiguous memory region into DMA address space. It is used by all
2445 * mapping functions provided with this IOMMU driver.
2446 * Must be called with the domain lock held.
2448 static dma_addr_t
__map_single(struct device
*dev
,
2449 struct dma_ops_domain
*dma_dom
,
2456 dma_addr_t offset
= paddr
& ~PAGE_MASK
;
2457 dma_addr_t address
, start
, ret
;
2459 unsigned long align_mask
= 0;
2462 pages
= iommu_num_pages(paddr
, size
, PAGE_SIZE
);
2465 INC_STATS_COUNTER(total_map_requests
);
2468 INC_STATS_COUNTER(cross_page
);
2471 align_mask
= (1UL << get_order(size
)) - 1;
2474 address
= dma_ops_alloc_addresses(dev
, dma_dom
, pages
, align_mask
,
2476 if (unlikely(address
== DMA_ERROR_CODE
)) {
2478 * setting next_address here will let the address
2479 * allocator only scan the new allocated range in the
2480 * first run. This is a small optimization.
2482 dma_dom
->next_address
= dma_dom
->aperture_size
;
2484 if (alloc_new_range(dma_dom
, false, GFP_ATOMIC
))
2488 * aperture was successfully enlarged by 128 MB, try
2495 for (i
= 0; i
< pages
; ++i
) {
2496 ret
= dma_ops_domain_map(dma_dom
, start
, paddr
, dir
);
2497 if (ret
== DMA_ERROR_CODE
)
2505 ADD_STATS_COUNTER(alloced_io_mem
, size
);
2507 if (unlikely(dma_dom
->need_flush
&& !amd_iommu_unmap_flush
)) {
2508 domain_flush_tlb(&dma_dom
->domain
);
2509 dma_dom
->need_flush
= false;
2510 } else if (unlikely(amd_iommu_np_cache
))
2511 domain_flush_pages(&dma_dom
->domain
, address
, size
);
2518 for (--i
; i
>= 0; --i
) {
2520 dma_ops_domain_unmap(dma_dom
, start
);
2523 dma_ops_free_addresses(dma_dom
, address
, pages
);
2525 return DMA_ERROR_CODE
;
2529 * Does the reverse of the __map_single function. Must be called with
2530 * the domain lock held too
2532 static void __unmap_single(struct dma_ops_domain
*dma_dom
,
2533 dma_addr_t dma_addr
,
2537 dma_addr_t flush_addr
;
2538 dma_addr_t i
, start
;
2541 if ((dma_addr
== DMA_ERROR_CODE
) ||
2542 (dma_addr
+ size
> dma_dom
->aperture_size
))
2545 flush_addr
= dma_addr
;
2546 pages
= iommu_num_pages(dma_addr
, size
, PAGE_SIZE
);
2547 dma_addr
&= PAGE_MASK
;
2550 for (i
= 0; i
< pages
; ++i
) {
2551 dma_ops_domain_unmap(dma_dom
, start
);
2555 SUB_STATS_COUNTER(alloced_io_mem
, size
);
2557 dma_ops_free_addresses(dma_dom
, dma_addr
, pages
);
2559 if (amd_iommu_unmap_flush
|| dma_dom
->need_flush
) {
2560 domain_flush_pages(&dma_dom
->domain
, flush_addr
, size
);
2561 dma_dom
->need_flush
= false;
2566 * The exported map_single function for dma_ops.
2568 static dma_addr_t
map_page(struct device
*dev
, struct page
*page
,
2569 unsigned long offset
, size_t size
,
2570 enum dma_data_direction dir
,
2571 struct dma_attrs
*attrs
)
2573 unsigned long flags
;
2574 struct protection_domain
*domain
;
2577 phys_addr_t paddr
= page_to_phys(page
) + offset
;
2579 INC_STATS_COUNTER(cnt_map_single
);
2581 domain
= get_domain(dev
);
2582 if (PTR_ERR(domain
) == -EINVAL
)
2583 return (dma_addr_t
)paddr
;
2584 else if (IS_ERR(domain
))
2585 return DMA_ERROR_CODE
;
2587 dma_mask
= *dev
->dma_mask
;
2589 spin_lock_irqsave(&domain
->lock
, flags
);
2591 addr
= __map_single(dev
, domain
->priv
, paddr
, size
, dir
, false,
2593 if (addr
== DMA_ERROR_CODE
)
2596 domain_flush_complete(domain
);
2599 spin_unlock_irqrestore(&domain
->lock
, flags
);
2605 * The exported unmap_single function for dma_ops.
2607 static void unmap_page(struct device
*dev
, dma_addr_t dma_addr
, size_t size
,
2608 enum dma_data_direction dir
, struct dma_attrs
*attrs
)
2610 unsigned long flags
;
2611 struct protection_domain
*domain
;
2613 INC_STATS_COUNTER(cnt_unmap_single
);
2615 domain
= get_domain(dev
);
2619 spin_lock_irqsave(&domain
->lock
, flags
);
2621 __unmap_single(domain
->priv
, dma_addr
, size
, dir
);
2623 domain_flush_complete(domain
);
2625 spin_unlock_irqrestore(&domain
->lock
, flags
);
2629 * The exported map_sg function for dma_ops (handles scatter-gather
2632 static int map_sg(struct device
*dev
, struct scatterlist
*sglist
,
2633 int nelems
, enum dma_data_direction dir
,
2634 struct dma_attrs
*attrs
)
2636 unsigned long flags
;
2637 struct protection_domain
*domain
;
2639 struct scatterlist
*s
;
2641 int mapped_elems
= 0;
2644 INC_STATS_COUNTER(cnt_map_sg
);
2646 domain
= get_domain(dev
);
2650 dma_mask
= *dev
->dma_mask
;
2652 spin_lock_irqsave(&domain
->lock
, flags
);
2654 for_each_sg(sglist
, s
, nelems
, i
) {
2657 s
->dma_address
= __map_single(dev
, domain
->priv
,
2658 paddr
, s
->length
, dir
, false,
2661 if (s
->dma_address
) {
2662 s
->dma_length
= s
->length
;
2668 domain_flush_complete(domain
);
2671 spin_unlock_irqrestore(&domain
->lock
, flags
);
2673 return mapped_elems
;
2675 for_each_sg(sglist
, s
, mapped_elems
, i
) {
2677 __unmap_single(domain
->priv
, s
->dma_address
,
2678 s
->dma_length
, dir
);
2679 s
->dma_address
= s
->dma_length
= 0;
2688 * The exported map_sg function for dma_ops (handles scatter-gather
2691 static void unmap_sg(struct device
*dev
, struct scatterlist
*sglist
,
2692 int nelems
, enum dma_data_direction dir
,
2693 struct dma_attrs
*attrs
)
2695 unsigned long flags
;
2696 struct protection_domain
*domain
;
2697 struct scatterlist
*s
;
2700 INC_STATS_COUNTER(cnt_unmap_sg
);
2702 domain
= get_domain(dev
);
2706 spin_lock_irqsave(&domain
->lock
, flags
);
2708 for_each_sg(sglist
, s
, nelems
, i
) {
2709 __unmap_single(domain
->priv
, s
->dma_address
,
2710 s
->dma_length
, dir
);
2711 s
->dma_address
= s
->dma_length
= 0;
2714 domain_flush_complete(domain
);
2716 spin_unlock_irqrestore(&domain
->lock
, flags
);
2720 * The exported alloc_coherent function for dma_ops.
2722 static void *alloc_coherent(struct device
*dev
, size_t size
,
2723 dma_addr_t
*dma_addr
, gfp_t flag
,
2724 struct dma_attrs
*attrs
)
2726 u64 dma_mask
= dev
->coherent_dma_mask
;
2727 struct protection_domain
*domain
;
2728 unsigned long flags
;
2731 INC_STATS_COUNTER(cnt_alloc_coherent
);
2733 domain
= get_domain(dev
);
2734 if (PTR_ERR(domain
) == -EINVAL
) {
2735 page
= alloc_pages(flag
, get_order(size
));
2736 *dma_addr
= page_to_phys(page
);
2737 return page_address(page
);
2738 } else if (IS_ERR(domain
))
2741 size
= PAGE_ALIGN(size
);
2742 dma_mask
= dev
->coherent_dma_mask
;
2743 flag
&= ~(__GFP_DMA
| __GFP_HIGHMEM
| __GFP_DMA32
);
2746 page
= alloc_pages(flag
| __GFP_NOWARN
, get_order(size
));
2748 if (!gfpflags_allow_blocking(flag
))
2751 page
= dma_alloc_from_contiguous(dev
, size
>> PAGE_SHIFT
,
2758 dma_mask
= *dev
->dma_mask
;
2760 spin_lock_irqsave(&domain
->lock
, flags
);
2762 *dma_addr
= __map_single(dev
, domain
->priv
, page_to_phys(page
),
2763 size
, DMA_BIDIRECTIONAL
, true, dma_mask
);
2765 if (*dma_addr
== DMA_ERROR_CODE
) {
2766 spin_unlock_irqrestore(&domain
->lock
, flags
);
2770 domain_flush_complete(domain
);
2772 spin_unlock_irqrestore(&domain
->lock
, flags
);
2774 return page_address(page
);
2778 if (!dma_release_from_contiguous(dev
, page
, size
>> PAGE_SHIFT
))
2779 __free_pages(page
, get_order(size
));
2785 * The exported free_coherent function for dma_ops.
2787 static void free_coherent(struct device
*dev
, size_t size
,
2788 void *virt_addr
, dma_addr_t dma_addr
,
2789 struct dma_attrs
*attrs
)
2791 struct protection_domain
*domain
;
2792 unsigned long flags
;
2795 INC_STATS_COUNTER(cnt_free_coherent
);
2797 page
= virt_to_page(virt_addr
);
2798 size
= PAGE_ALIGN(size
);
2800 domain
= get_domain(dev
);
2804 spin_lock_irqsave(&domain
->lock
, flags
);
2806 __unmap_single(domain
->priv
, dma_addr
, size
, DMA_BIDIRECTIONAL
);
2808 domain_flush_complete(domain
);
2810 spin_unlock_irqrestore(&domain
->lock
, flags
);
2813 if (!dma_release_from_contiguous(dev
, page
, size
>> PAGE_SHIFT
))
2814 __free_pages(page
, get_order(size
));
2818 * This function is called by the DMA layer to find out if we can handle a
2819 * particular device. It is part of the dma_ops.
2821 static int amd_iommu_dma_supported(struct device
*dev
, u64 mask
)
2823 return check_device(dev
);
2826 static struct dma_map_ops amd_iommu_dma_ops
= {
2827 .alloc
= alloc_coherent
,
2828 .free
= free_coherent
,
2829 .map_page
= map_page
,
2830 .unmap_page
= unmap_page
,
2832 .unmap_sg
= unmap_sg
,
2833 .dma_supported
= amd_iommu_dma_supported
,
2836 int __init
amd_iommu_init_api(void)
2838 return bus_set_iommu(&pci_bus_type
, &amd_iommu_ops
);
2841 int __init
amd_iommu_init_dma_ops(void)
2843 swiotlb
= iommu_pass_through
? 1 : 0;
2847 * In case we don't initialize SWIOTLB (actually the common case
2848 * when AMD IOMMU is enabled), make sure there are global
2849 * dma_ops set as a fall-back for devices not handled by this
2850 * driver (for example non-PCI devices).
2853 dma_ops
= &nommu_dma_ops
;
2855 amd_iommu_stats_init();
2857 if (amd_iommu_unmap_flush
)
2858 pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
2860 pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
2865 /*****************************************************************************
2867 * The following functions belong to the exported interface of AMD IOMMU
2869 * This interface allows access to lower level functions of the IOMMU
2870 * like protection domain handling and assignement of devices to domains
2871 * which is not possible with the dma_ops interface.
2873 *****************************************************************************/
2875 static void cleanup_domain(struct protection_domain
*domain
)
2877 struct iommu_dev_data
*entry
;
2878 unsigned long flags
;
2880 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
2882 while (!list_empty(&domain
->dev_list
)) {
2883 entry
= list_first_entry(&domain
->dev_list
,
2884 struct iommu_dev_data
, list
);
2885 __detach_device(entry
);
2888 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
2891 static void protection_domain_free(struct protection_domain
*domain
)
2896 del_domain_from_list(domain
);
2899 domain_id_free(domain
->id
);
2904 static int protection_domain_init(struct protection_domain
*domain
)
2906 spin_lock_init(&domain
->lock
);
2907 mutex_init(&domain
->api_lock
);
2908 domain
->id
= domain_id_alloc();
2911 INIT_LIST_HEAD(&domain
->dev_list
);
2916 static struct protection_domain
*protection_domain_alloc(void)
2918 struct protection_domain
*domain
;
2920 domain
= kzalloc(sizeof(*domain
), GFP_KERNEL
);
2924 if (protection_domain_init(domain
))
2927 add_domain_to_list(domain
);
2937 static struct iommu_domain
*amd_iommu_domain_alloc(unsigned type
)
2939 struct protection_domain
*pdomain
;
2940 struct dma_ops_domain
*dma_domain
;
2943 case IOMMU_DOMAIN_UNMANAGED
:
2944 pdomain
= protection_domain_alloc();
2948 pdomain
->mode
= PAGE_MODE_3_LEVEL
;
2949 pdomain
->pt_root
= (void *)get_zeroed_page(GFP_KERNEL
);
2950 if (!pdomain
->pt_root
) {
2951 protection_domain_free(pdomain
);
2955 pdomain
->domain
.geometry
.aperture_start
= 0;
2956 pdomain
->domain
.geometry
.aperture_end
= ~0ULL;
2957 pdomain
->domain
.geometry
.force_aperture
= true;
2960 case IOMMU_DOMAIN_DMA
:
2961 dma_domain
= dma_ops_domain_alloc();
2963 pr_err("AMD-Vi: Failed to allocate\n");
2966 pdomain
= &dma_domain
->domain
;
2968 case IOMMU_DOMAIN_IDENTITY
:
2969 pdomain
= protection_domain_alloc();
2973 pdomain
->mode
= PAGE_MODE_NONE
;
2979 return &pdomain
->domain
;
2982 static void amd_iommu_domain_free(struct iommu_domain
*dom
)
2984 struct protection_domain
*domain
;
2985 struct dma_ops_domain
*dma_dom
;
2987 domain
= to_pdomain(dom
);
2989 if (domain
->dev_cnt
> 0)
2990 cleanup_domain(domain
);
2992 BUG_ON(domain
->dev_cnt
!= 0);
2997 switch (dom
->type
) {
2998 case IOMMU_DOMAIN_DMA
:
2999 dma_dom
= domain
->priv
;
3000 dma_ops_domain_free(dma_dom
);
3003 if (domain
->mode
!= PAGE_MODE_NONE
)
3004 free_pagetable(domain
);
3006 if (domain
->flags
& PD_IOMMUV2_MASK
)
3007 free_gcr3_table(domain
);
3009 protection_domain_free(domain
);
3014 static void amd_iommu_detach_device(struct iommu_domain
*dom
,
3017 struct iommu_dev_data
*dev_data
= dev
->archdata
.iommu
;
3018 struct amd_iommu
*iommu
;
3021 if (!check_device(dev
))
3024 devid
= get_device_id(dev
);
3026 if (dev_data
->domain
!= NULL
)
3029 iommu
= amd_iommu_rlookup_table
[devid
];
3033 iommu_completion_wait(iommu
);
3036 static int amd_iommu_attach_device(struct iommu_domain
*dom
,
3039 struct protection_domain
*domain
= to_pdomain(dom
);
3040 struct iommu_dev_data
*dev_data
;
3041 struct amd_iommu
*iommu
;
3044 if (!check_device(dev
))
3047 dev_data
= dev
->archdata
.iommu
;
3049 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
3053 if (dev_data
->domain
)
3056 ret
= attach_device(dev
, domain
);
3058 iommu_completion_wait(iommu
);
3063 static int amd_iommu_map(struct iommu_domain
*dom
, unsigned long iova
,
3064 phys_addr_t paddr
, size_t page_size
, int iommu_prot
)
3066 struct protection_domain
*domain
= to_pdomain(dom
);
3070 if (domain
->mode
== PAGE_MODE_NONE
)
3073 if (iommu_prot
& IOMMU_READ
)
3074 prot
|= IOMMU_PROT_IR
;
3075 if (iommu_prot
& IOMMU_WRITE
)
3076 prot
|= IOMMU_PROT_IW
;
3078 mutex_lock(&domain
->api_lock
);
3079 ret
= iommu_map_page(domain
, iova
, paddr
, prot
, page_size
);
3080 mutex_unlock(&domain
->api_lock
);
3085 static size_t amd_iommu_unmap(struct iommu_domain
*dom
, unsigned long iova
,
3088 struct protection_domain
*domain
= to_pdomain(dom
);
3091 if (domain
->mode
== PAGE_MODE_NONE
)
3094 mutex_lock(&domain
->api_lock
);
3095 unmap_size
= iommu_unmap_page(domain
, iova
, page_size
);
3096 mutex_unlock(&domain
->api_lock
);
3098 domain_flush_tlb_pde(domain
);
3099 domain_flush_complete(domain
);
3104 static phys_addr_t
amd_iommu_iova_to_phys(struct iommu_domain
*dom
,
3107 struct protection_domain
*domain
= to_pdomain(dom
);
3108 unsigned long offset_mask
, pte_pgsize
;
3111 if (domain
->mode
== PAGE_MODE_NONE
)
3114 pte
= fetch_pte(domain
, iova
, &pte_pgsize
);
3116 if (!pte
|| !IOMMU_PTE_PRESENT(*pte
))
3119 offset_mask
= pte_pgsize
- 1;
3120 __pte
= *pte
& PM_ADDR_MASK
;
3122 return (__pte
& ~offset_mask
) | (iova
& offset_mask
);
3125 static bool amd_iommu_capable(enum iommu_cap cap
)
3128 case IOMMU_CAP_CACHE_COHERENCY
:
3130 case IOMMU_CAP_INTR_REMAP
:
3131 return (irq_remapping_enabled
== 1);
3132 case IOMMU_CAP_NOEXEC
:
3139 static void amd_iommu_get_dm_regions(struct device
*dev
,
3140 struct list_head
*head
)
3142 struct unity_map_entry
*entry
;
3145 devid
= get_device_id(dev
);
3147 list_for_each_entry(entry
, &amd_iommu_unity_map
, list
) {
3148 struct iommu_dm_region
*region
;
3150 if (devid
< entry
->devid_start
|| devid
> entry
->devid_end
)
3153 region
= kzalloc(sizeof(*region
), GFP_KERNEL
);
3155 pr_err("Out of memory allocating dm-regions for %s\n",
3160 region
->start
= entry
->address_start
;
3161 region
->length
= entry
->address_end
- entry
->address_start
;
3162 if (entry
->prot
& IOMMU_PROT_IR
)
3163 region
->prot
|= IOMMU_READ
;
3164 if (entry
->prot
& IOMMU_PROT_IW
)
3165 region
->prot
|= IOMMU_WRITE
;
3167 list_add_tail(®ion
->list
, head
);
3171 static void amd_iommu_put_dm_regions(struct device
*dev
,
3172 struct list_head
*head
)
3174 struct iommu_dm_region
*entry
, *next
;
3176 list_for_each_entry_safe(entry
, next
, head
, list
)
3180 static const struct iommu_ops amd_iommu_ops
= {
3181 .capable
= amd_iommu_capable
,
3182 .domain_alloc
= amd_iommu_domain_alloc
,
3183 .domain_free
= amd_iommu_domain_free
,
3184 .attach_dev
= amd_iommu_attach_device
,
3185 .detach_dev
= amd_iommu_detach_device
,
3186 .map
= amd_iommu_map
,
3187 .unmap
= amd_iommu_unmap
,
3188 .map_sg
= default_iommu_map_sg
,
3189 .iova_to_phys
= amd_iommu_iova_to_phys
,
3190 .add_device
= amd_iommu_add_device
,
3191 .remove_device
= amd_iommu_remove_device
,
3192 .device_group
= pci_device_group
,
3193 .get_dm_regions
= amd_iommu_get_dm_regions
,
3194 .put_dm_regions
= amd_iommu_put_dm_regions
,
3195 .pgsize_bitmap
= AMD_IOMMU_PGSIZES
,
3198 /*****************************************************************************
3200 * The next functions do a basic initialization of IOMMU for pass through
3203 * In passthrough mode the IOMMU is initialized and enabled but not used for
3204 * DMA-API translation.
3206 *****************************************************************************/
3208 /* IOMMUv2 specific functions */
3209 int amd_iommu_register_ppr_notifier(struct notifier_block
*nb
)
3211 return atomic_notifier_chain_register(&ppr_notifier
, nb
);
3213 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier
);
3215 int amd_iommu_unregister_ppr_notifier(struct notifier_block
*nb
)
3217 return atomic_notifier_chain_unregister(&ppr_notifier
, nb
);
3219 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier
);
3221 void amd_iommu_domain_direct_map(struct iommu_domain
*dom
)
3223 struct protection_domain
*domain
= to_pdomain(dom
);
3224 unsigned long flags
;
3226 spin_lock_irqsave(&domain
->lock
, flags
);
3228 /* Update data structure */
3229 domain
->mode
= PAGE_MODE_NONE
;
3230 domain
->updated
= true;
3232 /* Make changes visible to IOMMUs */
3233 update_domain(domain
);
3235 /* Page-table is not visible to IOMMU anymore, so free it */
3236 free_pagetable(domain
);
3238 spin_unlock_irqrestore(&domain
->lock
, flags
);
3240 EXPORT_SYMBOL(amd_iommu_domain_direct_map
);
3242 int amd_iommu_domain_enable_v2(struct iommu_domain
*dom
, int pasids
)
3244 struct protection_domain
*domain
= to_pdomain(dom
);
3245 unsigned long flags
;
3248 if (pasids
<= 0 || pasids
> (PASID_MASK
+ 1))
3251 /* Number of GCR3 table levels required */
3252 for (levels
= 0; (pasids
- 1) & ~0x1ff; pasids
>>= 9)
3255 if (levels
> amd_iommu_max_glx_val
)
3258 spin_lock_irqsave(&domain
->lock
, flags
);
3261 * Save us all sanity checks whether devices already in the
3262 * domain support IOMMUv2. Just force that the domain has no
3263 * devices attached when it is switched into IOMMUv2 mode.
3266 if (domain
->dev_cnt
> 0 || domain
->flags
& PD_IOMMUV2_MASK
)
3270 domain
->gcr3_tbl
= (void *)get_zeroed_page(GFP_ATOMIC
);
3271 if (domain
->gcr3_tbl
== NULL
)
3274 domain
->glx
= levels
;
3275 domain
->flags
|= PD_IOMMUV2_MASK
;
3276 domain
->updated
= true;
3278 update_domain(domain
);
3283 spin_unlock_irqrestore(&domain
->lock
, flags
);
3287 EXPORT_SYMBOL(amd_iommu_domain_enable_v2
);
3289 static int __flush_pasid(struct protection_domain
*domain
, int pasid
,
3290 u64 address
, bool size
)
3292 struct iommu_dev_data
*dev_data
;
3293 struct iommu_cmd cmd
;
3296 if (!(domain
->flags
& PD_IOMMUV2_MASK
))
3299 build_inv_iommu_pasid(&cmd
, domain
->id
, pasid
, address
, size
);
3302 * IOMMU TLB needs to be flushed before Device TLB to
3303 * prevent device TLB refill from IOMMU TLB
3305 for (i
= 0; i
< amd_iommus_present
; ++i
) {
3306 if (domain
->dev_iommu
[i
] == 0)
3309 ret
= iommu_queue_command(amd_iommus
[i
], &cmd
);
3314 /* Wait until IOMMU TLB flushes are complete */
3315 domain_flush_complete(domain
);
3317 /* Now flush device TLBs */
3318 list_for_each_entry(dev_data
, &domain
->dev_list
, list
) {
3319 struct amd_iommu
*iommu
;
3323 There might be non-IOMMUv2 capable devices in an IOMMUv2
3326 if (!dev_data
->ats
.enabled
)
3329 qdep
= dev_data
->ats
.qdep
;
3330 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
3332 build_inv_iotlb_pasid(&cmd
, dev_data
->devid
, pasid
,
3333 qdep
, address
, size
);
3335 ret
= iommu_queue_command(iommu
, &cmd
);
3340 /* Wait until all device TLBs are flushed */
3341 domain_flush_complete(domain
);
3350 static int __amd_iommu_flush_page(struct protection_domain
*domain
, int pasid
,
3353 INC_STATS_COUNTER(invalidate_iotlb
);
3355 return __flush_pasid(domain
, pasid
, address
, false);
3358 int amd_iommu_flush_page(struct iommu_domain
*dom
, int pasid
,
3361 struct protection_domain
*domain
= to_pdomain(dom
);
3362 unsigned long flags
;
3365 spin_lock_irqsave(&domain
->lock
, flags
);
3366 ret
= __amd_iommu_flush_page(domain
, pasid
, address
);
3367 spin_unlock_irqrestore(&domain
->lock
, flags
);
3371 EXPORT_SYMBOL(amd_iommu_flush_page
);
3373 static int __amd_iommu_flush_tlb(struct protection_domain
*domain
, int pasid
)
3375 INC_STATS_COUNTER(invalidate_iotlb_all
);
3377 return __flush_pasid(domain
, pasid
, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
,
3381 int amd_iommu_flush_tlb(struct iommu_domain
*dom
, int pasid
)
3383 struct protection_domain
*domain
= to_pdomain(dom
);
3384 unsigned long flags
;
3387 spin_lock_irqsave(&domain
->lock
, flags
);
3388 ret
= __amd_iommu_flush_tlb(domain
, pasid
);
3389 spin_unlock_irqrestore(&domain
->lock
, flags
);
3393 EXPORT_SYMBOL(amd_iommu_flush_tlb
);
3395 static u64
*__get_gcr3_pte(u64
*root
, int level
, int pasid
, bool alloc
)
3402 index
= (pasid
>> (9 * level
)) & 0x1ff;
3408 if (!(*pte
& GCR3_VALID
)) {
3412 root
= (void *)get_zeroed_page(GFP_ATOMIC
);
3416 *pte
= __pa(root
) | GCR3_VALID
;
3419 root
= __va(*pte
& PAGE_MASK
);
3427 static int __set_gcr3(struct protection_domain
*domain
, int pasid
,
3432 if (domain
->mode
!= PAGE_MODE_NONE
)
3435 pte
= __get_gcr3_pte(domain
->gcr3_tbl
, domain
->glx
, pasid
, true);
3439 *pte
= (cr3
& PAGE_MASK
) | GCR3_VALID
;
3441 return __amd_iommu_flush_tlb(domain
, pasid
);
3444 static int __clear_gcr3(struct protection_domain
*domain
, int pasid
)
3448 if (domain
->mode
!= PAGE_MODE_NONE
)
3451 pte
= __get_gcr3_pte(domain
->gcr3_tbl
, domain
->glx
, pasid
, false);
3457 return __amd_iommu_flush_tlb(domain
, pasid
);
3460 int amd_iommu_domain_set_gcr3(struct iommu_domain
*dom
, int pasid
,
3463 struct protection_domain
*domain
= to_pdomain(dom
);
3464 unsigned long flags
;
3467 spin_lock_irqsave(&domain
->lock
, flags
);
3468 ret
= __set_gcr3(domain
, pasid
, cr3
);
3469 spin_unlock_irqrestore(&domain
->lock
, flags
);
3473 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3
);
3475 int amd_iommu_domain_clear_gcr3(struct iommu_domain
*dom
, int pasid
)
3477 struct protection_domain
*domain
= to_pdomain(dom
);
3478 unsigned long flags
;
3481 spin_lock_irqsave(&domain
->lock
, flags
);
3482 ret
= __clear_gcr3(domain
, pasid
);
3483 spin_unlock_irqrestore(&domain
->lock
, flags
);
3487 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3
);
3489 int amd_iommu_complete_ppr(struct pci_dev
*pdev
, int pasid
,
3490 int status
, int tag
)
3492 struct iommu_dev_data
*dev_data
;
3493 struct amd_iommu
*iommu
;
3494 struct iommu_cmd cmd
;
3496 INC_STATS_COUNTER(complete_ppr
);
3498 dev_data
= get_dev_data(&pdev
->dev
);
3499 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
3501 build_complete_ppr(&cmd
, dev_data
->devid
, pasid
, status
,
3502 tag
, dev_data
->pri_tlp
);
3504 return iommu_queue_command(iommu
, &cmd
);
3506 EXPORT_SYMBOL(amd_iommu_complete_ppr
);
3508 struct iommu_domain
*amd_iommu_get_v2_domain(struct pci_dev
*pdev
)
3510 struct protection_domain
*pdomain
;
3512 pdomain
= get_domain(&pdev
->dev
);
3513 if (IS_ERR(pdomain
))
3516 /* Only return IOMMUv2 domains */
3517 if (!(pdomain
->flags
& PD_IOMMUV2_MASK
))
3520 return &pdomain
->domain
;
3522 EXPORT_SYMBOL(amd_iommu_get_v2_domain
);
3524 void amd_iommu_enable_device_erratum(struct pci_dev
*pdev
, u32 erratum
)
3526 struct iommu_dev_data
*dev_data
;
3528 if (!amd_iommu_v2_supported())
3531 dev_data
= get_dev_data(&pdev
->dev
);
3532 dev_data
->errata
|= (1 << erratum
);
3534 EXPORT_SYMBOL(amd_iommu_enable_device_erratum
);
3536 int amd_iommu_device_info(struct pci_dev
*pdev
,
3537 struct amd_iommu_device_info
*info
)
3542 if (pdev
== NULL
|| info
== NULL
)
3545 if (!amd_iommu_v2_supported())
3548 memset(info
, 0, sizeof(*info
));
3550 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_ATS
);
3552 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_ATS_SUP
;
3554 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_PRI
);
3556 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_PRI_SUP
;
3558 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_PASID
);
3562 max_pasids
= 1 << (9 * (amd_iommu_max_glx_val
+ 1));
3563 max_pasids
= min(max_pasids
, (1 << 20));
3565 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_PASID_SUP
;
3566 info
->max_pasids
= min(pci_max_pasids(pdev
), max_pasids
);
3568 features
= pci_pasid_features(pdev
);
3569 if (features
& PCI_PASID_CAP_EXEC
)
3570 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP
;
3571 if (features
& PCI_PASID_CAP_PRIV
)
3572 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP
;
3577 EXPORT_SYMBOL(amd_iommu_device_info
);
3579 #ifdef CONFIG_IRQ_REMAP
3581 /*****************************************************************************
3583 * Interrupt Remapping Implementation
3585 *****************************************************************************/
3603 u16 devid
; /* Device ID for IRTE table */
3604 u16 index
; /* Index into IRTE table*/
3607 struct amd_ir_data
{
3608 struct irq_2_irte irq_2_irte
;
3609 union irte irte_entry
;
3611 struct msi_msg msi_entry
;
3615 static struct irq_chip amd_ir_chip
;
3617 #define DTE_IRQ_PHYS_ADDR_MASK (((1ULL << 45)-1) << 6)
3618 #define DTE_IRQ_REMAP_INTCTL (2ULL << 60)
3619 #define DTE_IRQ_TABLE_LEN (8ULL << 1)
3620 #define DTE_IRQ_REMAP_ENABLE 1ULL
3622 static void set_dte_irq_entry(u16 devid
, struct irq_remap_table
*table
)
3626 dte
= amd_iommu_dev_table
[devid
].data
[2];
3627 dte
&= ~DTE_IRQ_PHYS_ADDR_MASK
;
3628 dte
|= virt_to_phys(table
->table
);
3629 dte
|= DTE_IRQ_REMAP_INTCTL
;
3630 dte
|= DTE_IRQ_TABLE_LEN
;
3631 dte
|= DTE_IRQ_REMAP_ENABLE
;
3633 amd_iommu_dev_table
[devid
].data
[2] = dte
;
3636 #define IRTE_ALLOCATED (~1U)
3638 static struct irq_remap_table
*get_irq_table(u16 devid
, bool ioapic
)
3640 struct irq_remap_table
*table
= NULL
;
3641 struct amd_iommu
*iommu
;
3642 unsigned long flags
;
3645 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
3647 iommu
= amd_iommu_rlookup_table
[devid
];
3651 table
= irq_lookup_table
[devid
];
3655 alias
= amd_iommu_alias_table
[devid
];
3656 table
= irq_lookup_table
[alias
];
3658 irq_lookup_table
[devid
] = table
;
3659 set_dte_irq_entry(devid
, table
);
3660 iommu_flush_dte(iommu
, devid
);
3664 /* Nothing there yet, allocate new irq remapping table */
3665 table
= kzalloc(sizeof(*table
), GFP_ATOMIC
);
3669 /* Initialize table spin-lock */
3670 spin_lock_init(&table
->lock
);
3673 /* Keep the first 32 indexes free for IOAPIC interrupts */
3674 table
->min_index
= 32;
3676 table
->table
= kmem_cache_alloc(amd_iommu_irq_cache
, GFP_ATOMIC
);
3677 if (!table
->table
) {
3683 memset(table
->table
, 0, MAX_IRQS_PER_TABLE
* sizeof(u32
));
3688 for (i
= 0; i
< 32; ++i
)
3689 table
->table
[i
] = IRTE_ALLOCATED
;
3692 irq_lookup_table
[devid
] = table
;
3693 set_dte_irq_entry(devid
, table
);
3694 iommu_flush_dte(iommu
, devid
);
3695 if (devid
!= alias
) {
3696 irq_lookup_table
[alias
] = table
;
3697 set_dte_irq_entry(alias
, table
);
3698 iommu_flush_dte(iommu
, alias
);
3702 iommu_completion_wait(iommu
);
3705 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
3710 static int alloc_irq_index(u16 devid
, int count
)
3712 struct irq_remap_table
*table
;
3713 unsigned long flags
;
3716 table
= get_irq_table(devid
, false);
3720 spin_lock_irqsave(&table
->lock
, flags
);
3722 /* Scan table for free entries */
3723 for (c
= 0, index
= table
->min_index
;
3724 index
< MAX_IRQS_PER_TABLE
;
3726 if (table
->table
[index
] == 0)
3733 table
->table
[index
- c
+ 1] = IRTE_ALLOCATED
;
3743 spin_unlock_irqrestore(&table
->lock
, flags
);
3748 static int modify_irte(u16 devid
, int index
, union irte irte
)
3750 struct irq_remap_table
*table
;
3751 struct amd_iommu
*iommu
;
3752 unsigned long flags
;
3754 iommu
= amd_iommu_rlookup_table
[devid
];
3758 table
= get_irq_table(devid
, false);
3762 spin_lock_irqsave(&table
->lock
, flags
);
3763 table
->table
[index
] = irte
.val
;
3764 spin_unlock_irqrestore(&table
->lock
, flags
);
3766 iommu_flush_irt(iommu
, devid
);
3767 iommu_completion_wait(iommu
);
3772 static void free_irte(u16 devid
, int index
)
3774 struct irq_remap_table
*table
;
3775 struct amd_iommu
*iommu
;
3776 unsigned long flags
;
3778 iommu
= amd_iommu_rlookup_table
[devid
];
3782 table
= get_irq_table(devid
, false);
3786 spin_lock_irqsave(&table
->lock
, flags
);
3787 table
->table
[index
] = 0;
3788 spin_unlock_irqrestore(&table
->lock
, flags
);
3790 iommu_flush_irt(iommu
, devid
);
3791 iommu_completion_wait(iommu
);
3794 static int get_devid(struct irq_alloc_info
*info
)
3798 switch (info
->type
) {
3799 case X86_IRQ_ALLOC_TYPE_IOAPIC
:
3800 devid
= get_ioapic_devid(info
->ioapic_id
);
3802 case X86_IRQ_ALLOC_TYPE_HPET
:
3803 devid
= get_hpet_devid(info
->hpet_id
);
3805 case X86_IRQ_ALLOC_TYPE_MSI
:
3806 case X86_IRQ_ALLOC_TYPE_MSIX
:
3807 devid
= get_device_id(&info
->msi_dev
->dev
);
3817 static struct irq_domain
*get_ir_irq_domain(struct irq_alloc_info
*info
)
3819 struct amd_iommu
*iommu
;
3825 devid
= get_devid(info
);
3827 iommu
= amd_iommu_rlookup_table
[devid
];
3829 return iommu
->ir_domain
;
3835 static struct irq_domain
*get_irq_domain(struct irq_alloc_info
*info
)
3837 struct amd_iommu
*iommu
;
3843 switch (info
->type
) {
3844 case X86_IRQ_ALLOC_TYPE_MSI
:
3845 case X86_IRQ_ALLOC_TYPE_MSIX
:
3846 devid
= get_device_id(&info
->msi_dev
->dev
);
3848 iommu
= amd_iommu_rlookup_table
[devid
];
3850 return iommu
->msi_domain
;
3860 struct irq_remap_ops amd_iommu_irq_ops
= {
3861 .prepare
= amd_iommu_prepare
,
3862 .enable
= amd_iommu_enable
,
3863 .disable
= amd_iommu_disable
,
3864 .reenable
= amd_iommu_reenable
,
3865 .enable_faulting
= amd_iommu_enable_faulting
,
3866 .get_ir_irq_domain
= get_ir_irq_domain
,
3867 .get_irq_domain
= get_irq_domain
,
3870 static void irq_remapping_prepare_irte(struct amd_ir_data
*data
,
3871 struct irq_cfg
*irq_cfg
,
3872 struct irq_alloc_info
*info
,
3873 int devid
, int index
, int sub_handle
)
3875 struct irq_2_irte
*irte_info
= &data
->irq_2_irte
;
3876 struct msi_msg
*msg
= &data
->msi_entry
;
3877 union irte
*irte
= &data
->irte_entry
;
3878 struct IO_APIC_route_entry
*entry
;
3880 data
->irq_2_irte
.devid
= devid
;
3881 data
->irq_2_irte
.index
= index
+ sub_handle
;
3883 /* Setup IRTE for IOMMU */
3885 irte
->fields
.vector
= irq_cfg
->vector
;
3886 irte
->fields
.int_type
= apic
->irq_delivery_mode
;
3887 irte
->fields
.destination
= irq_cfg
->dest_apicid
;
3888 irte
->fields
.dm
= apic
->irq_dest_mode
;
3889 irte
->fields
.valid
= 1;
3891 switch (info
->type
) {
3892 case X86_IRQ_ALLOC_TYPE_IOAPIC
:
3893 /* Setup IOAPIC entry */
3894 entry
= info
->ioapic_entry
;
3895 info
->ioapic_entry
= NULL
;
3896 memset(entry
, 0, sizeof(*entry
));
3897 entry
->vector
= index
;
3899 entry
->trigger
= info
->ioapic_trigger
;
3900 entry
->polarity
= info
->ioapic_polarity
;
3901 /* Mask level triggered irqs. */
3902 if (info
->ioapic_trigger
)
3906 case X86_IRQ_ALLOC_TYPE_HPET
:
3907 case X86_IRQ_ALLOC_TYPE_MSI
:
3908 case X86_IRQ_ALLOC_TYPE_MSIX
:
3909 msg
->address_hi
= MSI_ADDR_BASE_HI
;
3910 msg
->address_lo
= MSI_ADDR_BASE_LO
;
3911 msg
->data
= irte_info
->index
;
3920 static int irq_remapping_alloc(struct irq_domain
*domain
, unsigned int virq
,
3921 unsigned int nr_irqs
, void *arg
)
3923 struct irq_alloc_info
*info
= arg
;
3924 struct irq_data
*irq_data
;
3925 struct amd_ir_data
*data
;
3926 struct irq_cfg
*cfg
;
3932 if (nr_irqs
> 1 && info
->type
!= X86_IRQ_ALLOC_TYPE_MSI
&&
3933 info
->type
!= X86_IRQ_ALLOC_TYPE_MSIX
)
3937 * With IRQ remapping enabled, don't need contiguous CPU vectors
3938 * to support multiple MSI interrupts.
3940 if (info
->type
== X86_IRQ_ALLOC_TYPE_MSI
)
3941 info
->flags
&= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS
;
3943 devid
= get_devid(info
);
3947 ret
= irq_domain_alloc_irqs_parent(domain
, virq
, nr_irqs
, arg
);
3951 if (info
->type
== X86_IRQ_ALLOC_TYPE_IOAPIC
) {
3952 if (get_irq_table(devid
, true))
3953 index
= info
->ioapic_pin
;
3957 index
= alloc_irq_index(devid
, nr_irqs
);
3960 pr_warn("Failed to allocate IRTE\n");
3961 goto out_free_parent
;
3964 for (i
= 0; i
< nr_irqs
; i
++) {
3965 irq_data
= irq_domain_get_irq_data(domain
, virq
+ i
);
3966 cfg
= irqd_cfg(irq_data
);
3967 if (!irq_data
|| !cfg
) {
3973 data
= kzalloc(sizeof(*data
), GFP_KERNEL
);
3977 irq_data
->hwirq
= (devid
<< 16) + i
;
3978 irq_data
->chip_data
= data
;
3979 irq_data
->chip
= &amd_ir_chip
;
3980 irq_remapping_prepare_irte(data
, cfg
, info
, devid
, index
, i
);
3981 irq_set_status_flags(virq
+ i
, IRQ_MOVE_PCNTXT
);
3987 for (i
--; i
>= 0; i
--) {
3988 irq_data
= irq_domain_get_irq_data(domain
, virq
+ i
);
3990 kfree(irq_data
->chip_data
);
3992 for (i
= 0; i
< nr_irqs
; i
++)
3993 free_irte(devid
, index
+ i
);
3995 irq_domain_free_irqs_common(domain
, virq
, nr_irqs
);
3999 static void irq_remapping_free(struct irq_domain
*domain
, unsigned int virq
,
4000 unsigned int nr_irqs
)
4002 struct irq_2_irte
*irte_info
;
4003 struct irq_data
*irq_data
;
4004 struct amd_ir_data
*data
;
4007 for (i
= 0; i
< nr_irqs
; i
++) {
4008 irq_data
= irq_domain_get_irq_data(domain
, virq
+ i
);
4009 if (irq_data
&& irq_data
->chip_data
) {
4010 data
= irq_data
->chip_data
;
4011 irte_info
= &data
->irq_2_irte
;
4012 free_irte(irte_info
->devid
, irte_info
->index
);
4016 irq_domain_free_irqs_common(domain
, virq
, nr_irqs
);
4019 static void irq_remapping_activate(struct irq_domain
*domain
,
4020 struct irq_data
*irq_data
)
4022 struct amd_ir_data
*data
= irq_data
->chip_data
;
4023 struct irq_2_irte
*irte_info
= &data
->irq_2_irte
;
4025 modify_irte(irte_info
->devid
, irte_info
->index
, data
->irte_entry
);
4028 static void irq_remapping_deactivate(struct irq_domain
*domain
,
4029 struct irq_data
*irq_data
)
4031 struct amd_ir_data
*data
= irq_data
->chip_data
;
4032 struct irq_2_irte
*irte_info
= &data
->irq_2_irte
;
4036 modify_irte(irte_info
->devid
, irte_info
->index
, data
->irte_entry
);
4039 static struct irq_domain_ops amd_ir_domain_ops
= {
4040 .alloc
= irq_remapping_alloc
,
4041 .free
= irq_remapping_free
,
4042 .activate
= irq_remapping_activate
,
4043 .deactivate
= irq_remapping_deactivate
,
4046 static int amd_ir_set_affinity(struct irq_data
*data
,
4047 const struct cpumask
*mask
, bool force
)
4049 struct amd_ir_data
*ir_data
= data
->chip_data
;
4050 struct irq_2_irte
*irte_info
= &ir_data
->irq_2_irte
;
4051 struct irq_cfg
*cfg
= irqd_cfg(data
);
4052 struct irq_data
*parent
= data
->parent_data
;
4055 ret
= parent
->chip
->irq_set_affinity(parent
, mask
, force
);
4056 if (ret
< 0 || ret
== IRQ_SET_MASK_OK_DONE
)
4060 * Atomically updates the IRTE with the new destination, vector
4061 * and flushes the interrupt entry cache.
4063 ir_data
->irte_entry
.fields
.vector
= cfg
->vector
;
4064 ir_data
->irte_entry
.fields
.destination
= cfg
->dest_apicid
;
4065 modify_irte(irte_info
->devid
, irte_info
->index
, ir_data
->irte_entry
);
4068 * After this point, all the interrupts will start arriving
4069 * at the new destination. So, time to cleanup the previous
4070 * vector allocation.
4072 send_cleanup_vector(cfg
);
4074 return IRQ_SET_MASK_OK_DONE
;
4077 static void ir_compose_msi_msg(struct irq_data
*irq_data
, struct msi_msg
*msg
)
4079 struct amd_ir_data
*ir_data
= irq_data
->chip_data
;
4081 *msg
= ir_data
->msi_entry
;
4084 static struct irq_chip amd_ir_chip
= {
4085 .irq_ack
= ir_ack_apic_edge
,
4086 .irq_set_affinity
= amd_ir_set_affinity
,
4087 .irq_compose_msi_msg
= ir_compose_msi_msg
,
4090 int amd_iommu_create_irq_domain(struct amd_iommu
*iommu
)
4092 iommu
->ir_domain
= irq_domain_add_tree(NULL
, &amd_ir_domain_ops
, iommu
);
4093 if (!iommu
->ir_domain
)
4096 iommu
->ir_domain
->parent
= arch_get_ir_parent_domain();
4097 iommu
->msi_domain
= arch_create_msi_irq_domain(iommu
->ir_domain
);