2 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
4 * Uses a block device as cache for other block devices; optimized for SSDs.
5 * All allocation is done in buckets, which should match the erase block size
8 * Buckets containing cached data are kept on a heap sorted by priority;
9 * bucket priority is increased on cache hit, and periodically all the buckets
10 * on the heap have their priority scaled down. This currently is just used as
11 * an LRU but in the future should allow for more intelligent heuristics.
13 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
14 * counter. Garbage collection is used to remove stale pointers.
16 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
17 * as keys are inserted we only sort the pages that have not yet been written.
18 * When garbage collection is run, we resort the entire node.
20 * All configuration is done via sysfs; see Documentation/bcache.txt.
28 #include <linux/slab.h>
29 #include <linux/bitops.h>
30 #include <linux/freezer.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/prefetch.h>
34 #include <linux/random.h>
35 #include <linux/rcupdate.h>
36 #include <trace/events/bcache.h>
40 * register_bcache: Return errors out to userspace correctly
42 * Writeback: don't undirty key until after a cache flush
44 * Create an iterator for key pointers
46 * On btree write error, mark bucket such that it won't be freed from the cache
49 * Check for bad keys in replay
51 * Refcount journal entries in journal_replay
54 * Finish incremental gc
55 * Gc should free old UUIDs, data for invalid UUIDs
57 * Provide a way to list backing device UUIDs we have data cached for, and
58 * probably how long it's been since we've seen them, and a way to invalidate
59 * dirty data for devices that will never be attached again
61 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
62 * that based on that and how much dirty data we have we can keep writeback
65 * Add a tracepoint or somesuch to watch for writeback starvation
67 * When btree depth > 1 and splitting an interior node, we have to make sure
68 * alloc_bucket() cannot fail. This should be true but is not completely
73 * If data write is less than hard sector size of ssd, round up offset in open
74 * bucket to the next whole sector
76 * Superblock needs to be fleshed out for multiple cache devices
78 * Add a sysfs tunable for the number of writeback IOs in flight
80 * Add a sysfs tunable for the number of open data buckets
82 * IO tracking: Can we track when one process is doing io on behalf of another?
83 * IO tracking: Don't use just an average, weigh more recent stuff higher
85 * Test module load/unload
88 #define MAX_NEED_GC 64
89 #define MAX_SAVE_PRIO 72
91 #define PTR_DIRTY_BIT (((uint64_t) 1 << 36))
93 #define PTR_HASH(c, k) \
94 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
96 #define insert_lock(s, b) ((b)->level <= (s)->lock)
99 * These macros are for recursing down the btree - they handle the details of
100 * locking and looking up nodes in the cache for you. They're best treated as
101 * mere syntax when reading code that uses them.
103 * op->lock determines whether we take a read or a write lock at a given depth.
104 * If you've got a read lock and find that you need a write lock (i.e. you're
105 * going to have to split), set op->lock and return -EINTR; btree_root() will
106 * call you again and you'll have the correct lock.
110 * btree - recurse down the btree on a specified key
111 * @fn: function to call, which will be passed the child node
112 * @key: key to recurse on
113 * @b: parent btree node
114 * @op: pointer to struct btree_op
116 #define btree(fn, key, b, op, ...) \
118 int _r, l = (b)->level - 1; \
119 bool _w = l <= (op)->lock; \
120 struct btree *_child = bch_btree_node_get((b)->c, op, key, l, \
122 if (!IS_ERR(_child)) { \
123 _r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__); \
124 rw_unlock(_w, _child); \
126 _r = PTR_ERR(_child); \
131 * btree_root - call a function on the root of the btree
132 * @fn: function to call, which will be passed the child node
134 * @op: pointer to struct btree_op
136 #define btree_root(fn, c, op, ...) \
140 struct btree *_b = (c)->root; \
141 bool _w = insert_lock(op, _b); \
142 rw_lock(_w, _b, _b->level); \
143 if (_b == (c)->root && \
144 _w == insert_lock(op, _b)) { \
145 _r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__); \
148 bch_cannibalize_unlock(c); \
151 } while (_r == -EINTR); \
153 finish_wait(&(c)->btree_cache_wait, &(op)->wait); \
157 static inline struct bset
*write_block(struct btree
*b
)
159 return ((void *) btree_bset_first(b
)) + b
->written
* block_bytes(b
->c
);
162 static void bch_btree_init_next(struct btree
*b
)
164 /* If not a leaf node, always sort */
165 if (b
->level
&& b
->keys
.nsets
)
166 bch_btree_sort(&b
->keys
, &b
->c
->sort
);
168 bch_btree_sort_lazy(&b
->keys
, &b
->c
->sort
);
170 if (b
->written
< btree_blocks(b
))
171 bch_bset_init_next(&b
->keys
, write_block(b
),
172 bset_magic(&b
->c
->sb
));
176 /* Btree key manipulation */
178 void bkey_put(struct cache_set
*c
, struct bkey
*k
)
182 for (i
= 0; i
< KEY_PTRS(k
); i
++)
183 if (ptr_available(c
, k
, i
))
184 atomic_dec_bug(&PTR_BUCKET(c
, k
, i
)->pin
);
189 static uint64_t btree_csum_set(struct btree
*b
, struct bset
*i
)
191 uint64_t crc
= b
->key
.ptr
[0];
192 void *data
= (void *) i
+ 8, *end
= bset_bkey_last(i
);
194 crc
= bch_crc64_update(crc
, data
, end
- data
);
195 return crc
^ 0xffffffffffffffffULL
;
198 void bch_btree_node_read_done(struct btree
*b
)
200 const char *err
= "bad btree header";
201 struct bset
*i
= btree_bset_first(b
);
202 struct btree_iter
*iter
;
204 iter
= mempool_alloc(b
->c
->fill_iter
, GFP_NOIO
);
205 iter
->size
= b
->c
->sb
.bucket_size
/ b
->c
->sb
.block_size
;
208 #ifdef CONFIG_BCACHE_DEBUG
216 b
->written
< btree_blocks(b
) && i
->seq
== b
->keys
.set
[0].data
->seq
;
217 i
= write_block(b
)) {
218 err
= "unsupported bset version";
219 if (i
->version
> BCACHE_BSET_VERSION
)
222 err
= "bad btree header";
223 if (b
->written
+ set_blocks(i
, block_bytes(b
->c
)) >
228 if (i
->magic
!= bset_magic(&b
->c
->sb
))
231 err
= "bad checksum";
232 switch (i
->version
) {
234 if (i
->csum
!= csum_set(i
))
237 case BCACHE_BSET_VERSION
:
238 if (i
->csum
!= btree_csum_set(b
, i
))
244 if (i
!= b
->keys
.set
[0].data
&& !i
->keys
)
247 bch_btree_iter_push(iter
, i
->start
, bset_bkey_last(i
));
249 b
->written
+= set_blocks(i
, block_bytes(b
->c
));
252 err
= "corrupted btree";
253 for (i
= write_block(b
);
254 bset_sector_offset(&b
->keys
, i
) < KEY_SIZE(&b
->key
);
255 i
= ((void *) i
) + block_bytes(b
->c
))
256 if (i
->seq
== b
->keys
.set
[0].data
->seq
)
259 bch_btree_sort_and_fix_extents(&b
->keys
, iter
, &b
->c
->sort
);
261 i
= b
->keys
.set
[0].data
;
262 err
= "short btree key";
263 if (b
->keys
.set
[0].size
&&
264 bkey_cmp(&b
->key
, &b
->keys
.set
[0].end
) < 0)
267 if (b
->written
< btree_blocks(b
))
268 bch_bset_init_next(&b
->keys
, write_block(b
),
269 bset_magic(&b
->c
->sb
));
271 mempool_free(iter
, b
->c
->fill_iter
);
274 set_btree_node_io_error(b
);
275 bch_cache_set_error(b
->c
, "%s at bucket %zu, block %u, %u keys",
276 err
, PTR_BUCKET_NR(b
->c
, &b
->key
, 0),
277 bset_block_offset(b
, i
), i
->keys
);
281 static void btree_node_read_endio(struct bio
*bio
)
283 struct closure
*cl
= bio
->bi_private
;
287 static void bch_btree_node_read(struct btree
*b
)
289 uint64_t start_time
= local_clock();
293 trace_bcache_btree_read(b
);
295 closure_init_stack(&cl
);
297 bio
= bch_bbio_alloc(b
->c
);
298 bio
->bi_rw
= REQ_META
|READ_SYNC
;
299 bio
->bi_iter
.bi_size
= KEY_SIZE(&b
->key
) << 9;
300 bio
->bi_end_io
= btree_node_read_endio
;
301 bio
->bi_private
= &cl
;
303 bch_bio_map(bio
, b
->keys
.set
[0].data
);
305 bch_submit_bbio(bio
, b
->c
, &b
->key
, 0);
309 set_btree_node_io_error(b
);
311 bch_bbio_free(bio
, b
->c
);
313 if (btree_node_io_error(b
))
316 bch_btree_node_read_done(b
);
317 bch_time_stats_update(&b
->c
->btree_read_time
, start_time
);
321 bch_cache_set_error(b
->c
, "io error reading bucket %zu",
322 PTR_BUCKET_NR(b
->c
, &b
->key
, 0));
325 static void btree_complete_write(struct btree
*b
, struct btree_write
*w
)
327 if (w
->prio_blocked
&&
328 !atomic_sub_return(w
->prio_blocked
, &b
->c
->prio_blocked
))
329 wake_up_allocators(b
->c
);
332 atomic_dec_bug(w
->journal
);
333 __closure_wake_up(&b
->c
->journal
.wait
);
340 static void btree_node_write_unlock(struct closure
*cl
)
342 struct btree
*b
= container_of(cl
, struct btree
, io
);
347 static void __btree_node_write_done(struct closure
*cl
)
349 struct btree
*b
= container_of(cl
, struct btree
, io
);
350 struct btree_write
*w
= btree_prev_write(b
);
352 bch_bbio_free(b
->bio
, b
->c
);
354 btree_complete_write(b
, w
);
356 if (btree_node_dirty(b
))
357 schedule_delayed_work(&b
->work
, 30 * HZ
);
359 closure_return_with_destructor(cl
, btree_node_write_unlock
);
362 static void btree_node_write_done(struct closure
*cl
)
364 struct btree
*b
= container_of(cl
, struct btree
, io
);
368 bio_for_each_segment_all(bv
, b
->bio
, n
)
369 __free_page(bv
->bv_page
);
371 __btree_node_write_done(cl
);
374 static void btree_node_write_endio(struct bio
*bio
)
376 struct closure
*cl
= bio
->bi_private
;
377 struct btree
*b
= container_of(cl
, struct btree
, io
);
380 set_btree_node_io_error(b
);
382 bch_bbio_count_io_errors(b
->c
, bio
, bio
->bi_error
, "writing btree");
386 static void do_btree_node_write(struct btree
*b
)
388 struct closure
*cl
= &b
->io
;
389 struct bset
*i
= btree_bset_last(b
);
392 i
->version
= BCACHE_BSET_VERSION
;
393 i
->csum
= btree_csum_set(b
, i
);
396 b
->bio
= bch_bbio_alloc(b
->c
);
398 b
->bio
->bi_end_io
= btree_node_write_endio
;
399 b
->bio
->bi_private
= cl
;
400 b
->bio
->bi_rw
= REQ_META
|WRITE_SYNC
|REQ_FUA
;
401 b
->bio
->bi_iter
.bi_size
= roundup(set_bytes(i
), block_bytes(b
->c
));
402 bch_bio_map(b
->bio
, i
);
405 * If we're appending to a leaf node, we don't technically need FUA -
406 * this write just needs to be persisted before the next journal write,
407 * which will be marked FLUSH|FUA.
409 * Similarly if we're writing a new btree root - the pointer is going to
410 * be in the next journal entry.
412 * But if we're writing a new btree node (that isn't a root) or
413 * appending to a non leaf btree node, we need either FUA or a flush
414 * when we write the parent with the new pointer. FUA is cheaper than a
415 * flush, and writes appending to leaf nodes aren't blocking anything so
416 * just make all btree node writes FUA to keep things sane.
419 bkey_copy(&k
.key
, &b
->key
);
420 SET_PTR_OFFSET(&k
.key
, 0, PTR_OFFSET(&k
.key
, 0) +
421 bset_sector_offset(&b
->keys
, i
));
423 if (!bio_alloc_pages(b
->bio
, __GFP_NOWARN
|GFP_NOWAIT
)) {
426 void *base
= (void *) ((unsigned long) i
& ~(PAGE_SIZE
- 1));
428 bio_for_each_segment_all(bv
, b
->bio
, j
)
429 memcpy(page_address(bv
->bv_page
),
430 base
+ j
* PAGE_SIZE
, PAGE_SIZE
);
432 bch_submit_bbio(b
->bio
, b
->c
, &k
.key
, 0);
434 continue_at(cl
, btree_node_write_done
, NULL
);
437 bch_bio_map(b
->bio
, i
);
439 bch_submit_bbio(b
->bio
, b
->c
, &k
.key
, 0);
442 continue_at_nobarrier(cl
, __btree_node_write_done
, NULL
);
446 void __bch_btree_node_write(struct btree
*b
, struct closure
*parent
)
448 struct bset
*i
= btree_bset_last(b
);
450 lockdep_assert_held(&b
->write_lock
);
452 trace_bcache_btree_write(b
);
454 BUG_ON(current
->bio_list
);
455 BUG_ON(b
->written
>= btree_blocks(b
));
456 BUG_ON(b
->written
&& !i
->keys
);
457 BUG_ON(btree_bset_first(b
)->seq
!= i
->seq
);
458 bch_check_keys(&b
->keys
, "writing");
460 cancel_delayed_work(&b
->work
);
462 /* If caller isn't waiting for write, parent refcount is cache set */
464 closure_init(&b
->io
, parent
?: &b
->c
->cl
);
466 clear_bit(BTREE_NODE_dirty
, &b
->flags
);
467 change_bit(BTREE_NODE_write_idx
, &b
->flags
);
469 do_btree_node_write(b
);
471 atomic_long_add(set_blocks(i
, block_bytes(b
->c
)) * b
->c
->sb
.block_size
,
472 &PTR_CACHE(b
->c
, &b
->key
, 0)->btree_sectors_written
);
474 b
->written
+= set_blocks(i
, block_bytes(b
->c
));
477 void bch_btree_node_write(struct btree
*b
, struct closure
*parent
)
479 unsigned nsets
= b
->keys
.nsets
;
481 lockdep_assert_held(&b
->lock
);
483 __bch_btree_node_write(b
, parent
);
486 * do verify if there was more than one set initially (i.e. we did a
487 * sort) and we sorted down to a single set:
489 if (nsets
&& !b
->keys
.nsets
)
492 bch_btree_init_next(b
);
495 static void bch_btree_node_write_sync(struct btree
*b
)
499 closure_init_stack(&cl
);
501 mutex_lock(&b
->write_lock
);
502 bch_btree_node_write(b
, &cl
);
503 mutex_unlock(&b
->write_lock
);
508 static void btree_node_write_work(struct work_struct
*w
)
510 struct btree
*b
= container_of(to_delayed_work(w
), struct btree
, work
);
512 mutex_lock(&b
->write_lock
);
513 if (btree_node_dirty(b
))
514 __bch_btree_node_write(b
, NULL
);
515 mutex_unlock(&b
->write_lock
);
518 static void bch_btree_leaf_dirty(struct btree
*b
, atomic_t
*journal_ref
)
520 struct bset
*i
= btree_bset_last(b
);
521 struct btree_write
*w
= btree_current_write(b
);
523 lockdep_assert_held(&b
->write_lock
);
528 if (!btree_node_dirty(b
))
529 schedule_delayed_work(&b
->work
, 30 * HZ
);
531 set_btree_node_dirty(b
);
535 journal_pin_cmp(b
->c
, w
->journal
, journal_ref
)) {
536 atomic_dec_bug(w
->journal
);
541 w
->journal
= journal_ref
;
542 atomic_inc(w
->journal
);
546 /* Force write if set is too big */
547 if (set_bytes(i
) > PAGE_SIZE
- 48 &&
549 bch_btree_node_write(b
, NULL
);
553 * Btree in memory cache - allocation/freeing
554 * mca -> memory cache
557 #define mca_reserve(c) (((c->root && c->root->level) \
558 ? c->root->level : 1) * 8 + 16)
559 #define mca_can_free(c) \
560 max_t(int, 0, c->btree_cache_used - mca_reserve(c))
562 static void mca_data_free(struct btree
*b
)
564 BUG_ON(b
->io_mutex
.count
!= 1);
566 bch_btree_keys_free(&b
->keys
);
568 b
->c
->btree_cache_used
--;
569 list_move(&b
->list
, &b
->c
->btree_cache_freed
);
572 static void mca_bucket_free(struct btree
*b
)
574 BUG_ON(btree_node_dirty(b
));
577 hlist_del_init_rcu(&b
->hash
);
578 list_move(&b
->list
, &b
->c
->btree_cache_freeable
);
581 static unsigned btree_order(struct bkey
*k
)
583 return ilog2(KEY_SIZE(k
) / PAGE_SECTORS
?: 1);
586 static void mca_data_alloc(struct btree
*b
, struct bkey
*k
, gfp_t gfp
)
588 if (!bch_btree_keys_alloc(&b
->keys
,
590 ilog2(b
->c
->btree_pages
),
593 b
->c
->btree_cache_used
++;
594 list_move(&b
->list
, &b
->c
->btree_cache
);
596 list_move(&b
->list
, &b
->c
->btree_cache_freed
);
600 static struct btree
*mca_bucket_alloc(struct cache_set
*c
,
601 struct bkey
*k
, gfp_t gfp
)
603 struct btree
*b
= kzalloc(sizeof(struct btree
), gfp
);
607 init_rwsem(&b
->lock
);
608 lockdep_set_novalidate_class(&b
->lock
);
609 mutex_init(&b
->write_lock
);
610 lockdep_set_novalidate_class(&b
->write_lock
);
611 INIT_LIST_HEAD(&b
->list
);
612 INIT_DELAYED_WORK(&b
->work
, btree_node_write_work
);
614 sema_init(&b
->io_mutex
, 1);
616 mca_data_alloc(b
, k
, gfp
);
620 static int mca_reap(struct btree
*b
, unsigned min_order
, bool flush
)
624 closure_init_stack(&cl
);
625 lockdep_assert_held(&b
->c
->bucket_lock
);
627 if (!down_write_trylock(&b
->lock
))
630 BUG_ON(btree_node_dirty(b
) && !b
->keys
.set
[0].data
);
632 if (b
->keys
.page_order
< min_order
)
636 if (btree_node_dirty(b
))
639 if (down_trylock(&b
->io_mutex
))
644 mutex_lock(&b
->write_lock
);
645 if (btree_node_dirty(b
))
646 __bch_btree_node_write(b
, &cl
);
647 mutex_unlock(&b
->write_lock
);
651 /* wait for any in flight btree write */
661 static unsigned long bch_mca_scan(struct shrinker
*shrink
,
662 struct shrink_control
*sc
)
664 struct cache_set
*c
= container_of(shrink
, struct cache_set
, shrink
);
666 unsigned long i
, nr
= sc
->nr_to_scan
;
667 unsigned long freed
= 0;
669 if (c
->shrinker_disabled
)
672 if (c
->btree_cache_alloc_lock
)
675 /* Return -1 if we can't do anything right now */
676 if (sc
->gfp_mask
& __GFP_IO
)
677 mutex_lock(&c
->bucket_lock
);
678 else if (!mutex_trylock(&c
->bucket_lock
))
682 * It's _really_ critical that we don't free too many btree nodes - we
683 * have to always leave ourselves a reserve. The reserve is how we
684 * guarantee that allocating memory for a new btree node can always
685 * succeed, so that inserting keys into the btree can always succeed and
686 * IO can always make forward progress:
688 nr
/= c
->btree_pages
;
689 nr
= min_t(unsigned long, nr
, mca_can_free(c
));
692 list_for_each_entry_safe(b
, t
, &c
->btree_cache_freeable
, list
) {
697 !mca_reap(b
, 0, false)) {
704 for (i
= 0; (nr
--) && i
< c
->btree_cache_used
; i
++) {
705 if (list_empty(&c
->btree_cache
))
708 b
= list_first_entry(&c
->btree_cache
, struct btree
, list
);
709 list_rotate_left(&c
->btree_cache
);
712 !mca_reap(b
, 0, false)) {
721 mutex_unlock(&c
->bucket_lock
);
725 static unsigned long bch_mca_count(struct shrinker
*shrink
,
726 struct shrink_control
*sc
)
728 struct cache_set
*c
= container_of(shrink
, struct cache_set
, shrink
);
730 if (c
->shrinker_disabled
)
733 if (c
->btree_cache_alloc_lock
)
736 return mca_can_free(c
) * c
->btree_pages
;
739 void bch_btree_cache_free(struct cache_set
*c
)
743 closure_init_stack(&cl
);
745 if (c
->shrink
.list
.next
)
746 unregister_shrinker(&c
->shrink
);
748 mutex_lock(&c
->bucket_lock
);
750 #ifdef CONFIG_BCACHE_DEBUG
752 list_move(&c
->verify_data
->list
, &c
->btree_cache
);
754 free_pages((unsigned long) c
->verify_ondisk
, ilog2(bucket_pages(c
)));
757 list_splice(&c
->btree_cache_freeable
,
760 while (!list_empty(&c
->btree_cache
)) {
761 b
= list_first_entry(&c
->btree_cache
, struct btree
, list
);
763 if (btree_node_dirty(b
))
764 btree_complete_write(b
, btree_current_write(b
));
765 clear_bit(BTREE_NODE_dirty
, &b
->flags
);
770 while (!list_empty(&c
->btree_cache_freed
)) {
771 b
= list_first_entry(&c
->btree_cache_freed
,
774 cancel_delayed_work_sync(&b
->work
);
778 mutex_unlock(&c
->bucket_lock
);
781 int bch_btree_cache_alloc(struct cache_set
*c
)
785 for (i
= 0; i
< mca_reserve(c
); i
++)
786 if (!mca_bucket_alloc(c
, &ZERO_KEY
, GFP_KERNEL
))
789 list_splice_init(&c
->btree_cache
,
790 &c
->btree_cache_freeable
);
792 #ifdef CONFIG_BCACHE_DEBUG
793 mutex_init(&c
->verify_lock
);
795 c
->verify_ondisk
= (void *)
796 __get_free_pages(GFP_KERNEL
, ilog2(bucket_pages(c
)));
798 c
->verify_data
= mca_bucket_alloc(c
, &ZERO_KEY
, GFP_KERNEL
);
800 if (c
->verify_data
&&
801 c
->verify_data
->keys
.set
->data
)
802 list_del_init(&c
->verify_data
->list
);
804 c
->verify_data
= NULL
;
807 c
->shrink
.count_objects
= bch_mca_count
;
808 c
->shrink
.scan_objects
= bch_mca_scan
;
810 c
->shrink
.batch
= c
->btree_pages
* 2;
812 if (register_shrinker(&c
->shrink
))
813 pr_warn("bcache: %s: could not register shrinker",
819 /* Btree in memory cache - hash table */
821 static struct hlist_head
*mca_hash(struct cache_set
*c
, struct bkey
*k
)
823 return &c
->bucket_hash
[hash_32(PTR_HASH(c
, k
), BUCKET_HASH_BITS
)];
826 static struct btree
*mca_find(struct cache_set
*c
, struct bkey
*k
)
831 hlist_for_each_entry_rcu(b
, mca_hash(c
, k
), hash
)
832 if (PTR_HASH(c
, &b
->key
) == PTR_HASH(c
, k
))
840 static int mca_cannibalize_lock(struct cache_set
*c
, struct btree_op
*op
)
842 struct task_struct
*old
;
844 old
= cmpxchg(&c
->btree_cache_alloc_lock
, NULL
, current
);
845 if (old
&& old
!= current
) {
847 prepare_to_wait(&c
->btree_cache_wait
, &op
->wait
,
848 TASK_UNINTERRUPTIBLE
);
855 static struct btree
*mca_cannibalize(struct cache_set
*c
, struct btree_op
*op
,
860 trace_bcache_btree_cache_cannibalize(c
);
862 if (mca_cannibalize_lock(c
, op
))
863 return ERR_PTR(-EINTR
);
865 list_for_each_entry_reverse(b
, &c
->btree_cache
, list
)
866 if (!mca_reap(b
, btree_order(k
), false))
869 list_for_each_entry_reverse(b
, &c
->btree_cache
, list
)
870 if (!mca_reap(b
, btree_order(k
), true))
873 WARN(1, "btree cache cannibalize failed\n");
874 return ERR_PTR(-ENOMEM
);
878 * We can only have one thread cannibalizing other cached btree nodes at a time,
879 * or we'll deadlock. We use an open coded mutex to ensure that, which a
880 * cannibalize_bucket() will take. This means every time we unlock the root of
881 * the btree, we need to release this lock if we have it held.
883 static void bch_cannibalize_unlock(struct cache_set
*c
)
885 if (c
->btree_cache_alloc_lock
== current
) {
886 c
->btree_cache_alloc_lock
= NULL
;
887 wake_up(&c
->btree_cache_wait
);
891 static struct btree
*mca_alloc(struct cache_set
*c
, struct btree_op
*op
,
892 struct bkey
*k
, int level
)
896 BUG_ON(current
->bio_list
);
898 lockdep_assert_held(&c
->bucket_lock
);
903 /* btree_free() doesn't free memory; it sticks the node on the end of
904 * the list. Check if there's any freed nodes there:
906 list_for_each_entry(b
, &c
->btree_cache_freeable
, list
)
907 if (!mca_reap(b
, btree_order(k
), false))
910 /* We never free struct btree itself, just the memory that holds the on
911 * disk node. Check the freed list before allocating a new one:
913 list_for_each_entry(b
, &c
->btree_cache_freed
, list
)
914 if (!mca_reap(b
, 0, false)) {
915 mca_data_alloc(b
, k
, __GFP_NOWARN
|GFP_NOIO
);
916 if (!b
->keys
.set
[0].data
)
922 b
= mca_bucket_alloc(c
, k
, __GFP_NOWARN
|GFP_NOIO
);
926 BUG_ON(!down_write_trylock(&b
->lock
));
927 if (!b
->keys
.set
->data
)
930 BUG_ON(b
->io_mutex
.count
!= 1);
932 bkey_copy(&b
->key
, k
);
933 list_move(&b
->list
, &c
->btree_cache
);
934 hlist_del_init_rcu(&b
->hash
);
935 hlist_add_head_rcu(&b
->hash
, mca_hash(c
, k
));
937 lock_set_subclass(&b
->lock
.dep_map
, level
+ 1, _THIS_IP_
);
938 b
->parent
= (void *) ~0UL;
944 bch_btree_keys_init(&b
->keys
, &bch_extent_keys_ops
,
945 &b
->c
->expensive_debug_checks
);
947 bch_btree_keys_init(&b
->keys
, &bch_btree_keys_ops
,
948 &b
->c
->expensive_debug_checks
);
955 b
= mca_cannibalize(c
, op
, k
);
963 * bch_btree_node_get - find a btree node in the cache and lock it, reading it
964 * in from disk if necessary.
966 * If IO is necessary and running under generic_make_request, returns -EAGAIN.
968 * The btree node will have either a read or a write lock held, depending on
969 * level and op->lock.
971 struct btree
*bch_btree_node_get(struct cache_set
*c
, struct btree_op
*op
,
972 struct bkey
*k
, int level
, bool write
,
973 struct btree
*parent
)
983 if (current
->bio_list
)
984 return ERR_PTR(-EAGAIN
);
986 mutex_lock(&c
->bucket_lock
);
987 b
= mca_alloc(c
, op
, k
, level
);
988 mutex_unlock(&c
->bucket_lock
);
995 bch_btree_node_read(b
);
998 downgrade_write(&b
->lock
);
1000 rw_lock(write
, b
, level
);
1001 if (PTR_HASH(c
, &b
->key
) != PTR_HASH(c
, k
)) {
1002 rw_unlock(write
, b
);
1005 BUG_ON(b
->level
!= level
);
1011 for (; i
<= b
->keys
.nsets
&& b
->keys
.set
[i
].size
; i
++) {
1012 prefetch(b
->keys
.set
[i
].tree
);
1013 prefetch(b
->keys
.set
[i
].data
);
1016 for (; i
<= b
->keys
.nsets
; i
++)
1017 prefetch(b
->keys
.set
[i
].data
);
1019 if (btree_node_io_error(b
)) {
1020 rw_unlock(write
, b
);
1021 return ERR_PTR(-EIO
);
1024 BUG_ON(!b
->written
);
1029 static void btree_node_prefetch(struct btree
*parent
, struct bkey
*k
)
1033 mutex_lock(&parent
->c
->bucket_lock
);
1034 b
= mca_alloc(parent
->c
, NULL
, k
, parent
->level
- 1);
1035 mutex_unlock(&parent
->c
->bucket_lock
);
1037 if (!IS_ERR_OR_NULL(b
)) {
1039 bch_btree_node_read(b
);
1046 static void btree_node_free(struct btree
*b
)
1048 trace_bcache_btree_node_free(b
);
1050 BUG_ON(b
== b
->c
->root
);
1052 mutex_lock(&b
->write_lock
);
1054 if (btree_node_dirty(b
))
1055 btree_complete_write(b
, btree_current_write(b
));
1056 clear_bit(BTREE_NODE_dirty
, &b
->flags
);
1058 mutex_unlock(&b
->write_lock
);
1060 cancel_delayed_work(&b
->work
);
1062 mutex_lock(&b
->c
->bucket_lock
);
1063 bch_bucket_free(b
->c
, &b
->key
);
1065 mutex_unlock(&b
->c
->bucket_lock
);
1068 struct btree
*__bch_btree_node_alloc(struct cache_set
*c
, struct btree_op
*op
,
1069 int level
, bool wait
,
1070 struct btree
*parent
)
1073 struct btree
*b
= ERR_PTR(-EAGAIN
);
1075 mutex_lock(&c
->bucket_lock
);
1077 if (__bch_bucket_alloc_set(c
, RESERVE_BTREE
, &k
.key
, 1, wait
))
1080 bkey_put(c
, &k
.key
);
1081 SET_KEY_SIZE(&k
.key
, c
->btree_pages
* PAGE_SECTORS
);
1083 b
= mca_alloc(c
, op
, &k
.key
, level
);
1089 "Tried to allocate bucket that was in btree cache");
1095 bch_bset_init_next(&b
->keys
, b
->keys
.set
->data
, bset_magic(&b
->c
->sb
));
1097 mutex_unlock(&c
->bucket_lock
);
1099 trace_bcache_btree_node_alloc(b
);
1102 bch_bucket_free(c
, &k
.key
);
1104 mutex_unlock(&c
->bucket_lock
);
1106 trace_bcache_btree_node_alloc_fail(c
);
1110 static struct btree
*bch_btree_node_alloc(struct cache_set
*c
,
1111 struct btree_op
*op
, int level
,
1112 struct btree
*parent
)
1114 return __bch_btree_node_alloc(c
, op
, level
, op
!= NULL
, parent
);
1117 static struct btree
*btree_node_alloc_replacement(struct btree
*b
,
1118 struct btree_op
*op
)
1120 struct btree
*n
= bch_btree_node_alloc(b
->c
, op
, b
->level
, b
->parent
);
1121 if (!IS_ERR_OR_NULL(n
)) {
1122 mutex_lock(&n
->write_lock
);
1123 bch_btree_sort_into(&b
->keys
, &n
->keys
, &b
->c
->sort
);
1124 bkey_copy_key(&n
->key
, &b
->key
);
1125 mutex_unlock(&n
->write_lock
);
1131 static void make_btree_freeing_key(struct btree
*b
, struct bkey
*k
)
1135 mutex_lock(&b
->c
->bucket_lock
);
1137 atomic_inc(&b
->c
->prio_blocked
);
1139 bkey_copy(k
, &b
->key
);
1140 bkey_copy_key(k
, &ZERO_KEY
);
1142 for (i
= 0; i
< KEY_PTRS(k
); i
++)
1144 bch_inc_gen(PTR_CACHE(b
->c
, &b
->key
, i
),
1145 PTR_BUCKET(b
->c
, &b
->key
, i
)));
1147 mutex_unlock(&b
->c
->bucket_lock
);
1150 static int btree_check_reserve(struct btree
*b
, struct btree_op
*op
)
1152 struct cache_set
*c
= b
->c
;
1154 unsigned i
, reserve
= (c
->root
->level
- b
->level
) * 2 + 1;
1156 mutex_lock(&c
->bucket_lock
);
1158 for_each_cache(ca
, c
, i
)
1159 if (fifo_used(&ca
->free
[RESERVE_BTREE
]) < reserve
) {
1161 prepare_to_wait(&c
->btree_cache_wait
, &op
->wait
,
1162 TASK_UNINTERRUPTIBLE
);
1163 mutex_unlock(&c
->bucket_lock
);
1167 mutex_unlock(&c
->bucket_lock
);
1169 return mca_cannibalize_lock(b
->c
, op
);
1172 /* Garbage collection */
1174 static uint8_t __bch_btree_mark_key(struct cache_set
*c
, int level
,
1182 * ptr_invalid() can't return true for the keys that mark btree nodes as
1183 * freed, but since ptr_bad() returns true we'll never actually use them
1184 * for anything and thus we don't want mark their pointers here
1186 if (!bkey_cmp(k
, &ZERO_KEY
))
1189 for (i
= 0; i
< KEY_PTRS(k
); i
++) {
1190 if (!ptr_available(c
, k
, i
))
1193 g
= PTR_BUCKET(c
, k
, i
);
1195 if (gen_after(g
->last_gc
, PTR_GEN(k
, i
)))
1196 g
->last_gc
= PTR_GEN(k
, i
);
1198 if (ptr_stale(c
, k
, i
)) {
1199 stale
= max(stale
, ptr_stale(c
, k
, i
));
1203 cache_bug_on(GC_MARK(g
) &&
1204 (GC_MARK(g
) == GC_MARK_METADATA
) != (level
!= 0),
1205 c
, "inconsistent ptrs: mark = %llu, level = %i",
1209 SET_GC_MARK(g
, GC_MARK_METADATA
);
1210 else if (KEY_DIRTY(k
))
1211 SET_GC_MARK(g
, GC_MARK_DIRTY
);
1212 else if (!GC_MARK(g
))
1213 SET_GC_MARK(g
, GC_MARK_RECLAIMABLE
);
1215 /* guard against overflow */
1216 SET_GC_SECTORS_USED(g
, min_t(unsigned,
1217 GC_SECTORS_USED(g
) + KEY_SIZE(k
),
1218 MAX_GC_SECTORS_USED
));
1220 BUG_ON(!GC_SECTORS_USED(g
));
1226 #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k)
1228 void bch_initial_mark_key(struct cache_set
*c
, int level
, struct bkey
*k
)
1232 for (i
= 0; i
< KEY_PTRS(k
); i
++)
1233 if (ptr_available(c
, k
, i
) &&
1234 !ptr_stale(c
, k
, i
)) {
1235 struct bucket
*b
= PTR_BUCKET(c
, k
, i
);
1237 b
->gen
= PTR_GEN(k
, i
);
1239 if (level
&& bkey_cmp(k
, &ZERO_KEY
))
1240 b
->prio
= BTREE_PRIO
;
1241 else if (!level
&& b
->prio
== BTREE_PRIO
)
1242 b
->prio
= INITIAL_PRIO
;
1245 __bch_btree_mark_key(c
, level
, k
);
1248 static bool btree_gc_mark_node(struct btree
*b
, struct gc_stat
*gc
)
1251 unsigned keys
= 0, good_keys
= 0;
1253 struct btree_iter iter
;
1254 struct bset_tree
*t
;
1258 for_each_key_filter(&b
->keys
, k
, &iter
, bch_ptr_invalid
) {
1259 stale
= max(stale
, btree_mark_key(b
, k
));
1262 if (bch_ptr_bad(&b
->keys
, k
))
1265 gc
->key_bytes
+= bkey_u64s(k
);
1269 gc
->data
+= KEY_SIZE(k
);
1272 for (t
= b
->keys
.set
; t
<= &b
->keys
.set
[b
->keys
.nsets
]; t
++)
1273 btree_bug_on(t
->size
&&
1274 bset_written(&b
->keys
, t
) &&
1275 bkey_cmp(&b
->key
, &t
->end
) < 0,
1276 b
, "found short btree key in gc");
1278 if (b
->c
->gc_always_rewrite
)
1284 if ((keys
- good_keys
) * 2 > keys
)
1290 #define GC_MERGE_NODES 4U
1292 struct gc_merge_info
{
1297 static int bch_btree_insert_node(struct btree
*, struct btree_op
*,
1298 struct keylist
*, atomic_t
*, struct bkey
*);
1300 static int btree_gc_coalesce(struct btree
*b
, struct btree_op
*op
,
1301 struct gc_stat
*gc
, struct gc_merge_info
*r
)
1303 unsigned i
, nodes
= 0, keys
= 0, blocks
;
1304 struct btree
*new_nodes
[GC_MERGE_NODES
];
1305 struct keylist keylist
;
1309 bch_keylist_init(&keylist
);
1311 if (btree_check_reserve(b
, NULL
))
1314 memset(new_nodes
, 0, sizeof(new_nodes
));
1315 closure_init_stack(&cl
);
1317 while (nodes
< GC_MERGE_NODES
&& !IS_ERR_OR_NULL(r
[nodes
].b
))
1318 keys
+= r
[nodes
++].keys
;
1320 blocks
= btree_default_blocks(b
->c
) * 2 / 3;
1323 __set_blocks(b
->keys
.set
[0].data
, keys
,
1324 block_bytes(b
->c
)) > blocks
* (nodes
- 1))
1327 for (i
= 0; i
< nodes
; i
++) {
1328 new_nodes
[i
] = btree_node_alloc_replacement(r
[i
].b
, NULL
);
1329 if (IS_ERR_OR_NULL(new_nodes
[i
]))
1330 goto out_nocoalesce
;
1334 * We have to check the reserve here, after we've allocated our new
1335 * nodes, to make sure the insert below will succeed - we also check
1336 * before as an optimization to potentially avoid a bunch of expensive
1339 if (btree_check_reserve(b
, NULL
))
1340 goto out_nocoalesce
;
1342 for (i
= 0; i
< nodes
; i
++)
1343 mutex_lock(&new_nodes
[i
]->write_lock
);
1345 for (i
= nodes
- 1; i
> 0; --i
) {
1346 struct bset
*n1
= btree_bset_first(new_nodes
[i
]);
1347 struct bset
*n2
= btree_bset_first(new_nodes
[i
- 1]);
1348 struct bkey
*k
, *last
= NULL
;
1354 k
< bset_bkey_last(n2
);
1356 if (__set_blocks(n1
, n1
->keys
+ keys
+
1358 block_bytes(b
->c
)) > blocks
)
1362 keys
+= bkey_u64s(k
);
1366 * Last node we're not getting rid of - we're getting
1367 * rid of the node at r[0]. Have to try and fit all of
1368 * the remaining keys into this node; we can't ensure
1369 * they will always fit due to rounding and variable
1370 * length keys (shouldn't be possible in practice,
1373 if (__set_blocks(n1
, n1
->keys
+ n2
->keys
,
1374 block_bytes(b
->c
)) >
1375 btree_blocks(new_nodes
[i
]))
1376 goto out_nocoalesce
;
1379 /* Take the key of the node we're getting rid of */
1383 BUG_ON(__set_blocks(n1
, n1
->keys
+ keys
, block_bytes(b
->c
)) >
1384 btree_blocks(new_nodes
[i
]));
1387 bkey_copy_key(&new_nodes
[i
]->key
, last
);
1389 memcpy(bset_bkey_last(n1
),
1391 (void *) bset_bkey_idx(n2
, keys
) - (void *) n2
->start
);
1394 r
[i
].keys
= n1
->keys
;
1397 bset_bkey_idx(n2
, keys
),
1398 (void *) bset_bkey_last(n2
) -
1399 (void *) bset_bkey_idx(n2
, keys
));
1403 if (__bch_keylist_realloc(&keylist
,
1404 bkey_u64s(&new_nodes
[i
]->key
)))
1405 goto out_nocoalesce
;
1407 bch_btree_node_write(new_nodes
[i
], &cl
);
1408 bch_keylist_add(&keylist
, &new_nodes
[i
]->key
);
1411 for (i
= 0; i
< nodes
; i
++)
1412 mutex_unlock(&new_nodes
[i
]->write_lock
);
1416 /* We emptied out this node */
1417 BUG_ON(btree_bset_first(new_nodes
[0])->keys
);
1418 btree_node_free(new_nodes
[0]);
1419 rw_unlock(true, new_nodes
[0]);
1420 new_nodes
[0] = NULL
;
1422 for (i
= 0; i
< nodes
; i
++) {
1423 if (__bch_keylist_realloc(&keylist
, bkey_u64s(&r
[i
].b
->key
)))
1424 goto out_nocoalesce
;
1426 make_btree_freeing_key(r
[i
].b
, keylist
.top
);
1427 bch_keylist_push(&keylist
);
1430 bch_btree_insert_node(b
, op
, &keylist
, NULL
, NULL
);
1431 BUG_ON(!bch_keylist_empty(&keylist
));
1433 for (i
= 0; i
< nodes
; i
++) {
1434 btree_node_free(r
[i
].b
);
1435 rw_unlock(true, r
[i
].b
);
1437 r
[i
].b
= new_nodes
[i
];
1440 memmove(r
, r
+ 1, sizeof(r
[0]) * (nodes
- 1));
1441 r
[nodes
- 1].b
= ERR_PTR(-EINTR
);
1443 trace_bcache_btree_gc_coalesce(nodes
);
1446 bch_keylist_free(&keylist
);
1448 /* Invalidated our iterator */
1453 bch_keylist_free(&keylist
);
1455 while ((k
= bch_keylist_pop(&keylist
)))
1456 if (!bkey_cmp(k
, &ZERO_KEY
))
1457 atomic_dec(&b
->c
->prio_blocked
);
1459 for (i
= 0; i
< nodes
; i
++)
1460 if (!IS_ERR_OR_NULL(new_nodes
[i
])) {
1461 btree_node_free(new_nodes
[i
]);
1462 rw_unlock(true, new_nodes
[i
]);
1467 static int btree_gc_rewrite_node(struct btree
*b
, struct btree_op
*op
,
1468 struct btree
*replace
)
1470 struct keylist keys
;
1473 if (btree_check_reserve(b
, NULL
))
1476 n
= btree_node_alloc_replacement(replace
, NULL
);
1478 /* recheck reserve after allocating replacement node */
1479 if (btree_check_reserve(b
, NULL
)) {
1485 bch_btree_node_write_sync(n
);
1487 bch_keylist_init(&keys
);
1488 bch_keylist_add(&keys
, &n
->key
);
1490 make_btree_freeing_key(replace
, keys
.top
);
1491 bch_keylist_push(&keys
);
1493 bch_btree_insert_node(b
, op
, &keys
, NULL
, NULL
);
1494 BUG_ON(!bch_keylist_empty(&keys
));
1496 btree_node_free(replace
);
1499 /* Invalidated our iterator */
1503 static unsigned btree_gc_count_keys(struct btree
*b
)
1506 struct btree_iter iter
;
1509 for_each_key_filter(&b
->keys
, k
, &iter
, bch_ptr_bad
)
1510 ret
+= bkey_u64s(k
);
1515 static int btree_gc_recurse(struct btree
*b
, struct btree_op
*op
,
1516 struct closure
*writes
, struct gc_stat
*gc
)
1519 bool should_rewrite
;
1521 struct btree_iter iter
;
1522 struct gc_merge_info r
[GC_MERGE_NODES
];
1523 struct gc_merge_info
*i
, *last
= r
+ ARRAY_SIZE(r
) - 1;
1525 bch_btree_iter_init(&b
->keys
, &iter
, &b
->c
->gc_done
);
1527 for (i
= r
; i
< r
+ ARRAY_SIZE(r
); i
++)
1528 i
->b
= ERR_PTR(-EINTR
);
1531 k
= bch_btree_iter_next_filter(&iter
, &b
->keys
, bch_ptr_bad
);
1533 r
->b
= bch_btree_node_get(b
->c
, op
, k
, b
->level
- 1,
1536 ret
= PTR_ERR(r
->b
);
1540 r
->keys
= btree_gc_count_keys(r
->b
);
1542 ret
= btree_gc_coalesce(b
, op
, gc
, r
);
1550 if (!IS_ERR(last
->b
)) {
1551 should_rewrite
= btree_gc_mark_node(last
->b
, gc
);
1552 if (should_rewrite
) {
1553 ret
= btree_gc_rewrite_node(b
, op
, last
->b
);
1558 if (last
->b
->level
) {
1559 ret
= btree_gc_recurse(last
->b
, op
, writes
, gc
);
1564 bkey_copy_key(&b
->c
->gc_done
, &last
->b
->key
);
1567 * Must flush leaf nodes before gc ends, since replace
1568 * operations aren't journalled
1570 mutex_lock(&last
->b
->write_lock
);
1571 if (btree_node_dirty(last
->b
))
1572 bch_btree_node_write(last
->b
, writes
);
1573 mutex_unlock(&last
->b
->write_lock
);
1574 rw_unlock(true, last
->b
);
1577 memmove(r
+ 1, r
, sizeof(r
[0]) * (GC_MERGE_NODES
- 1));
1580 if (need_resched()) {
1586 for (i
= r
; i
< r
+ ARRAY_SIZE(r
); i
++)
1587 if (!IS_ERR_OR_NULL(i
->b
)) {
1588 mutex_lock(&i
->b
->write_lock
);
1589 if (btree_node_dirty(i
->b
))
1590 bch_btree_node_write(i
->b
, writes
);
1591 mutex_unlock(&i
->b
->write_lock
);
1592 rw_unlock(true, i
->b
);
1598 static int bch_btree_gc_root(struct btree
*b
, struct btree_op
*op
,
1599 struct closure
*writes
, struct gc_stat
*gc
)
1601 struct btree
*n
= NULL
;
1603 bool should_rewrite
;
1605 should_rewrite
= btree_gc_mark_node(b
, gc
);
1606 if (should_rewrite
) {
1607 n
= btree_node_alloc_replacement(b
, NULL
);
1609 if (!IS_ERR_OR_NULL(n
)) {
1610 bch_btree_node_write_sync(n
);
1612 bch_btree_set_root(n
);
1620 __bch_btree_mark_key(b
->c
, b
->level
+ 1, &b
->key
);
1623 ret
= btree_gc_recurse(b
, op
, writes
, gc
);
1628 bkey_copy_key(&b
->c
->gc_done
, &b
->key
);
1633 static void btree_gc_start(struct cache_set
*c
)
1639 if (!c
->gc_mark_valid
)
1642 mutex_lock(&c
->bucket_lock
);
1644 c
->gc_mark_valid
= 0;
1645 c
->gc_done
= ZERO_KEY
;
1647 for_each_cache(ca
, c
, i
)
1648 for_each_bucket(b
, ca
) {
1649 b
->last_gc
= b
->gen
;
1650 if (!atomic_read(&b
->pin
)) {
1652 SET_GC_SECTORS_USED(b
, 0);
1656 mutex_unlock(&c
->bucket_lock
);
1659 static size_t bch_btree_gc_finish(struct cache_set
*c
)
1661 size_t available
= 0;
1666 mutex_lock(&c
->bucket_lock
);
1669 c
->gc_mark_valid
= 1;
1672 for (i
= 0; i
< KEY_PTRS(&c
->uuid_bucket
); i
++)
1673 SET_GC_MARK(PTR_BUCKET(c
, &c
->uuid_bucket
, i
),
1676 /* don't reclaim buckets to which writeback keys point */
1678 for (i
= 0; i
< c
->nr_uuids
; i
++) {
1679 struct bcache_device
*d
= c
->devices
[i
];
1680 struct cached_dev
*dc
;
1681 struct keybuf_key
*w
, *n
;
1684 if (!d
|| UUID_FLASH_ONLY(&c
->uuids
[i
]))
1686 dc
= container_of(d
, struct cached_dev
, disk
);
1688 spin_lock(&dc
->writeback_keys
.lock
);
1689 rbtree_postorder_for_each_entry_safe(w
, n
,
1690 &dc
->writeback_keys
.keys
, node
)
1691 for (j
= 0; j
< KEY_PTRS(&w
->key
); j
++)
1692 SET_GC_MARK(PTR_BUCKET(c
, &w
->key
, j
),
1694 spin_unlock(&dc
->writeback_keys
.lock
);
1698 for_each_cache(ca
, c
, i
) {
1701 ca
->invalidate_needs_gc
= 0;
1703 for (i
= ca
->sb
.d
; i
< ca
->sb
.d
+ ca
->sb
.keys
; i
++)
1704 SET_GC_MARK(ca
->buckets
+ *i
, GC_MARK_METADATA
);
1706 for (i
= ca
->prio_buckets
;
1707 i
< ca
->prio_buckets
+ prio_buckets(ca
) * 2; i
++)
1708 SET_GC_MARK(ca
->buckets
+ *i
, GC_MARK_METADATA
);
1710 for_each_bucket(b
, ca
) {
1711 c
->need_gc
= max(c
->need_gc
, bucket_gc_gen(b
));
1713 if (atomic_read(&b
->pin
))
1716 BUG_ON(!GC_MARK(b
) && GC_SECTORS_USED(b
));
1718 if (!GC_MARK(b
) || GC_MARK(b
) == GC_MARK_RECLAIMABLE
)
1723 mutex_unlock(&c
->bucket_lock
);
1727 static void bch_btree_gc(struct cache_set
*c
)
1730 unsigned long available
;
1731 struct gc_stat stats
;
1732 struct closure writes
;
1734 uint64_t start_time
= local_clock();
1736 trace_bcache_gc_start(c
);
1738 memset(&stats
, 0, sizeof(struct gc_stat
));
1739 closure_init_stack(&writes
);
1740 bch_btree_op_init(&op
, SHRT_MAX
);
1745 ret
= btree_root(gc_root
, c
, &op
, &writes
, &stats
);
1746 closure_sync(&writes
);
1749 if (ret
&& ret
!= -EAGAIN
)
1750 pr_warn("gc failed!");
1753 available
= bch_btree_gc_finish(c
);
1754 wake_up_allocators(c
);
1756 bch_time_stats_update(&c
->btree_gc_time
, start_time
);
1758 stats
.key_bytes
*= sizeof(uint64_t);
1760 stats
.in_use
= (c
->nbuckets
- available
) * 100 / c
->nbuckets
;
1761 memcpy(&c
->gc_stats
, &stats
, sizeof(struct gc_stat
));
1763 trace_bcache_gc_end(c
);
1768 static bool gc_should_run(struct cache_set
*c
)
1773 for_each_cache(ca
, c
, i
)
1774 if (ca
->invalidate_needs_gc
)
1777 if (atomic_read(&c
->sectors_to_gc
) < 0)
1783 static int bch_gc_thread(void *arg
)
1785 struct cache_set
*c
= arg
;
1788 wait_event_interruptible(c
->gc_wait
,
1789 kthread_should_stop() || gc_should_run(c
));
1791 if (kthread_should_stop())
1801 int bch_gc_thread_start(struct cache_set
*c
)
1803 c
->gc_thread
= kthread_run(bch_gc_thread
, c
, "bcache_gc");
1804 if (IS_ERR(c
->gc_thread
))
1805 return PTR_ERR(c
->gc_thread
);
1810 /* Initial partial gc */
1812 static int bch_btree_check_recurse(struct btree
*b
, struct btree_op
*op
)
1815 struct bkey
*k
, *p
= NULL
;
1816 struct btree_iter iter
;
1818 for_each_key_filter(&b
->keys
, k
, &iter
, bch_ptr_invalid
)
1819 bch_initial_mark_key(b
->c
, b
->level
, k
);
1821 bch_initial_mark_key(b
->c
, b
->level
+ 1, &b
->key
);
1824 bch_btree_iter_init(&b
->keys
, &iter
, NULL
);
1827 k
= bch_btree_iter_next_filter(&iter
, &b
->keys
,
1830 btree_node_prefetch(b
, k
);
1833 ret
= btree(check_recurse
, p
, b
, op
);
1836 } while (p
&& !ret
);
1842 int bch_btree_check(struct cache_set
*c
)
1846 bch_btree_op_init(&op
, SHRT_MAX
);
1848 return btree_root(check_recurse
, c
, &op
);
1851 void bch_initial_gc_finish(struct cache_set
*c
)
1857 bch_btree_gc_finish(c
);
1859 mutex_lock(&c
->bucket_lock
);
1862 * We need to put some unused buckets directly on the prio freelist in
1863 * order to get the allocator thread started - it needs freed buckets in
1864 * order to rewrite the prios and gens, and it needs to rewrite prios
1865 * and gens in order to free buckets.
1867 * This is only safe for buckets that have no live data in them, which
1868 * there should always be some of.
1870 for_each_cache(ca
, c
, i
) {
1871 for_each_bucket(b
, ca
) {
1872 if (fifo_full(&ca
->free
[RESERVE_PRIO
]) &&
1873 fifo_full(&ca
->free
[RESERVE_BTREE
]))
1876 if (bch_can_invalidate_bucket(ca
, b
) &&
1878 __bch_invalidate_one_bucket(ca
, b
);
1879 if (!fifo_push(&ca
->free
[RESERVE_PRIO
],
1881 fifo_push(&ca
->free
[RESERVE_BTREE
],
1887 mutex_unlock(&c
->bucket_lock
);
1890 /* Btree insertion */
1892 static bool btree_insert_key(struct btree
*b
, struct bkey
*k
,
1893 struct bkey
*replace_key
)
1897 BUG_ON(bkey_cmp(k
, &b
->key
) > 0);
1899 status
= bch_btree_insert_key(&b
->keys
, k
, replace_key
);
1900 if (status
!= BTREE_INSERT_STATUS_NO_INSERT
) {
1901 bch_check_keys(&b
->keys
, "%u for %s", status
,
1902 replace_key
? "replace" : "insert");
1904 trace_bcache_btree_insert_key(b
, k
, replace_key
!= NULL
,
1911 static size_t insert_u64s_remaining(struct btree
*b
)
1913 long ret
= bch_btree_keys_u64s_remaining(&b
->keys
);
1916 * Might land in the middle of an existing extent and have to split it
1918 if (b
->keys
.ops
->is_extents
)
1919 ret
-= KEY_MAX_U64S
;
1921 return max(ret
, 0L);
1924 static bool bch_btree_insert_keys(struct btree
*b
, struct btree_op
*op
,
1925 struct keylist
*insert_keys
,
1926 struct bkey
*replace_key
)
1929 int oldsize
= bch_count_data(&b
->keys
);
1931 while (!bch_keylist_empty(insert_keys
)) {
1932 struct bkey
*k
= insert_keys
->keys
;
1934 if (bkey_u64s(k
) > insert_u64s_remaining(b
))
1937 if (bkey_cmp(k
, &b
->key
) <= 0) {
1941 ret
|= btree_insert_key(b
, k
, replace_key
);
1942 bch_keylist_pop_front(insert_keys
);
1943 } else if (bkey_cmp(&START_KEY(k
), &b
->key
) < 0) {
1944 BKEY_PADDED(key
) temp
;
1945 bkey_copy(&temp
.key
, insert_keys
->keys
);
1947 bch_cut_back(&b
->key
, &temp
.key
);
1948 bch_cut_front(&b
->key
, insert_keys
->keys
);
1950 ret
|= btree_insert_key(b
, &temp
.key
, replace_key
);
1958 op
->insert_collision
= true;
1960 BUG_ON(!bch_keylist_empty(insert_keys
) && b
->level
);
1962 BUG_ON(bch_count_data(&b
->keys
) < oldsize
);
1966 static int btree_split(struct btree
*b
, struct btree_op
*op
,
1967 struct keylist
*insert_keys
,
1968 struct bkey
*replace_key
)
1971 struct btree
*n1
, *n2
= NULL
, *n3
= NULL
;
1972 uint64_t start_time
= local_clock();
1974 struct keylist parent_keys
;
1976 closure_init_stack(&cl
);
1977 bch_keylist_init(&parent_keys
);
1979 if (btree_check_reserve(b
, op
)) {
1983 WARN(1, "insufficient reserve for split\n");
1986 n1
= btree_node_alloc_replacement(b
, op
);
1990 split
= set_blocks(btree_bset_first(n1
),
1991 block_bytes(n1
->c
)) > (btree_blocks(b
) * 4) / 5;
1996 trace_bcache_btree_node_split(b
, btree_bset_first(n1
)->keys
);
1998 n2
= bch_btree_node_alloc(b
->c
, op
, b
->level
, b
->parent
);
2003 n3
= bch_btree_node_alloc(b
->c
, op
, b
->level
+ 1, NULL
);
2008 mutex_lock(&n1
->write_lock
);
2009 mutex_lock(&n2
->write_lock
);
2011 bch_btree_insert_keys(n1
, op
, insert_keys
, replace_key
);
2014 * Has to be a linear search because we don't have an auxiliary
2018 while (keys
< (btree_bset_first(n1
)->keys
* 3) / 5)
2019 keys
+= bkey_u64s(bset_bkey_idx(btree_bset_first(n1
),
2022 bkey_copy_key(&n1
->key
,
2023 bset_bkey_idx(btree_bset_first(n1
), keys
));
2024 keys
+= bkey_u64s(bset_bkey_idx(btree_bset_first(n1
), keys
));
2026 btree_bset_first(n2
)->keys
= btree_bset_first(n1
)->keys
- keys
;
2027 btree_bset_first(n1
)->keys
= keys
;
2029 memcpy(btree_bset_first(n2
)->start
,
2030 bset_bkey_last(btree_bset_first(n1
)),
2031 btree_bset_first(n2
)->keys
* sizeof(uint64_t));
2033 bkey_copy_key(&n2
->key
, &b
->key
);
2035 bch_keylist_add(&parent_keys
, &n2
->key
);
2036 bch_btree_node_write(n2
, &cl
);
2037 mutex_unlock(&n2
->write_lock
);
2038 rw_unlock(true, n2
);
2040 trace_bcache_btree_node_compact(b
, btree_bset_first(n1
)->keys
);
2042 mutex_lock(&n1
->write_lock
);
2043 bch_btree_insert_keys(n1
, op
, insert_keys
, replace_key
);
2046 bch_keylist_add(&parent_keys
, &n1
->key
);
2047 bch_btree_node_write(n1
, &cl
);
2048 mutex_unlock(&n1
->write_lock
);
2051 /* Depth increases, make a new root */
2052 mutex_lock(&n3
->write_lock
);
2053 bkey_copy_key(&n3
->key
, &MAX_KEY
);
2054 bch_btree_insert_keys(n3
, op
, &parent_keys
, NULL
);
2055 bch_btree_node_write(n3
, &cl
);
2056 mutex_unlock(&n3
->write_lock
);
2059 bch_btree_set_root(n3
);
2060 rw_unlock(true, n3
);
2061 } else if (!b
->parent
) {
2062 /* Root filled up but didn't need to be split */
2064 bch_btree_set_root(n1
);
2066 /* Split a non root node */
2068 make_btree_freeing_key(b
, parent_keys
.top
);
2069 bch_keylist_push(&parent_keys
);
2071 bch_btree_insert_node(b
->parent
, op
, &parent_keys
, NULL
, NULL
);
2072 BUG_ON(!bch_keylist_empty(&parent_keys
));
2076 rw_unlock(true, n1
);
2078 bch_time_stats_update(&b
->c
->btree_split_time
, start_time
);
2082 bkey_put(b
->c
, &n2
->key
);
2083 btree_node_free(n2
);
2084 rw_unlock(true, n2
);
2086 bkey_put(b
->c
, &n1
->key
);
2087 btree_node_free(n1
);
2088 rw_unlock(true, n1
);
2090 WARN(1, "bcache: btree split failed (level %u)", b
->level
);
2092 if (n3
== ERR_PTR(-EAGAIN
) ||
2093 n2
== ERR_PTR(-EAGAIN
) ||
2094 n1
== ERR_PTR(-EAGAIN
))
2100 static int bch_btree_insert_node(struct btree
*b
, struct btree_op
*op
,
2101 struct keylist
*insert_keys
,
2102 atomic_t
*journal_ref
,
2103 struct bkey
*replace_key
)
2107 BUG_ON(b
->level
&& replace_key
);
2109 closure_init_stack(&cl
);
2111 mutex_lock(&b
->write_lock
);
2113 if (write_block(b
) != btree_bset_last(b
) &&
2114 b
->keys
.last_set_unwritten
)
2115 bch_btree_init_next(b
); /* just wrote a set */
2117 if (bch_keylist_nkeys(insert_keys
) > insert_u64s_remaining(b
)) {
2118 mutex_unlock(&b
->write_lock
);
2122 BUG_ON(write_block(b
) != btree_bset_last(b
));
2124 if (bch_btree_insert_keys(b
, op
, insert_keys
, replace_key
)) {
2126 bch_btree_leaf_dirty(b
, journal_ref
);
2128 bch_btree_node_write(b
, &cl
);
2131 mutex_unlock(&b
->write_lock
);
2133 /* wait for btree node write if necessary, after unlock */
2138 if (current
->bio_list
) {
2139 op
->lock
= b
->c
->root
->level
+ 1;
2141 } else if (op
->lock
<= b
->c
->root
->level
) {
2142 op
->lock
= b
->c
->root
->level
+ 1;
2145 /* Invalidated all iterators */
2146 int ret
= btree_split(b
, op
, insert_keys
, replace_key
);
2148 if (bch_keylist_empty(insert_keys
))
2156 int bch_btree_insert_check_key(struct btree
*b
, struct btree_op
*op
,
2157 struct bkey
*check_key
)
2160 uint64_t btree_ptr
= b
->key
.ptr
[0];
2161 unsigned long seq
= b
->seq
;
2162 struct keylist insert
;
2163 bool upgrade
= op
->lock
== -1;
2165 bch_keylist_init(&insert
);
2168 rw_unlock(false, b
);
2169 rw_lock(true, b
, b
->level
);
2171 if (b
->key
.ptr
[0] != btree_ptr
||
2172 b
->seq
!= seq
+ 1) {
2173 op
->lock
= b
->level
;
2178 SET_KEY_PTRS(check_key
, 1);
2179 get_random_bytes(&check_key
->ptr
[0], sizeof(uint64_t));
2181 SET_PTR_DEV(check_key
, 0, PTR_CHECK_DEV
);
2183 bch_keylist_add(&insert
, check_key
);
2185 ret
= bch_btree_insert_node(b
, op
, &insert
, NULL
, NULL
);
2187 BUG_ON(!ret
&& !bch_keylist_empty(&insert
));
2190 downgrade_write(&b
->lock
);
2194 struct btree_insert_op
{
2196 struct keylist
*keys
;
2197 atomic_t
*journal_ref
;
2198 struct bkey
*replace_key
;
2201 static int btree_insert_fn(struct btree_op
*b_op
, struct btree
*b
)
2203 struct btree_insert_op
*op
= container_of(b_op
,
2204 struct btree_insert_op
, op
);
2206 int ret
= bch_btree_insert_node(b
, &op
->op
, op
->keys
,
2207 op
->journal_ref
, op
->replace_key
);
2208 if (ret
&& !bch_keylist_empty(op
->keys
))
2214 int bch_btree_insert(struct cache_set
*c
, struct keylist
*keys
,
2215 atomic_t
*journal_ref
, struct bkey
*replace_key
)
2217 struct btree_insert_op op
;
2220 BUG_ON(current
->bio_list
);
2221 BUG_ON(bch_keylist_empty(keys
));
2223 bch_btree_op_init(&op
.op
, 0);
2225 op
.journal_ref
= journal_ref
;
2226 op
.replace_key
= replace_key
;
2228 while (!ret
&& !bch_keylist_empty(keys
)) {
2230 ret
= bch_btree_map_leaf_nodes(&op
.op
, c
,
2231 &START_KEY(keys
->keys
),
2238 pr_err("error %i", ret
);
2240 while ((k
= bch_keylist_pop(keys
)))
2242 } else if (op
.op
.insert_collision
)
2248 void bch_btree_set_root(struct btree
*b
)
2253 closure_init_stack(&cl
);
2255 trace_bcache_btree_set_root(b
);
2257 BUG_ON(!b
->written
);
2259 for (i
= 0; i
< KEY_PTRS(&b
->key
); i
++)
2260 BUG_ON(PTR_BUCKET(b
->c
, &b
->key
, i
)->prio
!= BTREE_PRIO
);
2262 mutex_lock(&b
->c
->bucket_lock
);
2263 list_del_init(&b
->list
);
2264 mutex_unlock(&b
->c
->bucket_lock
);
2268 bch_journal_meta(b
->c
, &cl
);
2272 /* Map across nodes or keys */
2274 static int bch_btree_map_nodes_recurse(struct btree
*b
, struct btree_op
*op
,
2276 btree_map_nodes_fn
*fn
, int flags
)
2278 int ret
= MAP_CONTINUE
;
2282 struct btree_iter iter
;
2284 bch_btree_iter_init(&b
->keys
, &iter
, from
);
2286 while ((k
= bch_btree_iter_next_filter(&iter
, &b
->keys
,
2288 ret
= btree(map_nodes_recurse
, k
, b
,
2289 op
, from
, fn
, flags
);
2292 if (ret
!= MAP_CONTINUE
)
2297 if (!b
->level
|| flags
== MAP_ALL_NODES
)
2303 int __bch_btree_map_nodes(struct btree_op
*op
, struct cache_set
*c
,
2304 struct bkey
*from
, btree_map_nodes_fn
*fn
, int flags
)
2306 return btree_root(map_nodes_recurse
, c
, op
, from
, fn
, flags
);
2309 static int bch_btree_map_keys_recurse(struct btree
*b
, struct btree_op
*op
,
2310 struct bkey
*from
, btree_map_keys_fn
*fn
,
2313 int ret
= MAP_CONTINUE
;
2315 struct btree_iter iter
;
2317 bch_btree_iter_init(&b
->keys
, &iter
, from
);
2319 while ((k
= bch_btree_iter_next_filter(&iter
, &b
->keys
, bch_ptr_bad
))) {
2322 : btree(map_keys_recurse
, k
, b
, op
, from
, fn
, flags
);
2325 if (ret
!= MAP_CONTINUE
)
2329 if (!b
->level
&& (flags
& MAP_END_KEY
))
2330 ret
= fn(op
, b
, &KEY(KEY_INODE(&b
->key
),
2331 KEY_OFFSET(&b
->key
), 0));
2336 int bch_btree_map_keys(struct btree_op
*op
, struct cache_set
*c
,
2337 struct bkey
*from
, btree_map_keys_fn
*fn
, int flags
)
2339 return btree_root(map_keys_recurse
, c
, op
, from
, fn
, flags
);
2344 static inline int keybuf_cmp(struct keybuf_key
*l
, struct keybuf_key
*r
)
2346 /* Overlapping keys compare equal */
2347 if (bkey_cmp(&l
->key
, &START_KEY(&r
->key
)) <= 0)
2349 if (bkey_cmp(&START_KEY(&l
->key
), &r
->key
) >= 0)
2354 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key
*l
,
2355 struct keybuf_key
*r
)
2357 return clamp_t(int64_t, bkey_cmp(&l
->key
, &r
->key
), -1, 1);
2365 keybuf_pred_fn
*pred
;
2368 static int refill_keybuf_fn(struct btree_op
*op
, struct btree
*b
,
2371 struct refill
*refill
= container_of(op
, struct refill
, op
);
2372 struct keybuf
*buf
= refill
->buf
;
2373 int ret
= MAP_CONTINUE
;
2375 if (bkey_cmp(k
, refill
->end
) >= 0) {
2380 if (!KEY_SIZE(k
)) /* end key */
2383 if (refill
->pred(buf
, k
)) {
2384 struct keybuf_key
*w
;
2386 spin_lock(&buf
->lock
);
2388 w
= array_alloc(&buf
->freelist
);
2390 spin_unlock(&buf
->lock
);
2395 bkey_copy(&w
->key
, k
);
2397 if (RB_INSERT(&buf
->keys
, w
, node
, keybuf_cmp
))
2398 array_free(&buf
->freelist
, w
);
2402 if (array_freelist_empty(&buf
->freelist
))
2405 spin_unlock(&buf
->lock
);
2408 buf
->last_scanned
= *k
;
2412 void bch_refill_keybuf(struct cache_set
*c
, struct keybuf
*buf
,
2413 struct bkey
*end
, keybuf_pred_fn
*pred
)
2415 struct bkey start
= buf
->last_scanned
;
2416 struct refill refill
;
2420 bch_btree_op_init(&refill
.op
, -1);
2421 refill
.nr_found
= 0;
2426 bch_btree_map_keys(&refill
.op
, c
, &buf
->last_scanned
,
2427 refill_keybuf_fn
, MAP_END_KEY
);
2429 trace_bcache_keyscan(refill
.nr_found
,
2430 KEY_INODE(&start
), KEY_OFFSET(&start
),
2431 KEY_INODE(&buf
->last_scanned
),
2432 KEY_OFFSET(&buf
->last_scanned
));
2434 spin_lock(&buf
->lock
);
2436 if (!RB_EMPTY_ROOT(&buf
->keys
)) {
2437 struct keybuf_key
*w
;
2438 w
= RB_FIRST(&buf
->keys
, struct keybuf_key
, node
);
2439 buf
->start
= START_KEY(&w
->key
);
2441 w
= RB_LAST(&buf
->keys
, struct keybuf_key
, node
);
2444 buf
->start
= MAX_KEY
;
2448 spin_unlock(&buf
->lock
);
2451 static void __bch_keybuf_del(struct keybuf
*buf
, struct keybuf_key
*w
)
2453 rb_erase(&w
->node
, &buf
->keys
);
2454 array_free(&buf
->freelist
, w
);
2457 void bch_keybuf_del(struct keybuf
*buf
, struct keybuf_key
*w
)
2459 spin_lock(&buf
->lock
);
2460 __bch_keybuf_del(buf
, w
);
2461 spin_unlock(&buf
->lock
);
2464 bool bch_keybuf_check_overlapping(struct keybuf
*buf
, struct bkey
*start
,
2468 struct keybuf_key
*p
, *w
, s
;
2471 if (bkey_cmp(end
, &buf
->start
) <= 0 ||
2472 bkey_cmp(start
, &buf
->end
) >= 0)
2475 spin_lock(&buf
->lock
);
2476 w
= RB_GREATER(&buf
->keys
, s
, node
, keybuf_nonoverlapping_cmp
);
2478 while (w
&& bkey_cmp(&START_KEY(&w
->key
), end
) < 0) {
2480 w
= RB_NEXT(w
, node
);
2485 __bch_keybuf_del(buf
, p
);
2488 spin_unlock(&buf
->lock
);
2492 struct keybuf_key
*bch_keybuf_next(struct keybuf
*buf
)
2494 struct keybuf_key
*w
;
2495 spin_lock(&buf
->lock
);
2497 w
= RB_FIRST(&buf
->keys
, struct keybuf_key
, node
);
2499 while (w
&& w
->private)
2500 w
= RB_NEXT(w
, node
);
2503 w
->private = ERR_PTR(-EINTR
);
2505 spin_unlock(&buf
->lock
);
2509 struct keybuf_key
*bch_keybuf_next_rescan(struct cache_set
*c
,
2512 keybuf_pred_fn
*pred
)
2514 struct keybuf_key
*ret
;
2517 ret
= bch_keybuf_next(buf
);
2521 if (bkey_cmp(&buf
->last_scanned
, end
) >= 0) {
2522 pr_debug("scan finished");
2526 bch_refill_keybuf(c
, buf
, end
, pred
);
2532 void bch_keybuf_init(struct keybuf
*buf
)
2534 buf
->last_scanned
= MAX_KEY
;
2535 buf
->keys
= RB_ROOT
;
2537 spin_lock_init(&buf
->lock
);
2538 array_allocator_init(&buf
->freelist
);