dm thin metadata: fix __udivdi3 undefined on 32-bit
[linux/fpc-iii.git] / drivers / md / dm-bufio.c
blobb1d5fa0bc8f7bd55162dc883f6c7cc4871ec92f4
1 /*
2 * Copyright (C) 2009-2011 Red Hat, Inc.
4 * Author: Mikulas Patocka <mpatocka@redhat.com>
6 * This file is released under the GPL.
7 */
9 #include "dm-bufio.h"
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/slab.h>
14 #include <linux/jiffies.h>
15 #include <linux/vmalloc.h>
16 #include <linux/shrinker.h>
17 #include <linux/module.h>
18 #include <linux/rbtree.h>
20 #define DM_MSG_PREFIX "bufio"
23 * Memory management policy:
24 * Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
25 * or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
26 * Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
27 * Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
28 * dirty buffers.
30 #define DM_BUFIO_MIN_BUFFERS 8
32 #define DM_BUFIO_MEMORY_PERCENT 2
33 #define DM_BUFIO_VMALLOC_PERCENT 25
34 #define DM_BUFIO_WRITEBACK_PERCENT 75
37 * Check buffer ages in this interval (seconds)
39 #define DM_BUFIO_WORK_TIMER_SECS 30
42 * Free buffers when they are older than this (seconds)
44 #define DM_BUFIO_DEFAULT_AGE_SECS 300
47 * The nr of bytes of cached data to keep around.
49 #define DM_BUFIO_DEFAULT_RETAIN_BYTES (256 * 1024)
52 * The number of bvec entries that are embedded directly in the buffer.
53 * If the chunk size is larger, dm-io is used to do the io.
55 #define DM_BUFIO_INLINE_VECS 16
58 * Don't try to use kmem_cache_alloc for blocks larger than this.
59 * For explanation, see alloc_buffer_data below.
61 #define DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT (PAGE_SIZE >> 1)
62 #define DM_BUFIO_BLOCK_SIZE_GFP_LIMIT (PAGE_SIZE << (MAX_ORDER - 1))
65 * dm_buffer->list_mode
67 #define LIST_CLEAN 0
68 #define LIST_DIRTY 1
69 #define LIST_SIZE 2
72 * Linking of buffers:
73 * All buffers are linked to cache_hash with their hash_list field.
75 * Clean buffers that are not being written (B_WRITING not set)
76 * are linked to lru[LIST_CLEAN] with their lru_list field.
78 * Dirty and clean buffers that are being written are linked to
79 * lru[LIST_DIRTY] with their lru_list field. When the write
80 * finishes, the buffer cannot be relinked immediately (because we
81 * are in an interrupt context and relinking requires process
82 * context), so some clean-not-writing buffers can be held on
83 * dirty_lru too. They are later added to lru in the process
84 * context.
86 struct dm_bufio_client {
87 struct mutex lock;
89 struct list_head lru[LIST_SIZE];
90 unsigned long n_buffers[LIST_SIZE];
92 struct block_device *bdev;
93 unsigned block_size;
94 unsigned char sectors_per_block_bits;
95 unsigned char pages_per_block_bits;
96 unsigned char blocks_per_page_bits;
97 unsigned aux_size;
98 void (*alloc_callback)(struct dm_buffer *);
99 void (*write_callback)(struct dm_buffer *);
101 struct dm_io_client *dm_io;
103 struct list_head reserved_buffers;
104 unsigned need_reserved_buffers;
106 unsigned minimum_buffers;
108 struct rb_root buffer_tree;
109 wait_queue_head_t free_buffer_wait;
111 int async_write_error;
113 struct list_head client_list;
114 struct shrinker shrinker;
118 * Buffer state bits.
120 #define B_READING 0
121 #define B_WRITING 1
122 #define B_DIRTY 2
125 * Describes how the block was allocated:
126 * kmem_cache_alloc(), __get_free_pages() or vmalloc().
127 * See the comment at alloc_buffer_data.
129 enum data_mode {
130 DATA_MODE_SLAB = 0,
131 DATA_MODE_GET_FREE_PAGES = 1,
132 DATA_MODE_VMALLOC = 2,
133 DATA_MODE_LIMIT = 3
136 struct dm_buffer {
137 struct rb_node node;
138 struct list_head lru_list;
139 sector_t block;
140 void *data;
141 enum data_mode data_mode;
142 unsigned char list_mode; /* LIST_* */
143 unsigned hold_count;
144 int read_error;
145 int write_error;
146 unsigned long state;
147 unsigned long last_accessed;
148 struct dm_bufio_client *c;
149 struct list_head write_list;
150 struct bio bio;
151 struct bio_vec bio_vec[DM_BUFIO_INLINE_VECS];
154 /*----------------------------------------------------------------*/
156 static struct kmem_cache *dm_bufio_caches[PAGE_SHIFT - SECTOR_SHIFT];
157 static char *dm_bufio_cache_names[PAGE_SHIFT - SECTOR_SHIFT];
159 static inline int dm_bufio_cache_index(struct dm_bufio_client *c)
161 unsigned ret = c->blocks_per_page_bits - 1;
163 BUG_ON(ret >= ARRAY_SIZE(dm_bufio_caches));
165 return ret;
168 #define DM_BUFIO_CACHE(c) (dm_bufio_caches[dm_bufio_cache_index(c)])
169 #define DM_BUFIO_CACHE_NAME(c) (dm_bufio_cache_names[dm_bufio_cache_index(c)])
171 #define dm_bufio_in_request() (!!current->bio_list)
173 static void dm_bufio_lock(struct dm_bufio_client *c)
175 mutex_lock_nested(&c->lock, dm_bufio_in_request());
178 static int dm_bufio_trylock(struct dm_bufio_client *c)
180 return mutex_trylock(&c->lock);
183 static void dm_bufio_unlock(struct dm_bufio_client *c)
185 mutex_unlock(&c->lock);
189 * FIXME Move to sched.h?
191 #ifdef CONFIG_PREEMPT_VOLUNTARY
192 # define dm_bufio_cond_resched() \
193 do { \
194 if (unlikely(need_resched())) \
195 _cond_resched(); \
196 } while (0)
197 #else
198 # define dm_bufio_cond_resched() do { } while (0)
199 #endif
201 /*----------------------------------------------------------------*/
204 * Default cache size: available memory divided by the ratio.
206 static unsigned long dm_bufio_default_cache_size;
209 * Total cache size set by the user.
211 static unsigned long dm_bufio_cache_size;
214 * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
215 * at any time. If it disagrees, the user has changed cache size.
217 static unsigned long dm_bufio_cache_size_latch;
219 static DEFINE_SPINLOCK(param_spinlock);
222 * Buffers are freed after this timeout
224 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
225 static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
227 static unsigned long dm_bufio_peak_allocated;
228 static unsigned long dm_bufio_allocated_kmem_cache;
229 static unsigned long dm_bufio_allocated_get_free_pages;
230 static unsigned long dm_bufio_allocated_vmalloc;
231 static unsigned long dm_bufio_current_allocated;
233 /*----------------------------------------------------------------*/
236 * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count
238 static unsigned long dm_bufio_cache_size_per_client;
241 * The current number of clients.
243 static int dm_bufio_client_count;
246 * The list of all clients.
248 static LIST_HEAD(dm_bufio_all_clients);
251 * This mutex protects dm_bufio_cache_size_latch,
252 * dm_bufio_cache_size_per_client and dm_bufio_client_count
254 static DEFINE_MUTEX(dm_bufio_clients_lock);
256 /*----------------------------------------------------------------
257 * A red/black tree acts as an index for all the buffers.
258 *--------------------------------------------------------------*/
259 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
261 struct rb_node *n = c->buffer_tree.rb_node;
262 struct dm_buffer *b;
264 while (n) {
265 b = container_of(n, struct dm_buffer, node);
267 if (b->block == block)
268 return b;
270 n = (b->block < block) ? n->rb_left : n->rb_right;
273 return NULL;
276 static void __insert(struct dm_bufio_client *c, struct dm_buffer *b)
278 struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL;
279 struct dm_buffer *found;
281 while (*new) {
282 found = container_of(*new, struct dm_buffer, node);
284 if (found->block == b->block) {
285 BUG_ON(found != b);
286 return;
289 parent = *new;
290 new = (found->block < b->block) ?
291 &((*new)->rb_left) : &((*new)->rb_right);
294 rb_link_node(&b->node, parent, new);
295 rb_insert_color(&b->node, &c->buffer_tree);
298 static void __remove(struct dm_bufio_client *c, struct dm_buffer *b)
300 rb_erase(&b->node, &c->buffer_tree);
303 /*----------------------------------------------------------------*/
305 static void adjust_total_allocated(enum data_mode data_mode, long diff)
307 static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
308 &dm_bufio_allocated_kmem_cache,
309 &dm_bufio_allocated_get_free_pages,
310 &dm_bufio_allocated_vmalloc,
313 spin_lock(&param_spinlock);
315 *class_ptr[data_mode] += diff;
317 dm_bufio_current_allocated += diff;
319 if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
320 dm_bufio_peak_allocated = dm_bufio_current_allocated;
322 spin_unlock(&param_spinlock);
326 * Change the number of clients and recalculate per-client limit.
328 static void __cache_size_refresh(void)
330 BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
331 BUG_ON(dm_bufio_client_count < 0);
333 dm_bufio_cache_size_latch = ACCESS_ONCE(dm_bufio_cache_size);
336 * Use default if set to 0 and report the actual cache size used.
338 if (!dm_bufio_cache_size_latch) {
339 (void)cmpxchg(&dm_bufio_cache_size, 0,
340 dm_bufio_default_cache_size);
341 dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
344 dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch /
345 (dm_bufio_client_count ? : 1);
349 * Allocating buffer data.
351 * Small buffers are allocated with kmem_cache, to use space optimally.
353 * For large buffers, we choose between get_free_pages and vmalloc.
354 * Each has advantages and disadvantages.
356 * __get_free_pages can randomly fail if the memory is fragmented.
357 * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
358 * as low as 128M) so using it for caching is not appropriate.
360 * If the allocation may fail we use __get_free_pages. Memory fragmentation
361 * won't have a fatal effect here, but it just causes flushes of some other
362 * buffers and more I/O will be performed. Don't use __get_free_pages if it
363 * always fails (i.e. order >= MAX_ORDER).
365 * If the allocation shouldn't fail we use __vmalloc. This is only for the
366 * initial reserve allocation, so there's no risk of wasting all vmalloc
367 * space.
369 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
370 enum data_mode *data_mode)
372 unsigned noio_flag;
373 void *ptr;
375 if (c->block_size <= DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT) {
376 *data_mode = DATA_MODE_SLAB;
377 return kmem_cache_alloc(DM_BUFIO_CACHE(c), gfp_mask);
380 if (c->block_size <= DM_BUFIO_BLOCK_SIZE_GFP_LIMIT &&
381 gfp_mask & __GFP_NORETRY) {
382 *data_mode = DATA_MODE_GET_FREE_PAGES;
383 return (void *)__get_free_pages(gfp_mask,
384 c->pages_per_block_bits);
387 *data_mode = DATA_MODE_VMALLOC;
390 * __vmalloc allocates the data pages and auxiliary structures with
391 * gfp_flags that were specified, but pagetables are always allocated
392 * with GFP_KERNEL, no matter what was specified as gfp_mask.
394 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
395 * all allocations done by this process (including pagetables) are done
396 * as if GFP_NOIO was specified.
399 if (gfp_mask & __GFP_NORETRY)
400 noio_flag = memalloc_noio_save();
402 ptr = __vmalloc(c->block_size, gfp_mask | __GFP_HIGHMEM, PAGE_KERNEL);
404 if (gfp_mask & __GFP_NORETRY)
405 memalloc_noio_restore(noio_flag);
407 return ptr;
411 * Free buffer's data.
413 static void free_buffer_data(struct dm_bufio_client *c,
414 void *data, enum data_mode data_mode)
416 switch (data_mode) {
417 case DATA_MODE_SLAB:
418 kmem_cache_free(DM_BUFIO_CACHE(c), data);
419 break;
421 case DATA_MODE_GET_FREE_PAGES:
422 free_pages((unsigned long)data, c->pages_per_block_bits);
423 break;
425 case DATA_MODE_VMALLOC:
426 vfree(data);
427 break;
429 default:
430 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
431 data_mode);
432 BUG();
437 * Allocate buffer and its data.
439 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
441 struct dm_buffer *b = kmalloc(sizeof(struct dm_buffer) + c->aux_size,
442 gfp_mask);
444 if (!b)
445 return NULL;
447 b->c = c;
449 b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
450 if (!b->data) {
451 kfree(b);
452 return NULL;
455 adjust_total_allocated(b->data_mode, (long)c->block_size);
457 return b;
461 * Free buffer and its data.
463 static void free_buffer(struct dm_buffer *b)
465 struct dm_bufio_client *c = b->c;
467 adjust_total_allocated(b->data_mode, -(long)c->block_size);
469 free_buffer_data(c, b->data, b->data_mode);
470 kfree(b);
474 * Link buffer to the hash list and clean or dirty queue.
476 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
478 struct dm_bufio_client *c = b->c;
480 c->n_buffers[dirty]++;
481 b->block = block;
482 b->list_mode = dirty;
483 list_add(&b->lru_list, &c->lru[dirty]);
484 __insert(b->c, b);
485 b->last_accessed = jiffies;
489 * Unlink buffer from the hash list and dirty or clean queue.
491 static void __unlink_buffer(struct dm_buffer *b)
493 struct dm_bufio_client *c = b->c;
495 BUG_ON(!c->n_buffers[b->list_mode]);
497 c->n_buffers[b->list_mode]--;
498 __remove(b->c, b);
499 list_del(&b->lru_list);
503 * Place the buffer to the head of dirty or clean LRU queue.
505 static void __relink_lru(struct dm_buffer *b, int dirty)
507 struct dm_bufio_client *c = b->c;
509 BUG_ON(!c->n_buffers[b->list_mode]);
511 c->n_buffers[b->list_mode]--;
512 c->n_buffers[dirty]++;
513 b->list_mode = dirty;
514 list_move(&b->lru_list, &c->lru[dirty]);
515 b->last_accessed = jiffies;
518 /*----------------------------------------------------------------
519 * Submit I/O on the buffer.
521 * Bio interface is faster but it has some problems:
522 * the vector list is limited (increasing this limit increases
523 * memory-consumption per buffer, so it is not viable);
525 * the memory must be direct-mapped, not vmalloced;
527 * the I/O driver can reject requests spuriously if it thinks that
528 * the requests are too big for the device or if they cross a
529 * controller-defined memory boundary.
531 * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
532 * it is not vmalloced, try using the bio interface.
534 * If the buffer is big, if it is vmalloced or if the underlying device
535 * rejects the bio because it is too large, use dm-io layer to do the I/O.
536 * The dm-io layer splits the I/O into multiple requests, avoiding the above
537 * shortcomings.
538 *--------------------------------------------------------------*/
541 * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
542 * that the request was handled directly with bio interface.
544 static void dmio_complete(unsigned long error, void *context)
546 struct dm_buffer *b = context;
548 b->bio.bi_error = error ? -EIO : 0;
549 b->bio.bi_end_io(&b->bio);
552 static void use_dmio(struct dm_buffer *b, int rw, sector_t block,
553 bio_end_io_t *end_io)
555 int r;
556 struct dm_io_request io_req = {
557 .bi_rw = rw,
558 .notify.fn = dmio_complete,
559 .notify.context = b,
560 .client = b->c->dm_io,
562 struct dm_io_region region = {
563 .bdev = b->c->bdev,
564 .sector = block << b->c->sectors_per_block_bits,
565 .count = b->c->block_size >> SECTOR_SHIFT,
568 if (b->data_mode != DATA_MODE_VMALLOC) {
569 io_req.mem.type = DM_IO_KMEM;
570 io_req.mem.ptr.addr = b->data;
571 } else {
572 io_req.mem.type = DM_IO_VMA;
573 io_req.mem.ptr.vma = b->data;
576 b->bio.bi_end_io = end_io;
578 r = dm_io(&io_req, 1, &region, NULL);
579 if (r) {
580 b->bio.bi_error = r;
581 end_io(&b->bio);
585 static void inline_endio(struct bio *bio)
587 bio_end_io_t *end_fn = bio->bi_private;
588 int error = bio->bi_error;
591 * Reset the bio to free any attached resources
592 * (e.g. bio integrity profiles).
594 bio_reset(bio);
596 bio->bi_error = error;
597 end_fn(bio);
600 static void use_inline_bio(struct dm_buffer *b, int rw, sector_t block,
601 bio_end_io_t *end_io)
603 char *ptr;
604 int len;
606 bio_init(&b->bio);
607 b->bio.bi_io_vec = b->bio_vec;
608 b->bio.bi_max_vecs = DM_BUFIO_INLINE_VECS;
609 b->bio.bi_iter.bi_sector = block << b->c->sectors_per_block_bits;
610 b->bio.bi_bdev = b->c->bdev;
611 b->bio.bi_end_io = inline_endio;
613 * Use of .bi_private isn't a problem here because
614 * the dm_buffer's inline bio is local to bufio.
616 b->bio.bi_private = end_io;
619 * We assume that if len >= PAGE_SIZE ptr is page-aligned.
620 * If len < PAGE_SIZE the buffer doesn't cross page boundary.
622 ptr = b->data;
623 len = b->c->block_size;
625 if (len >= PAGE_SIZE)
626 BUG_ON((unsigned long)ptr & (PAGE_SIZE - 1));
627 else
628 BUG_ON((unsigned long)ptr & (len - 1));
630 do {
631 if (!bio_add_page(&b->bio, virt_to_page(ptr),
632 len < PAGE_SIZE ? len : PAGE_SIZE,
633 virt_to_phys(ptr) & (PAGE_SIZE - 1))) {
634 BUG_ON(b->c->block_size <= PAGE_SIZE);
635 use_dmio(b, rw, block, end_io);
636 return;
639 len -= PAGE_SIZE;
640 ptr += PAGE_SIZE;
641 } while (len > 0);
643 submit_bio(rw, &b->bio);
646 static void submit_io(struct dm_buffer *b, int rw, sector_t block,
647 bio_end_io_t *end_io)
649 if (rw == WRITE && b->c->write_callback)
650 b->c->write_callback(b);
652 if (b->c->block_size <= DM_BUFIO_INLINE_VECS * PAGE_SIZE &&
653 b->data_mode != DATA_MODE_VMALLOC)
654 use_inline_bio(b, rw, block, end_io);
655 else
656 use_dmio(b, rw, block, end_io);
659 /*----------------------------------------------------------------
660 * Writing dirty buffers
661 *--------------------------------------------------------------*/
664 * The endio routine for write.
666 * Set the error, clear B_WRITING bit and wake anyone who was waiting on
667 * it.
669 static void write_endio(struct bio *bio)
671 struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
673 b->write_error = bio->bi_error;
674 if (unlikely(bio->bi_error)) {
675 struct dm_bufio_client *c = b->c;
676 int error = bio->bi_error;
677 (void)cmpxchg(&c->async_write_error, 0, error);
680 BUG_ON(!test_bit(B_WRITING, &b->state));
682 smp_mb__before_atomic();
683 clear_bit(B_WRITING, &b->state);
684 smp_mb__after_atomic();
686 wake_up_bit(&b->state, B_WRITING);
690 * Initiate a write on a dirty buffer, but don't wait for it.
692 * - If the buffer is not dirty, exit.
693 * - If there some previous write going on, wait for it to finish (we can't
694 * have two writes on the same buffer simultaneously).
695 * - Submit our write and don't wait on it. We set B_WRITING indicating
696 * that there is a write in progress.
698 static void __write_dirty_buffer(struct dm_buffer *b,
699 struct list_head *write_list)
701 if (!test_bit(B_DIRTY, &b->state))
702 return;
704 clear_bit(B_DIRTY, &b->state);
705 wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
707 if (!write_list)
708 submit_io(b, WRITE, b->block, write_endio);
709 else
710 list_add_tail(&b->write_list, write_list);
713 static void __flush_write_list(struct list_head *write_list)
715 struct blk_plug plug;
716 blk_start_plug(&plug);
717 while (!list_empty(write_list)) {
718 struct dm_buffer *b =
719 list_entry(write_list->next, struct dm_buffer, write_list);
720 list_del(&b->write_list);
721 submit_io(b, WRITE, b->block, write_endio);
722 dm_bufio_cond_resched();
724 blk_finish_plug(&plug);
728 * Wait until any activity on the buffer finishes. Possibly write the
729 * buffer if it is dirty. When this function finishes, there is no I/O
730 * running on the buffer and the buffer is not dirty.
732 static void __make_buffer_clean(struct dm_buffer *b)
734 BUG_ON(b->hold_count);
736 if (!b->state) /* fast case */
737 return;
739 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
740 __write_dirty_buffer(b, NULL);
741 wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
745 * Find some buffer that is not held by anybody, clean it, unlink it and
746 * return it.
748 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
750 struct dm_buffer *b;
752 list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
753 BUG_ON(test_bit(B_WRITING, &b->state));
754 BUG_ON(test_bit(B_DIRTY, &b->state));
756 if (!b->hold_count) {
757 __make_buffer_clean(b);
758 __unlink_buffer(b);
759 return b;
761 dm_bufio_cond_resched();
764 list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
765 BUG_ON(test_bit(B_READING, &b->state));
767 if (!b->hold_count) {
768 __make_buffer_clean(b);
769 __unlink_buffer(b);
770 return b;
772 dm_bufio_cond_resched();
775 return NULL;
779 * Wait until some other threads free some buffer or release hold count on
780 * some buffer.
782 * This function is entered with c->lock held, drops it and regains it
783 * before exiting.
785 static void __wait_for_free_buffer(struct dm_bufio_client *c)
787 DECLARE_WAITQUEUE(wait, current);
789 add_wait_queue(&c->free_buffer_wait, &wait);
790 set_task_state(current, TASK_UNINTERRUPTIBLE);
791 dm_bufio_unlock(c);
793 io_schedule();
795 remove_wait_queue(&c->free_buffer_wait, &wait);
797 dm_bufio_lock(c);
800 enum new_flag {
801 NF_FRESH = 0,
802 NF_READ = 1,
803 NF_GET = 2,
804 NF_PREFETCH = 3
808 * Allocate a new buffer. If the allocation is not possible, wait until
809 * some other thread frees a buffer.
811 * May drop the lock and regain it.
813 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
815 struct dm_buffer *b;
816 bool tried_noio_alloc = false;
819 * dm-bufio is resistant to allocation failures (it just keeps
820 * one buffer reserved in cases all the allocations fail).
821 * So set flags to not try too hard:
822 * GFP_NOWAIT: don't wait; if we need to sleep we'll release our
823 * mutex and wait ourselves.
824 * __GFP_NORETRY: don't retry and rather return failure
825 * __GFP_NOMEMALLOC: don't use emergency reserves
826 * __GFP_NOWARN: don't print a warning in case of failure
828 * For debugging, if we set the cache size to 1, no new buffers will
829 * be allocated.
831 while (1) {
832 if (dm_bufio_cache_size_latch != 1) {
833 b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
834 if (b)
835 return b;
838 if (nf == NF_PREFETCH)
839 return NULL;
841 if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) {
842 dm_bufio_unlock(c);
843 b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
844 dm_bufio_lock(c);
845 if (b)
846 return b;
847 tried_noio_alloc = true;
850 if (!list_empty(&c->reserved_buffers)) {
851 b = list_entry(c->reserved_buffers.next,
852 struct dm_buffer, lru_list);
853 list_del(&b->lru_list);
854 c->need_reserved_buffers++;
856 return b;
859 b = __get_unclaimed_buffer(c);
860 if (b)
861 return b;
863 __wait_for_free_buffer(c);
867 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
869 struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
871 if (!b)
872 return NULL;
874 if (c->alloc_callback)
875 c->alloc_callback(b);
877 return b;
881 * Free a buffer and wake other threads waiting for free buffers.
883 static void __free_buffer_wake(struct dm_buffer *b)
885 struct dm_bufio_client *c = b->c;
887 if (!c->need_reserved_buffers)
888 free_buffer(b);
889 else {
890 list_add(&b->lru_list, &c->reserved_buffers);
891 c->need_reserved_buffers--;
894 wake_up(&c->free_buffer_wait);
897 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
898 struct list_head *write_list)
900 struct dm_buffer *b, *tmp;
902 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
903 BUG_ON(test_bit(B_READING, &b->state));
905 if (!test_bit(B_DIRTY, &b->state) &&
906 !test_bit(B_WRITING, &b->state)) {
907 __relink_lru(b, LIST_CLEAN);
908 continue;
911 if (no_wait && test_bit(B_WRITING, &b->state))
912 return;
914 __write_dirty_buffer(b, write_list);
915 dm_bufio_cond_resched();
920 * Get writeback threshold and buffer limit for a given client.
922 static void __get_memory_limit(struct dm_bufio_client *c,
923 unsigned long *threshold_buffers,
924 unsigned long *limit_buffers)
926 unsigned long buffers;
928 if (unlikely(ACCESS_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch)) {
929 if (mutex_trylock(&dm_bufio_clients_lock)) {
930 __cache_size_refresh();
931 mutex_unlock(&dm_bufio_clients_lock);
935 buffers = dm_bufio_cache_size_per_client >>
936 (c->sectors_per_block_bits + SECTOR_SHIFT);
938 if (buffers < c->minimum_buffers)
939 buffers = c->minimum_buffers;
941 *limit_buffers = buffers;
942 *threshold_buffers = mult_frac(buffers,
943 DM_BUFIO_WRITEBACK_PERCENT, 100);
947 * Check if we're over watermark.
948 * If we are over threshold_buffers, start freeing buffers.
949 * If we're over "limit_buffers", block until we get under the limit.
951 static void __check_watermark(struct dm_bufio_client *c,
952 struct list_head *write_list)
954 unsigned long threshold_buffers, limit_buffers;
956 __get_memory_limit(c, &threshold_buffers, &limit_buffers);
958 while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] >
959 limit_buffers) {
961 struct dm_buffer *b = __get_unclaimed_buffer(c);
963 if (!b)
964 return;
966 __free_buffer_wake(b);
967 dm_bufio_cond_resched();
970 if (c->n_buffers[LIST_DIRTY] > threshold_buffers)
971 __write_dirty_buffers_async(c, 1, write_list);
974 /*----------------------------------------------------------------
975 * Getting a buffer
976 *--------------------------------------------------------------*/
978 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
979 enum new_flag nf, int *need_submit,
980 struct list_head *write_list)
982 struct dm_buffer *b, *new_b = NULL;
984 *need_submit = 0;
986 b = __find(c, block);
987 if (b)
988 goto found_buffer;
990 if (nf == NF_GET)
991 return NULL;
993 new_b = __alloc_buffer_wait(c, nf);
994 if (!new_b)
995 return NULL;
998 * We've had a period where the mutex was unlocked, so need to
999 * recheck the hash table.
1001 b = __find(c, block);
1002 if (b) {
1003 __free_buffer_wake(new_b);
1004 goto found_buffer;
1007 __check_watermark(c, write_list);
1009 b = new_b;
1010 b->hold_count = 1;
1011 b->read_error = 0;
1012 b->write_error = 0;
1013 __link_buffer(b, block, LIST_CLEAN);
1015 if (nf == NF_FRESH) {
1016 b->state = 0;
1017 return b;
1020 b->state = 1 << B_READING;
1021 *need_submit = 1;
1023 return b;
1025 found_buffer:
1026 if (nf == NF_PREFETCH)
1027 return NULL;
1029 * Note: it is essential that we don't wait for the buffer to be
1030 * read if dm_bufio_get function is used. Both dm_bufio_get and
1031 * dm_bufio_prefetch can be used in the driver request routine.
1032 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1033 * the same buffer, it would deadlock if we waited.
1035 if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
1036 return NULL;
1038 b->hold_count++;
1039 __relink_lru(b, test_bit(B_DIRTY, &b->state) ||
1040 test_bit(B_WRITING, &b->state));
1041 return b;
1045 * The endio routine for reading: set the error, clear the bit and wake up
1046 * anyone waiting on the buffer.
1048 static void read_endio(struct bio *bio)
1050 struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
1052 b->read_error = bio->bi_error;
1054 BUG_ON(!test_bit(B_READING, &b->state));
1056 smp_mb__before_atomic();
1057 clear_bit(B_READING, &b->state);
1058 smp_mb__after_atomic();
1060 wake_up_bit(&b->state, B_READING);
1064 * A common routine for dm_bufio_new and dm_bufio_read. Operation of these
1065 * functions is similar except that dm_bufio_new doesn't read the
1066 * buffer from the disk (assuming that the caller overwrites all the data
1067 * and uses dm_bufio_mark_buffer_dirty to write new data back).
1069 static void *new_read(struct dm_bufio_client *c, sector_t block,
1070 enum new_flag nf, struct dm_buffer **bp)
1072 int need_submit;
1073 struct dm_buffer *b;
1075 LIST_HEAD(write_list);
1077 dm_bufio_lock(c);
1078 b = __bufio_new(c, block, nf, &need_submit, &write_list);
1079 dm_bufio_unlock(c);
1081 __flush_write_list(&write_list);
1083 if (!b)
1084 return b;
1086 if (need_submit)
1087 submit_io(b, READ, b->block, read_endio);
1089 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1091 if (b->read_error) {
1092 int error = b->read_error;
1094 dm_bufio_release(b);
1096 return ERR_PTR(error);
1099 *bp = b;
1101 return b->data;
1104 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1105 struct dm_buffer **bp)
1107 return new_read(c, block, NF_GET, bp);
1109 EXPORT_SYMBOL_GPL(dm_bufio_get);
1111 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1112 struct dm_buffer **bp)
1114 BUG_ON(dm_bufio_in_request());
1116 return new_read(c, block, NF_READ, bp);
1118 EXPORT_SYMBOL_GPL(dm_bufio_read);
1120 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1121 struct dm_buffer **bp)
1123 BUG_ON(dm_bufio_in_request());
1125 return new_read(c, block, NF_FRESH, bp);
1127 EXPORT_SYMBOL_GPL(dm_bufio_new);
1129 void dm_bufio_prefetch(struct dm_bufio_client *c,
1130 sector_t block, unsigned n_blocks)
1132 struct blk_plug plug;
1134 LIST_HEAD(write_list);
1136 BUG_ON(dm_bufio_in_request());
1138 blk_start_plug(&plug);
1139 dm_bufio_lock(c);
1141 for (; n_blocks--; block++) {
1142 int need_submit;
1143 struct dm_buffer *b;
1144 b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1145 &write_list);
1146 if (unlikely(!list_empty(&write_list))) {
1147 dm_bufio_unlock(c);
1148 blk_finish_plug(&plug);
1149 __flush_write_list(&write_list);
1150 blk_start_plug(&plug);
1151 dm_bufio_lock(c);
1153 if (unlikely(b != NULL)) {
1154 dm_bufio_unlock(c);
1156 if (need_submit)
1157 submit_io(b, READ, b->block, read_endio);
1158 dm_bufio_release(b);
1160 dm_bufio_cond_resched();
1162 if (!n_blocks)
1163 goto flush_plug;
1164 dm_bufio_lock(c);
1168 dm_bufio_unlock(c);
1170 flush_plug:
1171 blk_finish_plug(&plug);
1173 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1175 void dm_bufio_release(struct dm_buffer *b)
1177 struct dm_bufio_client *c = b->c;
1179 dm_bufio_lock(c);
1181 BUG_ON(!b->hold_count);
1183 b->hold_count--;
1184 if (!b->hold_count) {
1185 wake_up(&c->free_buffer_wait);
1188 * If there were errors on the buffer, and the buffer is not
1189 * to be written, free the buffer. There is no point in caching
1190 * invalid buffer.
1192 if ((b->read_error || b->write_error) &&
1193 !test_bit(B_READING, &b->state) &&
1194 !test_bit(B_WRITING, &b->state) &&
1195 !test_bit(B_DIRTY, &b->state)) {
1196 __unlink_buffer(b);
1197 __free_buffer_wake(b);
1201 dm_bufio_unlock(c);
1203 EXPORT_SYMBOL_GPL(dm_bufio_release);
1205 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1207 struct dm_bufio_client *c = b->c;
1209 dm_bufio_lock(c);
1211 BUG_ON(test_bit(B_READING, &b->state));
1213 if (!test_and_set_bit(B_DIRTY, &b->state))
1214 __relink_lru(b, LIST_DIRTY);
1216 dm_bufio_unlock(c);
1218 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1220 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1222 LIST_HEAD(write_list);
1224 BUG_ON(dm_bufio_in_request());
1226 dm_bufio_lock(c);
1227 __write_dirty_buffers_async(c, 0, &write_list);
1228 dm_bufio_unlock(c);
1229 __flush_write_list(&write_list);
1231 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1234 * For performance, it is essential that the buffers are written asynchronously
1235 * and simultaneously (so that the block layer can merge the writes) and then
1236 * waited upon.
1238 * Finally, we flush hardware disk cache.
1240 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1242 int a, f;
1243 unsigned long buffers_processed = 0;
1244 struct dm_buffer *b, *tmp;
1246 LIST_HEAD(write_list);
1248 dm_bufio_lock(c);
1249 __write_dirty_buffers_async(c, 0, &write_list);
1250 dm_bufio_unlock(c);
1251 __flush_write_list(&write_list);
1252 dm_bufio_lock(c);
1254 again:
1255 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1256 int dropped_lock = 0;
1258 if (buffers_processed < c->n_buffers[LIST_DIRTY])
1259 buffers_processed++;
1261 BUG_ON(test_bit(B_READING, &b->state));
1263 if (test_bit(B_WRITING, &b->state)) {
1264 if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1265 dropped_lock = 1;
1266 b->hold_count++;
1267 dm_bufio_unlock(c);
1268 wait_on_bit_io(&b->state, B_WRITING,
1269 TASK_UNINTERRUPTIBLE);
1270 dm_bufio_lock(c);
1271 b->hold_count--;
1272 } else
1273 wait_on_bit_io(&b->state, B_WRITING,
1274 TASK_UNINTERRUPTIBLE);
1277 if (!test_bit(B_DIRTY, &b->state) &&
1278 !test_bit(B_WRITING, &b->state))
1279 __relink_lru(b, LIST_CLEAN);
1281 dm_bufio_cond_resched();
1284 * If we dropped the lock, the list is no longer consistent,
1285 * so we must restart the search.
1287 * In the most common case, the buffer just processed is
1288 * relinked to the clean list, so we won't loop scanning the
1289 * same buffer again and again.
1291 * This may livelock if there is another thread simultaneously
1292 * dirtying buffers, so we count the number of buffers walked
1293 * and if it exceeds the total number of buffers, it means that
1294 * someone is doing some writes simultaneously with us. In
1295 * this case, stop, dropping the lock.
1297 if (dropped_lock)
1298 goto again;
1300 wake_up(&c->free_buffer_wait);
1301 dm_bufio_unlock(c);
1303 a = xchg(&c->async_write_error, 0);
1304 f = dm_bufio_issue_flush(c);
1305 if (a)
1306 return a;
1308 return f;
1310 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1313 * Use dm-io to send and empty barrier flush the device.
1315 int dm_bufio_issue_flush(struct dm_bufio_client *c)
1317 struct dm_io_request io_req = {
1318 .bi_rw = WRITE_FLUSH,
1319 .mem.type = DM_IO_KMEM,
1320 .mem.ptr.addr = NULL,
1321 .client = c->dm_io,
1323 struct dm_io_region io_reg = {
1324 .bdev = c->bdev,
1325 .sector = 0,
1326 .count = 0,
1329 BUG_ON(dm_bufio_in_request());
1331 return dm_io(&io_req, 1, &io_reg, NULL);
1333 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1336 * We first delete any other buffer that may be at that new location.
1338 * Then, we write the buffer to the original location if it was dirty.
1340 * Then, if we are the only one who is holding the buffer, relink the buffer
1341 * in the hash queue for the new location.
1343 * If there was someone else holding the buffer, we write it to the new
1344 * location but not relink it, because that other user needs to have the buffer
1345 * at the same place.
1347 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1349 struct dm_bufio_client *c = b->c;
1350 struct dm_buffer *new;
1352 BUG_ON(dm_bufio_in_request());
1354 dm_bufio_lock(c);
1356 retry:
1357 new = __find(c, new_block);
1358 if (new) {
1359 if (new->hold_count) {
1360 __wait_for_free_buffer(c);
1361 goto retry;
1365 * FIXME: Is there any point waiting for a write that's going
1366 * to be overwritten in a bit?
1368 __make_buffer_clean(new);
1369 __unlink_buffer(new);
1370 __free_buffer_wake(new);
1373 BUG_ON(!b->hold_count);
1374 BUG_ON(test_bit(B_READING, &b->state));
1376 __write_dirty_buffer(b, NULL);
1377 if (b->hold_count == 1) {
1378 wait_on_bit_io(&b->state, B_WRITING,
1379 TASK_UNINTERRUPTIBLE);
1380 set_bit(B_DIRTY, &b->state);
1381 __unlink_buffer(b);
1382 __link_buffer(b, new_block, LIST_DIRTY);
1383 } else {
1384 sector_t old_block;
1385 wait_on_bit_lock_io(&b->state, B_WRITING,
1386 TASK_UNINTERRUPTIBLE);
1388 * Relink buffer to "new_block" so that write_callback
1389 * sees "new_block" as a block number.
1390 * After the write, link the buffer back to old_block.
1391 * All this must be done in bufio lock, so that block number
1392 * change isn't visible to other threads.
1394 old_block = b->block;
1395 __unlink_buffer(b);
1396 __link_buffer(b, new_block, b->list_mode);
1397 submit_io(b, WRITE, new_block, write_endio);
1398 wait_on_bit_io(&b->state, B_WRITING,
1399 TASK_UNINTERRUPTIBLE);
1400 __unlink_buffer(b);
1401 __link_buffer(b, old_block, b->list_mode);
1404 dm_bufio_unlock(c);
1405 dm_bufio_release(b);
1407 EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1410 * Free the given buffer.
1412 * This is just a hint, if the buffer is in use or dirty, this function
1413 * does nothing.
1415 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
1417 struct dm_buffer *b;
1419 dm_bufio_lock(c);
1421 b = __find(c, block);
1422 if (b && likely(!b->hold_count) && likely(!b->state)) {
1423 __unlink_buffer(b);
1424 __free_buffer_wake(b);
1427 dm_bufio_unlock(c);
1429 EXPORT_SYMBOL(dm_bufio_forget);
1431 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n)
1433 c->minimum_buffers = n;
1435 EXPORT_SYMBOL(dm_bufio_set_minimum_buffers);
1437 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1439 return c->block_size;
1441 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1443 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1445 return i_size_read(c->bdev->bd_inode) >>
1446 (SECTOR_SHIFT + c->sectors_per_block_bits);
1448 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1450 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1452 return b->block;
1454 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1456 void *dm_bufio_get_block_data(struct dm_buffer *b)
1458 return b->data;
1460 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1462 void *dm_bufio_get_aux_data(struct dm_buffer *b)
1464 return b + 1;
1466 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1468 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1470 return b->c;
1472 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1474 static void drop_buffers(struct dm_bufio_client *c)
1476 struct dm_buffer *b;
1477 int i;
1479 BUG_ON(dm_bufio_in_request());
1482 * An optimization so that the buffers are not written one-by-one.
1484 dm_bufio_write_dirty_buffers_async(c);
1486 dm_bufio_lock(c);
1488 while ((b = __get_unclaimed_buffer(c)))
1489 __free_buffer_wake(b);
1491 for (i = 0; i < LIST_SIZE; i++)
1492 list_for_each_entry(b, &c->lru[i], lru_list)
1493 DMERR("leaked buffer %llx, hold count %u, list %d",
1494 (unsigned long long)b->block, b->hold_count, i);
1496 for (i = 0; i < LIST_SIZE; i++)
1497 BUG_ON(!list_empty(&c->lru[i]));
1499 dm_bufio_unlock(c);
1503 * We may not be able to evict this buffer if IO pending or the client
1504 * is still using it. Caller is expected to know buffer is too old.
1506 * And if GFP_NOFS is used, we must not do any I/O because we hold
1507 * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
1508 * rerouted to different bufio client.
1510 static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp)
1512 if (!(gfp & __GFP_FS)) {
1513 if (test_bit(B_READING, &b->state) ||
1514 test_bit(B_WRITING, &b->state) ||
1515 test_bit(B_DIRTY, &b->state))
1516 return false;
1519 if (b->hold_count)
1520 return false;
1522 __make_buffer_clean(b);
1523 __unlink_buffer(b);
1524 __free_buffer_wake(b);
1526 return true;
1529 static unsigned long get_retain_buffers(struct dm_bufio_client *c)
1531 unsigned long retain_bytes = ACCESS_ONCE(dm_bufio_retain_bytes);
1532 return retain_bytes >> (c->sectors_per_block_bits + SECTOR_SHIFT);
1535 static unsigned long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
1536 gfp_t gfp_mask)
1538 int l;
1539 struct dm_buffer *b, *tmp;
1540 unsigned long freed = 0;
1541 unsigned long count = c->n_buffers[LIST_CLEAN] +
1542 c->n_buffers[LIST_DIRTY];
1543 unsigned long retain_target = get_retain_buffers(c);
1545 for (l = 0; l < LIST_SIZE; l++) {
1546 list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1547 if (__try_evict_buffer(b, gfp_mask))
1548 freed++;
1549 if (!--nr_to_scan || ((count - freed) <= retain_target))
1550 return freed;
1551 dm_bufio_cond_resched();
1554 return freed;
1557 static unsigned long
1558 dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1560 struct dm_bufio_client *c;
1561 unsigned long freed;
1563 c = container_of(shrink, struct dm_bufio_client, shrinker);
1564 if (sc->gfp_mask & __GFP_FS)
1565 dm_bufio_lock(c);
1566 else if (!dm_bufio_trylock(c))
1567 return SHRINK_STOP;
1569 freed = __scan(c, sc->nr_to_scan, sc->gfp_mask);
1570 dm_bufio_unlock(c);
1571 return freed;
1574 static unsigned long
1575 dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1577 struct dm_bufio_client *c = container_of(shrink, struct dm_bufio_client, shrinker);
1578 unsigned long count = READ_ONCE(c->n_buffers[LIST_CLEAN]) +
1579 READ_ONCE(c->n_buffers[LIST_DIRTY]);
1580 unsigned long retain_target = get_retain_buffers(c);
1582 return (count < retain_target) ? 0 : (count - retain_target);
1586 * Create the buffering interface
1588 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1589 unsigned reserved_buffers, unsigned aux_size,
1590 void (*alloc_callback)(struct dm_buffer *),
1591 void (*write_callback)(struct dm_buffer *))
1593 int r;
1594 struct dm_bufio_client *c;
1595 unsigned i;
1597 BUG_ON(block_size < 1 << SECTOR_SHIFT ||
1598 (block_size & (block_size - 1)));
1600 c = kzalloc(sizeof(*c), GFP_KERNEL);
1601 if (!c) {
1602 r = -ENOMEM;
1603 goto bad_client;
1605 c->buffer_tree = RB_ROOT;
1607 c->bdev = bdev;
1608 c->block_size = block_size;
1609 c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT;
1610 c->pages_per_block_bits = (__ffs(block_size) >= PAGE_SHIFT) ?
1611 __ffs(block_size) - PAGE_SHIFT : 0;
1612 c->blocks_per_page_bits = (__ffs(block_size) < PAGE_SHIFT ?
1613 PAGE_SHIFT - __ffs(block_size) : 0);
1615 c->aux_size = aux_size;
1616 c->alloc_callback = alloc_callback;
1617 c->write_callback = write_callback;
1619 for (i = 0; i < LIST_SIZE; i++) {
1620 INIT_LIST_HEAD(&c->lru[i]);
1621 c->n_buffers[i] = 0;
1624 mutex_init(&c->lock);
1625 INIT_LIST_HEAD(&c->reserved_buffers);
1626 c->need_reserved_buffers = reserved_buffers;
1628 c->minimum_buffers = DM_BUFIO_MIN_BUFFERS;
1630 init_waitqueue_head(&c->free_buffer_wait);
1631 c->async_write_error = 0;
1633 c->dm_io = dm_io_client_create();
1634 if (IS_ERR(c->dm_io)) {
1635 r = PTR_ERR(c->dm_io);
1636 goto bad_dm_io;
1639 mutex_lock(&dm_bufio_clients_lock);
1640 if (c->blocks_per_page_bits) {
1641 if (!DM_BUFIO_CACHE_NAME(c)) {
1642 DM_BUFIO_CACHE_NAME(c) = kasprintf(GFP_KERNEL, "dm_bufio_cache-%u", c->block_size);
1643 if (!DM_BUFIO_CACHE_NAME(c)) {
1644 r = -ENOMEM;
1645 mutex_unlock(&dm_bufio_clients_lock);
1646 goto bad_cache;
1650 if (!DM_BUFIO_CACHE(c)) {
1651 DM_BUFIO_CACHE(c) = kmem_cache_create(DM_BUFIO_CACHE_NAME(c),
1652 c->block_size,
1653 c->block_size, 0, NULL);
1654 if (!DM_BUFIO_CACHE(c)) {
1655 r = -ENOMEM;
1656 mutex_unlock(&dm_bufio_clients_lock);
1657 goto bad_cache;
1661 mutex_unlock(&dm_bufio_clients_lock);
1663 while (c->need_reserved_buffers) {
1664 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1666 if (!b) {
1667 r = -ENOMEM;
1668 goto bad_buffer;
1670 __free_buffer_wake(b);
1673 mutex_lock(&dm_bufio_clients_lock);
1674 dm_bufio_client_count++;
1675 list_add(&c->client_list, &dm_bufio_all_clients);
1676 __cache_size_refresh();
1677 mutex_unlock(&dm_bufio_clients_lock);
1679 c->shrinker.count_objects = dm_bufio_shrink_count;
1680 c->shrinker.scan_objects = dm_bufio_shrink_scan;
1681 c->shrinker.seeks = 1;
1682 c->shrinker.batch = 0;
1683 register_shrinker(&c->shrinker);
1685 return c;
1687 bad_buffer:
1688 bad_cache:
1689 while (!list_empty(&c->reserved_buffers)) {
1690 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1691 struct dm_buffer, lru_list);
1692 list_del(&b->lru_list);
1693 free_buffer(b);
1695 dm_io_client_destroy(c->dm_io);
1696 bad_dm_io:
1697 kfree(c);
1698 bad_client:
1699 return ERR_PTR(r);
1701 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1704 * Free the buffering interface.
1705 * It is required that there are no references on any buffers.
1707 void dm_bufio_client_destroy(struct dm_bufio_client *c)
1709 unsigned i;
1711 drop_buffers(c);
1713 unregister_shrinker(&c->shrinker);
1715 mutex_lock(&dm_bufio_clients_lock);
1717 list_del(&c->client_list);
1718 dm_bufio_client_count--;
1719 __cache_size_refresh();
1721 mutex_unlock(&dm_bufio_clients_lock);
1723 BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree));
1724 BUG_ON(c->need_reserved_buffers);
1726 while (!list_empty(&c->reserved_buffers)) {
1727 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1728 struct dm_buffer, lru_list);
1729 list_del(&b->lru_list);
1730 free_buffer(b);
1733 for (i = 0; i < LIST_SIZE; i++)
1734 if (c->n_buffers[i])
1735 DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1737 for (i = 0; i < LIST_SIZE; i++)
1738 BUG_ON(c->n_buffers[i]);
1740 dm_io_client_destroy(c->dm_io);
1741 kfree(c);
1743 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1745 static unsigned get_max_age_hz(void)
1747 unsigned max_age = ACCESS_ONCE(dm_bufio_max_age);
1749 if (max_age > UINT_MAX / HZ)
1750 max_age = UINT_MAX / HZ;
1752 return max_age * HZ;
1755 static bool older_than(struct dm_buffer *b, unsigned long age_hz)
1757 return time_after_eq(jiffies, b->last_accessed + age_hz);
1760 static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
1762 struct dm_buffer *b, *tmp;
1763 unsigned long retain_target = get_retain_buffers(c);
1764 unsigned long count;
1765 LIST_HEAD(write_list);
1767 dm_bufio_lock(c);
1769 __check_watermark(c, &write_list);
1770 if (unlikely(!list_empty(&write_list))) {
1771 dm_bufio_unlock(c);
1772 __flush_write_list(&write_list);
1773 dm_bufio_lock(c);
1776 count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1777 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) {
1778 if (count <= retain_target)
1779 break;
1781 if (!older_than(b, age_hz))
1782 break;
1784 if (__try_evict_buffer(b, 0))
1785 count--;
1787 dm_bufio_cond_resched();
1790 dm_bufio_unlock(c);
1793 static void cleanup_old_buffers(void)
1795 unsigned long max_age_hz = get_max_age_hz();
1796 struct dm_bufio_client *c;
1798 mutex_lock(&dm_bufio_clients_lock);
1800 __cache_size_refresh();
1802 list_for_each_entry(c, &dm_bufio_all_clients, client_list)
1803 __evict_old_buffers(c, max_age_hz);
1805 mutex_unlock(&dm_bufio_clients_lock);
1808 static struct workqueue_struct *dm_bufio_wq;
1809 static struct delayed_work dm_bufio_work;
1811 static void work_fn(struct work_struct *w)
1813 cleanup_old_buffers();
1815 queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1816 DM_BUFIO_WORK_TIMER_SECS * HZ);
1819 /*----------------------------------------------------------------
1820 * Module setup
1821 *--------------------------------------------------------------*/
1824 * This is called only once for the whole dm_bufio module.
1825 * It initializes memory limit.
1827 static int __init dm_bufio_init(void)
1829 __u64 mem;
1831 dm_bufio_allocated_kmem_cache = 0;
1832 dm_bufio_allocated_get_free_pages = 0;
1833 dm_bufio_allocated_vmalloc = 0;
1834 dm_bufio_current_allocated = 0;
1836 memset(&dm_bufio_caches, 0, sizeof dm_bufio_caches);
1837 memset(&dm_bufio_cache_names, 0, sizeof dm_bufio_cache_names);
1839 mem = (__u64)mult_frac(totalram_pages - totalhigh_pages,
1840 DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT;
1842 if (mem > ULONG_MAX)
1843 mem = ULONG_MAX;
1845 #ifdef CONFIG_MMU
1846 if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100))
1847 mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100);
1848 #endif
1850 dm_bufio_default_cache_size = mem;
1852 mutex_lock(&dm_bufio_clients_lock);
1853 __cache_size_refresh();
1854 mutex_unlock(&dm_bufio_clients_lock);
1856 dm_bufio_wq = create_singlethread_workqueue("dm_bufio_cache");
1857 if (!dm_bufio_wq)
1858 return -ENOMEM;
1860 INIT_DELAYED_WORK(&dm_bufio_work, work_fn);
1861 queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1862 DM_BUFIO_WORK_TIMER_SECS * HZ);
1864 return 0;
1868 * This is called once when unloading the dm_bufio module.
1870 static void __exit dm_bufio_exit(void)
1872 int bug = 0;
1873 int i;
1875 cancel_delayed_work_sync(&dm_bufio_work);
1876 destroy_workqueue(dm_bufio_wq);
1878 for (i = 0; i < ARRAY_SIZE(dm_bufio_caches); i++)
1879 kmem_cache_destroy(dm_bufio_caches[i]);
1881 for (i = 0; i < ARRAY_SIZE(dm_bufio_cache_names); i++)
1882 kfree(dm_bufio_cache_names[i]);
1884 if (dm_bufio_client_count) {
1885 DMCRIT("%s: dm_bufio_client_count leaked: %d",
1886 __func__, dm_bufio_client_count);
1887 bug = 1;
1890 if (dm_bufio_current_allocated) {
1891 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
1892 __func__, dm_bufio_current_allocated);
1893 bug = 1;
1896 if (dm_bufio_allocated_get_free_pages) {
1897 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
1898 __func__, dm_bufio_allocated_get_free_pages);
1899 bug = 1;
1902 if (dm_bufio_allocated_vmalloc) {
1903 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
1904 __func__, dm_bufio_allocated_vmalloc);
1905 bug = 1;
1908 if (bug)
1909 BUG();
1912 module_init(dm_bufio_init)
1913 module_exit(dm_bufio_exit)
1915 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
1916 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
1918 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
1919 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
1921 module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, S_IRUGO | S_IWUSR);
1922 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
1924 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
1925 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
1927 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
1928 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
1930 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
1931 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
1933 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
1934 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
1936 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
1937 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
1939 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
1940 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
1941 MODULE_LICENSE("GPL");