dm thin metadata: fix __udivdi3 undefined on 32-bit
[linux/fpc-iii.git] / drivers / md / bcache / writeback.c
blob95a6ae053714cb736e3f463d96a30fd6eebffc6b
1 /*
2 * background writeback - scan btree for dirty data and write it to the backing
3 * device
5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6 * Copyright 2012 Google, Inc.
7 */
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "writeback.h"
14 #include <linux/delay.h>
15 #include <linux/freezer.h>
16 #include <linux/kthread.h>
17 #include <trace/events/bcache.h>
19 /* Rate limiting */
21 static void __update_writeback_rate(struct cached_dev *dc)
23 struct cache_set *c = dc->disk.c;
24 uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size -
25 bcache_flash_devs_sectors_dirty(c);
26 uint64_t cache_dirty_target =
27 div_u64(cache_sectors * dc->writeback_percent, 100);
29 int64_t target = div64_u64(cache_dirty_target * bdev_sectors(dc->bdev),
30 c->cached_dev_sectors);
32 /* PD controller */
34 int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
35 int64_t derivative = dirty - dc->disk.sectors_dirty_last;
36 int64_t proportional = dirty - target;
37 int64_t change;
39 dc->disk.sectors_dirty_last = dirty;
41 /* Scale to sectors per second */
43 proportional *= dc->writeback_rate_update_seconds;
44 proportional = div_s64(proportional, dc->writeback_rate_p_term_inverse);
46 derivative = div_s64(derivative, dc->writeback_rate_update_seconds);
48 derivative = ewma_add(dc->disk.sectors_dirty_derivative, derivative,
49 (dc->writeback_rate_d_term /
50 dc->writeback_rate_update_seconds) ?: 1, 0);
52 derivative *= dc->writeback_rate_d_term;
53 derivative = div_s64(derivative, dc->writeback_rate_p_term_inverse);
55 change = proportional + derivative;
57 /* Don't increase writeback rate if the device isn't keeping up */
58 if (change > 0 &&
59 time_after64(local_clock(),
60 dc->writeback_rate.next + NSEC_PER_MSEC))
61 change = 0;
63 dc->writeback_rate.rate =
64 clamp_t(int64_t, (int64_t) dc->writeback_rate.rate + change,
65 1, NSEC_PER_MSEC);
67 dc->writeback_rate_proportional = proportional;
68 dc->writeback_rate_derivative = derivative;
69 dc->writeback_rate_change = change;
70 dc->writeback_rate_target = target;
73 static void update_writeback_rate(struct work_struct *work)
75 struct cached_dev *dc = container_of(to_delayed_work(work),
76 struct cached_dev,
77 writeback_rate_update);
79 down_read(&dc->writeback_lock);
81 if (atomic_read(&dc->has_dirty) &&
82 dc->writeback_percent)
83 __update_writeback_rate(dc);
85 up_read(&dc->writeback_lock);
87 schedule_delayed_work(&dc->writeback_rate_update,
88 dc->writeback_rate_update_seconds * HZ);
91 static unsigned writeback_delay(struct cached_dev *dc, unsigned sectors)
93 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
94 !dc->writeback_percent)
95 return 0;
97 return bch_next_delay(&dc->writeback_rate, sectors);
100 struct dirty_io {
101 struct closure cl;
102 struct cached_dev *dc;
103 struct bio bio;
106 static void dirty_init(struct keybuf_key *w)
108 struct dirty_io *io = w->private;
109 struct bio *bio = &io->bio;
111 bio_init(bio);
112 if (!io->dc->writeback_percent)
113 bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
115 bio->bi_iter.bi_size = KEY_SIZE(&w->key) << 9;
116 bio->bi_max_vecs = DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS);
117 bio->bi_private = w;
118 bio->bi_io_vec = bio->bi_inline_vecs;
119 bch_bio_map(bio, NULL);
122 static void dirty_io_destructor(struct closure *cl)
124 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
125 kfree(io);
128 static void write_dirty_finish(struct closure *cl)
130 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
131 struct keybuf_key *w = io->bio.bi_private;
132 struct cached_dev *dc = io->dc;
133 struct bio_vec *bv;
134 int i;
136 bio_for_each_segment_all(bv, &io->bio, i)
137 __free_page(bv->bv_page);
139 /* This is kind of a dumb way of signalling errors. */
140 if (KEY_DIRTY(&w->key)) {
141 int ret;
142 unsigned i;
143 struct keylist keys;
145 bch_keylist_init(&keys);
147 bkey_copy(keys.top, &w->key);
148 SET_KEY_DIRTY(keys.top, false);
149 bch_keylist_push(&keys);
151 for (i = 0; i < KEY_PTRS(&w->key); i++)
152 atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
154 ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key);
156 if (ret)
157 trace_bcache_writeback_collision(&w->key);
159 atomic_long_inc(ret
160 ? &dc->disk.c->writeback_keys_failed
161 : &dc->disk.c->writeback_keys_done);
164 bch_keybuf_del(&dc->writeback_keys, w);
165 up(&dc->in_flight);
167 closure_return_with_destructor(cl, dirty_io_destructor);
170 static void dirty_endio(struct bio *bio)
172 struct keybuf_key *w = bio->bi_private;
173 struct dirty_io *io = w->private;
175 if (bio->bi_error)
176 SET_KEY_DIRTY(&w->key, false);
178 closure_put(&io->cl);
181 static void write_dirty(struct closure *cl)
183 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
184 struct keybuf_key *w = io->bio.bi_private;
186 dirty_init(w);
187 io->bio.bi_rw = WRITE;
188 io->bio.bi_iter.bi_sector = KEY_START(&w->key);
189 io->bio.bi_bdev = io->dc->bdev;
190 io->bio.bi_end_io = dirty_endio;
192 closure_bio_submit(&io->bio, cl);
194 continue_at(cl, write_dirty_finish, io->dc->writeback_write_wq);
197 static void read_dirty_endio(struct bio *bio)
199 struct keybuf_key *w = bio->bi_private;
200 struct dirty_io *io = w->private;
202 bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0),
203 bio->bi_error, "reading dirty data from cache");
205 dirty_endio(bio);
208 static void read_dirty_submit(struct closure *cl)
210 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
212 closure_bio_submit(&io->bio, cl);
214 continue_at(cl, write_dirty, io->dc->writeback_write_wq);
217 static void read_dirty(struct cached_dev *dc)
219 unsigned delay = 0;
220 struct keybuf_key *w;
221 struct dirty_io *io;
222 struct closure cl;
224 closure_init_stack(&cl);
227 * XXX: if we error, background writeback just spins. Should use some
228 * mempools.
231 while (!kthread_should_stop()) {
232 try_to_freeze();
234 w = bch_keybuf_next(&dc->writeback_keys);
235 if (!w)
236 break;
238 BUG_ON(ptr_stale(dc->disk.c, &w->key, 0));
240 if (KEY_START(&w->key) != dc->last_read ||
241 jiffies_to_msecs(delay) > 50)
242 while (!kthread_should_stop() && delay)
243 delay = schedule_timeout_interruptible(delay);
245 dc->last_read = KEY_OFFSET(&w->key);
247 io = kzalloc(sizeof(struct dirty_io) + sizeof(struct bio_vec)
248 * DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS),
249 GFP_KERNEL);
250 if (!io)
251 goto err;
253 w->private = io;
254 io->dc = dc;
256 dirty_init(w);
257 io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0);
258 io->bio.bi_bdev = PTR_CACHE(dc->disk.c,
259 &w->key, 0)->bdev;
260 io->bio.bi_rw = READ;
261 io->bio.bi_end_io = read_dirty_endio;
263 if (bio_alloc_pages(&io->bio, GFP_KERNEL))
264 goto err_free;
266 trace_bcache_writeback(&w->key);
268 down(&dc->in_flight);
269 closure_call(&io->cl, read_dirty_submit, NULL, &cl);
271 delay = writeback_delay(dc, KEY_SIZE(&w->key));
274 if (0) {
275 err_free:
276 kfree(w->private);
277 err:
278 bch_keybuf_del(&dc->writeback_keys, w);
282 * Wait for outstanding writeback IOs to finish (and keybuf slots to be
283 * freed) before refilling again
285 closure_sync(&cl);
288 /* Scan for dirty data */
290 void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned inode,
291 uint64_t offset, int nr_sectors)
293 struct bcache_device *d = c->devices[inode];
294 unsigned stripe_offset, stripe, sectors_dirty;
296 if (!d)
297 return;
299 stripe = offset_to_stripe(d, offset);
300 stripe_offset = offset & (d->stripe_size - 1);
302 while (nr_sectors) {
303 int s = min_t(unsigned, abs(nr_sectors),
304 d->stripe_size - stripe_offset);
306 if (nr_sectors < 0)
307 s = -s;
309 if (stripe >= d->nr_stripes)
310 return;
312 sectors_dirty = atomic_add_return(s,
313 d->stripe_sectors_dirty + stripe);
314 if (sectors_dirty == d->stripe_size)
315 set_bit(stripe, d->full_dirty_stripes);
316 else
317 clear_bit(stripe, d->full_dirty_stripes);
319 nr_sectors -= s;
320 stripe_offset = 0;
321 stripe++;
325 static bool dirty_pred(struct keybuf *buf, struct bkey *k)
327 struct cached_dev *dc = container_of(buf, struct cached_dev, writeback_keys);
329 BUG_ON(KEY_INODE(k) != dc->disk.id);
331 return KEY_DIRTY(k);
334 static void refill_full_stripes(struct cached_dev *dc)
336 struct keybuf *buf = &dc->writeback_keys;
337 unsigned start_stripe, stripe, next_stripe;
338 bool wrapped = false;
340 stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned));
342 if (stripe >= dc->disk.nr_stripes)
343 stripe = 0;
345 start_stripe = stripe;
347 while (1) {
348 stripe = find_next_bit(dc->disk.full_dirty_stripes,
349 dc->disk.nr_stripes, stripe);
351 if (stripe == dc->disk.nr_stripes)
352 goto next;
354 next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes,
355 dc->disk.nr_stripes, stripe);
357 buf->last_scanned = KEY(dc->disk.id,
358 stripe * dc->disk.stripe_size, 0);
360 bch_refill_keybuf(dc->disk.c, buf,
361 &KEY(dc->disk.id,
362 next_stripe * dc->disk.stripe_size, 0),
363 dirty_pred);
365 if (array_freelist_empty(&buf->freelist))
366 return;
368 stripe = next_stripe;
369 next:
370 if (wrapped && stripe > start_stripe)
371 return;
373 if (stripe == dc->disk.nr_stripes) {
374 stripe = 0;
375 wrapped = true;
381 * Returns true if we scanned the entire disk
383 static bool refill_dirty(struct cached_dev *dc)
385 struct keybuf *buf = &dc->writeback_keys;
386 struct bkey start = KEY(dc->disk.id, 0, 0);
387 struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0);
388 struct bkey start_pos;
391 * make sure keybuf pos is inside the range for this disk - at bringup
392 * we might not be attached yet so this disk's inode nr isn't
393 * initialized then
395 if (bkey_cmp(&buf->last_scanned, &start) < 0 ||
396 bkey_cmp(&buf->last_scanned, &end) > 0)
397 buf->last_scanned = start;
399 if (dc->partial_stripes_expensive) {
400 refill_full_stripes(dc);
401 if (array_freelist_empty(&buf->freelist))
402 return false;
405 start_pos = buf->last_scanned;
406 bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
408 if (bkey_cmp(&buf->last_scanned, &end) < 0)
409 return false;
412 * If we get to the end start scanning again from the beginning, and
413 * only scan up to where we initially started scanning from:
415 buf->last_scanned = start;
416 bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred);
418 return bkey_cmp(&buf->last_scanned, &start_pos) >= 0;
421 static int bch_writeback_thread(void *arg)
423 struct cached_dev *dc = arg;
424 bool searched_full_index;
426 while (!kthread_should_stop()) {
427 down_write(&dc->writeback_lock);
428 set_current_state(TASK_INTERRUPTIBLE);
430 * If the bache device is detaching, skip here and continue
431 * to perform writeback. Otherwise, if no dirty data on cache,
432 * or there is dirty data on cache but writeback is disabled,
433 * the writeback thread should sleep here and wait for others
434 * to wake up it.
436 if (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) &&
437 (!atomic_read(&dc->has_dirty) || !dc->writeback_running)) {
438 up_write(&dc->writeback_lock);
440 if (kthread_should_stop()) {
441 set_current_state(TASK_RUNNING);
442 return 0;
445 try_to_freeze();
446 schedule();
447 continue;
449 set_current_state(TASK_RUNNING);
451 searched_full_index = refill_dirty(dc);
453 if (searched_full_index &&
454 RB_EMPTY_ROOT(&dc->writeback_keys.keys)) {
455 atomic_set(&dc->has_dirty, 0);
456 cached_dev_put(dc);
457 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
458 bch_write_bdev_super(dc, NULL);
460 * If bcache device is detaching via sysfs interface,
461 * writeback thread should stop after there is no dirty
462 * data on cache. BCACHE_DEV_DETACHING flag is set in
463 * bch_cached_dev_detach().
465 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) {
466 up_write(&dc->writeback_lock);
467 break;
471 up_write(&dc->writeback_lock);
473 bch_ratelimit_reset(&dc->writeback_rate);
474 read_dirty(dc);
476 if (searched_full_index) {
477 unsigned delay = dc->writeback_delay * HZ;
479 while (delay &&
480 !kthread_should_stop() &&
481 !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
482 delay = schedule_timeout_interruptible(delay);
486 return 0;
489 /* Init */
491 struct sectors_dirty_init {
492 struct btree_op op;
493 unsigned inode;
496 static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b,
497 struct bkey *k)
499 struct sectors_dirty_init *op = container_of(_op,
500 struct sectors_dirty_init, op);
501 if (KEY_INODE(k) > op->inode)
502 return MAP_DONE;
504 if (KEY_DIRTY(k))
505 bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
506 KEY_START(k), KEY_SIZE(k));
508 return MAP_CONTINUE;
511 void bch_sectors_dirty_init(struct bcache_device *d)
513 struct sectors_dirty_init op;
515 bch_btree_op_init(&op.op, -1);
516 op.inode = d->id;
518 bch_btree_map_keys(&op.op, d->c, &KEY(op.inode, 0, 0),
519 sectors_dirty_init_fn, 0);
521 d->sectors_dirty_last = bcache_dev_sectors_dirty(d);
524 void bch_cached_dev_writeback_init(struct cached_dev *dc)
526 sema_init(&dc->in_flight, 64);
527 init_rwsem(&dc->writeback_lock);
528 bch_keybuf_init(&dc->writeback_keys);
530 dc->writeback_metadata = true;
531 dc->writeback_running = true;
532 dc->writeback_percent = 10;
533 dc->writeback_delay = 30;
534 dc->writeback_rate.rate = 1024;
536 dc->writeback_rate_update_seconds = 5;
537 dc->writeback_rate_d_term = 30;
538 dc->writeback_rate_p_term_inverse = 6000;
540 INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
543 int bch_cached_dev_writeback_start(struct cached_dev *dc)
545 dc->writeback_write_wq = alloc_workqueue("bcache_writeback_wq",
546 WQ_MEM_RECLAIM, 0);
547 if (!dc->writeback_write_wq)
548 return -ENOMEM;
550 dc->writeback_thread = kthread_create(bch_writeback_thread, dc,
551 "bcache_writeback");
552 if (IS_ERR(dc->writeback_thread))
553 return PTR_ERR(dc->writeback_thread);
555 schedule_delayed_work(&dc->writeback_rate_update,
556 dc->writeback_rate_update_seconds * HZ);
558 bch_writeback_queue(dc);
560 return 0;