2 * Primary bucket allocation code
4 * Copyright 2012 Google, Inc.
6 * Allocation in bcache is done in terms of buckets:
8 * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in
9 * btree pointers - they must match for the pointer to be considered valid.
11 * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a
12 * bucket simply by incrementing its gen.
14 * The gens (along with the priorities; it's really the gens are important but
15 * the code is named as if it's the priorities) are written in an arbitrary list
16 * of buckets on disk, with a pointer to them in the journal header.
18 * When we invalidate a bucket, we have to write its new gen to disk and wait
19 * for that write to complete before we use it - otherwise after a crash we
20 * could have pointers that appeared to be good but pointed to data that had
23 * Since the gens and priorities are all stored contiguously on disk, we can
24 * batch this up: We fill up the free_inc list with freshly invalidated buckets,
25 * call prio_write(), and when prio_write() finishes we pull buckets off the
26 * free_inc list and optionally discard them.
28 * free_inc isn't the only freelist - if it was, we'd often to sleep while
29 * priorities and gens were being written before we could allocate. c->free is a
30 * smaller freelist, and buckets on that list are always ready to be used.
32 * If we've got discards enabled, that happens when a bucket moves from the
33 * free_inc list to the free list.
35 * There is another freelist, because sometimes we have buckets that we know
36 * have nothing pointing into them - these we can reuse without waiting for
37 * priorities to be rewritten. These come from freed btree nodes and buckets
38 * that garbage collection discovered no longer had valid keys pointing into
39 * them (because they were overwritten). That's the unused list - buckets on the
40 * unused list move to the free list, optionally being discarded in the process.
42 * It's also important to ensure that gens don't wrap around - with respect to
43 * either the oldest gen in the btree or the gen on disk. This is quite
44 * difficult to do in practice, but we explicitly guard against it anyways - if
45 * a bucket is in danger of wrapping around we simply skip invalidating it that
46 * time around, and we garbage collect or rewrite the priorities sooner than we
47 * would have otherwise.
49 * bch_bucket_alloc() allocates a single bucket from a specific cache.
51 * bch_bucket_alloc_set() allocates one or more buckets from different caches
54 * free_some_buckets() drives all the processes described above. It's called
55 * from bch_bucket_alloc() and a few other places that need to make sure free
58 * invalidate_buckets_(lru|fifo)() find buckets that are available to be
59 * invalidated, and then invalidate them and stick them on the free_inc list -
60 * in either lru or fifo order.
66 #include <linux/blkdev.h>
67 #include <linux/freezer.h>
68 #include <linux/kthread.h>
69 #include <linux/random.h>
70 #include <trace/events/bcache.h>
72 /* Bucket heap / gen */
74 uint8_t bch_inc_gen(struct cache
*ca
, struct bucket
*b
)
76 uint8_t ret
= ++b
->gen
;
78 ca
->set
->need_gc
= max(ca
->set
->need_gc
, bucket_gc_gen(b
));
79 WARN_ON_ONCE(ca
->set
->need_gc
> BUCKET_GC_GEN_MAX
);
84 void bch_rescale_priorities(struct cache_set
*c
, int sectors
)
88 unsigned next
= c
->nbuckets
* c
->sb
.bucket_size
/ 1024;
92 atomic_sub(sectors
, &c
->rescale
);
95 r
= atomic_read(&c
->rescale
);
99 } while (atomic_cmpxchg(&c
->rescale
, r
, r
+ next
) != r
);
101 mutex_lock(&c
->bucket_lock
);
103 c
->min_prio
= USHRT_MAX
;
105 for_each_cache(ca
, c
, i
)
106 for_each_bucket(b
, ca
)
108 b
->prio
!= BTREE_PRIO
&&
109 !atomic_read(&b
->pin
)) {
111 c
->min_prio
= min(c
->min_prio
, b
->prio
);
114 mutex_unlock(&c
->bucket_lock
);
118 * Background allocation thread: scans for buckets to be invalidated,
119 * invalidates them, rewrites prios/gens (marking them as invalidated on disk),
120 * then optionally issues discard commands to the newly free buckets, then puts
121 * them on the various freelists.
124 static inline bool can_inc_bucket_gen(struct bucket
*b
)
126 return bucket_gc_gen(b
) < BUCKET_GC_GEN_MAX
;
129 bool bch_can_invalidate_bucket(struct cache
*ca
, struct bucket
*b
)
131 BUG_ON(!ca
->set
->gc_mark_valid
);
133 return (!GC_MARK(b
) ||
134 GC_MARK(b
) == GC_MARK_RECLAIMABLE
) &&
135 !atomic_read(&b
->pin
) &&
136 can_inc_bucket_gen(b
);
139 void __bch_invalidate_one_bucket(struct cache
*ca
, struct bucket
*b
)
141 lockdep_assert_held(&ca
->set
->bucket_lock
);
142 BUG_ON(GC_MARK(b
) && GC_MARK(b
) != GC_MARK_RECLAIMABLE
);
144 if (GC_SECTORS_USED(b
))
145 trace_bcache_invalidate(ca
, b
- ca
->buckets
);
148 b
->prio
= INITIAL_PRIO
;
152 static void bch_invalidate_one_bucket(struct cache
*ca
, struct bucket
*b
)
154 __bch_invalidate_one_bucket(ca
, b
);
156 fifo_push(&ca
->free_inc
, b
- ca
->buckets
);
160 * Determines what order we're going to reuse buckets, smallest bucket_prio()
161 * first: we also take into account the number of sectors of live data in that
162 * bucket, and in order for that multiply to make sense we have to scale bucket
164 * Thus, we scale the bucket priorities so that the bucket with the smallest
165 * prio is worth 1/8th of what INITIAL_PRIO is worth.
168 #define bucket_prio(b) \
170 unsigned min_prio = (INITIAL_PRIO - ca->set->min_prio) / 8; \
172 (b->prio - ca->set->min_prio + min_prio) * GC_SECTORS_USED(b); \
175 #define bucket_max_cmp(l, r) (bucket_prio(l) < bucket_prio(r))
176 #define bucket_min_cmp(l, r) (bucket_prio(l) > bucket_prio(r))
178 static void invalidate_buckets_lru(struct cache
*ca
)
185 for_each_bucket(b
, ca
) {
186 if (!bch_can_invalidate_bucket(ca
, b
))
189 if (!heap_full(&ca
->heap
))
190 heap_add(&ca
->heap
, b
, bucket_max_cmp
);
191 else if (bucket_max_cmp(b
, heap_peek(&ca
->heap
))) {
192 ca
->heap
.data
[0] = b
;
193 heap_sift(&ca
->heap
, 0, bucket_max_cmp
);
197 for (i
= ca
->heap
.used
/ 2 - 1; i
>= 0; --i
)
198 heap_sift(&ca
->heap
, i
, bucket_min_cmp
);
200 while (!fifo_full(&ca
->free_inc
)) {
201 if (!heap_pop(&ca
->heap
, b
, bucket_min_cmp
)) {
203 * We don't want to be calling invalidate_buckets()
204 * multiple times when it can't do anything
206 ca
->invalidate_needs_gc
= 1;
211 bch_invalidate_one_bucket(ca
, b
);
215 static void invalidate_buckets_fifo(struct cache
*ca
)
220 while (!fifo_full(&ca
->free_inc
)) {
221 if (ca
->fifo_last_bucket
< ca
->sb
.first_bucket
||
222 ca
->fifo_last_bucket
>= ca
->sb
.nbuckets
)
223 ca
->fifo_last_bucket
= ca
->sb
.first_bucket
;
225 b
= ca
->buckets
+ ca
->fifo_last_bucket
++;
227 if (bch_can_invalidate_bucket(ca
, b
))
228 bch_invalidate_one_bucket(ca
, b
);
230 if (++checked
>= ca
->sb
.nbuckets
) {
231 ca
->invalidate_needs_gc
= 1;
238 static void invalidate_buckets_random(struct cache
*ca
)
243 while (!fifo_full(&ca
->free_inc
)) {
245 get_random_bytes(&n
, sizeof(n
));
247 n
%= (size_t) (ca
->sb
.nbuckets
- ca
->sb
.first_bucket
);
248 n
+= ca
->sb
.first_bucket
;
252 if (bch_can_invalidate_bucket(ca
, b
))
253 bch_invalidate_one_bucket(ca
, b
);
255 if (++checked
>= ca
->sb
.nbuckets
/ 2) {
256 ca
->invalidate_needs_gc
= 1;
263 static void invalidate_buckets(struct cache
*ca
)
265 BUG_ON(ca
->invalidate_needs_gc
);
267 switch (CACHE_REPLACEMENT(&ca
->sb
)) {
268 case CACHE_REPLACEMENT_LRU
:
269 invalidate_buckets_lru(ca
);
271 case CACHE_REPLACEMENT_FIFO
:
272 invalidate_buckets_fifo(ca
);
274 case CACHE_REPLACEMENT_RANDOM
:
275 invalidate_buckets_random(ca
);
280 #define allocator_wait(ca, cond) \
283 set_current_state(TASK_INTERRUPTIBLE); \
287 mutex_unlock(&(ca)->set->bucket_lock); \
288 if (kthread_should_stop()) { \
289 set_current_state(TASK_RUNNING); \
295 mutex_lock(&(ca)->set->bucket_lock); \
297 __set_current_state(TASK_RUNNING); \
300 static int bch_allocator_push(struct cache
*ca
, long bucket
)
304 /* Prios/gens are actually the most important reserve */
305 if (fifo_push(&ca
->free
[RESERVE_PRIO
], bucket
))
308 for (i
= 0; i
< RESERVE_NR
; i
++)
309 if (fifo_push(&ca
->free
[i
], bucket
))
315 static int bch_allocator_thread(void *arg
)
317 struct cache
*ca
= arg
;
319 mutex_lock(&ca
->set
->bucket_lock
);
323 * First, we pull buckets off of the unused and free_inc lists,
324 * possibly issue discards to them, then we add the bucket to
327 while (!fifo_empty(&ca
->free_inc
)) {
330 fifo_pop(&ca
->free_inc
, bucket
);
333 mutex_unlock(&ca
->set
->bucket_lock
);
334 blkdev_issue_discard(ca
->bdev
,
335 bucket_to_sector(ca
->set
, bucket
),
336 ca
->sb
.bucket_size
, GFP_KERNEL
, 0);
337 mutex_lock(&ca
->set
->bucket_lock
);
340 allocator_wait(ca
, bch_allocator_push(ca
, bucket
));
341 wake_up(&ca
->set
->btree_cache_wait
);
342 wake_up(&ca
->set
->bucket_wait
);
346 * We've run out of free buckets, we need to find some buckets
347 * we can invalidate. First, invalidate them in memory and add
348 * them to the free_inc list:
352 allocator_wait(ca
, ca
->set
->gc_mark_valid
&&
353 !ca
->invalidate_needs_gc
);
354 invalidate_buckets(ca
);
357 * Now, we write their new gens to disk so we can start writing
360 allocator_wait(ca
, !atomic_read(&ca
->set
->prio_blocked
));
361 if (CACHE_SYNC(&ca
->set
->sb
)) {
363 * This could deadlock if an allocation with a btree
364 * node locked ever blocked - having the btree node
365 * locked would block garbage collection, but here we're
366 * waiting on garbage collection before we invalidate
369 * But this should be safe since the btree code always
370 * uses btree_check_reserve() before allocating now, and
371 * if it fails it blocks without btree nodes locked.
373 if (!fifo_full(&ca
->free_inc
))
374 goto retry_invalidate
;
383 long bch_bucket_alloc(struct cache
*ca
, unsigned reserve
, bool wait
)
390 if (fifo_pop(&ca
->free
[RESERVE_NONE
], r
) ||
391 fifo_pop(&ca
->free
[reserve
], r
))
395 trace_bcache_alloc_fail(ca
, reserve
);
400 prepare_to_wait(&ca
->set
->bucket_wait
, &w
,
401 TASK_UNINTERRUPTIBLE
);
403 mutex_unlock(&ca
->set
->bucket_lock
);
405 mutex_lock(&ca
->set
->bucket_lock
);
406 } while (!fifo_pop(&ca
->free
[RESERVE_NONE
], r
) &&
407 !fifo_pop(&ca
->free
[reserve
], r
));
409 finish_wait(&ca
->set
->bucket_wait
, &w
);
411 if (ca
->alloc_thread
)
412 wake_up_process(ca
->alloc_thread
);
414 trace_bcache_alloc(ca
, reserve
);
416 if (expensive_debug_checks(ca
->set
)) {
421 for (iter
= 0; iter
< prio_buckets(ca
) * 2; iter
++)
422 BUG_ON(ca
->prio_buckets
[iter
] == (uint64_t) r
);
424 for (j
= 0; j
< RESERVE_NR
; j
++)
425 fifo_for_each(i
, &ca
->free
[j
], iter
)
427 fifo_for_each(i
, &ca
->free_inc
, iter
)
433 BUG_ON(atomic_read(&b
->pin
) != 1);
435 SET_GC_SECTORS_USED(b
, ca
->sb
.bucket_size
);
437 if (reserve
<= RESERVE_PRIO
) {
438 SET_GC_MARK(b
, GC_MARK_METADATA
);
440 b
->prio
= BTREE_PRIO
;
442 SET_GC_MARK(b
, GC_MARK_RECLAIMABLE
);
444 b
->prio
= INITIAL_PRIO
;
450 void __bch_bucket_free(struct cache
*ca
, struct bucket
*b
)
453 SET_GC_SECTORS_USED(b
, 0);
456 void bch_bucket_free(struct cache_set
*c
, struct bkey
*k
)
460 for (i
= 0; i
< KEY_PTRS(k
); i
++)
461 __bch_bucket_free(PTR_CACHE(c
, k
, i
),
462 PTR_BUCKET(c
, k
, i
));
465 int __bch_bucket_alloc_set(struct cache_set
*c
, unsigned reserve
,
466 struct bkey
*k
, int n
, bool wait
)
470 lockdep_assert_held(&c
->bucket_lock
);
471 BUG_ON(!n
|| n
> c
->caches_loaded
|| n
> 8);
475 /* sort by free space/prio of oldest data in caches */
477 for (i
= 0; i
< n
; i
++) {
478 struct cache
*ca
= c
->cache_by_alloc
[i
];
479 long b
= bch_bucket_alloc(ca
, reserve
, wait
);
484 k
->ptr
[i
] = MAKE_PTR(ca
->buckets
[b
].gen
,
485 bucket_to_sector(c
, b
),
488 SET_KEY_PTRS(k
, i
+ 1);
493 bch_bucket_free(c
, k
);
498 int bch_bucket_alloc_set(struct cache_set
*c
, unsigned reserve
,
499 struct bkey
*k
, int n
, bool wait
)
502 mutex_lock(&c
->bucket_lock
);
503 ret
= __bch_bucket_alloc_set(c
, reserve
, k
, n
, wait
);
504 mutex_unlock(&c
->bucket_lock
);
508 /* Sector allocator */
511 struct list_head list
;
512 unsigned last_write_point
;
513 unsigned sectors_free
;
518 * We keep multiple buckets open for writes, and try to segregate different
519 * write streams for better cache utilization: first we try to segregate flash
520 * only volume write streams from cached devices, secondly we look for a bucket
521 * where the last write to it was sequential with the current write, and
522 * failing that we look for a bucket that was last used by the same task.
524 * The ideas is if you've got multiple tasks pulling data into the cache at the
525 * same time, you'll get better cache utilization if you try to segregate their
526 * data and preserve locality.
528 * For example, dirty sectors of flash only volume is not reclaimable, if their
529 * dirty sectors mixed with dirty sectors of cached device, such buckets will
530 * be marked as dirty and won't be reclaimed, though the dirty data of cached
531 * device have been written back to backend device.
533 * And say you've starting Firefox at the same time you're copying a
534 * bunch of files. Firefox will likely end up being fairly hot and stay in the
535 * cache awhile, but the data you copied might not be; if you wrote all that
536 * data to the same buckets it'd get invalidated at the same time.
538 * Both of those tasks will be doing fairly random IO so we can't rely on
539 * detecting sequential IO to segregate their data, but going off of the task
540 * should be a sane heuristic.
542 static struct open_bucket
*pick_data_bucket(struct cache_set
*c
,
543 const struct bkey
*search
,
544 unsigned write_point
,
547 struct open_bucket
*ret
, *ret_task
= NULL
;
549 list_for_each_entry_reverse(ret
, &c
->data_buckets
, list
)
550 if (UUID_FLASH_ONLY(&c
->uuids
[KEY_INODE(&ret
->key
)]) !=
551 UUID_FLASH_ONLY(&c
->uuids
[KEY_INODE(search
)]))
553 else if (!bkey_cmp(&ret
->key
, search
))
555 else if (ret
->last_write_point
== write_point
)
558 ret
= ret_task
?: list_first_entry(&c
->data_buckets
,
559 struct open_bucket
, list
);
561 if (!ret
->sectors_free
&& KEY_PTRS(alloc
)) {
562 ret
->sectors_free
= c
->sb
.bucket_size
;
563 bkey_copy(&ret
->key
, alloc
);
567 if (!ret
->sectors_free
)
574 * Allocates some space in the cache to write to, and k to point to the newly
575 * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the
576 * end of the newly allocated space).
578 * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many
579 * sectors were actually allocated.
581 * If s->writeback is true, will not fail.
583 bool bch_alloc_sectors(struct cache_set
*c
, struct bkey
*k
, unsigned sectors
,
584 unsigned write_point
, unsigned write_prio
, bool wait
)
586 struct open_bucket
*b
;
587 BKEY_PADDED(key
) alloc
;
591 * We might have to allocate a new bucket, which we can't do with a
592 * spinlock held. So if we have to allocate, we drop the lock, allocate
593 * and then retry. KEY_PTRS() indicates whether alloc points to
594 * allocated bucket(s).
597 bkey_init(&alloc
.key
);
598 spin_lock(&c
->data_bucket_lock
);
600 while (!(b
= pick_data_bucket(c
, k
, write_point
, &alloc
.key
))) {
601 unsigned watermark
= write_prio
605 spin_unlock(&c
->data_bucket_lock
);
607 if (bch_bucket_alloc_set(c
, watermark
, &alloc
.key
, 1, wait
))
610 spin_lock(&c
->data_bucket_lock
);
614 * If we had to allocate, we might race and not need to allocate the
615 * second time we call find_data_bucket(). If we allocated a bucket but
616 * didn't use it, drop the refcount bch_bucket_alloc_set() took:
618 if (KEY_PTRS(&alloc
.key
))
619 bkey_put(c
, &alloc
.key
);
621 for (i
= 0; i
< KEY_PTRS(&b
->key
); i
++)
622 EBUG_ON(ptr_stale(c
, &b
->key
, i
));
624 /* Set up the pointer to the space we're allocating: */
626 for (i
= 0; i
< KEY_PTRS(&b
->key
); i
++)
627 k
->ptr
[i
] = b
->key
.ptr
[i
];
629 sectors
= min(sectors
, b
->sectors_free
);
631 SET_KEY_OFFSET(k
, KEY_OFFSET(k
) + sectors
);
632 SET_KEY_SIZE(k
, sectors
);
633 SET_KEY_PTRS(k
, KEY_PTRS(&b
->key
));
636 * Move b to the end of the lru, and keep track of what this bucket was
639 list_move_tail(&b
->list
, &c
->data_buckets
);
640 bkey_copy_key(&b
->key
, k
);
641 b
->last_write_point
= write_point
;
643 b
->sectors_free
-= sectors
;
645 for (i
= 0; i
< KEY_PTRS(&b
->key
); i
++) {
646 SET_PTR_OFFSET(&b
->key
, i
, PTR_OFFSET(&b
->key
, i
) + sectors
);
648 atomic_long_add(sectors
,
649 &PTR_CACHE(c
, &b
->key
, i
)->sectors_written
);
652 if (b
->sectors_free
< c
->sb
.block_size
)
656 * k takes refcounts on the buckets it points to until it's inserted
657 * into the btree, but if we're done with this bucket we just transfer
658 * get_data_bucket()'s refcount.
661 for (i
= 0; i
< KEY_PTRS(&b
->key
); i
++)
662 atomic_inc(&PTR_BUCKET(c
, &b
->key
, i
)->pin
);
664 spin_unlock(&c
->data_bucket_lock
);
670 void bch_open_buckets_free(struct cache_set
*c
)
672 struct open_bucket
*b
;
674 while (!list_empty(&c
->data_buckets
)) {
675 b
= list_first_entry(&c
->data_buckets
,
676 struct open_bucket
, list
);
682 int bch_open_buckets_alloc(struct cache_set
*c
)
686 spin_lock_init(&c
->data_bucket_lock
);
688 for (i
= 0; i
< 6; i
++) {
689 struct open_bucket
*b
= kzalloc(sizeof(*b
), GFP_KERNEL
);
693 list_add(&b
->list
, &c
->data_buckets
);
699 int bch_cache_allocator_start(struct cache
*ca
)
701 struct task_struct
*k
= kthread_run(bch_allocator_thread
,
702 ca
, "bcache_allocator");
706 ca
->alloc_thread
= k
;