2 * Copyright (C) 2003 Jana Saout <jana@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006-2015 Red Hat, Inc. All rights reserved.
5 * Copyright (C) 2013 Milan Broz <gmazyland@gmail.com>
7 * This file is released under the GPL.
10 #include <linux/completion.h>
11 #include <linux/err.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/bio.h>
16 #include <linux/blkdev.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/crypto.h>
20 #include <linux/workqueue.h>
21 #include <linux/kthread.h>
22 #include <linux/backing-dev.h>
23 #include <linux/atomic.h>
24 #include <linux/scatterlist.h>
25 #include <linux/rbtree.h>
27 #include <asm/unaligned.h>
28 #include <crypto/hash.h>
29 #include <crypto/md5.h>
30 #include <crypto/algapi.h>
32 #include <linux/device-mapper.h>
34 #define DM_MSG_PREFIX "crypt"
37 * context holding the current state of a multi-part conversion
39 struct convert_context
{
40 struct completion restart
;
43 struct bvec_iter iter_in
;
44 struct bvec_iter iter_out
;
47 struct ablkcipher_request
*req
;
51 * per bio private data
54 struct crypt_config
*cc
;
56 struct work_struct work
;
58 struct convert_context ctx
;
64 struct rb_node rb_node
;
65 } CRYPTO_MINALIGN_ATTR
;
67 struct dm_crypt_request
{
68 struct convert_context
*ctx
;
69 struct scatterlist sg_in
;
70 struct scatterlist sg_out
;
76 struct crypt_iv_operations
{
77 int (*ctr
)(struct crypt_config
*cc
, struct dm_target
*ti
,
79 void (*dtr
)(struct crypt_config
*cc
);
80 int (*init
)(struct crypt_config
*cc
);
81 int (*wipe
)(struct crypt_config
*cc
);
82 int (*generator
)(struct crypt_config
*cc
, u8
*iv
,
83 struct dm_crypt_request
*dmreq
);
84 int (*post
)(struct crypt_config
*cc
, u8
*iv
,
85 struct dm_crypt_request
*dmreq
);
88 struct iv_essiv_private
{
89 struct crypto_hash
*hash_tfm
;
93 struct iv_benbi_private
{
97 #define LMK_SEED_SIZE 64 /* hash + 0 */
98 struct iv_lmk_private
{
99 struct crypto_shash
*hash_tfm
;
103 #define TCW_WHITENING_SIZE 16
104 struct iv_tcw_private
{
105 struct crypto_shash
*crc32_tfm
;
111 * Crypt: maps a linear range of a block device
112 * and encrypts / decrypts at the same time.
114 enum flags
{ DM_CRYPT_SUSPENDED
, DM_CRYPT_KEY_VALID
,
115 DM_CRYPT_SAME_CPU
, DM_CRYPT_NO_OFFLOAD
};
118 * The fields in here must be read only after initialization.
120 struct crypt_config
{
125 * pool for per bio private data, crypto requests and
126 * encryption requeusts/buffer pages
129 mempool_t
*page_pool
;
131 struct mutex bio_alloc_lock
;
133 struct workqueue_struct
*io_queue
;
134 struct workqueue_struct
*crypt_queue
;
136 struct task_struct
*write_thread
;
137 wait_queue_head_t write_thread_wait
;
138 struct rb_root write_tree
;
143 struct crypt_iv_operations
*iv_gen_ops
;
145 struct iv_essiv_private essiv
;
146 struct iv_benbi_private benbi
;
147 struct iv_lmk_private lmk
;
148 struct iv_tcw_private tcw
;
151 unsigned int iv_size
;
153 /* ESSIV: struct crypto_cipher *essiv_tfm */
155 struct crypto_ablkcipher
**tfms
;
159 * Layout of each crypto request:
161 * struct ablkcipher_request
164 * struct dm_crypt_request
168 * The padding is added so that dm_crypt_request and the IV are
171 unsigned int dmreq_start
;
173 unsigned int per_bio_data_size
;
176 unsigned int key_size
;
177 unsigned int key_parts
; /* independent parts in key buffer */
178 unsigned int key_extra_size
; /* additional keys length */
184 static void clone_init(struct dm_crypt_io
*, struct bio
*);
185 static void kcryptd_queue_crypt(struct dm_crypt_io
*io
);
186 static u8
*iv_of_dmreq(struct crypt_config
*cc
, struct dm_crypt_request
*dmreq
);
189 * Use this to access cipher attributes that are the same for each CPU.
191 static struct crypto_ablkcipher
*any_tfm(struct crypt_config
*cc
)
197 * Different IV generation algorithms:
199 * plain: the initial vector is the 32-bit little-endian version of the sector
200 * number, padded with zeros if necessary.
202 * plain64: the initial vector is the 64-bit little-endian version of the sector
203 * number, padded with zeros if necessary.
205 * essiv: "encrypted sector|salt initial vector", the sector number is
206 * encrypted with the bulk cipher using a salt as key. The salt
207 * should be derived from the bulk cipher's key via hashing.
209 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
210 * (needed for LRW-32-AES and possible other narrow block modes)
212 * null: the initial vector is always zero. Provides compatibility with
213 * obsolete loop_fish2 devices. Do not use for new devices.
215 * lmk: Compatible implementation of the block chaining mode used
216 * by the Loop-AES block device encryption system
217 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
218 * It operates on full 512 byte sectors and uses CBC
219 * with an IV derived from the sector number, the data and
220 * optionally extra IV seed.
221 * This means that after decryption the first block
222 * of sector must be tweaked according to decrypted data.
223 * Loop-AES can use three encryption schemes:
224 * version 1: is plain aes-cbc mode
225 * version 2: uses 64 multikey scheme with lmk IV generator
226 * version 3: the same as version 2 with additional IV seed
227 * (it uses 65 keys, last key is used as IV seed)
229 * tcw: Compatible implementation of the block chaining mode used
230 * by the TrueCrypt device encryption system (prior to version 4.1).
231 * For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
232 * It operates on full 512 byte sectors and uses CBC
233 * with an IV derived from initial key and the sector number.
234 * In addition, whitening value is applied on every sector, whitening
235 * is calculated from initial key, sector number and mixed using CRC32.
236 * Note that this encryption scheme is vulnerable to watermarking attacks
237 * and should be used for old compatible containers access only.
239 * plumb: unimplemented, see:
240 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
243 static int crypt_iv_plain_gen(struct crypt_config
*cc
, u8
*iv
,
244 struct dm_crypt_request
*dmreq
)
246 memset(iv
, 0, cc
->iv_size
);
247 *(__le32
*)iv
= cpu_to_le32(dmreq
->iv_sector
& 0xffffffff);
252 static int crypt_iv_plain64_gen(struct crypt_config
*cc
, u8
*iv
,
253 struct dm_crypt_request
*dmreq
)
255 memset(iv
, 0, cc
->iv_size
);
256 *(__le64
*)iv
= cpu_to_le64(dmreq
->iv_sector
);
261 /* Initialise ESSIV - compute salt but no local memory allocations */
262 static int crypt_iv_essiv_init(struct crypt_config
*cc
)
264 struct iv_essiv_private
*essiv
= &cc
->iv_gen_private
.essiv
;
265 struct hash_desc desc
;
266 struct scatterlist sg
;
267 struct crypto_cipher
*essiv_tfm
;
270 sg_init_one(&sg
, cc
->key
, cc
->key_size
);
271 desc
.tfm
= essiv
->hash_tfm
;
272 desc
.flags
= CRYPTO_TFM_REQ_MAY_SLEEP
;
274 err
= crypto_hash_digest(&desc
, &sg
, cc
->key_size
, essiv
->salt
);
278 essiv_tfm
= cc
->iv_private
;
280 err
= crypto_cipher_setkey(essiv_tfm
, essiv
->salt
,
281 crypto_hash_digestsize(essiv
->hash_tfm
));
288 /* Wipe salt and reset key derived from volume key */
289 static int crypt_iv_essiv_wipe(struct crypt_config
*cc
)
291 struct iv_essiv_private
*essiv
= &cc
->iv_gen_private
.essiv
;
292 unsigned salt_size
= crypto_hash_digestsize(essiv
->hash_tfm
);
293 struct crypto_cipher
*essiv_tfm
;
296 memset(essiv
->salt
, 0, salt_size
);
298 essiv_tfm
= cc
->iv_private
;
299 r
= crypto_cipher_setkey(essiv_tfm
, essiv
->salt
, salt_size
);
306 /* Set up per cpu cipher state */
307 static struct crypto_cipher
*setup_essiv_cpu(struct crypt_config
*cc
,
308 struct dm_target
*ti
,
309 u8
*salt
, unsigned saltsize
)
311 struct crypto_cipher
*essiv_tfm
;
314 /* Setup the essiv_tfm with the given salt */
315 essiv_tfm
= crypto_alloc_cipher(cc
->cipher
, 0, CRYPTO_ALG_ASYNC
);
316 if (IS_ERR(essiv_tfm
)) {
317 ti
->error
= "Error allocating crypto tfm for ESSIV";
321 if (crypto_cipher_blocksize(essiv_tfm
) !=
322 crypto_ablkcipher_ivsize(any_tfm(cc
))) {
323 ti
->error
= "Block size of ESSIV cipher does "
324 "not match IV size of block cipher";
325 crypto_free_cipher(essiv_tfm
);
326 return ERR_PTR(-EINVAL
);
329 err
= crypto_cipher_setkey(essiv_tfm
, salt
, saltsize
);
331 ti
->error
= "Failed to set key for ESSIV cipher";
332 crypto_free_cipher(essiv_tfm
);
339 static void crypt_iv_essiv_dtr(struct crypt_config
*cc
)
341 struct crypto_cipher
*essiv_tfm
;
342 struct iv_essiv_private
*essiv
= &cc
->iv_gen_private
.essiv
;
344 crypto_free_hash(essiv
->hash_tfm
);
345 essiv
->hash_tfm
= NULL
;
350 essiv_tfm
= cc
->iv_private
;
353 crypto_free_cipher(essiv_tfm
);
355 cc
->iv_private
= NULL
;
358 static int crypt_iv_essiv_ctr(struct crypt_config
*cc
, struct dm_target
*ti
,
361 struct crypto_cipher
*essiv_tfm
= NULL
;
362 struct crypto_hash
*hash_tfm
= NULL
;
367 ti
->error
= "Digest algorithm missing for ESSIV mode";
371 /* Allocate hash algorithm */
372 hash_tfm
= crypto_alloc_hash(opts
, 0, CRYPTO_ALG_ASYNC
);
373 if (IS_ERR(hash_tfm
)) {
374 ti
->error
= "Error initializing ESSIV hash";
375 err
= PTR_ERR(hash_tfm
);
379 salt
= kzalloc(crypto_hash_digestsize(hash_tfm
), GFP_KERNEL
);
381 ti
->error
= "Error kmallocing salt storage in ESSIV";
386 cc
->iv_gen_private
.essiv
.salt
= salt
;
387 cc
->iv_gen_private
.essiv
.hash_tfm
= hash_tfm
;
389 essiv_tfm
= setup_essiv_cpu(cc
, ti
, salt
,
390 crypto_hash_digestsize(hash_tfm
));
391 if (IS_ERR(essiv_tfm
)) {
392 crypt_iv_essiv_dtr(cc
);
393 return PTR_ERR(essiv_tfm
);
395 cc
->iv_private
= essiv_tfm
;
400 if (hash_tfm
&& !IS_ERR(hash_tfm
))
401 crypto_free_hash(hash_tfm
);
406 static int crypt_iv_essiv_gen(struct crypt_config
*cc
, u8
*iv
,
407 struct dm_crypt_request
*dmreq
)
409 struct crypto_cipher
*essiv_tfm
= cc
->iv_private
;
411 memset(iv
, 0, cc
->iv_size
);
412 *(__le64
*)iv
= cpu_to_le64(dmreq
->iv_sector
);
413 crypto_cipher_encrypt_one(essiv_tfm
, iv
, iv
);
418 static int crypt_iv_benbi_ctr(struct crypt_config
*cc
, struct dm_target
*ti
,
421 unsigned bs
= crypto_ablkcipher_blocksize(any_tfm(cc
));
424 /* we need to calculate how far we must shift the sector count
425 * to get the cipher block count, we use this shift in _gen */
427 if (1 << log
!= bs
) {
428 ti
->error
= "cypher blocksize is not a power of 2";
433 ti
->error
= "cypher blocksize is > 512";
437 cc
->iv_gen_private
.benbi
.shift
= 9 - log
;
442 static void crypt_iv_benbi_dtr(struct crypt_config
*cc
)
446 static int crypt_iv_benbi_gen(struct crypt_config
*cc
, u8
*iv
,
447 struct dm_crypt_request
*dmreq
)
451 memset(iv
, 0, cc
->iv_size
- sizeof(u64
)); /* rest is cleared below */
453 val
= cpu_to_be64(((u64
)dmreq
->iv_sector
<< cc
->iv_gen_private
.benbi
.shift
) + 1);
454 put_unaligned(val
, (__be64
*)(iv
+ cc
->iv_size
- sizeof(u64
)));
459 static int crypt_iv_null_gen(struct crypt_config
*cc
, u8
*iv
,
460 struct dm_crypt_request
*dmreq
)
462 memset(iv
, 0, cc
->iv_size
);
467 static void crypt_iv_lmk_dtr(struct crypt_config
*cc
)
469 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
471 if (lmk
->hash_tfm
&& !IS_ERR(lmk
->hash_tfm
))
472 crypto_free_shash(lmk
->hash_tfm
);
473 lmk
->hash_tfm
= NULL
;
479 static int crypt_iv_lmk_ctr(struct crypt_config
*cc
, struct dm_target
*ti
,
482 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
484 lmk
->hash_tfm
= crypto_alloc_shash("md5", 0, 0);
485 if (IS_ERR(lmk
->hash_tfm
)) {
486 ti
->error
= "Error initializing LMK hash";
487 return PTR_ERR(lmk
->hash_tfm
);
490 /* No seed in LMK version 2 */
491 if (cc
->key_parts
== cc
->tfms_count
) {
496 lmk
->seed
= kzalloc(LMK_SEED_SIZE
, GFP_KERNEL
);
498 crypt_iv_lmk_dtr(cc
);
499 ti
->error
= "Error kmallocing seed storage in LMK";
506 static int crypt_iv_lmk_init(struct crypt_config
*cc
)
508 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
509 int subkey_size
= cc
->key_size
/ cc
->key_parts
;
511 /* LMK seed is on the position of LMK_KEYS + 1 key */
513 memcpy(lmk
->seed
, cc
->key
+ (cc
->tfms_count
* subkey_size
),
514 crypto_shash_digestsize(lmk
->hash_tfm
));
519 static int crypt_iv_lmk_wipe(struct crypt_config
*cc
)
521 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
524 memset(lmk
->seed
, 0, LMK_SEED_SIZE
);
529 static int crypt_iv_lmk_one(struct crypt_config
*cc
, u8
*iv
,
530 struct dm_crypt_request
*dmreq
,
533 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
534 SHASH_DESC_ON_STACK(desc
, lmk
->hash_tfm
);
535 struct md5_state md5state
;
539 desc
->tfm
= lmk
->hash_tfm
;
540 desc
->flags
= CRYPTO_TFM_REQ_MAY_SLEEP
;
542 r
= crypto_shash_init(desc
);
547 r
= crypto_shash_update(desc
, lmk
->seed
, LMK_SEED_SIZE
);
552 /* Sector is always 512B, block size 16, add data of blocks 1-31 */
553 r
= crypto_shash_update(desc
, data
+ 16, 16 * 31);
557 /* Sector is cropped to 56 bits here */
558 buf
[0] = cpu_to_le32(dmreq
->iv_sector
& 0xFFFFFFFF);
559 buf
[1] = cpu_to_le32((((u64
)dmreq
->iv_sector
>> 32) & 0x00FFFFFF) | 0x80000000);
560 buf
[2] = cpu_to_le32(4024);
562 r
= crypto_shash_update(desc
, (u8
*)buf
, sizeof(buf
));
566 /* No MD5 padding here */
567 r
= crypto_shash_export(desc
, &md5state
);
571 for (i
= 0; i
< MD5_HASH_WORDS
; i
++)
572 __cpu_to_le32s(&md5state
.hash
[i
]);
573 memcpy(iv
, &md5state
.hash
, cc
->iv_size
);
578 static int crypt_iv_lmk_gen(struct crypt_config
*cc
, u8
*iv
,
579 struct dm_crypt_request
*dmreq
)
584 if (bio_data_dir(dmreq
->ctx
->bio_in
) == WRITE
) {
585 src
= kmap_atomic(sg_page(&dmreq
->sg_in
));
586 r
= crypt_iv_lmk_one(cc
, iv
, dmreq
, src
+ dmreq
->sg_in
.offset
);
589 memset(iv
, 0, cc
->iv_size
);
594 static int crypt_iv_lmk_post(struct crypt_config
*cc
, u8
*iv
,
595 struct dm_crypt_request
*dmreq
)
600 if (bio_data_dir(dmreq
->ctx
->bio_in
) == WRITE
)
603 dst
= kmap_atomic(sg_page(&dmreq
->sg_out
));
604 r
= crypt_iv_lmk_one(cc
, iv
, dmreq
, dst
+ dmreq
->sg_out
.offset
);
606 /* Tweak the first block of plaintext sector */
608 crypto_xor(dst
+ dmreq
->sg_out
.offset
, iv
, cc
->iv_size
);
614 static void crypt_iv_tcw_dtr(struct crypt_config
*cc
)
616 struct iv_tcw_private
*tcw
= &cc
->iv_gen_private
.tcw
;
618 kzfree(tcw
->iv_seed
);
620 kzfree(tcw
->whitening
);
621 tcw
->whitening
= NULL
;
623 if (tcw
->crc32_tfm
&& !IS_ERR(tcw
->crc32_tfm
))
624 crypto_free_shash(tcw
->crc32_tfm
);
625 tcw
->crc32_tfm
= NULL
;
628 static int crypt_iv_tcw_ctr(struct crypt_config
*cc
, struct dm_target
*ti
,
631 struct iv_tcw_private
*tcw
= &cc
->iv_gen_private
.tcw
;
633 if (cc
->key_size
<= (cc
->iv_size
+ TCW_WHITENING_SIZE
)) {
634 ti
->error
= "Wrong key size for TCW";
638 tcw
->crc32_tfm
= crypto_alloc_shash("crc32", 0, 0);
639 if (IS_ERR(tcw
->crc32_tfm
)) {
640 ti
->error
= "Error initializing CRC32 in TCW";
641 return PTR_ERR(tcw
->crc32_tfm
);
644 tcw
->iv_seed
= kzalloc(cc
->iv_size
, GFP_KERNEL
);
645 tcw
->whitening
= kzalloc(TCW_WHITENING_SIZE
, GFP_KERNEL
);
646 if (!tcw
->iv_seed
|| !tcw
->whitening
) {
647 crypt_iv_tcw_dtr(cc
);
648 ti
->error
= "Error allocating seed storage in TCW";
655 static int crypt_iv_tcw_init(struct crypt_config
*cc
)
657 struct iv_tcw_private
*tcw
= &cc
->iv_gen_private
.tcw
;
658 int key_offset
= cc
->key_size
- cc
->iv_size
- TCW_WHITENING_SIZE
;
660 memcpy(tcw
->iv_seed
, &cc
->key
[key_offset
], cc
->iv_size
);
661 memcpy(tcw
->whitening
, &cc
->key
[key_offset
+ cc
->iv_size
],
667 static int crypt_iv_tcw_wipe(struct crypt_config
*cc
)
669 struct iv_tcw_private
*tcw
= &cc
->iv_gen_private
.tcw
;
671 memset(tcw
->iv_seed
, 0, cc
->iv_size
);
672 memset(tcw
->whitening
, 0, TCW_WHITENING_SIZE
);
677 static int crypt_iv_tcw_whitening(struct crypt_config
*cc
,
678 struct dm_crypt_request
*dmreq
,
681 struct iv_tcw_private
*tcw
= &cc
->iv_gen_private
.tcw
;
682 u64 sector
= cpu_to_le64((u64
)dmreq
->iv_sector
);
683 u8 buf
[TCW_WHITENING_SIZE
];
684 SHASH_DESC_ON_STACK(desc
, tcw
->crc32_tfm
);
687 /* xor whitening with sector number */
688 memcpy(buf
, tcw
->whitening
, TCW_WHITENING_SIZE
);
689 crypto_xor(buf
, (u8
*)§or
, 8);
690 crypto_xor(&buf
[8], (u8
*)§or
, 8);
692 /* calculate crc32 for every 32bit part and xor it */
693 desc
->tfm
= tcw
->crc32_tfm
;
694 desc
->flags
= CRYPTO_TFM_REQ_MAY_SLEEP
;
695 for (i
= 0; i
< 4; i
++) {
696 r
= crypto_shash_init(desc
);
699 r
= crypto_shash_update(desc
, &buf
[i
* 4], 4);
702 r
= crypto_shash_final(desc
, &buf
[i
* 4]);
706 crypto_xor(&buf
[0], &buf
[12], 4);
707 crypto_xor(&buf
[4], &buf
[8], 4);
709 /* apply whitening (8 bytes) to whole sector */
710 for (i
= 0; i
< ((1 << SECTOR_SHIFT
) / 8); i
++)
711 crypto_xor(data
+ i
* 8, buf
, 8);
713 memzero_explicit(buf
, sizeof(buf
));
717 static int crypt_iv_tcw_gen(struct crypt_config
*cc
, u8
*iv
,
718 struct dm_crypt_request
*dmreq
)
720 struct iv_tcw_private
*tcw
= &cc
->iv_gen_private
.tcw
;
721 u64 sector
= cpu_to_le64((u64
)dmreq
->iv_sector
);
725 /* Remove whitening from ciphertext */
726 if (bio_data_dir(dmreq
->ctx
->bio_in
) != WRITE
) {
727 src
= kmap_atomic(sg_page(&dmreq
->sg_in
));
728 r
= crypt_iv_tcw_whitening(cc
, dmreq
, src
+ dmreq
->sg_in
.offset
);
733 memcpy(iv
, tcw
->iv_seed
, cc
->iv_size
);
734 crypto_xor(iv
, (u8
*)§or
, 8);
736 crypto_xor(&iv
[8], (u8
*)§or
, cc
->iv_size
- 8);
741 static int crypt_iv_tcw_post(struct crypt_config
*cc
, u8
*iv
,
742 struct dm_crypt_request
*dmreq
)
747 if (bio_data_dir(dmreq
->ctx
->bio_in
) != WRITE
)
750 /* Apply whitening on ciphertext */
751 dst
= kmap_atomic(sg_page(&dmreq
->sg_out
));
752 r
= crypt_iv_tcw_whitening(cc
, dmreq
, dst
+ dmreq
->sg_out
.offset
);
758 static struct crypt_iv_operations crypt_iv_plain_ops
= {
759 .generator
= crypt_iv_plain_gen
762 static struct crypt_iv_operations crypt_iv_plain64_ops
= {
763 .generator
= crypt_iv_plain64_gen
766 static struct crypt_iv_operations crypt_iv_essiv_ops
= {
767 .ctr
= crypt_iv_essiv_ctr
,
768 .dtr
= crypt_iv_essiv_dtr
,
769 .init
= crypt_iv_essiv_init
,
770 .wipe
= crypt_iv_essiv_wipe
,
771 .generator
= crypt_iv_essiv_gen
774 static struct crypt_iv_operations crypt_iv_benbi_ops
= {
775 .ctr
= crypt_iv_benbi_ctr
,
776 .dtr
= crypt_iv_benbi_dtr
,
777 .generator
= crypt_iv_benbi_gen
780 static struct crypt_iv_operations crypt_iv_null_ops
= {
781 .generator
= crypt_iv_null_gen
784 static struct crypt_iv_operations crypt_iv_lmk_ops
= {
785 .ctr
= crypt_iv_lmk_ctr
,
786 .dtr
= crypt_iv_lmk_dtr
,
787 .init
= crypt_iv_lmk_init
,
788 .wipe
= crypt_iv_lmk_wipe
,
789 .generator
= crypt_iv_lmk_gen
,
790 .post
= crypt_iv_lmk_post
793 static struct crypt_iv_operations crypt_iv_tcw_ops
= {
794 .ctr
= crypt_iv_tcw_ctr
,
795 .dtr
= crypt_iv_tcw_dtr
,
796 .init
= crypt_iv_tcw_init
,
797 .wipe
= crypt_iv_tcw_wipe
,
798 .generator
= crypt_iv_tcw_gen
,
799 .post
= crypt_iv_tcw_post
802 static void crypt_convert_init(struct crypt_config
*cc
,
803 struct convert_context
*ctx
,
804 struct bio
*bio_out
, struct bio
*bio_in
,
807 ctx
->bio_in
= bio_in
;
808 ctx
->bio_out
= bio_out
;
810 ctx
->iter_in
= bio_in
->bi_iter
;
812 ctx
->iter_out
= bio_out
->bi_iter
;
813 ctx
->cc_sector
= sector
+ cc
->iv_offset
;
814 init_completion(&ctx
->restart
);
817 static struct dm_crypt_request
*dmreq_of_req(struct crypt_config
*cc
,
818 struct ablkcipher_request
*req
)
820 return (struct dm_crypt_request
*)((char *)req
+ cc
->dmreq_start
);
823 static struct ablkcipher_request
*req_of_dmreq(struct crypt_config
*cc
,
824 struct dm_crypt_request
*dmreq
)
826 return (struct ablkcipher_request
*)((char *)dmreq
- cc
->dmreq_start
);
829 static u8
*iv_of_dmreq(struct crypt_config
*cc
,
830 struct dm_crypt_request
*dmreq
)
832 return (u8
*)ALIGN((unsigned long)(dmreq
+ 1),
833 crypto_ablkcipher_alignmask(any_tfm(cc
)) + 1);
836 static int crypt_convert_block(struct crypt_config
*cc
,
837 struct convert_context
*ctx
,
838 struct ablkcipher_request
*req
)
840 struct bio_vec bv_in
= bio_iter_iovec(ctx
->bio_in
, ctx
->iter_in
);
841 struct bio_vec bv_out
= bio_iter_iovec(ctx
->bio_out
, ctx
->iter_out
);
842 struct dm_crypt_request
*dmreq
;
846 dmreq
= dmreq_of_req(cc
, req
);
847 iv
= iv_of_dmreq(cc
, dmreq
);
849 dmreq
->iv_sector
= ctx
->cc_sector
;
851 sg_init_table(&dmreq
->sg_in
, 1);
852 sg_set_page(&dmreq
->sg_in
, bv_in
.bv_page
, 1 << SECTOR_SHIFT
,
855 sg_init_table(&dmreq
->sg_out
, 1);
856 sg_set_page(&dmreq
->sg_out
, bv_out
.bv_page
, 1 << SECTOR_SHIFT
,
859 bio_advance_iter(ctx
->bio_in
, &ctx
->iter_in
, 1 << SECTOR_SHIFT
);
860 bio_advance_iter(ctx
->bio_out
, &ctx
->iter_out
, 1 << SECTOR_SHIFT
);
862 if (cc
->iv_gen_ops
) {
863 r
= cc
->iv_gen_ops
->generator(cc
, iv
, dmreq
);
868 ablkcipher_request_set_crypt(req
, &dmreq
->sg_in
, &dmreq
->sg_out
,
869 1 << SECTOR_SHIFT
, iv
);
871 if (bio_data_dir(ctx
->bio_in
) == WRITE
)
872 r
= crypto_ablkcipher_encrypt(req
);
874 r
= crypto_ablkcipher_decrypt(req
);
876 if (!r
&& cc
->iv_gen_ops
&& cc
->iv_gen_ops
->post
)
877 r
= cc
->iv_gen_ops
->post(cc
, iv
, dmreq
);
882 static void kcryptd_async_done(struct crypto_async_request
*async_req
,
885 static void crypt_alloc_req(struct crypt_config
*cc
,
886 struct convert_context
*ctx
)
888 unsigned key_index
= ctx
->cc_sector
& (cc
->tfms_count
- 1);
891 ctx
->req
= mempool_alloc(cc
->req_pool
, GFP_NOIO
);
893 ablkcipher_request_set_tfm(ctx
->req
, cc
->tfms
[key_index
]);
896 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
897 * requests if driver request queue is full.
899 ablkcipher_request_set_callback(ctx
->req
,
900 CRYPTO_TFM_REQ_MAY_BACKLOG
| CRYPTO_TFM_REQ_MAY_SLEEP
,
901 kcryptd_async_done
, dmreq_of_req(cc
, ctx
->req
));
904 static void crypt_free_req(struct crypt_config
*cc
,
905 struct ablkcipher_request
*req
, struct bio
*base_bio
)
907 struct dm_crypt_io
*io
= dm_per_bio_data(base_bio
, cc
->per_bio_data_size
);
909 if ((struct ablkcipher_request
*)(io
+ 1) != req
)
910 mempool_free(req
, cc
->req_pool
);
914 * Encrypt / decrypt data from one bio to another one (can be the same one)
916 static int crypt_convert(struct crypt_config
*cc
,
917 struct convert_context
*ctx
)
921 atomic_set(&ctx
->cc_pending
, 1);
923 while (ctx
->iter_in
.bi_size
&& ctx
->iter_out
.bi_size
) {
925 crypt_alloc_req(cc
, ctx
);
927 atomic_inc(&ctx
->cc_pending
);
929 r
= crypt_convert_block(cc
, ctx
, ctx
->req
);
933 * The request was queued by a crypto driver
934 * but the driver request queue is full, let's wait.
937 wait_for_completion(&ctx
->restart
);
938 reinit_completion(&ctx
->restart
);
941 * The request is queued and processed asynchronously,
942 * completion function kcryptd_async_done() will be called.
949 * The request was already processed (synchronously).
952 atomic_dec(&ctx
->cc_pending
);
957 /* There was an error while processing the request. */
959 atomic_dec(&ctx
->cc_pending
);
967 static void crypt_free_buffer_pages(struct crypt_config
*cc
, struct bio
*clone
);
970 * Generate a new unfragmented bio with the given size
971 * This should never violate the device limitations (but only because
972 * max_segment_size is being constrained to PAGE_SIZE).
974 * This function may be called concurrently. If we allocate from the mempool
975 * concurrently, there is a possibility of deadlock. For example, if we have
976 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
977 * the mempool concurrently, it may deadlock in a situation where both processes
978 * have allocated 128 pages and the mempool is exhausted.
980 * In order to avoid this scenario we allocate the pages under a mutex.
982 * In order to not degrade performance with excessive locking, we try
983 * non-blocking allocations without a mutex first but on failure we fallback
984 * to blocking allocations with a mutex.
986 static struct bio
*crypt_alloc_buffer(struct dm_crypt_io
*io
, unsigned size
)
988 struct crypt_config
*cc
= io
->cc
;
990 unsigned int nr_iovecs
= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
991 gfp_t gfp_mask
= GFP_NOWAIT
| __GFP_HIGHMEM
;
992 unsigned i
, len
, remaining_size
;
994 struct bio_vec
*bvec
;
997 if (unlikely(gfp_mask
& __GFP_DIRECT_RECLAIM
))
998 mutex_lock(&cc
->bio_alloc_lock
);
1000 clone
= bio_alloc_bioset(GFP_NOIO
, nr_iovecs
, cc
->bs
);
1004 clone_init(io
, clone
);
1006 remaining_size
= size
;
1008 for (i
= 0; i
< nr_iovecs
; i
++) {
1009 page
= mempool_alloc(cc
->page_pool
, gfp_mask
);
1011 crypt_free_buffer_pages(cc
, clone
);
1013 gfp_mask
|= __GFP_DIRECT_RECLAIM
;
1017 len
= (remaining_size
> PAGE_SIZE
) ? PAGE_SIZE
: remaining_size
;
1019 bvec
= &clone
->bi_io_vec
[clone
->bi_vcnt
++];
1020 bvec
->bv_page
= page
;
1022 bvec
->bv_offset
= 0;
1024 clone
->bi_iter
.bi_size
+= len
;
1026 remaining_size
-= len
;
1030 if (unlikely(gfp_mask
& __GFP_DIRECT_RECLAIM
))
1031 mutex_unlock(&cc
->bio_alloc_lock
);
1036 static void crypt_free_buffer_pages(struct crypt_config
*cc
, struct bio
*clone
)
1041 bio_for_each_segment_all(bv
, clone
, i
) {
1042 BUG_ON(!bv
->bv_page
);
1043 mempool_free(bv
->bv_page
, cc
->page_pool
);
1048 static void crypt_io_init(struct dm_crypt_io
*io
, struct crypt_config
*cc
,
1049 struct bio
*bio
, sector_t sector
)
1053 io
->sector
= sector
;
1056 atomic_set(&io
->io_pending
, 0);
1059 static void crypt_inc_pending(struct dm_crypt_io
*io
)
1061 atomic_inc(&io
->io_pending
);
1065 * One of the bios was finished. Check for completion of
1066 * the whole request and correctly clean up the buffer.
1068 static void crypt_dec_pending(struct dm_crypt_io
*io
)
1070 struct crypt_config
*cc
= io
->cc
;
1071 struct bio
*base_bio
= io
->base_bio
;
1072 int error
= io
->error
;
1074 if (!atomic_dec_and_test(&io
->io_pending
))
1078 crypt_free_req(cc
, io
->ctx
.req
, base_bio
);
1080 base_bio
->bi_error
= error
;
1081 bio_endio(base_bio
);
1085 * kcryptd/kcryptd_io:
1087 * Needed because it would be very unwise to do decryption in an
1088 * interrupt context.
1090 * kcryptd performs the actual encryption or decryption.
1092 * kcryptd_io performs the IO submission.
1094 * They must be separated as otherwise the final stages could be
1095 * starved by new requests which can block in the first stages due
1096 * to memory allocation.
1098 * The work is done per CPU global for all dm-crypt instances.
1099 * They should not depend on each other and do not block.
1101 static void crypt_endio(struct bio
*clone
)
1103 struct dm_crypt_io
*io
= clone
->bi_private
;
1104 struct crypt_config
*cc
= io
->cc
;
1105 unsigned rw
= bio_data_dir(clone
);
1109 * free the processed pages
1112 crypt_free_buffer_pages(cc
, clone
);
1114 error
= clone
->bi_error
;
1117 if (rw
== READ
&& !error
) {
1118 kcryptd_queue_crypt(io
);
1122 if (unlikely(error
))
1125 crypt_dec_pending(io
);
1128 static void clone_init(struct dm_crypt_io
*io
, struct bio
*clone
)
1130 struct crypt_config
*cc
= io
->cc
;
1132 clone
->bi_private
= io
;
1133 clone
->bi_end_io
= crypt_endio
;
1134 clone
->bi_bdev
= cc
->dev
->bdev
;
1135 clone
->bi_rw
= io
->base_bio
->bi_rw
;
1138 static int kcryptd_io_read(struct dm_crypt_io
*io
, gfp_t gfp
)
1140 struct crypt_config
*cc
= io
->cc
;
1144 * We need the original biovec array in order to decrypt
1145 * the whole bio data *afterwards* -- thanks to immutable
1146 * biovecs we don't need to worry about the block layer
1147 * modifying the biovec array; so leverage bio_clone_fast().
1149 clone
= bio_clone_fast(io
->base_bio
, gfp
, cc
->bs
);
1153 crypt_inc_pending(io
);
1155 clone_init(io
, clone
);
1156 clone
->bi_iter
.bi_sector
= cc
->start
+ io
->sector
;
1158 generic_make_request(clone
);
1162 static void kcryptd_io_read_work(struct work_struct
*work
)
1164 struct dm_crypt_io
*io
= container_of(work
, struct dm_crypt_io
, work
);
1166 crypt_inc_pending(io
);
1167 if (kcryptd_io_read(io
, GFP_NOIO
))
1168 io
->error
= -ENOMEM
;
1169 crypt_dec_pending(io
);
1172 static void kcryptd_queue_read(struct dm_crypt_io
*io
)
1174 struct crypt_config
*cc
= io
->cc
;
1176 INIT_WORK(&io
->work
, kcryptd_io_read_work
);
1177 queue_work(cc
->io_queue
, &io
->work
);
1180 static void kcryptd_io_write(struct dm_crypt_io
*io
)
1182 struct bio
*clone
= io
->ctx
.bio_out
;
1184 generic_make_request(clone
);
1187 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1189 static int dmcrypt_write(void *data
)
1191 struct crypt_config
*cc
= data
;
1192 struct dm_crypt_io
*io
;
1195 struct rb_root write_tree
;
1196 struct blk_plug plug
;
1198 DECLARE_WAITQUEUE(wait
, current
);
1200 spin_lock_irq(&cc
->write_thread_wait
.lock
);
1203 if (!RB_EMPTY_ROOT(&cc
->write_tree
))
1206 set_current_state(TASK_INTERRUPTIBLE
);
1207 __add_wait_queue(&cc
->write_thread_wait
, &wait
);
1209 spin_unlock_irq(&cc
->write_thread_wait
.lock
);
1211 if (unlikely(kthread_should_stop())) {
1212 set_task_state(current
, TASK_RUNNING
);
1213 remove_wait_queue(&cc
->write_thread_wait
, &wait
);
1219 set_task_state(current
, TASK_RUNNING
);
1220 spin_lock_irq(&cc
->write_thread_wait
.lock
);
1221 __remove_wait_queue(&cc
->write_thread_wait
, &wait
);
1222 goto continue_locked
;
1225 write_tree
= cc
->write_tree
;
1226 cc
->write_tree
= RB_ROOT
;
1227 spin_unlock_irq(&cc
->write_thread_wait
.lock
);
1229 BUG_ON(rb_parent(write_tree
.rb_node
));
1232 * Note: we cannot walk the tree here with rb_next because
1233 * the structures may be freed when kcryptd_io_write is called.
1235 blk_start_plug(&plug
);
1237 io
= crypt_io_from_node(rb_first(&write_tree
));
1238 rb_erase(&io
->rb_node
, &write_tree
);
1239 kcryptd_io_write(io
);
1240 } while (!RB_EMPTY_ROOT(&write_tree
));
1241 blk_finish_plug(&plug
);
1246 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io
*io
, int async
)
1248 struct bio
*clone
= io
->ctx
.bio_out
;
1249 struct crypt_config
*cc
= io
->cc
;
1250 unsigned long flags
;
1252 struct rb_node
**rbp
, *parent
;
1254 if (unlikely(io
->error
< 0)) {
1255 crypt_free_buffer_pages(cc
, clone
);
1257 crypt_dec_pending(io
);
1261 /* crypt_convert should have filled the clone bio */
1262 BUG_ON(io
->ctx
.iter_out
.bi_size
);
1264 clone
->bi_iter
.bi_sector
= cc
->start
+ io
->sector
;
1266 if (likely(!async
) && test_bit(DM_CRYPT_NO_OFFLOAD
, &cc
->flags
)) {
1267 generic_make_request(clone
);
1271 spin_lock_irqsave(&cc
->write_thread_wait
.lock
, flags
);
1272 rbp
= &cc
->write_tree
.rb_node
;
1274 sector
= io
->sector
;
1277 if (sector
< crypt_io_from_node(parent
)->sector
)
1278 rbp
= &(*rbp
)->rb_left
;
1280 rbp
= &(*rbp
)->rb_right
;
1282 rb_link_node(&io
->rb_node
, parent
, rbp
);
1283 rb_insert_color(&io
->rb_node
, &cc
->write_tree
);
1285 wake_up_locked(&cc
->write_thread_wait
);
1286 spin_unlock_irqrestore(&cc
->write_thread_wait
.lock
, flags
);
1289 static void kcryptd_crypt_write_convert(struct dm_crypt_io
*io
)
1291 struct crypt_config
*cc
= io
->cc
;
1294 sector_t sector
= io
->sector
;
1298 * Prevent io from disappearing until this function completes.
1300 crypt_inc_pending(io
);
1301 crypt_convert_init(cc
, &io
->ctx
, NULL
, io
->base_bio
, sector
);
1303 clone
= crypt_alloc_buffer(io
, io
->base_bio
->bi_iter
.bi_size
);
1304 if (unlikely(!clone
)) {
1309 io
->ctx
.bio_out
= clone
;
1310 io
->ctx
.iter_out
= clone
->bi_iter
;
1312 sector
+= bio_sectors(clone
);
1314 crypt_inc_pending(io
);
1315 r
= crypt_convert(cc
, &io
->ctx
);
1318 crypt_finished
= atomic_dec_and_test(&io
->ctx
.cc_pending
);
1320 /* Encryption was already finished, submit io now */
1321 if (crypt_finished
) {
1322 kcryptd_crypt_write_io_submit(io
, 0);
1323 io
->sector
= sector
;
1327 crypt_dec_pending(io
);
1330 static void kcryptd_crypt_read_done(struct dm_crypt_io
*io
)
1332 crypt_dec_pending(io
);
1335 static void kcryptd_crypt_read_convert(struct dm_crypt_io
*io
)
1337 struct crypt_config
*cc
= io
->cc
;
1340 crypt_inc_pending(io
);
1342 crypt_convert_init(cc
, &io
->ctx
, io
->base_bio
, io
->base_bio
,
1345 r
= crypt_convert(cc
, &io
->ctx
);
1349 if (atomic_dec_and_test(&io
->ctx
.cc_pending
))
1350 kcryptd_crypt_read_done(io
);
1352 crypt_dec_pending(io
);
1355 static void kcryptd_async_done(struct crypto_async_request
*async_req
,
1358 struct dm_crypt_request
*dmreq
= async_req
->data
;
1359 struct convert_context
*ctx
= dmreq
->ctx
;
1360 struct dm_crypt_io
*io
= container_of(ctx
, struct dm_crypt_io
, ctx
);
1361 struct crypt_config
*cc
= io
->cc
;
1364 * A request from crypto driver backlog is going to be processed now,
1365 * finish the completion and continue in crypt_convert().
1366 * (Callback will be called for the second time for this request.)
1368 if (error
== -EINPROGRESS
) {
1369 complete(&ctx
->restart
);
1373 if (!error
&& cc
->iv_gen_ops
&& cc
->iv_gen_ops
->post
)
1374 error
= cc
->iv_gen_ops
->post(cc
, iv_of_dmreq(cc
, dmreq
), dmreq
);
1379 crypt_free_req(cc
, req_of_dmreq(cc
, dmreq
), io
->base_bio
);
1381 if (!atomic_dec_and_test(&ctx
->cc_pending
))
1384 if (bio_data_dir(io
->base_bio
) == READ
)
1385 kcryptd_crypt_read_done(io
);
1387 kcryptd_crypt_write_io_submit(io
, 1);
1390 static void kcryptd_crypt(struct work_struct
*work
)
1392 struct dm_crypt_io
*io
= container_of(work
, struct dm_crypt_io
, work
);
1394 if (bio_data_dir(io
->base_bio
) == READ
)
1395 kcryptd_crypt_read_convert(io
);
1397 kcryptd_crypt_write_convert(io
);
1400 static void kcryptd_queue_crypt(struct dm_crypt_io
*io
)
1402 struct crypt_config
*cc
= io
->cc
;
1404 INIT_WORK(&io
->work
, kcryptd_crypt
);
1405 queue_work(cc
->crypt_queue
, &io
->work
);
1409 * Decode key from its hex representation
1411 static int crypt_decode_key(u8
*key
, char *hex
, unsigned int size
)
1418 for (i
= 0; i
< size
; i
++) {
1422 if (kstrtou8(buffer
, 16, &key
[i
]))
1432 static void crypt_free_tfms(struct crypt_config
*cc
)
1439 for (i
= 0; i
< cc
->tfms_count
; i
++)
1440 if (cc
->tfms
[i
] && !IS_ERR(cc
->tfms
[i
])) {
1441 crypto_free_ablkcipher(cc
->tfms
[i
]);
1449 static int crypt_alloc_tfms(struct crypt_config
*cc
, char *ciphermode
)
1454 cc
->tfms
= kmalloc(cc
->tfms_count
* sizeof(struct crypto_ablkcipher
*),
1459 for (i
= 0; i
< cc
->tfms_count
; i
++) {
1460 cc
->tfms
[i
] = crypto_alloc_ablkcipher(ciphermode
, 0, 0);
1461 if (IS_ERR(cc
->tfms
[i
])) {
1462 err
= PTR_ERR(cc
->tfms
[i
]);
1463 crypt_free_tfms(cc
);
1471 static int crypt_setkey_allcpus(struct crypt_config
*cc
)
1473 unsigned subkey_size
;
1476 /* Ignore extra keys (which are used for IV etc) */
1477 subkey_size
= (cc
->key_size
- cc
->key_extra_size
) >> ilog2(cc
->tfms_count
);
1479 for (i
= 0; i
< cc
->tfms_count
; i
++) {
1480 r
= crypto_ablkcipher_setkey(cc
->tfms
[i
],
1481 cc
->key
+ (i
* subkey_size
),
1490 static int crypt_set_key(struct crypt_config
*cc
, char *key
)
1493 int key_string_len
= strlen(key
);
1495 /* The key size may not be changed. */
1496 if (cc
->key_size
!= (key_string_len
>> 1))
1499 /* Hyphen (which gives a key_size of zero) means there is no key. */
1500 if (!cc
->key_size
&& strcmp(key
, "-"))
1503 /* clear the flag since following operations may invalidate previously valid key */
1504 clear_bit(DM_CRYPT_KEY_VALID
, &cc
->flags
);
1506 if (cc
->key_size
&& crypt_decode_key(cc
->key
, key
, cc
->key_size
) < 0)
1509 r
= crypt_setkey_allcpus(cc
);
1511 set_bit(DM_CRYPT_KEY_VALID
, &cc
->flags
);
1514 /* Hex key string not needed after here, so wipe it. */
1515 memset(key
, '0', key_string_len
);
1520 static int crypt_wipe_key(struct crypt_config
*cc
)
1522 clear_bit(DM_CRYPT_KEY_VALID
, &cc
->flags
);
1523 memset(&cc
->key
, 0, cc
->key_size
* sizeof(u8
));
1525 return crypt_setkey_allcpus(cc
);
1528 static void crypt_dtr(struct dm_target
*ti
)
1530 struct crypt_config
*cc
= ti
->private;
1537 if (cc
->write_thread
)
1538 kthread_stop(cc
->write_thread
);
1541 destroy_workqueue(cc
->io_queue
);
1542 if (cc
->crypt_queue
)
1543 destroy_workqueue(cc
->crypt_queue
);
1545 crypt_free_tfms(cc
);
1548 bioset_free(cc
->bs
);
1550 mempool_destroy(cc
->page_pool
);
1551 mempool_destroy(cc
->req_pool
);
1553 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->dtr
)
1554 cc
->iv_gen_ops
->dtr(cc
);
1557 dm_put_device(ti
, cc
->dev
);
1560 kzfree(cc
->cipher_string
);
1562 /* Must zero key material before freeing */
1566 static int crypt_ctr_cipher(struct dm_target
*ti
,
1567 char *cipher_in
, char *key
)
1569 struct crypt_config
*cc
= ti
->private;
1570 char *tmp
, *cipher
, *chainmode
, *ivmode
, *ivopts
, *keycount
;
1571 char *cipher_api
= NULL
;
1575 /* Convert to crypto api definition? */
1576 if (strchr(cipher_in
, '(')) {
1577 ti
->error
= "Bad cipher specification";
1581 cc
->cipher_string
= kstrdup(cipher_in
, GFP_KERNEL
);
1582 if (!cc
->cipher_string
)
1586 * Legacy dm-crypt cipher specification
1587 * cipher[:keycount]-mode-iv:ivopts
1590 keycount
= strsep(&tmp
, "-");
1591 cipher
= strsep(&keycount
, ":");
1595 else if (sscanf(keycount
, "%u%c", &cc
->tfms_count
, &dummy
) != 1 ||
1596 !is_power_of_2(cc
->tfms_count
)) {
1597 ti
->error
= "Bad cipher key count specification";
1600 cc
->key_parts
= cc
->tfms_count
;
1601 cc
->key_extra_size
= 0;
1603 cc
->cipher
= kstrdup(cipher
, GFP_KERNEL
);
1607 chainmode
= strsep(&tmp
, "-");
1608 ivopts
= strsep(&tmp
, "-");
1609 ivmode
= strsep(&ivopts
, ":");
1612 DMWARN("Ignoring unexpected additional cipher options");
1615 * For compatibility with the original dm-crypt mapping format, if
1616 * only the cipher name is supplied, use cbc-plain.
1618 if (!chainmode
|| (!strcmp(chainmode
, "plain") && !ivmode
)) {
1623 if (strcmp(chainmode
, "ecb") && !ivmode
) {
1624 ti
->error
= "IV mechanism required";
1628 cipher_api
= kmalloc(CRYPTO_MAX_ALG_NAME
, GFP_KERNEL
);
1632 ret
= snprintf(cipher_api
, CRYPTO_MAX_ALG_NAME
,
1633 "%s(%s)", chainmode
, cipher
);
1639 /* Allocate cipher */
1640 ret
= crypt_alloc_tfms(cc
, cipher_api
);
1642 ti
->error
= "Error allocating crypto tfm";
1647 cc
->iv_size
= crypto_ablkcipher_ivsize(any_tfm(cc
));
1649 /* at least a 64 bit sector number should fit in our buffer */
1650 cc
->iv_size
= max(cc
->iv_size
,
1651 (unsigned int)(sizeof(u64
) / sizeof(u8
)));
1653 DMWARN("Selected cipher does not support IVs");
1657 /* Choose ivmode, see comments at iv code. */
1659 cc
->iv_gen_ops
= NULL
;
1660 else if (strcmp(ivmode
, "plain") == 0)
1661 cc
->iv_gen_ops
= &crypt_iv_plain_ops
;
1662 else if (strcmp(ivmode
, "plain64") == 0)
1663 cc
->iv_gen_ops
= &crypt_iv_plain64_ops
;
1664 else if (strcmp(ivmode
, "essiv") == 0)
1665 cc
->iv_gen_ops
= &crypt_iv_essiv_ops
;
1666 else if (strcmp(ivmode
, "benbi") == 0)
1667 cc
->iv_gen_ops
= &crypt_iv_benbi_ops
;
1668 else if (strcmp(ivmode
, "null") == 0)
1669 cc
->iv_gen_ops
= &crypt_iv_null_ops
;
1670 else if (strcmp(ivmode
, "lmk") == 0) {
1671 cc
->iv_gen_ops
= &crypt_iv_lmk_ops
;
1673 * Version 2 and 3 is recognised according
1674 * to length of provided multi-key string.
1675 * If present (version 3), last key is used as IV seed.
1676 * All keys (including IV seed) are always the same size.
1678 if (cc
->key_size
% cc
->key_parts
) {
1680 cc
->key_extra_size
= cc
->key_size
/ cc
->key_parts
;
1682 } else if (strcmp(ivmode
, "tcw") == 0) {
1683 cc
->iv_gen_ops
= &crypt_iv_tcw_ops
;
1684 cc
->key_parts
+= 2; /* IV + whitening */
1685 cc
->key_extra_size
= cc
->iv_size
+ TCW_WHITENING_SIZE
;
1688 ti
->error
= "Invalid IV mode";
1692 /* Initialize and set key */
1693 ret
= crypt_set_key(cc
, key
);
1695 ti
->error
= "Error decoding and setting key";
1700 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->ctr
) {
1701 ret
= cc
->iv_gen_ops
->ctr(cc
, ti
, ivopts
);
1703 ti
->error
= "Error creating IV";
1708 /* Initialize IV (set keys for ESSIV etc) */
1709 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->init
) {
1710 ret
= cc
->iv_gen_ops
->init(cc
);
1712 ti
->error
= "Error initialising IV";
1723 ti
->error
= "Cannot allocate cipher strings";
1728 * Construct an encryption mapping:
1729 * <cipher> <key> <iv_offset> <dev_path> <start>
1731 static int crypt_ctr(struct dm_target
*ti
, unsigned int argc
, char **argv
)
1733 struct crypt_config
*cc
;
1734 unsigned int key_size
, opt_params
;
1735 unsigned long long tmpll
;
1737 size_t iv_size_padding
;
1738 struct dm_arg_set as
;
1739 const char *opt_string
;
1742 static struct dm_arg _args
[] = {
1743 {0, 3, "Invalid number of feature args"},
1747 ti
->error
= "Not enough arguments";
1751 key_size
= strlen(argv
[1]) >> 1;
1753 cc
= kzalloc(sizeof(*cc
) + key_size
* sizeof(u8
), GFP_KERNEL
);
1755 ti
->error
= "Cannot allocate encryption context";
1758 cc
->key_size
= key_size
;
1761 ret
= crypt_ctr_cipher(ti
, argv
[0], argv
[1]);
1765 cc
->dmreq_start
= sizeof(struct ablkcipher_request
);
1766 cc
->dmreq_start
+= crypto_ablkcipher_reqsize(any_tfm(cc
));
1767 cc
->dmreq_start
= ALIGN(cc
->dmreq_start
, __alignof__(struct dm_crypt_request
));
1769 if (crypto_ablkcipher_alignmask(any_tfm(cc
)) < CRYPTO_MINALIGN
) {
1770 /* Allocate the padding exactly */
1771 iv_size_padding
= -(cc
->dmreq_start
+ sizeof(struct dm_crypt_request
))
1772 & crypto_ablkcipher_alignmask(any_tfm(cc
));
1775 * If the cipher requires greater alignment than kmalloc
1776 * alignment, we don't know the exact position of the
1777 * initialization vector. We must assume worst case.
1779 iv_size_padding
= crypto_ablkcipher_alignmask(any_tfm(cc
));
1783 cc
->req_pool
= mempool_create_kmalloc_pool(MIN_IOS
, cc
->dmreq_start
+
1784 sizeof(struct dm_crypt_request
) + iv_size_padding
+ cc
->iv_size
);
1785 if (!cc
->req_pool
) {
1786 ti
->error
= "Cannot allocate crypt request mempool";
1790 cc
->per_bio_data_size
= ti
->per_bio_data_size
=
1791 ALIGN(sizeof(struct dm_crypt_io
) + cc
->dmreq_start
+
1792 sizeof(struct dm_crypt_request
) + iv_size_padding
+ cc
->iv_size
,
1793 ARCH_KMALLOC_MINALIGN
);
1795 cc
->page_pool
= mempool_create_page_pool(BIO_MAX_PAGES
, 0);
1796 if (!cc
->page_pool
) {
1797 ti
->error
= "Cannot allocate page mempool";
1801 cc
->bs
= bioset_create(MIN_IOS
, 0);
1803 ti
->error
= "Cannot allocate crypt bioset";
1807 mutex_init(&cc
->bio_alloc_lock
);
1810 if (sscanf(argv
[2], "%llu%c", &tmpll
, &dummy
) != 1) {
1811 ti
->error
= "Invalid iv_offset sector";
1814 cc
->iv_offset
= tmpll
;
1816 ret
= dm_get_device(ti
, argv
[3], dm_table_get_mode(ti
->table
), &cc
->dev
);
1818 ti
->error
= "Device lookup failed";
1823 if (sscanf(argv
[4], "%llu%c", &tmpll
, &dummy
) != 1) {
1824 ti
->error
= "Invalid device sector";
1832 /* Optional parameters */
1837 ret
= dm_read_arg_group(_args
, &as
, &opt_params
, &ti
->error
);
1842 while (opt_params
--) {
1843 opt_string
= dm_shift_arg(&as
);
1845 ti
->error
= "Not enough feature arguments";
1849 if (!strcasecmp(opt_string
, "allow_discards"))
1850 ti
->num_discard_bios
= 1;
1852 else if (!strcasecmp(opt_string
, "same_cpu_crypt"))
1853 set_bit(DM_CRYPT_SAME_CPU
, &cc
->flags
);
1855 else if (!strcasecmp(opt_string
, "submit_from_crypt_cpus"))
1856 set_bit(DM_CRYPT_NO_OFFLOAD
, &cc
->flags
);
1859 ti
->error
= "Invalid feature arguments";
1866 cc
->io_queue
= alloc_workqueue("kcryptd_io", WQ_MEM_RECLAIM
, 1);
1867 if (!cc
->io_queue
) {
1868 ti
->error
= "Couldn't create kcryptd io queue";
1872 if (test_bit(DM_CRYPT_SAME_CPU
, &cc
->flags
))
1873 cc
->crypt_queue
= alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE
| WQ_MEM_RECLAIM
, 1);
1875 cc
->crypt_queue
= alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE
| WQ_MEM_RECLAIM
| WQ_UNBOUND
,
1877 if (!cc
->crypt_queue
) {
1878 ti
->error
= "Couldn't create kcryptd queue";
1882 init_waitqueue_head(&cc
->write_thread_wait
);
1883 cc
->write_tree
= RB_ROOT
;
1885 cc
->write_thread
= kthread_create(dmcrypt_write
, cc
, "dmcrypt_write");
1886 if (IS_ERR(cc
->write_thread
)) {
1887 ret
= PTR_ERR(cc
->write_thread
);
1888 cc
->write_thread
= NULL
;
1889 ti
->error
= "Couldn't spawn write thread";
1892 wake_up_process(cc
->write_thread
);
1894 ti
->num_flush_bios
= 1;
1895 ti
->discard_zeroes_data_unsupported
= true;
1904 static int crypt_map(struct dm_target
*ti
, struct bio
*bio
)
1906 struct dm_crypt_io
*io
;
1907 struct crypt_config
*cc
= ti
->private;
1910 * If bio is REQ_FLUSH or REQ_DISCARD, just bypass crypt queues.
1911 * - for REQ_FLUSH device-mapper core ensures that no IO is in-flight
1912 * - for REQ_DISCARD caller must use flush if IO ordering matters
1914 if (unlikely(bio
->bi_rw
& (REQ_FLUSH
| REQ_DISCARD
))) {
1915 bio
->bi_bdev
= cc
->dev
->bdev
;
1916 if (bio_sectors(bio
))
1917 bio
->bi_iter
.bi_sector
= cc
->start
+
1918 dm_target_offset(ti
, bio
->bi_iter
.bi_sector
);
1919 return DM_MAPIO_REMAPPED
;
1923 * Check if bio is too large, split as needed.
1925 if (unlikely(bio
->bi_iter
.bi_size
> (BIO_MAX_PAGES
<< PAGE_SHIFT
)) &&
1926 bio_data_dir(bio
) == WRITE
)
1927 dm_accept_partial_bio(bio
, ((BIO_MAX_PAGES
<< PAGE_SHIFT
) >> SECTOR_SHIFT
));
1929 io
= dm_per_bio_data(bio
, cc
->per_bio_data_size
);
1930 crypt_io_init(io
, cc
, bio
, dm_target_offset(ti
, bio
->bi_iter
.bi_sector
));
1931 io
->ctx
.req
= (struct ablkcipher_request
*)(io
+ 1);
1933 if (bio_data_dir(io
->base_bio
) == READ
) {
1934 if (kcryptd_io_read(io
, GFP_NOWAIT
))
1935 kcryptd_queue_read(io
);
1937 kcryptd_queue_crypt(io
);
1939 return DM_MAPIO_SUBMITTED
;
1942 static void crypt_status(struct dm_target
*ti
, status_type_t type
,
1943 unsigned status_flags
, char *result
, unsigned maxlen
)
1945 struct crypt_config
*cc
= ti
->private;
1947 int num_feature_args
= 0;
1950 case STATUSTYPE_INFO
:
1954 case STATUSTYPE_TABLE
:
1955 DMEMIT("%s ", cc
->cipher_string
);
1957 if (cc
->key_size
> 0)
1958 for (i
= 0; i
< cc
->key_size
; i
++)
1959 DMEMIT("%02x", cc
->key
[i
]);
1963 DMEMIT(" %llu %s %llu", (unsigned long long)cc
->iv_offset
,
1964 cc
->dev
->name
, (unsigned long long)cc
->start
);
1966 num_feature_args
+= !!ti
->num_discard_bios
;
1967 num_feature_args
+= test_bit(DM_CRYPT_SAME_CPU
, &cc
->flags
);
1968 num_feature_args
+= test_bit(DM_CRYPT_NO_OFFLOAD
, &cc
->flags
);
1969 if (num_feature_args
) {
1970 DMEMIT(" %d", num_feature_args
);
1971 if (ti
->num_discard_bios
)
1972 DMEMIT(" allow_discards");
1973 if (test_bit(DM_CRYPT_SAME_CPU
, &cc
->flags
))
1974 DMEMIT(" same_cpu_crypt");
1975 if (test_bit(DM_CRYPT_NO_OFFLOAD
, &cc
->flags
))
1976 DMEMIT(" submit_from_crypt_cpus");
1983 static void crypt_postsuspend(struct dm_target
*ti
)
1985 struct crypt_config
*cc
= ti
->private;
1987 set_bit(DM_CRYPT_SUSPENDED
, &cc
->flags
);
1990 static int crypt_preresume(struct dm_target
*ti
)
1992 struct crypt_config
*cc
= ti
->private;
1994 if (!test_bit(DM_CRYPT_KEY_VALID
, &cc
->flags
)) {
1995 DMERR("aborting resume - crypt key is not set.");
2002 static void crypt_resume(struct dm_target
*ti
)
2004 struct crypt_config
*cc
= ti
->private;
2006 clear_bit(DM_CRYPT_SUSPENDED
, &cc
->flags
);
2009 /* Message interface
2013 static int crypt_message(struct dm_target
*ti
, unsigned argc
, char **argv
)
2015 struct crypt_config
*cc
= ti
->private;
2021 if (!strcasecmp(argv
[0], "key")) {
2022 if (!test_bit(DM_CRYPT_SUSPENDED
, &cc
->flags
)) {
2023 DMWARN("not suspended during key manipulation.");
2026 if (argc
== 3 && !strcasecmp(argv
[1], "set")) {
2027 ret
= crypt_set_key(cc
, argv
[2]);
2030 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->init
)
2031 ret
= cc
->iv_gen_ops
->init(cc
);
2034 if (argc
== 2 && !strcasecmp(argv
[1], "wipe")) {
2035 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->wipe
) {
2036 ret
= cc
->iv_gen_ops
->wipe(cc
);
2040 return crypt_wipe_key(cc
);
2045 DMWARN("unrecognised message received.");
2049 static int crypt_iterate_devices(struct dm_target
*ti
,
2050 iterate_devices_callout_fn fn
, void *data
)
2052 struct crypt_config
*cc
= ti
->private;
2054 return fn(ti
, cc
->dev
, cc
->start
, ti
->len
, data
);
2057 static void crypt_io_hints(struct dm_target
*ti
, struct queue_limits
*limits
)
2060 * Unfortunate constraint that is required to avoid the potential
2061 * for exceeding underlying device's max_segments limits -- due to
2062 * crypt_alloc_buffer() possibly allocating pages for the encryption
2063 * bio that are not as physically contiguous as the original bio.
2065 limits
->max_segment_size
= PAGE_SIZE
;
2068 static struct target_type crypt_target
= {
2070 .version
= {1, 14, 1},
2071 .module
= THIS_MODULE
,
2075 .status
= crypt_status
,
2076 .postsuspend
= crypt_postsuspend
,
2077 .preresume
= crypt_preresume
,
2078 .resume
= crypt_resume
,
2079 .message
= crypt_message
,
2080 .iterate_devices
= crypt_iterate_devices
,
2081 .io_hints
= crypt_io_hints
,
2084 static int __init
dm_crypt_init(void)
2088 r
= dm_register_target(&crypt_target
);
2090 DMERR("register failed %d", r
);
2095 static void __exit
dm_crypt_exit(void)
2097 dm_unregister_target(&crypt_target
);
2100 module_init(dm_crypt_init
);
2101 module_exit(dm_crypt_exit
);
2103 MODULE_AUTHOR("Jana Saout <jana@saout.de>");
2104 MODULE_DESCRIPTION(DM_NAME
" target for transparent encryption / decryption");
2105 MODULE_LICENSE("GPL");