dm thin metadata: fix __udivdi3 undefined on 32-bit
[linux/fpc-iii.git] / drivers / md / dm-table.c
blobcb5d0daf53bb65ba0c47c330ce533590840adb46
1 /*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
6 */
8 #include "dm.h"
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
24 #define DM_MSG_PREFIX "table"
26 #define MAX_DEPTH 16
27 #define NODE_SIZE L1_CACHE_BYTES
28 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
29 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
31 struct dm_table {
32 struct mapped_device *md;
33 unsigned type;
35 /* btree table */
36 unsigned int depth;
37 unsigned int counts[MAX_DEPTH]; /* in nodes */
38 sector_t *index[MAX_DEPTH];
40 unsigned int num_targets;
41 unsigned int num_allocated;
42 sector_t *highs;
43 struct dm_target *targets;
45 struct target_type *immutable_target_type;
46 unsigned integrity_supported:1;
47 unsigned singleton:1;
50 * Indicates the rw permissions for the new logical
51 * device. This should be a combination of FMODE_READ
52 * and FMODE_WRITE.
54 fmode_t mode;
56 /* a list of devices used by this table */
57 struct list_head devices;
59 /* events get handed up using this callback */
60 void (*event_fn)(void *);
61 void *event_context;
63 struct dm_md_mempools *mempools;
65 struct list_head target_callbacks;
69 * Similar to ceiling(log_size(n))
71 static unsigned int int_log(unsigned int n, unsigned int base)
73 int result = 0;
75 while (n > 1) {
76 n = dm_div_up(n, base);
77 result++;
80 return result;
84 * Calculate the index of the child node of the n'th node k'th key.
86 static inline unsigned int get_child(unsigned int n, unsigned int k)
88 return (n * CHILDREN_PER_NODE) + k;
92 * Return the n'th node of level l from table t.
94 static inline sector_t *get_node(struct dm_table *t,
95 unsigned int l, unsigned int n)
97 return t->index[l] + (n * KEYS_PER_NODE);
101 * Return the highest key that you could lookup from the n'th
102 * node on level l of the btree.
104 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
106 for (; l < t->depth - 1; l++)
107 n = get_child(n, CHILDREN_PER_NODE - 1);
109 if (n >= t->counts[l])
110 return (sector_t) - 1;
112 return get_node(t, l, n)[KEYS_PER_NODE - 1];
116 * Fills in a level of the btree based on the highs of the level
117 * below it.
119 static int setup_btree_index(unsigned int l, struct dm_table *t)
121 unsigned int n, k;
122 sector_t *node;
124 for (n = 0U; n < t->counts[l]; n++) {
125 node = get_node(t, l, n);
127 for (k = 0U; k < KEYS_PER_NODE; k++)
128 node[k] = high(t, l + 1, get_child(n, k));
131 return 0;
134 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
136 unsigned long size;
137 void *addr;
140 * Check that we're not going to overflow.
142 if (nmemb > (ULONG_MAX / elem_size))
143 return NULL;
145 size = nmemb * elem_size;
146 addr = vzalloc(size);
148 return addr;
150 EXPORT_SYMBOL(dm_vcalloc);
153 * highs, and targets are managed as dynamic arrays during a
154 * table load.
156 static int alloc_targets(struct dm_table *t, unsigned int num)
158 sector_t *n_highs;
159 struct dm_target *n_targets;
162 * Allocate both the target array and offset array at once.
163 * Append an empty entry to catch sectors beyond the end of
164 * the device.
166 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
167 sizeof(sector_t));
168 if (!n_highs)
169 return -ENOMEM;
171 n_targets = (struct dm_target *) (n_highs + num);
173 memset(n_highs, -1, sizeof(*n_highs) * num);
174 vfree(t->highs);
176 t->num_allocated = num;
177 t->highs = n_highs;
178 t->targets = n_targets;
180 return 0;
183 int dm_table_create(struct dm_table **result, fmode_t mode,
184 unsigned num_targets, struct mapped_device *md)
186 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
188 if (!t)
189 return -ENOMEM;
191 INIT_LIST_HEAD(&t->devices);
192 INIT_LIST_HEAD(&t->target_callbacks);
194 if (!num_targets)
195 num_targets = KEYS_PER_NODE;
197 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
199 if (!num_targets) {
200 kfree(t);
201 return -ENOMEM;
204 if (alloc_targets(t, num_targets)) {
205 kfree(t);
206 return -ENOMEM;
209 t->mode = mode;
210 t->md = md;
211 *result = t;
212 return 0;
215 static void free_devices(struct list_head *devices, struct mapped_device *md)
217 struct list_head *tmp, *next;
219 list_for_each_safe(tmp, next, devices) {
220 struct dm_dev_internal *dd =
221 list_entry(tmp, struct dm_dev_internal, list);
222 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
223 dm_device_name(md), dd->dm_dev->name);
224 dm_put_table_device(md, dd->dm_dev);
225 kfree(dd);
229 void dm_table_destroy(struct dm_table *t)
231 unsigned int i;
233 if (!t)
234 return;
236 /* free the indexes */
237 if (t->depth >= 2)
238 vfree(t->index[t->depth - 2]);
240 /* free the targets */
241 for (i = 0; i < t->num_targets; i++) {
242 struct dm_target *tgt = t->targets + i;
244 if (tgt->type->dtr)
245 tgt->type->dtr(tgt);
247 dm_put_target_type(tgt->type);
250 vfree(t->highs);
252 /* free the device list */
253 free_devices(&t->devices, t->md);
255 dm_free_md_mempools(t->mempools);
257 kfree(t);
261 * See if we've already got a device in the list.
263 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
265 struct dm_dev_internal *dd;
267 list_for_each_entry (dd, l, list)
268 if (dd->dm_dev->bdev->bd_dev == dev)
269 return dd;
271 return NULL;
275 * If possible, this checks an area of a destination device is invalid.
277 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
278 sector_t start, sector_t len, void *data)
280 struct request_queue *q;
281 struct queue_limits *limits = data;
282 struct block_device *bdev = dev->bdev;
283 sector_t dev_size =
284 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
285 unsigned short logical_block_size_sectors =
286 limits->logical_block_size >> SECTOR_SHIFT;
287 char b[BDEVNAME_SIZE];
290 * Some devices exist without request functions,
291 * such as loop devices not yet bound to backing files.
292 * Forbid the use of such devices.
294 q = bdev_get_queue(bdev);
295 if (!q || !q->make_request_fn) {
296 DMWARN("%s: %s is not yet initialised: "
297 "start=%llu, len=%llu, dev_size=%llu",
298 dm_device_name(ti->table->md), bdevname(bdev, b),
299 (unsigned long long)start,
300 (unsigned long long)len,
301 (unsigned long long)dev_size);
302 return 1;
305 if (!dev_size)
306 return 0;
308 if ((start >= dev_size) || (start + len > dev_size)) {
309 DMWARN("%s: %s too small for target: "
310 "start=%llu, len=%llu, dev_size=%llu",
311 dm_device_name(ti->table->md), bdevname(bdev, b),
312 (unsigned long long)start,
313 (unsigned long long)len,
314 (unsigned long long)dev_size);
315 return 1;
318 if (logical_block_size_sectors <= 1)
319 return 0;
321 if (start & (logical_block_size_sectors - 1)) {
322 DMWARN("%s: start=%llu not aligned to h/w "
323 "logical block size %u of %s",
324 dm_device_name(ti->table->md),
325 (unsigned long long)start,
326 limits->logical_block_size, bdevname(bdev, b));
327 return 1;
330 if (len & (logical_block_size_sectors - 1)) {
331 DMWARN("%s: len=%llu not aligned to h/w "
332 "logical block size %u of %s",
333 dm_device_name(ti->table->md),
334 (unsigned long long)len,
335 limits->logical_block_size, bdevname(bdev, b));
336 return 1;
339 return 0;
343 * This upgrades the mode on an already open dm_dev, being
344 * careful to leave things as they were if we fail to reopen the
345 * device and not to touch the existing bdev field in case
346 * it is accessed concurrently inside dm_table_any_congested().
348 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
349 struct mapped_device *md)
351 int r;
352 struct dm_dev *old_dev, *new_dev;
354 old_dev = dd->dm_dev;
356 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
357 dd->dm_dev->mode | new_mode, &new_dev);
358 if (r)
359 return r;
361 dd->dm_dev = new_dev;
362 dm_put_table_device(md, old_dev);
364 return 0;
368 * Convert the path to a device
370 dev_t dm_get_dev_t(const char *path)
372 dev_t uninitialized_var(dev);
373 struct block_device *bdev;
375 bdev = lookup_bdev(path);
376 if (IS_ERR(bdev))
377 dev = name_to_dev_t(path);
378 else {
379 dev = bdev->bd_dev;
380 bdput(bdev);
383 return dev;
385 EXPORT_SYMBOL_GPL(dm_get_dev_t);
388 * Add a device to the list, or just increment the usage count if
389 * it's already present.
391 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
392 struct dm_dev **result)
394 int r;
395 dev_t dev;
396 struct dm_dev_internal *dd;
397 struct dm_table *t = ti->table;
399 BUG_ON(!t);
401 dev = dm_get_dev_t(path);
402 if (!dev)
403 return -ENODEV;
405 dd = find_device(&t->devices, dev);
406 if (!dd) {
407 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
408 if (!dd)
409 return -ENOMEM;
411 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
412 kfree(dd);
413 return r;
416 atomic_set(&dd->count, 0);
417 list_add(&dd->list, &t->devices);
419 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
420 r = upgrade_mode(dd, mode, t->md);
421 if (r)
422 return r;
424 atomic_inc(&dd->count);
426 *result = dd->dm_dev;
427 return 0;
429 EXPORT_SYMBOL(dm_get_device);
431 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
432 sector_t start, sector_t len, void *data)
434 struct queue_limits *limits = data;
435 struct block_device *bdev = dev->bdev;
436 struct request_queue *q = bdev_get_queue(bdev);
437 char b[BDEVNAME_SIZE];
439 if (unlikely(!q)) {
440 DMWARN("%s: Cannot set limits for nonexistent device %s",
441 dm_device_name(ti->table->md), bdevname(bdev, b));
442 return 0;
445 if (bdev_stack_limits(limits, bdev, start) < 0)
446 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
447 "physical_block_size=%u, logical_block_size=%u, "
448 "alignment_offset=%u, start=%llu",
449 dm_device_name(ti->table->md), bdevname(bdev, b),
450 q->limits.physical_block_size,
451 q->limits.logical_block_size,
452 q->limits.alignment_offset,
453 (unsigned long long) start << SECTOR_SHIFT);
455 return 0;
459 * Decrement a device's use count and remove it if necessary.
461 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
463 int found = 0;
464 struct list_head *devices = &ti->table->devices;
465 struct dm_dev_internal *dd;
467 list_for_each_entry(dd, devices, list) {
468 if (dd->dm_dev == d) {
469 found = 1;
470 break;
473 if (!found) {
474 DMWARN("%s: device %s not in table devices list",
475 dm_device_name(ti->table->md), d->name);
476 return;
478 if (atomic_dec_and_test(&dd->count)) {
479 dm_put_table_device(ti->table->md, d);
480 list_del(&dd->list);
481 kfree(dd);
484 EXPORT_SYMBOL(dm_put_device);
487 * Checks to see if the target joins onto the end of the table.
489 static int adjoin(struct dm_table *table, struct dm_target *ti)
491 struct dm_target *prev;
493 if (!table->num_targets)
494 return !ti->begin;
496 prev = &table->targets[table->num_targets - 1];
497 return (ti->begin == (prev->begin + prev->len));
501 * Used to dynamically allocate the arg array.
503 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
504 * process messages even if some device is suspended. These messages have a
505 * small fixed number of arguments.
507 * On the other hand, dm-switch needs to process bulk data using messages and
508 * excessive use of GFP_NOIO could cause trouble.
510 static char **realloc_argv(unsigned *array_size, char **old_argv)
512 char **argv;
513 unsigned new_size;
514 gfp_t gfp;
516 if (*array_size) {
517 new_size = *array_size * 2;
518 gfp = GFP_KERNEL;
519 } else {
520 new_size = 8;
521 gfp = GFP_NOIO;
523 argv = kmalloc(new_size * sizeof(*argv), gfp);
524 if (argv) {
525 memcpy(argv, old_argv, *array_size * sizeof(*argv));
526 *array_size = new_size;
529 kfree(old_argv);
530 return argv;
534 * Destructively splits up the argument list to pass to ctr.
536 int dm_split_args(int *argc, char ***argvp, char *input)
538 char *start, *end = input, *out, **argv = NULL;
539 unsigned array_size = 0;
541 *argc = 0;
543 if (!input) {
544 *argvp = NULL;
545 return 0;
548 argv = realloc_argv(&array_size, argv);
549 if (!argv)
550 return -ENOMEM;
552 while (1) {
553 /* Skip whitespace */
554 start = skip_spaces(end);
556 if (!*start)
557 break; /* success, we hit the end */
559 /* 'out' is used to remove any back-quotes */
560 end = out = start;
561 while (*end) {
562 /* Everything apart from '\0' can be quoted */
563 if (*end == '\\' && *(end + 1)) {
564 *out++ = *(end + 1);
565 end += 2;
566 continue;
569 if (isspace(*end))
570 break; /* end of token */
572 *out++ = *end++;
575 /* have we already filled the array ? */
576 if ((*argc + 1) > array_size) {
577 argv = realloc_argv(&array_size, argv);
578 if (!argv)
579 return -ENOMEM;
582 /* we know this is whitespace */
583 if (*end)
584 end++;
586 /* terminate the string and put it in the array */
587 *out = '\0';
588 argv[*argc] = start;
589 (*argc)++;
592 *argvp = argv;
593 return 0;
597 * Impose necessary and sufficient conditions on a devices's table such
598 * that any incoming bio which respects its logical_block_size can be
599 * processed successfully. If it falls across the boundary between
600 * two or more targets, the size of each piece it gets split into must
601 * be compatible with the logical_block_size of the target processing it.
603 static int validate_hardware_logical_block_alignment(struct dm_table *table,
604 struct queue_limits *limits)
607 * This function uses arithmetic modulo the logical_block_size
608 * (in units of 512-byte sectors).
610 unsigned short device_logical_block_size_sects =
611 limits->logical_block_size >> SECTOR_SHIFT;
614 * Offset of the start of the next table entry, mod logical_block_size.
616 unsigned short next_target_start = 0;
619 * Given an aligned bio that extends beyond the end of a
620 * target, how many sectors must the next target handle?
622 unsigned short remaining = 0;
624 struct dm_target *uninitialized_var(ti);
625 struct queue_limits ti_limits;
626 unsigned i = 0;
629 * Check each entry in the table in turn.
631 while (i < dm_table_get_num_targets(table)) {
632 ti = dm_table_get_target(table, i++);
634 blk_set_stacking_limits(&ti_limits);
636 /* combine all target devices' limits */
637 if (ti->type->iterate_devices)
638 ti->type->iterate_devices(ti, dm_set_device_limits,
639 &ti_limits);
642 * If the remaining sectors fall entirely within this
643 * table entry are they compatible with its logical_block_size?
645 if (remaining < ti->len &&
646 remaining & ((ti_limits.logical_block_size >>
647 SECTOR_SHIFT) - 1))
648 break; /* Error */
650 next_target_start =
651 (unsigned short) ((next_target_start + ti->len) &
652 (device_logical_block_size_sects - 1));
653 remaining = next_target_start ?
654 device_logical_block_size_sects - next_target_start : 0;
657 if (remaining) {
658 DMWARN("%s: table line %u (start sect %llu len %llu) "
659 "not aligned to h/w logical block size %u",
660 dm_device_name(table->md), i,
661 (unsigned long long) ti->begin,
662 (unsigned long long) ti->len,
663 limits->logical_block_size);
664 return -EINVAL;
667 return 0;
670 int dm_table_add_target(struct dm_table *t, const char *type,
671 sector_t start, sector_t len, char *params)
673 int r = -EINVAL, argc;
674 char **argv;
675 struct dm_target *tgt;
677 if (t->singleton) {
678 DMERR("%s: target type %s must appear alone in table",
679 dm_device_name(t->md), t->targets->type->name);
680 return -EINVAL;
683 BUG_ON(t->num_targets >= t->num_allocated);
685 tgt = t->targets + t->num_targets;
686 memset(tgt, 0, sizeof(*tgt));
688 if (!len) {
689 DMERR("%s: zero-length target", dm_device_name(t->md));
690 return -EINVAL;
693 tgt->type = dm_get_target_type(type);
694 if (!tgt->type) {
695 DMERR("%s: %s: unknown target type", dm_device_name(t->md),
696 type);
697 return -EINVAL;
700 if (dm_target_needs_singleton(tgt->type)) {
701 if (t->num_targets) {
702 DMERR("%s: target type %s must appear alone in table",
703 dm_device_name(t->md), type);
704 return -EINVAL;
706 t->singleton = 1;
709 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
710 DMERR("%s: target type %s may not be included in read-only tables",
711 dm_device_name(t->md), type);
712 return -EINVAL;
715 if (t->immutable_target_type) {
716 if (t->immutable_target_type != tgt->type) {
717 DMERR("%s: immutable target type %s cannot be mixed with other target types",
718 dm_device_name(t->md), t->immutable_target_type->name);
719 return -EINVAL;
721 } else if (dm_target_is_immutable(tgt->type)) {
722 if (t->num_targets) {
723 DMERR("%s: immutable target type %s cannot be mixed with other target types",
724 dm_device_name(t->md), tgt->type->name);
725 return -EINVAL;
727 t->immutable_target_type = tgt->type;
730 tgt->table = t;
731 tgt->begin = start;
732 tgt->len = len;
733 tgt->error = "Unknown error";
736 * Does this target adjoin the previous one ?
738 if (!adjoin(t, tgt)) {
739 tgt->error = "Gap in table";
740 r = -EINVAL;
741 goto bad;
744 r = dm_split_args(&argc, &argv, params);
745 if (r) {
746 tgt->error = "couldn't split parameters (insufficient memory)";
747 goto bad;
750 r = tgt->type->ctr(tgt, argc, argv);
751 kfree(argv);
752 if (r)
753 goto bad;
755 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
757 if (!tgt->num_discard_bios && tgt->discards_supported)
758 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
759 dm_device_name(t->md), type);
761 return 0;
763 bad:
764 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
765 dm_put_target_type(tgt->type);
766 return r;
770 * Target argument parsing helpers.
772 static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
773 unsigned *value, char **error, unsigned grouped)
775 const char *arg_str = dm_shift_arg(arg_set);
776 char dummy;
778 if (!arg_str ||
779 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
780 (*value < arg->min) ||
781 (*value > arg->max) ||
782 (grouped && arg_set->argc < *value)) {
783 *error = arg->error;
784 return -EINVAL;
787 return 0;
790 int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
791 unsigned *value, char **error)
793 return validate_next_arg(arg, arg_set, value, error, 0);
795 EXPORT_SYMBOL(dm_read_arg);
797 int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
798 unsigned *value, char **error)
800 return validate_next_arg(arg, arg_set, value, error, 1);
802 EXPORT_SYMBOL(dm_read_arg_group);
804 const char *dm_shift_arg(struct dm_arg_set *as)
806 char *r;
808 if (as->argc) {
809 as->argc--;
810 r = *as->argv;
811 as->argv++;
812 return r;
815 return NULL;
817 EXPORT_SYMBOL(dm_shift_arg);
819 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
821 BUG_ON(as->argc < num_args);
822 as->argc -= num_args;
823 as->argv += num_args;
825 EXPORT_SYMBOL(dm_consume_args);
827 static bool __table_type_request_based(unsigned table_type)
829 return (table_type == DM_TYPE_REQUEST_BASED ||
830 table_type == DM_TYPE_MQ_REQUEST_BASED);
833 static int dm_table_set_type(struct dm_table *t)
835 unsigned i;
836 unsigned bio_based = 0, request_based = 0, hybrid = 0;
837 bool use_blk_mq = false;
838 struct dm_target *tgt;
839 struct dm_dev_internal *dd;
840 struct list_head *devices;
841 unsigned live_md_type = dm_get_md_type(t->md);
843 for (i = 0; i < t->num_targets; i++) {
844 tgt = t->targets + i;
845 if (dm_target_hybrid(tgt))
846 hybrid = 1;
847 else if (dm_target_request_based(tgt))
848 request_based = 1;
849 else
850 bio_based = 1;
852 if (bio_based && request_based) {
853 DMWARN("Inconsistent table: different target types"
854 " can't be mixed up");
855 return -EINVAL;
859 if (hybrid && !bio_based && !request_based) {
861 * The targets can work either way.
862 * Determine the type from the live device.
863 * Default to bio-based if device is new.
865 if (__table_type_request_based(live_md_type))
866 request_based = 1;
867 else
868 bio_based = 1;
871 if (bio_based) {
872 /* We must use this table as bio-based */
873 t->type = DM_TYPE_BIO_BASED;
874 return 0;
877 BUG_ON(!request_based); /* No targets in this table */
880 * Request-based dm supports only tables that have a single target now.
881 * To support multiple targets, request splitting support is needed,
882 * and that needs lots of changes in the block-layer.
883 * (e.g. request completion process for partial completion.)
885 if (t->num_targets > 1) {
886 DMWARN("Request-based dm doesn't support multiple targets yet");
887 return -EINVAL;
890 /* Non-request-stackable devices can't be used for request-based dm */
891 devices = dm_table_get_devices(t);
892 list_for_each_entry(dd, devices, list) {
893 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
895 if (!blk_queue_stackable(q)) {
896 DMERR("table load rejected: including"
897 " non-request-stackable devices");
898 return -EINVAL;
901 if (q->mq_ops)
902 use_blk_mq = true;
905 if (use_blk_mq) {
906 /* verify _all_ devices in the table are blk-mq devices */
907 list_for_each_entry(dd, devices, list)
908 if (!bdev_get_queue(dd->dm_dev->bdev)->mq_ops) {
909 DMERR("table load rejected: not all devices"
910 " are blk-mq request-stackable");
911 return -EINVAL;
913 t->type = DM_TYPE_MQ_REQUEST_BASED;
915 } else if (list_empty(devices) && __table_type_request_based(live_md_type)) {
916 /* inherit live MD type */
917 t->type = live_md_type;
919 } else
920 t->type = DM_TYPE_REQUEST_BASED;
922 return 0;
925 unsigned dm_table_get_type(struct dm_table *t)
927 return t->type;
930 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
932 return t->immutable_target_type;
935 bool dm_table_request_based(struct dm_table *t)
937 return __table_type_request_based(dm_table_get_type(t));
940 bool dm_table_mq_request_based(struct dm_table *t)
942 return dm_table_get_type(t) == DM_TYPE_MQ_REQUEST_BASED;
945 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
947 unsigned type = dm_table_get_type(t);
948 unsigned per_bio_data_size = 0;
949 struct dm_target *tgt;
950 unsigned i;
952 if (unlikely(type == DM_TYPE_NONE)) {
953 DMWARN("no table type is set, can't allocate mempools");
954 return -EINVAL;
957 if (type == DM_TYPE_BIO_BASED)
958 for (i = 0; i < t->num_targets; i++) {
959 tgt = t->targets + i;
960 per_bio_data_size = max(per_bio_data_size, tgt->per_bio_data_size);
963 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, per_bio_data_size);
964 if (!t->mempools)
965 return -ENOMEM;
967 return 0;
970 void dm_table_free_md_mempools(struct dm_table *t)
972 dm_free_md_mempools(t->mempools);
973 t->mempools = NULL;
976 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
978 return t->mempools;
981 static int setup_indexes(struct dm_table *t)
983 int i;
984 unsigned int total = 0;
985 sector_t *indexes;
987 /* allocate the space for *all* the indexes */
988 for (i = t->depth - 2; i >= 0; i--) {
989 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
990 total += t->counts[i];
993 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
994 if (!indexes)
995 return -ENOMEM;
997 /* set up internal nodes, bottom-up */
998 for (i = t->depth - 2; i >= 0; i--) {
999 t->index[i] = indexes;
1000 indexes += (KEYS_PER_NODE * t->counts[i]);
1001 setup_btree_index(i, t);
1004 return 0;
1008 * Builds the btree to index the map.
1010 static int dm_table_build_index(struct dm_table *t)
1012 int r = 0;
1013 unsigned int leaf_nodes;
1015 /* how many indexes will the btree have ? */
1016 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1017 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1019 /* leaf layer has already been set up */
1020 t->counts[t->depth - 1] = leaf_nodes;
1021 t->index[t->depth - 1] = t->highs;
1023 if (t->depth >= 2)
1024 r = setup_indexes(t);
1026 return r;
1029 static bool integrity_profile_exists(struct gendisk *disk)
1031 return !!blk_get_integrity(disk);
1035 * Get a disk whose integrity profile reflects the table's profile.
1036 * Returns NULL if integrity support was inconsistent or unavailable.
1038 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1040 struct list_head *devices = dm_table_get_devices(t);
1041 struct dm_dev_internal *dd = NULL;
1042 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1044 list_for_each_entry(dd, devices, list) {
1045 template_disk = dd->dm_dev->bdev->bd_disk;
1046 if (!integrity_profile_exists(template_disk))
1047 goto no_integrity;
1048 else if (prev_disk &&
1049 blk_integrity_compare(prev_disk, template_disk) < 0)
1050 goto no_integrity;
1051 prev_disk = template_disk;
1054 return template_disk;
1056 no_integrity:
1057 if (prev_disk)
1058 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1059 dm_device_name(t->md),
1060 prev_disk->disk_name,
1061 template_disk->disk_name);
1062 return NULL;
1066 * Register the mapped device for blk_integrity support if the
1067 * underlying devices have an integrity profile. But all devices may
1068 * not have matching profiles (checking all devices isn't reliable
1069 * during table load because this table may use other DM device(s) which
1070 * must be resumed before they will have an initialized integity
1071 * profile). Consequently, stacked DM devices force a 2 stage integrity
1072 * profile validation: First pass during table load, final pass during
1073 * resume.
1075 static int dm_table_register_integrity(struct dm_table *t)
1077 struct mapped_device *md = t->md;
1078 struct gendisk *template_disk = NULL;
1080 template_disk = dm_table_get_integrity_disk(t);
1081 if (!template_disk)
1082 return 0;
1084 if (!integrity_profile_exists(dm_disk(md))) {
1085 t->integrity_supported = 1;
1087 * Register integrity profile during table load; we can do
1088 * this because the final profile must match during resume.
1090 blk_integrity_register(dm_disk(md),
1091 blk_get_integrity(template_disk));
1092 return 0;
1096 * If DM device already has an initialized integrity
1097 * profile the new profile should not conflict.
1099 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1100 DMWARN("%s: conflict with existing integrity profile: "
1101 "%s profile mismatch",
1102 dm_device_name(t->md),
1103 template_disk->disk_name);
1104 return 1;
1107 /* Preserve existing integrity profile */
1108 t->integrity_supported = 1;
1109 return 0;
1113 * Prepares the table for use by building the indices,
1114 * setting the type, and allocating mempools.
1116 int dm_table_complete(struct dm_table *t)
1118 int r;
1120 r = dm_table_set_type(t);
1121 if (r) {
1122 DMERR("unable to set table type");
1123 return r;
1126 r = dm_table_build_index(t);
1127 if (r) {
1128 DMERR("unable to build btrees");
1129 return r;
1132 r = dm_table_register_integrity(t);
1133 if (r) {
1134 DMERR("could not register integrity profile.");
1135 return r;
1138 r = dm_table_alloc_md_mempools(t, t->md);
1139 if (r)
1140 DMERR("unable to allocate mempools");
1142 return r;
1145 static DEFINE_MUTEX(_event_lock);
1146 void dm_table_event_callback(struct dm_table *t,
1147 void (*fn)(void *), void *context)
1149 mutex_lock(&_event_lock);
1150 t->event_fn = fn;
1151 t->event_context = context;
1152 mutex_unlock(&_event_lock);
1155 void dm_table_event(struct dm_table *t)
1158 * You can no longer call dm_table_event() from interrupt
1159 * context, use a bottom half instead.
1161 BUG_ON(in_interrupt());
1163 mutex_lock(&_event_lock);
1164 if (t->event_fn)
1165 t->event_fn(t->event_context);
1166 mutex_unlock(&_event_lock);
1168 EXPORT_SYMBOL(dm_table_event);
1170 sector_t dm_table_get_size(struct dm_table *t)
1172 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1174 EXPORT_SYMBOL(dm_table_get_size);
1176 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1178 if (index >= t->num_targets)
1179 return NULL;
1181 return t->targets + index;
1185 * Search the btree for the correct target.
1187 * Caller should check returned pointer with dm_target_is_valid()
1188 * to trap I/O beyond end of device.
1190 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1192 unsigned int l, n = 0, k = 0;
1193 sector_t *node;
1195 for (l = 0; l < t->depth; l++) {
1196 n = get_child(n, k);
1197 node = get_node(t, l, n);
1199 for (k = 0; k < KEYS_PER_NODE; k++)
1200 if (node[k] >= sector)
1201 break;
1204 return &t->targets[(KEYS_PER_NODE * n) + k];
1207 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1208 sector_t start, sector_t len, void *data)
1210 unsigned *num_devices = data;
1212 (*num_devices)++;
1214 return 0;
1218 * Check whether a table has no data devices attached using each
1219 * target's iterate_devices method.
1220 * Returns false if the result is unknown because a target doesn't
1221 * support iterate_devices.
1223 bool dm_table_has_no_data_devices(struct dm_table *table)
1225 struct dm_target *uninitialized_var(ti);
1226 unsigned i = 0, num_devices = 0;
1228 while (i < dm_table_get_num_targets(table)) {
1229 ti = dm_table_get_target(table, i++);
1231 if (!ti->type->iterate_devices)
1232 return false;
1234 ti->type->iterate_devices(ti, count_device, &num_devices);
1235 if (num_devices)
1236 return false;
1239 return true;
1243 * Establish the new table's queue_limits and validate them.
1245 int dm_calculate_queue_limits(struct dm_table *table,
1246 struct queue_limits *limits)
1248 struct dm_target *uninitialized_var(ti);
1249 struct queue_limits ti_limits;
1250 unsigned i = 0;
1252 blk_set_stacking_limits(limits);
1254 while (i < dm_table_get_num_targets(table)) {
1255 blk_set_stacking_limits(&ti_limits);
1257 ti = dm_table_get_target(table, i++);
1259 if (!ti->type->iterate_devices)
1260 goto combine_limits;
1263 * Combine queue limits of all the devices this target uses.
1265 ti->type->iterate_devices(ti, dm_set_device_limits,
1266 &ti_limits);
1268 /* Set I/O hints portion of queue limits */
1269 if (ti->type->io_hints)
1270 ti->type->io_hints(ti, &ti_limits);
1273 * Check each device area is consistent with the target's
1274 * overall queue limits.
1276 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1277 &ti_limits))
1278 return -EINVAL;
1280 combine_limits:
1282 * Merge this target's queue limits into the overall limits
1283 * for the table.
1285 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1286 DMWARN("%s: adding target device "
1287 "(start sect %llu len %llu) "
1288 "caused an alignment inconsistency",
1289 dm_device_name(table->md),
1290 (unsigned long long) ti->begin,
1291 (unsigned long long) ti->len);
1294 return validate_hardware_logical_block_alignment(table, limits);
1298 * Verify that all devices have an integrity profile that matches the
1299 * DM device's registered integrity profile. If the profiles don't
1300 * match then unregister the DM device's integrity profile.
1302 static void dm_table_verify_integrity(struct dm_table *t)
1304 struct gendisk *template_disk = NULL;
1306 if (t->integrity_supported) {
1308 * Verify that the original integrity profile
1309 * matches all the devices in this table.
1311 template_disk = dm_table_get_integrity_disk(t);
1312 if (template_disk &&
1313 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1314 return;
1317 if (integrity_profile_exists(dm_disk(t->md))) {
1318 DMWARN("%s: unable to establish an integrity profile",
1319 dm_device_name(t->md));
1320 blk_integrity_unregister(dm_disk(t->md));
1324 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1325 sector_t start, sector_t len, void *data)
1327 unsigned flush = (*(unsigned *)data);
1328 struct request_queue *q = bdev_get_queue(dev->bdev);
1330 return q && (q->flush_flags & flush);
1333 static bool dm_table_supports_flush(struct dm_table *t, unsigned flush)
1335 struct dm_target *ti;
1336 unsigned i = 0;
1339 * Require at least one underlying device to support flushes.
1340 * t->devices includes internal dm devices such as mirror logs
1341 * so we need to use iterate_devices here, which targets
1342 * supporting flushes must provide.
1344 while (i < dm_table_get_num_targets(t)) {
1345 ti = dm_table_get_target(t, i++);
1347 if (!ti->num_flush_bios)
1348 continue;
1350 if (ti->flush_supported)
1351 return true;
1353 if (ti->type->iterate_devices &&
1354 ti->type->iterate_devices(ti, device_flush_capable, &flush))
1355 return true;
1358 return false;
1361 static bool dm_table_discard_zeroes_data(struct dm_table *t)
1363 struct dm_target *ti;
1364 unsigned i = 0;
1366 /* Ensure that all targets supports discard_zeroes_data. */
1367 while (i < dm_table_get_num_targets(t)) {
1368 ti = dm_table_get_target(t, i++);
1370 if (ti->discard_zeroes_data_unsupported)
1371 return false;
1374 return true;
1377 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1378 sector_t start, sector_t len, void *data)
1380 struct request_queue *q = bdev_get_queue(dev->bdev);
1382 return q && blk_queue_nonrot(q);
1385 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1386 sector_t start, sector_t len, void *data)
1388 struct request_queue *q = bdev_get_queue(dev->bdev);
1390 return q && !blk_queue_add_random(q);
1393 static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev,
1394 sector_t start, sector_t len, void *data)
1396 struct request_queue *q = bdev_get_queue(dev->bdev);
1398 return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags);
1401 static bool dm_table_all_devices_attribute(struct dm_table *t,
1402 iterate_devices_callout_fn func)
1404 struct dm_target *ti;
1405 unsigned i = 0;
1407 while (i < dm_table_get_num_targets(t)) {
1408 ti = dm_table_get_target(t, i++);
1410 if (!ti->type->iterate_devices ||
1411 !ti->type->iterate_devices(ti, func, NULL))
1412 return false;
1415 return true;
1418 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1419 sector_t start, sector_t len, void *data)
1421 struct request_queue *q = bdev_get_queue(dev->bdev);
1423 return q && !q->limits.max_write_same_sectors;
1426 static bool dm_table_supports_write_same(struct dm_table *t)
1428 struct dm_target *ti;
1429 unsigned i = 0;
1431 while (i < dm_table_get_num_targets(t)) {
1432 ti = dm_table_get_target(t, i++);
1434 if (!ti->num_write_same_bios)
1435 return false;
1437 if (!ti->type->iterate_devices ||
1438 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1439 return false;
1442 return true;
1445 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1446 sector_t start, sector_t len, void *data)
1448 struct request_queue *q = bdev_get_queue(dev->bdev);
1450 return q && blk_queue_discard(q);
1453 static bool dm_table_supports_discards(struct dm_table *t)
1455 struct dm_target *ti;
1456 unsigned i = 0;
1459 * Unless any target used by the table set discards_supported,
1460 * require at least one underlying device to support discards.
1461 * t->devices includes internal dm devices such as mirror logs
1462 * so we need to use iterate_devices here, which targets
1463 * supporting discard selectively must provide.
1465 while (i < dm_table_get_num_targets(t)) {
1466 ti = dm_table_get_target(t, i++);
1468 if (!ti->num_discard_bios)
1469 continue;
1471 if (ti->discards_supported)
1472 return true;
1474 if (ti->type->iterate_devices &&
1475 ti->type->iterate_devices(ti, device_discard_capable, NULL))
1476 return true;
1479 return false;
1482 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1483 struct queue_limits *limits)
1485 unsigned flush = 0;
1488 * Copy table's limits to the DM device's request_queue
1490 q->limits = *limits;
1492 if (!dm_table_supports_discards(t))
1493 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1494 else
1495 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1497 if (dm_table_supports_flush(t, REQ_FLUSH)) {
1498 flush |= REQ_FLUSH;
1499 if (dm_table_supports_flush(t, REQ_FUA))
1500 flush |= REQ_FUA;
1502 blk_queue_flush(q, flush);
1504 if (!dm_table_discard_zeroes_data(t))
1505 q->limits.discard_zeroes_data = 0;
1507 /* Ensure that all underlying devices are non-rotational. */
1508 if (dm_table_all_devices_attribute(t, device_is_nonrot))
1509 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1510 else
1511 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1513 if (!dm_table_supports_write_same(t))
1514 q->limits.max_write_same_sectors = 0;
1516 if (dm_table_all_devices_attribute(t, queue_supports_sg_merge))
1517 queue_flag_clear_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1518 else
1519 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1521 dm_table_verify_integrity(t);
1524 * Determine whether or not this queue's I/O timings contribute
1525 * to the entropy pool, Only request-based targets use this.
1526 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1527 * have it set.
1529 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1530 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1533 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1534 * visible to other CPUs because, once the flag is set, incoming bios
1535 * are processed by request-based dm, which refers to the queue
1536 * settings.
1537 * Until the flag set, bios are passed to bio-based dm and queued to
1538 * md->deferred where queue settings are not needed yet.
1539 * Those bios are passed to request-based dm at the resume time.
1541 smp_mb();
1542 if (dm_table_request_based(t))
1543 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1546 unsigned int dm_table_get_num_targets(struct dm_table *t)
1548 return t->num_targets;
1551 struct list_head *dm_table_get_devices(struct dm_table *t)
1553 return &t->devices;
1556 fmode_t dm_table_get_mode(struct dm_table *t)
1558 return t->mode;
1560 EXPORT_SYMBOL(dm_table_get_mode);
1562 enum suspend_mode {
1563 PRESUSPEND,
1564 PRESUSPEND_UNDO,
1565 POSTSUSPEND,
1568 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1570 int i = t->num_targets;
1571 struct dm_target *ti = t->targets;
1573 while (i--) {
1574 switch (mode) {
1575 case PRESUSPEND:
1576 if (ti->type->presuspend)
1577 ti->type->presuspend(ti);
1578 break;
1579 case PRESUSPEND_UNDO:
1580 if (ti->type->presuspend_undo)
1581 ti->type->presuspend_undo(ti);
1582 break;
1583 case POSTSUSPEND:
1584 if (ti->type->postsuspend)
1585 ti->type->postsuspend(ti);
1586 break;
1588 ti++;
1592 void dm_table_presuspend_targets(struct dm_table *t)
1594 if (!t)
1595 return;
1597 suspend_targets(t, PRESUSPEND);
1600 void dm_table_presuspend_undo_targets(struct dm_table *t)
1602 if (!t)
1603 return;
1605 suspend_targets(t, PRESUSPEND_UNDO);
1608 void dm_table_postsuspend_targets(struct dm_table *t)
1610 if (!t)
1611 return;
1613 suspend_targets(t, POSTSUSPEND);
1616 int dm_table_resume_targets(struct dm_table *t)
1618 int i, r = 0;
1620 for (i = 0; i < t->num_targets; i++) {
1621 struct dm_target *ti = t->targets + i;
1623 if (!ti->type->preresume)
1624 continue;
1626 r = ti->type->preresume(ti);
1627 if (r) {
1628 DMERR("%s: %s: preresume failed, error = %d",
1629 dm_device_name(t->md), ti->type->name, r);
1630 return r;
1634 for (i = 0; i < t->num_targets; i++) {
1635 struct dm_target *ti = t->targets + i;
1637 if (ti->type->resume)
1638 ti->type->resume(ti);
1641 return 0;
1644 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1646 list_add(&cb->list, &t->target_callbacks);
1648 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1650 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1652 struct dm_dev_internal *dd;
1653 struct list_head *devices = dm_table_get_devices(t);
1654 struct dm_target_callbacks *cb;
1655 int r = 0;
1657 list_for_each_entry(dd, devices, list) {
1658 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
1659 char b[BDEVNAME_SIZE];
1661 if (likely(q))
1662 r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1663 else
1664 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1665 dm_device_name(t->md),
1666 bdevname(dd->dm_dev->bdev, b));
1669 list_for_each_entry(cb, &t->target_callbacks, list)
1670 if (cb->congested_fn)
1671 r |= cb->congested_fn(cb, bdi_bits);
1673 return r;
1676 struct mapped_device *dm_table_get_md(struct dm_table *t)
1678 return t->md;
1680 EXPORT_SYMBOL(dm_table_get_md);
1682 void dm_table_run_md_queue_async(struct dm_table *t)
1684 struct mapped_device *md;
1685 struct request_queue *queue;
1686 unsigned long flags;
1688 if (!dm_table_request_based(t))
1689 return;
1691 md = dm_table_get_md(t);
1692 queue = dm_get_md_queue(md);
1693 if (queue) {
1694 if (queue->mq_ops)
1695 blk_mq_run_hw_queues(queue, true);
1696 else {
1697 spin_lock_irqsave(queue->queue_lock, flags);
1698 blk_run_queue_async(queue);
1699 spin_unlock_irqrestore(queue->queue_lock, flags);
1703 EXPORT_SYMBOL(dm_table_run_md_queue_async);