2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for further copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
35 * The layout of data is defined by
38 * near_copies (stored in low byte of layout)
39 * far_copies (stored in second byte of layout)
40 * far_offset (stored in bit 16 of layout )
41 * use_far_sets (stored in bit 17 of layout )
42 * use_far_sets_bugfixed (stored in bit 18 of layout )
44 * The data to be stored is divided into chunks using chunksize. Each device
45 * is divided into far_copies sections. In each section, chunks are laid out
46 * in a style similar to raid0, but near_copies copies of each chunk is stored
47 * (each on a different drive). The starting device for each section is offset
48 * near_copies from the starting device of the previous section. Thus there
49 * are (near_copies * far_copies) of each chunk, and each is on a different
50 * drive. near_copies and far_copies must be at least one, and their product
51 * is at most raid_disks.
53 * If far_offset is true, then the far_copies are handled a bit differently.
54 * The copies are still in different stripes, but instead of being very far
55 * apart on disk, there are adjacent stripes.
57 * The far and offset algorithms are handled slightly differently if
58 * 'use_far_sets' is true. In this case, the array's devices are grouped into
59 * sets that are (near_copies * far_copies) in size. The far copied stripes
60 * are still shifted by 'near_copies' devices, but this shifting stays confined
61 * to the set rather than the entire array. This is done to improve the number
62 * of device combinations that can fail without causing the array to fail.
63 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
68 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
69 * [A B] [C D] [A B] [C D E]
70 * |...| |...| |...| | ... |
71 * [B A] [D C] [B A] [E C D]
75 * Number of guaranteed r10bios in case of extreme VM load:
77 #define NR_RAID10_BIOS 256
79 /* when we get a read error on a read-only array, we redirect to another
80 * device without failing the first device, or trying to over-write to
81 * correct the read error. To keep track of bad blocks on a per-bio
82 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
84 #define IO_BLOCKED ((struct bio *)1)
85 /* When we successfully write to a known bad-block, we need to remove the
86 * bad-block marking which must be done from process context. So we record
87 * the success by setting devs[n].bio to IO_MADE_GOOD
89 #define IO_MADE_GOOD ((struct bio *)2)
91 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
93 /* When there are this many requests queued to be written by
94 * the raid10 thread, we become 'congested' to provide back-pressure
97 static int max_queued_requests
= 1024;
99 static void allow_barrier(struct r10conf
*conf
);
100 static void lower_barrier(struct r10conf
*conf
);
101 static int _enough(struct r10conf
*conf
, int previous
, int ignore
);
102 static sector_t
reshape_request(struct mddev
*mddev
, sector_t sector_nr
,
104 static void reshape_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
);
105 static void end_reshape_write(struct bio
*bio
);
106 static void end_reshape(struct r10conf
*conf
);
108 static void * r10bio_pool_alloc(gfp_t gfp_flags
, void *data
)
110 struct r10conf
*conf
= data
;
111 int size
= offsetof(struct r10bio
, devs
[conf
->copies
]);
113 /* allocate a r10bio with room for raid_disks entries in the
115 return kzalloc(size
, gfp_flags
);
118 static void r10bio_pool_free(void *r10_bio
, void *data
)
123 /* Maximum size of each resync request */
124 #define RESYNC_BLOCK_SIZE (64*1024)
125 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
126 /* amount of memory to reserve for resync requests */
127 #define RESYNC_WINDOW (1024*1024)
128 /* maximum number of concurrent requests, memory permitting */
129 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
132 * When performing a resync, we need to read and compare, so
133 * we need as many pages are there are copies.
134 * When performing a recovery, we need 2 bios, one for read,
135 * one for write (we recover only one drive per r10buf)
138 static void * r10buf_pool_alloc(gfp_t gfp_flags
, void *data
)
140 struct r10conf
*conf
= data
;
142 struct r10bio
*r10_bio
;
147 r10_bio
= r10bio_pool_alloc(gfp_flags
, conf
);
151 if (test_bit(MD_RECOVERY_SYNC
, &conf
->mddev
->recovery
) ||
152 test_bit(MD_RECOVERY_RESHAPE
, &conf
->mddev
->recovery
))
153 nalloc
= conf
->copies
; /* resync */
155 nalloc
= 2; /* recovery */
160 for (j
= nalloc
; j
-- ; ) {
161 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
164 r10_bio
->devs
[j
].bio
= bio
;
165 if (!conf
->have_replacement
)
167 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
170 r10_bio
->devs
[j
].repl_bio
= bio
;
173 * Allocate RESYNC_PAGES data pages and attach them
176 for (j
= 0 ; j
< nalloc
; j
++) {
177 struct bio
*rbio
= r10_bio
->devs
[j
].repl_bio
;
178 bio
= r10_bio
->devs
[j
].bio
;
179 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
180 if (j
> 0 && !test_bit(MD_RECOVERY_SYNC
,
181 &conf
->mddev
->recovery
)) {
182 /* we can share bv_page's during recovery
184 struct bio
*rbio
= r10_bio
->devs
[0].bio
;
185 page
= rbio
->bi_io_vec
[i
].bv_page
;
188 page
= alloc_page(gfp_flags
);
192 bio
->bi_io_vec
[i
].bv_page
= page
;
194 rbio
->bi_io_vec
[i
].bv_page
= page
;
202 safe_put_page(bio
->bi_io_vec
[i
-1].bv_page
);
204 for (i
= 0; i
< RESYNC_PAGES
; i
++)
205 safe_put_page(r10_bio
->devs
[j
].bio
->bi_io_vec
[i
].bv_page
);
208 for ( ; j
< nalloc
; j
++) {
209 if (r10_bio
->devs
[j
].bio
)
210 bio_put(r10_bio
->devs
[j
].bio
);
211 if (r10_bio
->devs
[j
].repl_bio
)
212 bio_put(r10_bio
->devs
[j
].repl_bio
);
214 r10bio_pool_free(r10_bio
, conf
);
218 static void r10buf_pool_free(void *__r10_bio
, void *data
)
221 struct r10conf
*conf
= data
;
222 struct r10bio
*r10bio
= __r10_bio
;
225 for (j
=0; j
< conf
->copies
; j
++) {
226 struct bio
*bio
= r10bio
->devs
[j
].bio
;
228 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
229 safe_put_page(bio
->bi_io_vec
[i
].bv_page
);
230 bio
->bi_io_vec
[i
].bv_page
= NULL
;
234 bio
= r10bio
->devs
[j
].repl_bio
;
238 r10bio_pool_free(r10bio
, conf
);
241 static void put_all_bios(struct r10conf
*conf
, struct r10bio
*r10_bio
)
245 for (i
= 0; i
< conf
->copies
; i
++) {
246 struct bio
**bio
= & r10_bio
->devs
[i
].bio
;
247 if (!BIO_SPECIAL(*bio
))
250 bio
= &r10_bio
->devs
[i
].repl_bio
;
251 if (r10_bio
->read_slot
< 0 && !BIO_SPECIAL(*bio
))
257 static void free_r10bio(struct r10bio
*r10_bio
)
259 struct r10conf
*conf
= r10_bio
->mddev
->private;
261 put_all_bios(conf
, r10_bio
);
262 mempool_free(r10_bio
, conf
->r10bio_pool
);
265 static void put_buf(struct r10bio
*r10_bio
)
267 struct r10conf
*conf
= r10_bio
->mddev
->private;
269 mempool_free(r10_bio
, conf
->r10buf_pool
);
274 static void reschedule_retry(struct r10bio
*r10_bio
)
277 struct mddev
*mddev
= r10_bio
->mddev
;
278 struct r10conf
*conf
= mddev
->private;
280 spin_lock_irqsave(&conf
->device_lock
, flags
);
281 list_add(&r10_bio
->retry_list
, &conf
->retry_list
);
283 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
285 /* wake up frozen array... */
286 wake_up(&conf
->wait_barrier
);
288 md_wakeup_thread(mddev
->thread
);
292 * raid_end_bio_io() is called when we have finished servicing a mirrored
293 * operation and are ready to return a success/failure code to the buffer
296 static void raid_end_bio_io(struct r10bio
*r10_bio
)
298 struct bio
*bio
= r10_bio
->master_bio
;
300 struct r10conf
*conf
= r10_bio
->mddev
->private;
302 if (bio
->bi_phys_segments
) {
304 spin_lock_irqsave(&conf
->device_lock
, flags
);
305 bio
->bi_phys_segments
--;
306 done
= (bio
->bi_phys_segments
== 0);
307 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
310 if (!test_bit(R10BIO_Uptodate
, &r10_bio
->state
))
311 bio
->bi_error
= -EIO
;
315 * Wake up any possible resync thread that waits for the device
320 free_r10bio(r10_bio
);
324 * Update disk head position estimator based on IRQ completion info.
326 static inline void update_head_pos(int slot
, struct r10bio
*r10_bio
)
328 struct r10conf
*conf
= r10_bio
->mddev
->private;
330 conf
->mirrors
[r10_bio
->devs
[slot
].devnum
].head_position
=
331 r10_bio
->devs
[slot
].addr
+ (r10_bio
->sectors
);
335 * Find the disk number which triggered given bio
337 static int find_bio_disk(struct r10conf
*conf
, struct r10bio
*r10_bio
,
338 struct bio
*bio
, int *slotp
, int *replp
)
343 for (slot
= 0; slot
< conf
->copies
; slot
++) {
344 if (r10_bio
->devs
[slot
].bio
== bio
)
346 if (r10_bio
->devs
[slot
].repl_bio
== bio
) {
352 BUG_ON(slot
== conf
->copies
);
353 update_head_pos(slot
, r10_bio
);
359 return r10_bio
->devs
[slot
].devnum
;
362 static void raid10_end_read_request(struct bio
*bio
)
364 int uptodate
= !bio
->bi_error
;
365 struct r10bio
*r10_bio
= bio
->bi_private
;
367 struct md_rdev
*rdev
;
368 struct r10conf
*conf
= r10_bio
->mddev
->private;
370 slot
= r10_bio
->read_slot
;
371 dev
= r10_bio
->devs
[slot
].devnum
;
372 rdev
= r10_bio
->devs
[slot
].rdev
;
374 * this branch is our 'one mirror IO has finished' event handler:
376 update_head_pos(slot
, r10_bio
);
380 * Set R10BIO_Uptodate in our master bio, so that
381 * we will return a good error code to the higher
382 * levels even if IO on some other mirrored buffer fails.
384 * The 'master' represents the composite IO operation to
385 * user-side. So if something waits for IO, then it will
386 * wait for the 'master' bio.
388 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
390 /* If all other devices that store this block have
391 * failed, we want to return the error upwards rather
392 * than fail the last device. Here we redefine
393 * "uptodate" to mean "Don't want to retry"
395 if (!_enough(conf
, test_bit(R10BIO_Previous
, &r10_bio
->state
),
400 raid_end_bio_io(r10_bio
);
401 rdev_dec_pending(rdev
, conf
->mddev
);
404 * oops, read error - keep the refcount on the rdev
406 char b
[BDEVNAME_SIZE
];
407 printk_ratelimited(KERN_ERR
408 "md/raid10:%s: %s: rescheduling sector %llu\n",
410 bdevname(rdev
->bdev
, b
),
411 (unsigned long long)r10_bio
->sector
);
412 set_bit(R10BIO_ReadError
, &r10_bio
->state
);
413 reschedule_retry(r10_bio
);
417 static void close_write(struct r10bio
*r10_bio
)
419 /* clear the bitmap if all writes complete successfully */
420 bitmap_endwrite(r10_bio
->mddev
->bitmap
, r10_bio
->sector
,
422 !test_bit(R10BIO_Degraded
, &r10_bio
->state
),
424 md_write_end(r10_bio
->mddev
);
427 static void one_write_done(struct r10bio
*r10_bio
)
429 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
430 if (test_bit(R10BIO_WriteError
, &r10_bio
->state
))
431 reschedule_retry(r10_bio
);
433 close_write(r10_bio
);
434 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
))
435 reschedule_retry(r10_bio
);
437 raid_end_bio_io(r10_bio
);
442 static void raid10_end_write_request(struct bio
*bio
)
444 struct r10bio
*r10_bio
= bio
->bi_private
;
447 struct r10conf
*conf
= r10_bio
->mddev
->private;
449 struct md_rdev
*rdev
= NULL
;
451 dev
= find_bio_disk(conf
, r10_bio
, bio
, &slot
, &repl
);
454 rdev
= conf
->mirrors
[dev
].replacement
;
458 rdev
= conf
->mirrors
[dev
].rdev
;
461 * this branch is our 'one mirror IO has finished' event handler:
465 /* Never record new bad blocks to replacement,
468 md_error(rdev
->mddev
, rdev
);
470 set_bit(WriteErrorSeen
, &rdev
->flags
);
471 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
472 set_bit(MD_RECOVERY_NEEDED
,
473 &rdev
->mddev
->recovery
);
474 set_bit(R10BIO_WriteError
, &r10_bio
->state
);
479 * Set R10BIO_Uptodate in our master bio, so that
480 * we will return a good error code for to the higher
481 * levels even if IO on some other mirrored buffer fails.
483 * The 'master' represents the composite IO operation to
484 * user-side. So if something waits for IO, then it will
485 * wait for the 'master' bio.
491 * Do not set R10BIO_Uptodate if the current device is
492 * rebuilding or Faulty. This is because we cannot use
493 * such device for properly reading the data back (we could
494 * potentially use it, if the current write would have felt
495 * before rdev->recovery_offset, but for simplicity we don't
498 if (test_bit(In_sync
, &rdev
->flags
) &&
499 !test_bit(Faulty
, &rdev
->flags
))
500 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
502 /* Maybe we can clear some bad blocks. */
503 if (is_badblock(rdev
,
504 r10_bio
->devs
[slot
].addr
,
506 &first_bad
, &bad_sectors
)) {
509 r10_bio
->devs
[slot
].repl_bio
= IO_MADE_GOOD
;
511 r10_bio
->devs
[slot
].bio
= IO_MADE_GOOD
;
513 set_bit(R10BIO_MadeGood
, &r10_bio
->state
);
519 * Let's see if all mirrored write operations have finished
522 one_write_done(r10_bio
);
524 rdev_dec_pending(rdev
, conf
->mddev
);
528 * RAID10 layout manager
529 * As well as the chunksize and raid_disks count, there are two
530 * parameters: near_copies and far_copies.
531 * near_copies * far_copies must be <= raid_disks.
532 * Normally one of these will be 1.
533 * If both are 1, we get raid0.
534 * If near_copies == raid_disks, we get raid1.
536 * Chunks are laid out in raid0 style with near_copies copies of the
537 * first chunk, followed by near_copies copies of the next chunk and
539 * If far_copies > 1, then after 1/far_copies of the array has been assigned
540 * as described above, we start again with a device offset of near_copies.
541 * So we effectively have another copy of the whole array further down all
542 * the drives, but with blocks on different drives.
543 * With this layout, and block is never stored twice on the one device.
545 * raid10_find_phys finds the sector offset of a given virtual sector
546 * on each device that it is on.
548 * raid10_find_virt does the reverse mapping, from a device and a
549 * sector offset to a virtual address
552 static void __raid10_find_phys(struct geom
*geo
, struct r10bio
*r10bio
)
560 int last_far_set_start
, last_far_set_size
;
562 last_far_set_start
= (geo
->raid_disks
/ geo
->far_set_size
) - 1;
563 last_far_set_start
*= geo
->far_set_size
;
565 last_far_set_size
= geo
->far_set_size
;
566 last_far_set_size
+= (geo
->raid_disks
% geo
->far_set_size
);
568 /* now calculate first sector/dev */
569 chunk
= r10bio
->sector
>> geo
->chunk_shift
;
570 sector
= r10bio
->sector
& geo
->chunk_mask
;
572 chunk
*= geo
->near_copies
;
574 dev
= sector_div(stripe
, geo
->raid_disks
);
576 stripe
*= geo
->far_copies
;
578 sector
+= stripe
<< geo
->chunk_shift
;
580 /* and calculate all the others */
581 for (n
= 0; n
< geo
->near_copies
; n
++) {
585 r10bio
->devs
[slot
].devnum
= d
;
586 r10bio
->devs
[slot
].addr
= s
;
589 for (f
= 1; f
< geo
->far_copies
; f
++) {
590 set
= d
/ geo
->far_set_size
;
591 d
+= geo
->near_copies
;
593 if ((geo
->raid_disks
% geo
->far_set_size
) &&
594 (d
> last_far_set_start
)) {
595 d
-= last_far_set_start
;
596 d
%= last_far_set_size
;
597 d
+= last_far_set_start
;
599 d
%= geo
->far_set_size
;
600 d
+= geo
->far_set_size
* set
;
603 r10bio
->devs
[slot
].devnum
= d
;
604 r10bio
->devs
[slot
].addr
= s
;
608 if (dev
>= geo
->raid_disks
) {
610 sector
+= (geo
->chunk_mask
+ 1);
615 static void raid10_find_phys(struct r10conf
*conf
, struct r10bio
*r10bio
)
617 struct geom
*geo
= &conf
->geo
;
619 if (conf
->reshape_progress
!= MaxSector
&&
620 ((r10bio
->sector
>= conf
->reshape_progress
) !=
621 conf
->mddev
->reshape_backwards
)) {
622 set_bit(R10BIO_Previous
, &r10bio
->state
);
625 clear_bit(R10BIO_Previous
, &r10bio
->state
);
627 __raid10_find_phys(geo
, r10bio
);
630 static sector_t
raid10_find_virt(struct r10conf
*conf
, sector_t sector
, int dev
)
632 sector_t offset
, chunk
, vchunk
;
633 /* Never use conf->prev as this is only called during resync
634 * or recovery, so reshape isn't happening
636 struct geom
*geo
= &conf
->geo
;
637 int far_set_start
= (dev
/ geo
->far_set_size
) * geo
->far_set_size
;
638 int far_set_size
= geo
->far_set_size
;
639 int last_far_set_start
;
641 if (geo
->raid_disks
% geo
->far_set_size
) {
642 last_far_set_start
= (geo
->raid_disks
/ geo
->far_set_size
) - 1;
643 last_far_set_start
*= geo
->far_set_size
;
645 if (dev
>= last_far_set_start
) {
646 far_set_size
= geo
->far_set_size
;
647 far_set_size
+= (geo
->raid_disks
% geo
->far_set_size
);
648 far_set_start
= last_far_set_start
;
652 offset
= sector
& geo
->chunk_mask
;
653 if (geo
->far_offset
) {
655 chunk
= sector
>> geo
->chunk_shift
;
656 fc
= sector_div(chunk
, geo
->far_copies
);
657 dev
-= fc
* geo
->near_copies
;
658 if (dev
< far_set_start
)
661 while (sector
>= geo
->stride
) {
662 sector
-= geo
->stride
;
663 if (dev
< (geo
->near_copies
+ far_set_start
))
664 dev
+= far_set_size
- geo
->near_copies
;
666 dev
-= geo
->near_copies
;
668 chunk
= sector
>> geo
->chunk_shift
;
670 vchunk
= chunk
* geo
->raid_disks
+ dev
;
671 sector_div(vchunk
, geo
->near_copies
);
672 return (vchunk
<< geo
->chunk_shift
) + offset
;
676 * This routine returns the disk from which the requested read should
677 * be done. There is a per-array 'next expected sequential IO' sector
678 * number - if this matches on the next IO then we use the last disk.
679 * There is also a per-disk 'last know head position' sector that is
680 * maintained from IRQ contexts, both the normal and the resync IO
681 * completion handlers update this position correctly. If there is no
682 * perfect sequential match then we pick the disk whose head is closest.
684 * If there are 2 mirrors in the same 2 devices, performance degrades
685 * because position is mirror, not device based.
687 * The rdev for the device selected will have nr_pending incremented.
691 * FIXME: possibly should rethink readbalancing and do it differently
692 * depending on near_copies / far_copies geometry.
694 static struct md_rdev
*read_balance(struct r10conf
*conf
,
695 struct r10bio
*r10_bio
,
698 const sector_t this_sector
= r10_bio
->sector
;
700 int sectors
= r10_bio
->sectors
;
701 int best_good_sectors
;
702 sector_t new_distance
, best_dist
;
703 struct md_rdev
*best_rdev
, *rdev
= NULL
;
706 struct geom
*geo
= &conf
->geo
;
708 raid10_find_phys(conf
, r10_bio
);
711 sectors
= r10_bio
->sectors
;
714 best_dist
= MaxSector
;
715 best_good_sectors
= 0;
718 * Check if we can balance. We can balance on the whole
719 * device if no resync is going on (recovery is ok), or below
720 * the resync window. We take the first readable disk when
721 * above the resync window.
723 if (conf
->mddev
->recovery_cp
< MaxSector
724 && (this_sector
+ sectors
>= conf
->next_resync
))
727 for (slot
= 0; slot
< conf
->copies
; slot
++) {
732 if (r10_bio
->devs
[slot
].bio
== IO_BLOCKED
)
734 disk
= r10_bio
->devs
[slot
].devnum
;
735 rdev
= rcu_dereference(conf
->mirrors
[disk
].replacement
);
736 if (rdev
== NULL
|| test_bit(Faulty
, &rdev
->flags
) ||
737 r10_bio
->devs
[slot
].addr
+ sectors
> rdev
->recovery_offset
)
738 rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
);
740 test_bit(Faulty
, &rdev
->flags
))
742 if (!test_bit(In_sync
, &rdev
->flags
) &&
743 r10_bio
->devs
[slot
].addr
+ sectors
> rdev
->recovery_offset
)
746 dev_sector
= r10_bio
->devs
[slot
].addr
;
747 if (is_badblock(rdev
, dev_sector
, sectors
,
748 &first_bad
, &bad_sectors
)) {
749 if (best_dist
< MaxSector
)
750 /* Already have a better slot */
752 if (first_bad
<= dev_sector
) {
753 /* Cannot read here. If this is the
754 * 'primary' device, then we must not read
755 * beyond 'bad_sectors' from another device.
757 bad_sectors
-= (dev_sector
- first_bad
);
758 if (!do_balance
&& sectors
> bad_sectors
)
759 sectors
= bad_sectors
;
760 if (best_good_sectors
> sectors
)
761 best_good_sectors
= sectors
;
763 sector_t good_sectors
=
764 first_bad
- dev_sector
;
765 if (good_sectors
> best_good_sectors
) {
766 best_good_sectors
= good_sectors
;
771 /* Must read from here */
776 best_good_sectors
= sectors
;
781 /* This optimisation is debatable, and completely destroys
782 * sequential read speed for 'far copies' arrays. So only
783 * keep it for 'near' arrays, and review those later.
785 if (geo
->near_copies
> 1 && !atomic_read(&rdev
->nr_pending
))
788 /* for far > 1 always use the lowest address */
789 if (geo
->far_copies
> 1)
790 new_distance
= r10_bio
->devs
[slot
].addr
;
792 new_distance
= abs(r10_bio
->devs
[slot
].addr
-
793 conf
->mirrors
[disk
].head_position
);
794 if (new_distance
< best_dist
) {
795 best_dist
= new_distance
;
800 if (slot
>= conf
->copies
) {
806 atomic_inc(&rdev
->nr_pending
);
807 if (test_bit(Faulty
, &rdev
->flags
)) {
808 /* Cannot risk returning a device that failed
809 * before we inc'ed nr_pending
811 rdev_dec_pending(rdev
, conf
->mddev
);
814 r10_bio
->read_slot
= slot
;
818 *max_sectors
= best_good_sectors
;
823 static int raid10_congested(struct mddev
*mddev
, int bits
)
825 struct r10conf
*conf
= mddev
->private;
828 if ((bits
& (1 << WB_async_congested
)) &&
829 conf
->pending_count
>= max_queued_requests
)
834 (i
< conf
->geo
.raid_disks
|| i
< conf
->prev
.raid_disks
)
837 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
838 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
839 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
841 ret
|= bdi_congested(&q
->backing_dev_info
, bits
);
848 static void flush_pending_writes(struct r10conf
*conf
)
850 /* Any writes that have been queued but are awaiting
851 * bitmap updates get flushed here.
853 spin_lock_irq(&conf
->device_lock
);
855 if (conf
->pending_bio_list
.head
) {
857 bio
= bio_list_get(&conf
->pending_bio_list
);
858 conf
->pending_count
= 0;
859 spin_unlock_irq(&conf
->device_lock
);
860 /* flush any pending bitmap writes to disk
861 * before proceeding w/ I/O */
862 bitmap_unplug(conf
->mddev
->bitmap
);
863 wake_up(&conf
->wait_barrier
);
865 while (bio
) { /* submit pending writes */
866 struct bio
*next
= bio
->bi_next
;
868 if (unlikely((bio
->bi_rw
& REQ_DISCARD
) &&
869 !blk_queue_discard(bdev_get_queue(bio
->bi_bdev
))))
873 generic_make_request(bio
);
877 spin_unlock_irq(&conf
->device_lock
);
881 * Sometimes we need to suspend IO while we do something else,
882 * either some resync/recovery, or reconfigure the array.
883 * To do this we raise a 'barrier'.
884 * The 'barrier' is a counter that can be raised multiple times
885 * to count how many activities are happening which preclude
887 * We can only raise the barrier if there is no pending IO.
888 * i.e. if nr_pending == 0.
889 * We choose only to raise the barrier if no-one is waiting for the
890 * barrier to go down. This means that as soon as an IO request
891 * is ready, no other operations which require a barrier will start
892 * until the IO request has had a chance.
894 * So: regular IO calls 'wait_barrier'. When that returns there
895 * is no backgroup IO happening, It must arrange to call
896 * allow_barrier when it has finished its IO.
897 * backgroup IO calls must call raise_barrier. Once that returns
898 * there is no normal IO happeing. It must arrange to call
899 * lower_barrier when the particular background IO completes.
902 static void raise_barrier(struct r10conf
*conf
, int force
)
904 BUG_ON(force
&& !conf
->barrier
);
905 spin_lock_irq(&conf
->resync_lock
);
907 /* Wait until no block IO is waiting (unless 'force') */
908 wait_event_lock_irq(conf
->wait_barrier
, force
|| !conf
->nr_waiting
,
911 /* block any new IO from starting */
914 /* Now wait for all pending IO to complete */
915 wait_event_lock_irq(conf
->wait_barrier
,
916 !conf
->nr_pending
&& conf
->barrier
< RESYNC_DEPTH
,
919 spin_unlock_irq(&conf
->resync_lock
);
922 static void lower_barrier(struct r10conf
*conf
)
925 spin_lock_irqsave(&conf
->resync_lock
, flags
);
927 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
928 wake_up(&conf
->wait_barrier
);
931 static void wait_barrier(struct r10conf
*conf
)
933 spin_lock_irq(&conf
->resync_lock
);
936 /* Wait for the barrier to drop.
937 * However if there are already pending
938 * requests (preventing the barrier from
939 * rising completely), and the
940 * pre-process bio queue isn't empty,
941 * then don't wait, as we need to empty
942 * that queue to get the nr_pending
945 wait_event_lock_irq(conf
->wait_barrier
,
949 (!bio_list_empty(¤t
->bio_list
[0]) ||
950 !bio_list_empty(¤t
->bio_list
[1]))),
955 spin_unlock_irq(&conf
->resync_lock
);
958 static void allow_barrier(struct r10conf
*conf
)
961 spin_lock_irqsave(&conf
->resync_lock
, flags
);
963 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
964 wake_up(&conf
->wait_barrier
);
967 static void freeze_array(struct r10conf
*conf
, int extra
)
969 /* stop syncio and normal IO and wait for everything to
971 * We increment barrier and nr_waiting, and then
972 * wait until nr_pending match nr_queued+extra
973 * This is called in the context of one normal IO request
974 * that has failed. Thus any sync request that might be pending
975 * will be blocked by nr_pending, and we need to wait for
976 * pending IO requests to complete or be queued for re-try.
977 * Thus the number queued (nr_queued) plus this request (extra)
978 * must match the number of pending IOs (nr_pending) before
981 spin_lock_irq(&conf
->resync_lock
);
984 wait_event_lock_irq_cmd(conf
->wait_barrier
,
985 conf
->nr_pending
== conf
->nr_queued
+extra
,
987 flush_pending_writes(conf
));
989 spin_unlock_irq(&conf
->resync_lock
);
992 static void unfreeze_array(struct r10conf
*conf
)
994 /* reverse the effect of the freeze */
995 spin_lock_irq(&conf
->resync_lock
);
998 wake_up(&conf
->wait_barrier
);
999 spin_unlock_irq(&conf
->resync_lock
);
1002 static sector_t
choose_data_offset(struct r10bio
*r10_bio
,
1003 struct md_rdev
*rdev
)
1005 if (!test_bit(MD_RECOVERY_RESHAPE
, &rdev
->mddev
->recovery
) ||
1006 test_bit(R10BIO_Previous
, &r10_bio
->state
))
1007 return rdev
->data_offset
;
1009 return rdev
->new_data_offset
;
1012 struct raid10_plug_cb
{
1013 struct blk_plug_cb cb
;
1014 struct bio_list pending
;
1018 static void raid10_unplug(struct blk_plug_cb
*cb
, bool from_schedule
)
1020 struct raid10_plug_cb
*plug
= container_of(cb
, struct raid10_plug_cb
,
1022 struct mddev
*mddev
= plug
->cb
.data
;
1023 struct r10conf
*conf
= mddev
->private;
1026 if (from_schedule
|| current
->bio_list
) {
1027 spin_lock_irq(&conf
->device_lock
);
1028 bio_list_merge(&conf
->pending_bio_list
, &plug
->pending
);
1029 conf
->pending_count
+= plug
->pending_cnt
;
1030 spin_unlock_irq(&conf
->device_lock
);
1031 wake_up(&conf
->wait_barrier
);
1032 md_wakeup_thread(mddev
->thread
);
1037 /* we aren't scheduling, so we can do the write-out directly. */
1038 bio
= bio_list_get(&plug
->pending
);
1039 bitmap_unplug(mddev
->bitmap
);
1040 wake_up(&conf
->wait_barrier
);
1042 while (bio
) { /* submit pending writes */
1043 struct bio
*next
= bio
->bi_next
;
1044 bio
->bi_next
= NULL
;
1045 if (unlikely((bio
->bi_rw
& REQ_DISCARD
) &&
1046 !blk_queue_discard(bdev_get_queue(bio
->bi_bdev
))))
1047 /* Just ignore it */
1050 generic_make_request(bio
);
1056 static void __make_request(struct mddev
*mddev
, struct bio
*bio
)
1058 struct r10conf
*conf
= mddev
->private;
1059 struct r10bio
*r10_bio
;
1060 struct bio
*read_bio
;
1062 const int rw
= bio_data_dir(bio
);
1063 const unsigned long do_sync
= (bio
->bi_rw
& REQ_SYNC
);
1064 const unsigned long do_fua
= (bio
->bi_rw
& REQ_FUA
);
1065 const unsigned long do_discard
= (bio
->bi_rw
1066 & (REQ_DISCARD
| REQ_SECURE
));
1067 const unsigned long do_same
= (bio
->bi_rw
& REQ_WRITE_SAME
);
1068 unsigned long flags
;
1069 struct md_rdev
*blocked_rdev
;
1070 struct blk_plug_cb
*cb
;
1071 struct raid10_plug_cb
*plug
= NULL
;
1072 int sectors_handled
;
1076 md_write_start(mddev
, bio
);
1079 * Register the new request and wait if the reconstruction
1080 * thread has put up a bar for new requests.
1081 * Continue immediately if no resync is active currently.
1085 sectors
= bio_sectors(bio
);
1086 while (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
) &&
1087 bio
->bi_iter
.bi_sector
< conf
->reshape_progress
&&
1088 bio
->bi_iter
.bi_sector
+ sectors
> conf
->reshape_progress
) {
1089 /* IO spans the reshape position. Need to wait for
1092 allow_barrier(conf
);
1093 wait_event(conf
->wait_barrier
,
1094 conf
->reshape_progress
<= bio
->bi_iter
.bi_sector
||
1095 conf
->reshape_progress
>= bio
->bi_iter
.bi_sector
+
1099 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
) &&
1100 bio_data_dir(bio
) == WRITE
&&
1101 (mddev
->reshape_backwards
1102 ? (bio
->bi_iter
.bi_sector
< conf
->reshape_safe
&&
1103 bio
->bi_iter
.bi_sector
+ sectors
> conf
->reshape_progress
)
1104 : (bio
->bi_iter
.bi_sector
+ sectors
> conf
->reshape_safe
&&
1105 bio
->bi_iter
.bi_sector
< conf
->reshape_progress
))) {
1106 /* Need to update reshape_position in metadata */
1107 mddev
->reshape_position
= conf
->reshape_progress
;
1108 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1109 set_bit(MD_CHANGE_PENDING
, &mddev
->flags
);
1110 md_wakeup_thread(mddev
->thread
);
1111 wait_event(mddev
->sb_wait
,
1112 !test_bit(MD_CHANGE_PENDING
, &mddev
->flags
));
1114 conf
->reshape_safe
= mddev
->reshape_position
;
1117 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
1119 r10_bio
->master_bio
= bio
;
1120 r10_bio
->sectors
= sectors
;
1122 r10_bio
->mddev
= mddev
;
1123 r10_bio
->sector
= bio
->bi_iter
.bi_sector
;
1126 /* We might need to issue multiple reads to different
1127 * devices if there are bad blocks around, so we keep
1128 * track of the number of reads in bio->bi_phys_segments.
1129 * If this is 0, there is only one r10_bio and no locking
1130 * will be needed when the request completes. If it is
1131 * non-zero, then it is the number of not-completed requests.
1133 bio
->bi_phys_segments
= 0;
1134 bio_clear_flag(bio
, BIO_SEG_VALID
);
1138 * read balancing logic:
1140 struct md_rdev
*rdev
;
1144 rdev
= read_balance(conf
, r10_bio
, &max_sectors
);
1146 raid_end_bio_io(r10_bio
);
1149 slot
= r10_bio
->read_slot
;
1151 read_bio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1152 bio_trim(read_bio
, r10_bio
->sector
- bio
->bi_iter
.bi_sector
,
1155 r10_bio
->devs
[slot
].bio
= read_bio
;
1156 r10_bio
->devs
[slot
].rdev
= rdev
;
1158 read_bio
->bi_iter
.bi_sector
= r10_bio
->devs
[slot
].addr
+
1159 choose_data_offset(r10_bio
, rdev
);
1160 read_bio
->bi_bdev
= rdev
->bdev
;
1161 read_bio
->bi_end_io
= raid10_end_read_request
;
1162 read_bio
->bi_rw
= READ
| do_sync
;
1163 read_bio
->bi_private
= r10_bio
;
1165 if (max_sectors
< r10_bio
->sectors
) {
1166 /* Could not read all from this device, so we will
1167 * need another r10_bio.
1169 sectors_handled
= (r10_bio
->sector
+ max_sectors
1170 - bio
->bi_iter
.bi_sector
);
1171 r10_bio
->sectors
= max_sectors
;
1172 spin_lock_irq(&conf
->device_lock
);
1173 if (bio
->bi_phys_segments
== 0)
1174 bio
->bi_phys_segments
= 2;
1176 bio
->bi_phys_segments
++;
1177 spin_unlock_irq(&conf
->device_lock
);
1178 /* Cannot call generic_make_request directly
1179 * as that will be queued in __generic_make_request
1180 * and subsequent mempool_alloc might block
1181 * waiting for it. so hand bio over to raid10d.
1183 reschedule_retry(r10_bio
);
1185 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
1187 r10_bio
->master_bio
= bio
;
1188 r10_bio
->sectors
= bio_sectors(bio
) - sectors_handled
;
1190 r10_bio
->mddev
= mddev
;
1191 r10_bio
->sector
= bio
->bi_iter
.bi_sector
+
1195 generic_make_request(read_bio
);
1202 if (conf
->pending_count
>= max_queued_requests
) {
1203 md_wakeup_thread(mddev
->thread
);
1204 wait_event(conf
->wait_barrier
,
1205 conf
->pending_count
< max_queued_requests
);
1207 /* first select target devices under rcu_lock and
1208 * inc refcount on their rdev. Record them by setting
1210 * If there are known/acknowledged bad blocks on any device
1211 * on which we have seen a write error, we want to avoid
1212 * writing to those blocks. This potentially requires several
1213 * writes to write around the bad blocks. Each set of writes
1214 * gets its own r10_bio with a set of bios attached. The number
1215 * of r10_bios is recored in bio->bi_phys_segments just as with
1219 r10_bio
->read_slot
= -1; /* make sure repl_bio gets freed */
1220 raid10_find_phys(conf
, r10_bio
);
1222 blocked_rdev
= NULL
;
1224 max_sectors
= r10_bio
->sectors
;
1226 for (i
= 0; i
< conf
->copies
; i
++) {
1227 int d
= r10_bio
->devs
[i
].devnum
;
1228 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1229 struct md_rdev
*rrdev
= rcu_dereference(
1230 conf
->mirrors
[d
].replacement
);
1233 if (rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
1234 atomic_inc(&rdev
->nr_pending
);
1235 blocked_rdev
= rdev
;
1238 if (rrdev
&& unlikely(test_bit(Blocked
, &rrdev
->flags
))) {
1239 atomic_inc(&rrdev
->nr_pending
);
1240 blocked_rdev
= rrdev
;
1243 if (rdev
&& (test_bit(Faulty
, &rdev
->flags
)))
1245 if (rrdev
&& (test_bit(Faulty
, &rrdev
->flags
)))
1248 r10_bio
->devs
[i
].bio
= NULL
;
1249 r10_bio
->devs
[i
].repl_bio
= NULL
;
1251 if (!rdev
&& !rrdev
) {
1252 set_bit(R10BIO_Degraded
, &r10_bio
->state
);
1255 if (rdev
&& test_bit(WriteErrorSeen
, &rdev
->flags
)) {
1257 sector_t dev_sector
= r10_bio
->devs
[i
].addr
;
1261 is_bad
= is_badblock(rdev
, dev_sector
,
1263 &first_bad
, &bad_sectors
);
1265 /* Mustn't write here until the bad block
1268 atomic_inc(&rdev
->nr_pending
);
1269 set_bit(BlockedBadBlocks
, &rdev
->flags
);
1270 blocked_rdev
= rdev
;
1273 if (is_bad
&& first_bad
<= dev_sector
) {
1274 /* Cannot write here at all */
1275 bad_sectors
-= (dev_sector
- first_bad
);
1276 if (bad_sectors
< max_sectors
)
1277 /* Mustn't write more than bad_sectors
1278 * to other devices yet
1280 max_sectors
= bad_sectors
;
1281 /* We don't set R10BIO_Degraded as that
1282 * only applies if the disk is missing,
1283 * so it might be re-added, and we want to
1284 * know to recover this chunk.
1285 * In this case the device is here, and the
1286 * fact that this chunk is not in-sync is
1287 * recorded in the bad block log.
1292 int good_sectors
= first_bad
- dev_sector
;
1293 if (good_sectors
< max_sectors
)
1294 max_sectors
= good_sectors
;
1298 r10_bio
->devs
[i
].bio
= bio
;
1299 atomic_inc(&rdev
->nr_pending
);
1302 r10_bio
->devs
[i
].repl_bio
= bio
;
1303 atomic_inc(&rrdev
->nr_pending
);
1308 if (unlikely(blocked_rdev
)) {
1309 /* Have to wait for this device to get unblocked, then retry */
1313 for (j
= 0; j
< i
; j
++) {
1314 if (r10_bio
->devs
[j
].bio
) {
1315 d
= r10_bio
->devs
[j
].devnum
;
1316 rdev_dec_pending(conf
->mirrors
[d
].rdev
, mddev
);
1318 if (r10_bio
->devs
[j
].repl_bio
) {
1319 struct md_rdev
*rdev
;
1320 d
= r10_bio
->devs
[j
].devnum
;
1321 rdev
= conf
->mirrors
[d
].replacement
;
1323 /* Race with remove_disk */
1325 rdev
= conf
->mirrors
[d
].rdev
;
1327 rdev_dec_pending(rdev
, mddev
);
1330 allow_barrier(conf
);
1331 md_wait_for_blocked_rdev(blocked_rdev
, mddev
);
1336 if (max_sectors
< r10_bio
->sectors
) {
1337 /* We are splitting this into multiple parts, so
1338 * we need to prepare for allocating another r10_bio.
1340 r10_bio
->sectors
= max_sectors
;
1341 spin_lock_irq(&conf
->device_lock
);
1342 if (bio
->bi_phys_segments
== 0)
1343 bio
->bi_phys_segments
= 2;
1345 bio
->bi_phys_segments
++;
1346 spin_unlock_irq(&conf
->device_lock
);
1348 sectors_handled
= r10_bio
->sector
+ max_sectors
-
1349 bio
->bi_iter
.bi_sector
;
1351 atomic_set(&r10_bio
->remaining
, 1);
1352 bitmap_startwrite(mddev
->bitmap
, r10_bio
->sector
, r10_bio
->sectors
, 0);
1354 for (i
= 0; i
< conf
->copies
; i
++) {
1356 int d
= r10_bio
->devs
[i
].devnum
;
1357 if (r10_bio
->devs
[i
].bio
) {
1358 struct md_rdev
*rdev
= conf
->mirrors
[d
].rdev
;
1359 mbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1360 bio_trim(mbio
, r10_bio
->sector
- bio
->bi_iter
.bi_sector
,
1362 r10_bio
->devs
[i
].bio
= mbio
;
1364 mbio
->bi_iter
.bi_sector
= (r10_bio
->devs
[i
].addr
+
1365 choose_data_offset(r10_bio
,
1367 mbio
->bi_bdev
= rdev
->bdev
;
1368 mbio
->bi_end_io
= raid10_end_write_request
;
1370 WRITE
| do_sync
| do_fua
| do_discard
| do_same
;
1371 mbio
->bi_private
= r10_bio
;
1373 atomic_inc(&r10_bio
->remaining
);
1375 cb
= blk_check_plugged(raid10_unplug
, mddev
,
1378 plug
= container_of(cb
, struct raid10_plug_cb
,
1382 spin_lock_irqsave(&conf
->device_lock
, flags
);
1384 bio_list_add(&plug
->pending
, mbio
);
1385 plug
->pending_cnt
++;
1387 bio_list_add(&conf
->pending_bio_list
, mbio
);
1388 conf
->pending_count
++;
1390 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1392 md_wakeup_thread(mddev
->thread
);
1395 if (r10_bio
->devs
[i
].repl_bio
) {
1396 struct md_rdev
*rdev
= conf
->mirrors
[d
].replacement
;
1398 /* Replacement just got moved to main 'rdev' */
1400 rdev
= conf
->mirrors
[d
].rdev
;
1402 mbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1403 bio_trim(mbio
, r10_bio
->sector
- bio
->bi_iter
.bi_sector
,
1405 r10_bio
->devs
[i
].repl_bio
= mbio
;
1407 mbio
->bi_iter
.bi_sector
= (r10_bio
->devs
[i
].addr
+
1410 mbio
->bi_bdev
= rdev
->bdev
;
1411 mbio
->bi_end_io
= raid10_end_write_request
;
1413 WRITE
| do_sync
| do_fua
| do_discard
| do_same
;
1414 mbio
->bi_private
= r10_bio
;
1416 atomic_inc(&r10_bio
->remaining
);
1418 cb
= blk_check_plugged(raid10_unplug
, mddev
,
1421 plug
= container_of(cb
, struct raid10_plug_cb
,
1425 spin_lock_irqsave(&conf
->device_lock
, flags
);
1427 bio_list_add(&plug
->pending
, mbio
);
1428 plug
->pending_cnt
++;
1430 bio_list_add(&conf
->pending_bio_list
, mbio
);
1431 conf
->pending_count
++;
1433 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1435 md_wakeup_thread(mddev
->thread
);
1439 /* Don't remove the bias on 'remaining' (one_write_done) until
1440 * after checking if we need to go around again.
1443 if (sectors_handled
< bio_sectors(bio
)) {
1444 one_write_done(r10_bio
);
1445 /* We need another r10_bio. It has already been counted
1446 * in bio->bi_phys_segments.
1448 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
1450 r10_bio
->master_bio
= bio
;
1451 r10_bio
->sectors
= bio_sectors(bio
) - sectors_handled
;
1453 r10_bio
->mddev
= mddev
;
1454 r10_bio
->sector
= bio
->bi_iter
.bi_sector
+ sectors_handled
;
1458 one_write_done(r10_bio
);
1461 static void make_request(struct mddev
*mddev
, struct bio
*bio
)
1463 struct r10conf
*conf
= mddev
->private;
1464 sector_t chunk_mask
= (conf
->geo
.chunk_mask
& conf
->prev
.chunk_mask
);
1465 int chunk_sects
= chunk_mask
+ 1;
1469 if (unlikely(bio
->bi_rw
& REQ_FLUSH
)) {
1470 md_flush_request(mddev
, bio
);
1477 * If this request crosses a chunk boundary, we need to split
1480 if (unlikely((bio
->bi_iter
.bi_sector
& chunk_mask
) +
1481 bio_sectors(bio
) > chunk_sects
1482 && (conf
->geo
.near_copies
< conf
->geo
.raid_disks
1483 || conf
->prev
.near_copies
<
1484 conf
->prev
.raid_disks
))) {
1485 split
= bio_split(bio
, chunk_sects
-
1486 (bio
->bi_iter
.bi_sector
&
1488 GFP_NOIO
, fs_bio_set
);
1489 bio_chain(split
, bio
);
1495 * If a bio is splitted, the first part of bio will pass
1496 * barrier but the bio is queued in current->bio_list (see
1497 * generic_make_request). If there is a raise_barrier() called
1498 * here, the second part of bio can't pass barrier. But since
1499 * the first part bio isn't dispatched to underlaying disks
1500 * yet, the barrier is never released, hence raise_barrier will
1501 * alays wait. We have a deadlock.
1502 * Note, this only happens in read path. For write path, the
1503 * first part of bio is dispatched in a schedule() call
1504 * (because of blk plug) or offloaded to raid10d.
1505 * Quitting from the function immediately can change the bio
1506 * order queued in bio_list and avoid the deadlock.
1508 __make_request(mddev
, split
);
1509 if (split
!= bio
&& bio_data_dir(bio
) == READ
) {
1510 generic_make_request(bio
);
1513 } while (split
!= bio
);
1515 /* In case raid10d snuck in to freeze_array */
1516 wake_up(&conf
->wait_barrier
);
1519 static void status(struct seq_file
*seq
, struct mddev
*mddev
)
1521 struct r10conf
*conf
= mddev
->private;
1524 if (conf
->geo
.near_copies
< conf
->geo
.raid_disks
)
1525 seq_printf(seq
, " %dK chunks", mddev
->chunk_sectors
/ 2);
1526 if (conf
->geo
.near_copies
> 1)
1527 seq_printf(seq
, " %d near-copies", conf
->geo
.near_copies
);
1528 if (conf
->geo
.far_copies
> 1) {
1529 if (conf
->geo
.far_offset
)
1530 seq_printf(seq
, " %d offset-copies", conf
->geo
.far_copies
);
1532 seq_printf(seq
, " %d far-copies", conf
->geo
.far_copies
);
1533 if (conf
->geo
.far_set_size
!= conf
->geo
.raid_disks
)
1534 seq_printf(seq
, " %d devices per set", conf
->geo
.far_set_size
);
1536 seq_printf(seq
, " [%d/%d] [", conf
->geo
.raid_disks
,
1537 conf
->geo
.raid_disks
- mddev
->degraded
);
1538 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++)
1539 seq_printf(seq
, "%s",
1540 conf
->mirrors
[i
].rdev
&&
1541 test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
) ? "U" : "_");
1542 seq_printf(seq
, "]");
1545 /* check if there are enough drives for
1546 * every block to appear on atleast one.
1547 * Don't consider the device numbered 'ignore'
1548 * as we might be about to remove it.
1550 static int _enough(struct r10conf
*conf
, int previous
, int ignore
)
1556 disks
= conf
->prev
.raid_disks
;
1557 ncopies
= conf
->prev
.near_copies
;
1559 disks
= conf
->geo
.raid_disks
;
1560 ncopies
= conf
->geo
.near_copies
;
1565 int n
= conf
->copies
;
1569 struct md_rdev
*rdev
;
1570 if (this != ignore
&&
1571 (rdev
= rcu_dereference(conf
->mirrors
[this].rdev
)) &&
1572 test_bit(In_sync
, &rdev
->flags
))
1574 this = (this+1) % disks
;
1578 first
= (first
+ ncopies
) % disks
;
1579 } while (first
!= 0);
1586 static int enough(struct r10conf
*conf
, int ignore
)
1588 /* when calling 'enough', both 'prev' and 'geo' must
1590 * This is ensured if ->reconfig_mutex or ->device_lock
1593 return _enough(conf
, 0, ignore
) &&
1594 _enough(conf
, 1, ignore
);
1597 static void error(struct mddev
*mddev
, struct md_rdev
*rdev
)
1599 char b
[BDEVNAME_SIZE
];
1600 struct r10conf
*conf
= mddev
->private;
1601 unsigned long flags
;
1604 * If it is not operational, then we have already marked it as dead
1605 * else if it is the last working disks, ignore the error, let the
1606 * next level up know.
1607 * else mark the drive as failed
1609 spin_lock_irqsave(&conf
->device_lock
, flags
);
1610 if (test_bit(In_sync
, &rdev
->flags
)
1611 && !enough(conf
, rdev
->raid_disk
)) {
1613 * Don't fail the drive, just return an IO error.
1615 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1618 if (test_and_clear_bit(In_sync
, &rdev
->flags
))
1621 * If recovery is running, make sure it aborts.
1623 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1624 set_bit(Blocked
, &rdev
->flags
);
1625 set_bit(Faulty
, &rdev
->flags
);
1626 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1627 set_bit(MD_CHANGE_PENDING
, &mddev
->flags
);
1628 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1630 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1631 "md/raid10:%s: Operation continuing on %d devices.\n",
1632 mdname(mddev
), bdevname(rdev
->bdev
, b
),
1633 mdname(mddev
), conf
->geo
.raid_disks
- mddev
->degraded
);
1636 static void print_conf(struct r10conf
*conf
)
1639 struct raid10_info
*tmp
;
1641 printk(KERN_DEBUG
"RAID10 conf printout:\n");
1643 printk(KERN_DEBUG
"(!conf)\n");
1646 printk(KERN_DEBUG
" --- wd:%d rd:%d\n", conf
->geo
.raid_disks
- conf
->mddev
->degraded
,
1647 conf
->geo
.raid_disks
);
1649 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
1650 char b
[BDEVNAME_SIZE
];
1651 tmp
= conf
->mirrors
+ i
;
1653 printk(KERN_DEBUG
" disk %d, wo:%d, o:%d, dev:%s\n",
1654 i
, !test_bit(In_sync
, &tmp
->rdev
->flags
),
1655 !test_bit(Faulty
, &tmp
->rdev
->flags
),
1656 bdevname(tmp
->rdev
->bdev
,b
));
1660 static void close_sync(struct r10conf
*conf
)
1663 allow_barrier(conf
);
1665 mempool_destroy(conf
->r10buf_pool
);
1666 conf
->r10buf_pool
= NULL
;
1669 static int raid10_spare_active(struct mddev
*mddev
)
1672 struct r10conf
*conf
= mddev
->private;
1673 struct raid10_info
*tmp
;
1675 unsigned long flags
;
1678 * Find all non-in_sync disks within the RAID10 configuration
1679 * and mark them in_sync
1681 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
1682 tmp
= conf
->mirrors
+ i
;
1683 if (tmp
->replacement
1684 && tmp
->replacement
->recovery_offset
== MaxSector
1685 && !test_bit(Faulty
, &tmp
->replacement
->flags
)
1686 && !test_and_set_bit(In_sync
, &tmp
->replacement
->flags
)) {
1687 /* Replacement has just become active */
1689 || !test_and_clear_bit(In_sync
, &tmp
->rdev
->flags
))
1692 /* Replaced device not technically faulty,
1693 * but we need to be sure it gets removed
1694 * and never re-added.
1696 set_bit(Faulty
, &tmp
->rdev
->flags
);
1697 sysfs_notify_dirent_safe(
1698 tmp
->rdev
->sysfs_state
);
1700 sysfs_notify_dirent_safe(tmp
->replacement
->sysfs_state
);
1701 } else if (tmp
->rdev
1702 && tmp
->rdev
->recovery_offset
== MaxSector
1703 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
1704 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
1706 sysfs_notify_dirent_safe(tmp
->rdev
->sysfs_state
);
1709 spin_lock_irqsave(&conf
->device_lock
, flags
);
1710 mddev
->degraded
-= count
;
1711 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1717 static int raid10_add_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1719 struct r10conf
*conf
= mddev
->private;
1723 int last
= conf
->geo
.raid_disks
- 1;
1725 if (mddev
->recovery_cp
< MaxSector
)
1726 /* only hot-add to in-sync arrays, as recovery is
1727 * very different from resync
1730 if (rdev
->saved_raid_disk
< 0 && !_enough(conf
, 1, -1))
1733 if (md_integrity_add_rdev(rdev
, mddev
))
1736 if (rdev
->raid_disk
>= 0)
1737 first
= last
= rdev
->raid_disk
;
1739 if (rdev
->saved_raid_disk
>= first
&&
1740 conf
->mirrors
[rdev
->saved_raid_disk
].rdev
== NULL
)
1741 mirror
= rdev
->saved_raid_disk
;
1744 for ( ; mirror
<= last
; mirror
++) {
1745 struct raid10_info
*p
= &conf
->mirrors
[mirror
];
1746 if (p
->recovery_disabled
== mddev
->recovery_disabled
)
1749 if (!test_bit(WantReplacement
, &p
->rdev
->flags
) ||
1750 p
->replacement
!= NULL
)
1752 clear_bit(In_sync
, &rdev
->flags
);
1753 set_bit(Replacement
, &rdev
->flags
);
1754 rdev
->raid_disk
= mirror
;
1757 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1758 rdev
->data_offset
<< 9);
1760 rcu_assign_pointer(p
->replacement
, rdev
);
1765 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1766 rdev
->data_offset
<< 9);
1768 p
->head_position
= 0;
1769 p
->recovery_disabled
= mddev
->recovery_disabled
- 1;
1770 rdev
->raid_disk
= mirror
;
1772 if (rdev
->saved_raid_disk
!= mirror
)
1774 rcu_assign_pointer(p
->rdev
, rdev
);
1777 if (mddev
->queue
&& blk_queue_discard(bdev_get_queue(rdev
->bdev
)))
1778 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
, mddev
->queue
);
1784 static int raid10_remove_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1786 struct r10conf
*conf
= mddev
->private;
1788 int number
= rdev
->raid_disk
;
1789 struct md_rdev
**rdevp
;
1790 struct raid10_info
*p
= conf
->mirrors
+ number
;
1793 if (rdev
== p
->rdev
)
1795 else if (rdev
== p
->replacement
)
1796 rdevp
= &p
->replacement
;
1800 if (test_bit(In_sync
, &rdev
->flags
) ||
1801 atomic_read(&rdev
->nr_pending
)) {
1805 /* Only remove faulty devices if recovery
1808 if (!test_bit(Faulty
, &rdev
->flags
) &&
1809 mddev
->recovery_disabled
!= p
->recovery_disabled
&&
1810 (!p
->replacement
|| p
->replacement
== rdev
) &&
1811 number
< conf
->geo
.raid_disks
&&
1818 if (atomic_read(&rdev
->nr_pending
)) {
1819 /* lost the race, try later */
1823 } else if (p
->replacement
) {
1824 /* We must have just cleared 'rdev' */
1825 p
->rdev
= p
->replacement
;
1826 clear_bit(Replacement
, &p
->replacement
->flags
);
1827 smp_mb(); /* Make sure other CPUs may see both as identical
1828 * but will never see neither -- if they are careful.
1830 p
->replacement
= NULL
;
1831 clear_bit(WantReplacement
, &rdev
->flags
);
1833 /* We might have just remove the Replacement as faulty
1834 * Clear the flag just in case
1836 clear_bit(WantReplacement
, &rdev
->flags
);
1838 err
= md_integrity_register(mddev
);
1846 static void end_sync_read(struct bio
*bio
)
1848 struct r10bio
*r10_bio
= bio
->bi_private
;
1849 struct r10conf
*conf
= r10_bio
->mddev
->private;
1852 if (bio
== r10_bio
->master_bio
) {
1853 /* this is a reshape read */
1854 d
= r10_bio
->read_slot
; /* really the read dev */
1856 d
= find_bio_disk(conf
, r10_bio
, bio
, NULL
, NULL
);
1859 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
1861 /* The write handler will notice the lack of
1862 * R10BIO_Uptodate and record any errors etc
1864 atomic_add(r10_bio
->sectors
,
1865 &conf
->mirrors
[d
].rdev
->corrected_errors
);
1867 /* for reconstruct, we always reschedule after a read.
1868 * for resync, only after all reads
1870 rdev_dec_pending(conf
->mirrors
[d
].rdev
, conf
->mddev
);
1871 if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
) ||
1872 atomic_dec_and_test(&r10_bio
->remaining
)) {
1873 /* we have read all the blocks,
1874 * do the comparison in process context in raid10d
1876 reschedule_retry(r10_bio
);
1880 static void end_sync_request(struct r10bio
*r10_bio
)
1882 struct mddev
*mddev
= r10_bio
->mddev
;
1884 while (atomic_dec_and_test(&r10_bio
->remaining
)) {
1885 if (r10_bio
->master_bio
== NULL
) {
1886 /* the primary of several recovery bios */
1887 sector_t s
= r10_bio
->sectors
;
1888 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
1889 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
1890 reschedule_retry(r10_bio
);
1893 md_done_sync(mddev
, s
, 1);
1896 struct r10bio
*r10_bio2
= (struct r10bio
*)r10_bio
->master_bio
;
1897 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
1898 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
1899 reschedule_retry(r10_bio
);
1907 static void end_sync_write(struct bio
*bio
)
1909 struct r10bio
*r10_bio
= bio
->bi_private
;
1910 struct mddev
*mddev
= r10_bio
->mddev
;
1911 struct r10conf
*conf
= mddev
->private;
1917 struct md_rdev
*rdev
= NULL
;
1919 d
= find_bio_disk(conf
, r10_bio
, bio
, &slot
, &repl
);
1921 rdev
= conf
->mirrors
[d
].replacement
;
1923 rdev
= conf
->mirrors
[d
].rdev
;
1925 if (bio
->bi_error
) {
1927 md_error(mddev
, rdev
);
1929 set_bit(WriteErrorSeen
, &rdev
->flags
);
1930 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
1931 set_bit(MD_RECOVERY_NEEDED
,
1932 &rdev
->mddev
->recovery
);
1933 set_bit(R10BIO_WriteError
, &r10_bio
->state
);
1935 } else if (is_badblock(rdev
,
1936 r10_bio
->devs
[slot
].addr
,
1938 &first_bad
, &bad_sectors
))
1939 set_bit(R10BIO_MadeGood
, &r10_bio
->state
);
1941 rdev_dec_pending(rdev
, mddev
);
1943 end_sync_request(r10_bio
);
1947 * Note: sync and recover and handled very differently for raid10
1948 * This code is for resync.
1949 * For resync, we read through virtual addresses and read all blocks.
1950 * If there is any error, we schedule a write. The lowest numbered
1951 * drive is authoritative.
1952 * However requests come for physical address, so we need to map.
1953 * For every physical address there are raid_disks/copies virtual addresses,
1954 * which is always are least one, but is not necessarly an integer.
1955 * This means that a physical address can span multiple chunks, so we may
1956 * have to submit multiple io requests for a single sync request.
1959 * We check if all blocks are in-sync and only write to blocks that
1962 static void sync_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
)
1964 struct r10conf
*conf
= mddev
->private;
1966 struct bio
*tbio
, *fbio
;
1969 atomic_set(&r10_bio
->remaining
, 1);
1971 /* find the first device with a block */
1972 for (i
=0; i
<conf
->copies
; i
++)
1973 if (!r10_bio
->devs
[i
].bio
->bi_error
)
1976 if (i
== conf
->copies
)
1980 fbio
= r10_bio
->devs
[i
].bio
;
1981 fbio
->bi_iter
.bi_size
= r10_bio
->sectors
<< 9;
1982 fbio
->bi_iter
.bi_idx
= 0;
1984 vcnt
= (r10_bio
->sectors
+ (PAGE_SIZE
>> 9) - 1) >> (PAGE_SHIFT
- 9);
1985 /* now find blocks with errors */
1986 for (i
=0 ; i
< conf
->copies
; i
++) {
1989 tbio
= r10_bio
->devs
[i
].bio
;
1991 if (tbio
->bi_end_io
!= end_sync_read
)
1995 if (!r10_bio
->devs
[i
].bio
->bi_error
) {
1996 /* We know that the bi_io_vec layout is the same for
1997 * both 'first' and 'i', so we just compare them.
1998 * All vec entries are PAGE_SIZE;
2000 int sectors
= r10_bio
->sectors
;
2001 for (j
= 0; j
< vcnt
; j
++) {
2002 int len
= PAGE_SIZE
;
2003 if (sectors
< (len
/ 512))
2004 len
= sectors
* 512;
2005 if (memcmp(page_address(fbio
->bi_io_vec
[j
].bv_page
),
2006 page_address(tbio
->bi_io_vec
[j
].bv_page
),
2013 atomic64_add(r10_bio
->sectors
, &mddev
->resync_mismatches
);
2014 if (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
))
2015 /* Don't fix anything. */
2018 /* Ok, we need to write this bio, either to correct an
2019 * inconsistency or to correct an unreadable block.
2020 * First we need to fixup bv_offset, bv_len and
2021 * bi_vecs, as the read request might have corrupted these
2025 tbio
->bi_vcnt
= vcnt
;
2026 tbio
->bi_iter
.bi_size
= fbio
->bi_iter
.bi_size
;
2027 tbio
->bi_rw
= WRITE
;
2028 tbio
->bi_private
= r10_bio
;
2029 tbio
->bi_iter
.bi_sector
= r10_bio
->devs
[i
].addr
;
2030 tbio
->bi_end_io
= end_sync_write
;
2032 bio_copy_data(tbio
, fbio
);
2034 d
= r10_bio
->devs
[i
].devnum
;
2035 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
2036 atomic_inc(&r10_bio
->remaining
);
2037 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, bio_sectors(tbio
));
2039 tbio
->bi_iter
.bi_sector
+= conf
->mirrors
[d
].rdev
->data_offset
;
2040 tbio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
2041 generic_make_request(tbio
);
2044 /* Now write out to any replacement devices
2047 for (i
= 0; i
< conf
->copies
; i
++) {
2050 tbio
= r10_bio
->devs
[i
].repl_bio
;
2051 if (!tbio
|| !tbio
->bi_end_io
)
2053 if (r10_bio
->devs
[i
].bio
->bi_end_io
!= end_sync_write
2054 && r10_bio
->devs
[i
].bio
!= fbio
)
2055 bio_copy_data(tbio
, fbio
);
2056 d
= r10_bio
->devs
[i
].devnum
;
2057 atomic_inc(&r10_bio
->remaining
);
2058 md_sync_acct(conf
->mirrors
[d
].replacement
->bdev
,
2060 generic_make_request(tbio
);
2064 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
2065 md_done_sync(mddev
, r10_bio
->sectors
, 1);
2071 * Now for the recovery code.
2072 * Recovery happens across physical sectors.
2073 * We recover all non-is_sync drives by finding the virtual address of
2074 * each, and then choose a working drive that also has that virt address.
2075 * There is a separate r10_bio for each non-in_sync drive.
2076 * Only the first two slots are in use. The first for reading,
2077 * The second for writing.
2080 static void fix_recovery_read_error(struct r10bio
*r10_bio
)
2082 /* We got a read error during recovery.
2083 * We repeat the read in smaller page-sized sections.
2084 * If a read succeeds, write it to the new device or record
2085 * a bad block if we cannot.
2086 * If a read fails, record a bad block on both old and
2089 struct mddev
*mddev
= r10_bio
->mddev
;
2090 struct r10conf
*conf
= mddev
->private;
2091 struct bio
*bio
= r10_bio
->devs
[0].bio
;
2093 int sectors
= r10_bio
->sectors
;
2095 int dr
= r10_bio
->devs
[0].devnum
;
2096 int dw
= r10_bio
->devs
[1].devnum
;
2100 struct md_rdev
*rdev
;
2104 if (s
> (PAGE_SIZE
>>9))
2107 rdev
= conf
->mirrors
[dr
].rdev
;
2108 addr
= r10_bio
->devs
[0].addr
+ sect
,
2109 ok
= sync_page_io(rdev
,
2112 bio
->bi_io_vec
[idx
].bv_page
,
2115 rdev
= conf
->mirrors
[dw
].rdev
;
2116 addr
= r10_bio
->devs
[1].addr
+ sect
;
2117 ok
= sync_page_io(rdev
,
2120 bio
->bi_io_vec
[idx
].bv_page
,
2123 set_bit(WriteErrorSeen
, &rdev
->flags
);
2124 if (!test_and_set_bit(WantReplacement
,
2126 set_bit(MD_RECOVERY_NEEDED
,
2127 &rdev
->mddev
->recovery
);
2131 /* We don't worry if we cannot set a bad block -
2132 * it really is bad so there is no loss in not
2135 rdev_set_badblocks(rdev
, addr
, s
, 0);
2137 if (rdev
!= conf
->mirrors
[dw
].rdev
) {
2138 /* need bad block on destination too */
2139 struct md_rdev
*rdev2
= conf
->mirrors
[dw
].rdev
;
2140 addr
= r10_bio
->devs
[1].addr
+ sect
;
2141 ok
= rdev_set_badblocks(rdev2
, addr
, s
, 0);
2143 /* just abort the recovery */
2145 "md/raid10:%s: recovery aborted"
2146 " due to read error\n",
2149 conf
->mirrors
[dw
].recovery_disabled
2150 = mddev
->recovery_disabled
;
2151 set_bit(MD_RECOVERY_INTR
,
2164 static void recovery_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
)
2166 struct r10conf
*conf
= mddev
->private;
2168 struct bio
*wbio
, *wbio2
;
2170 if (!test_bit(R10BIO_Uptodate
, &r10_bio
->state
)) {
2171 fix_recovery_read_error(r10_bio
);
2172 end_sync_request(r10_bio
);
2177 * share the pages with the first bio
2178 * and submit the write request
2180 d
= r10_bio
->devs
[1].devnum
;
2181 wbio
= r10_bio
->devs
[1].bio
;
2182 wbio2
= r10_bio
->devs
[1].repl_bio
;
2183 /* Need to test wbio2->bi_end_io before we call
2184 * generic_make_request as if the former is NULL,
2185 * the latter is free to free wbio2.
2187 if (wbio2
&& !wbio2
->bi_end_io
)
2189 if (wbio
->bi_end_io
) {
2190 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
2191 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, bio_sectors(wbio
));
2192 generic_make_request(wbio
);
2195 atomic_inc(&conf
->mirrors
[d
].replacement
->nr_pending
);
2196 md_sync_acct(conf
->mirrors
[d
].replacement
->bdev
,
2197 bio_sectors(wbio2
));
2198 generic_make_request(wbio2
);
2203 * Used by fix_read_error() to decay the per rdev read_errors.
2204 * We halve the read error count for every hour that has elapsed
2205 * since the last recorded read error.
2208 static void check_decay_read_errors(struct mddev
*mddev
, struct md_rdev
*rdev
)
2210 struct timespec cur_time_mon
;
2211 unsigned long hours_since_last
;
2212 unsigned int read_errors
= atomic_read(&rdev
->read_errors
);
2214 ktime_get_ts(&cur_time_mon
);
2216 if (rdev
->last_read_error
.tv_sec
== 0 &&
2217 rdev
->last_read_error
.tv_nsec
== 0) {
2218 /* first time we've seen a read error */
2219 rdev
->last_read_error
= cur_time_mon
;
2223 hours_since_last
= (cur_time_mon
.tv_sec
-
2224 rdev
->last_read_error
.tv_sec
) / 3600;
2226 rdev
->last_read_error
= cur_time_mon
;
2229 * if hours_since_last is > the number of bits in read_errors
2230 * just set read errors to 0. We do this to avoid
2231 * overflowing the shift of read_errors by hours_since_last.
2233 if (hours_since_last
>= 8 * sizeof(read_errors
))
2234 atomic_set(&rdev
->read_errors
, 0);
2236 atomic_set(&rdev
->read_errors
, read_errors
>> hours_since_last
);
2239 static int r10_sync_page_io(struct md_rdev
*rdev
, sector_t sector
,
2240 int sectors
, struct page
*page
, int rw
)
2245 if (is_badblock(rdev
, sector
, sectors
, &first_bad
, &bad_sectors
)
2246 && (rw
== READ
|| test_bit(WriteErrorSeen
, &rdev
->flags
)))
2248 if (sync_page_io(rdev
, sector
, sectors
<< 9, page
, rw
, false))
2252 set_bit(WriteErrorSeen
, &rdev
->flags
);
2253 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
2254 set_bit(MD_RECOVERY_NEEDED
,
2255 &rdev
->mddev
->recovery
);
2257 /* need to record an error - either for the block or the device */
2258 if (!rdev_set_badblocks(rdev
, sector
, sectors
, 0))
2259 md_error(rdev
->mddev
, rdev
);
2264 * This is a kernel thread which:
2266 * 1. Retries failed read operations on working mirrors.
2267 * 2. Updates the raid superblock when problems encounter.
2268 * 3. Performs writes following reads for array synchronising.
2271 static void fix_read_error(struct r10conf
*conf
, struct mddev
*mddev
, struct r10bio
*r10_bio
)
2273 int sect
= 0; /* Offset from r10_bio->sector */
2274 int sectors
= r10_bio
->sectors
;
2275 struct md_rdev
*rdev
;
2276 int max_read_errors
= atomic_read(&mddev
->max_corr_read_errors
);
2277 int d
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
2279 /* still own a reference to this rdev, so it cannot
2280 * have been cleared recently.
2282 rdev
= conf
->mirrors
[d
].rdev
;
2284 if (test_bit(Faulty
, &rdev
->flags
))
2285 /* drive has already been failed, just ignore any
2286 more fix_read_error() attempts */
2289 check_decay_read_errors(mddev
, rdev
);
2290 atomic_inc(&rdev
->read_errors
);
2291 if (atomic_read(&rdev
->read_errors
) > max_read_errors
) {
2292 char b
[BDEVNAME_SIZE
];
2293 bdevname(rdev
->bdev
, b
);
2296 "md/raid10:%s: %s: Raid device exceeded "
2297 "read_error threshold [cur %d:max %d]\n",
2299 atomic_read(&rdev
->read_errors
), max_read_errors
);
2301 "md/raid10:%s: %s: Failing raid device\n",
2303 md_error(mddev
, conf
->mirrors
[d
].rdev
);
2304 r10_bio
->devs
[r10_bio
->read_slot
].bio
= IO_BLOCKED
;
2310 int sl
= r10_bio
->read_slot
;
2314 if (s
> (PAGE_SIZE
>>9))
2322 d
= r10_bio
->devs
[sl
].devnum
;
2323 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2325 test_bit(In_sync
, &rdev
->flags
) &&
2326 is_badblock(rdev
, r10_bio
->devs
[sl
].addr
+ sect
, s
,
2327 &first_bad
, &bad_sectors
) == 0) {
2328 atomic_inc(&rdev
->nr_pending
);
2330 success
= sync_page_io(rdev
,
2331 r10_bio
->devs
[sl
].addr
+
2334 conf
->tmppage
, READ
, false);
2335 rdev_dec_pending(rdev
, mddev
);
2341 if (sl
== conf
->copies
)
2343 } while (!success
&& sl
!= r10_bio
->read_slot
);
2347 /* Cannot read from anywhere, just mark the block
2348 * as bad on the first device to discourage future
2351 int dn
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
2352 rdev
= conf
->mirrors
[dn
].rdev
;
2354 if (!rdev_set_badblocks(
2356 r10_bio
->devs
[r10_bio
->read_slot
].addr
2359 md_error(mddev
, rdev
);
2360 r10_bio
->devs
[r10_bio
->read_slot
].bio
2367 /* write it back and re-read */
2369 while (sl
!= r10_bio
->read_slot
) {
2370 char b
[BDEVNAME_SIZE
];
2375 d
= r10_bio
->devs
[sl
].devnum
;
2376 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2378 !test_bit(In_sync
, &rdev
->flags
))
2381 atomic_inc(&rdev
->nr_pending
);
2383 if (r10_sync_page_io(rdev
,
2384 r10_bio
->devs
[sl
].addr
+
2386 s
, conf
->tmppage
, WRITE
)
2388 /* Well, this device is dead */
2390 "md/raid10:%s: read correction "
2392 " (%d sectors at %llu on %s)\n",
2394 (unsigned long long)(
2396 choose_data_offset(r10_bio
,
2398 bdevname(rdev
->bdev
, b
));
2399 printk(KERN_NOTICE
"md/raid10:%s: %s: failing "
2402 bdevname(rdev
->bdev
, b
));
2404 rdev_dec_pending(rdev
, mddev
);
2408 while (sl
!= r10_bio
->read_slot
) {
2409 char b
[BDEVNAME_SIZE
];
2414 d
= r10_bio
->devs
[sl
].devnum
;
2415 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2417 !test_bit(In_sync
, &rdev
->flags
))
2420 atomic_inc(&rdev
->nr_pending
);
2422 switch (r10_sync_page_io(rdev
,
2423 r10_bio
->devs
[sl
].addr
+
2428 /* Well, this device is dead */
2430 "md/raid10:%s: unable to read back "
2432 " (%d sectors at %llu on %s)\n",
2434 (unsigned long long)(
2436 choose_data_offset(r10_bio
, rdev
)),
2437 bdevname(rdev
->bdev
, b
));
2438 printk(KERN_NOTICE
"md/raid10:%s: %s: failing "
2441 bdevname(rdev
->bdev
, b
));
2445 "md/raid10:%s: read error corrected"
2446 " (%d sectors at %llu on %s)\n",
2448 (unsigned long long)(
2450 choose_data_offset(r10_bio
, rdev
)),
2451 bdevname(rdev
->bdev
, b
));
2452 atomic_add(s
, &rdev
->corrected_errors
);
2455 rdev_dec_pending(rdev
, mddev
);
2465 static int narrow_write_error(struct r10bio
*r10_bio
, int i
)
2467 struct bio
*bio
= r10_bio
->master_bio
;
2468 struct mddev
*mddev
= r10_bio
->mddev
;
2469 struct r10conf
*conf
= mddev
->private;
2470 struct md_rdev
*rdev
= conf
->mirrors
[r10_bio
->devs
[i
].devnum
].rdev
;
2471 /* bio has the data to be written to slot 'i' where
2472 * we just recently had a write error.
2473 * We repeatedly clone the bio and trim down to one block,
2474 * then try the write. Where the write fails we record
2476 * It is conceivable that the bio doesn't exactly align with
2477 * blocks. We must handle this.
2479 * We currently own a reference to the rdev.
2485 int sect_to_write
= r10_bio
->sectors
;
2488 if (rdev
->badblocks
.shift
< 0)
2491 block_sectors
= roundup(1 << rdev
->badblocks
.shift
,
2492 bdev_logical_block_size(rdev
->bdev
) >> 9);
2493 sector
= r10_bio
->sector
;
2494 sectors
= ((r10_bio
->sector
+ block_sectors
)
2495 & ~(sector_t
)(block_sectors
- 1))
2498 while (sect_to_write
) {
2500 if (sectors
> sect_to_write
)
2501 sectors
= sect_to_write
;
2502 /* Write at 'sector' for 'sectors' */
2503 wbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
2504 bio_trim(wbio
, sector
- bio
->bi_iter
.bi_sector
, sectors
);
2505 wbio
->bi_iter
.bi_sector
= (r10_bio
->devs
[i
].addr
+
2506 choose_data_offset(r10_bio
, rdev
) +
2507 (sector
- r10_bio
->sector
));
2508 wbio
->bi_bdev
= rdev
->bdev
;
2509 if (submit_bio_wait(WRITE
, wbio
) < 0)
2511 ok
= rdev_set_badblocks(rdev
, sector
,
2516 sect_to_write
-= sectors
;
2518 sectors
= block_sectors
;
2523 static void handle_read_error(struct mddev
*mddev
, struct r10bio
*r10_bio
)
2525 int slot
= r10_bio
->read_slot
;
2527 struct r10conf
*conf
= mddev
->private;
2528 struct md_rdev
*rdev
= r10_bio
->devs
[slot
].rdev
;
2529 char b
[BDEVNAME_SIZE
];
2530 unsigned long do_sync
;
2533 /* we got a read error. Maybe the drive is bad. Maybe just
2534 * the block and we can fix it.
2535 * We freeze all other IO, and try reading the block from
2536 * other devices. When we find one, we re-write
2537 * and check it that fixes the read error.
2538 * This is all done synchronously while the array is
2541 bio
= r10_bio
->devs
[slot
].bio
;
2542 bdevname(bio
->bi_bdev
, b
);
2544 r10_bio
->devs
[slot
].bio
= NULL
;
2546 if (mddev
->ro
== 0) {
2547 freeze_array(conf
, 1);
2548 fix_read_error(conf
, mddev
, r10_bio
);
2549 unfreeze_array(conf
);
2551 r10_bio
->devs
[slot
].bio
= IO_BLOCKED
;
2553 rdev_dec_pending(rdev
, mddev
);
2556 rdev
= read_balance(conf
, r10_bio
, &max_sectors
);
2558 printk(KERN_ALERT
"md/raid10:%s: %s: unrecoverable I/O"
2559 " read error for block %llu\n",
2561 (unsigned long long)r10_bio
->sector
);
2562 raid_end_bio_io(r10_bio
);
2566 do_sync
= (r10_bio
->master_bio
->bi_rw
& REQ_SYNC
);
2567 slot
= r10_bio
->read_slot
;
2570 "md/raid10:%s: %s: redirecting "
2571 "sector %llu to another mirror\n",
2573 bdevname(rdev
->bdev
, b
),
2574 (unsigned long long)r10_bio
->sector
);
2575 bio
= bio_clone_mddev(r10_bio
->master_bio
,
2577 bio_trim(bio
, r10_bio
->sector
- bio
->bi_iter
.bi_sector
, max_sectors
);
2578 r10_bio
->devs
[slot
].bio
= bio
;
2579 r10_bio
->devs
[slot
].rdev
= rdev
;
2580 bio
->bi_iter
.bi_sector
= r10_bio
->devs
[slot
].addr
2581 + choose_data_offset(r10_bio
, rdev
);
2582 bio
->bi_bdev
= rdev
->bdev
;
2583 bio
->bi_rw
= READ
| do_sync
;
2584 bio
->bi_private
= r10_bio
;
2585 bio
->bi_end_io
= raid10_end_read_request
;
2586 if (max_sectors
< r10_bio
->sectors
) {
2587 /* Drat - have to split this up more */
2588 struct bio
*mbio
= r10_bio
->master_bio
;
2589 int sectors_handled
=
2590 r10_bio
->sector
+ max_sectors
2591 - mbio
->bi_iter
.bi_sector
;
2592 r10_bio
->sectors
= max_sectors
;
2593 spin_lock_irq(&conf
->device_lock
);
2594 if (mbio
->bi_phys_segments
== 0)
2595 mbio
->bi_phys_segments
= 2;
2597 mbio
->bi_phys_segments
++;
2598 spin_unlock_irq(&conf
->device_lock
);
2599 generic_make_request(bio
);
2601 r10_bio
= mempool_alloc(conf
->r10bio_pool
,
2603 r10_bio
->master_bio
= mbio
;
2604 r10_bio
->sectors
= bio_sectors(mbio
) - sectors_handled
;
2606 set_bit(R10BIO_ReadError
,
2608 r10_bio
->mddev
= mddev
;
2609 r10_bio
->sector
= mbio
->bi_iter
.bi_sector
2614 generic_make_request(bio
);
2617 static void handle_write_completed(struct r10conf
*conf
, struct r10bio
*r10_bio
)
2619 /* Some sort of write request has finished and it
2620 * succeeded in writing where we thought there was a
2621 * bad block. So forget the bad block.
2622 * Or possibly if failed and we need to record
2626 struct md_rdev
*rdev
;
2628 if (test_bit(R10BIO_IsSync
, &r10_bio
->state
) ||
2629 test_bit(R10BIO_IsRecover
, &r10_bio
->state
)) {
2630 for (m
= 0; m
< conf
->copies
; m
++) {
2631 int dev
= r10_bio
->devs
[m
].devnum
;
2632 rdev
= conf
->mirrors
[dev
].rdev
;
2633 if (r10_bio
->devs
[m
].bio
== NULL
||
2634 r10_bio
->devs
[m
].bio
->bi_end_io
== NULL
)
2636 if (!r10_bio
->devs
[m
].bio
->bi_error
) {
2637 rdev_clear_badblocks(
2639 r10_bio
->devs
[m
].addr
,
2640 r10_bio
->sectors
, 0);
2642 if (!rdev_set_badblocks(
2644 r10_bio
->devs
[m
].addr
,
2645 r10_bio
->sectors
, 0))
2646 md_error(conf
->mddev
, rdev
);
2648 rdev
= conf
->mirrors
[dev
].replacement
;
2649 if (r10_bio
->devs
[m
].repl_bio
== NULL
||
2650 r10_bio
->devs
[m
].repl_bio
->bi_end_io
== NULL
)
2653 if (!r10_bio
->devs
[m
].repl_bio
->bi_error
) {
2654 rdev_clear_badblocks(
2656 r10_bio
->devs
[m
].addr
,
2657 r10_bio
->sectors
, 0);
2659 if (!rdev_set_badblocks(
2661 r10_bio
->devs
[m
].addr
,
2662 r10_bio
->sectors
, 0))
2663 md_error(conf
->mddev
, rdev
);
2669 for (m
= 0; m
< conf
->copies
; m
++) {
2670 int dev
= r10_bio
->devs
[m
].devnum
;
2671 struct bio
*bio
= r10_bio
->devs
[m
].bio
;
2672 rdev
= conf
->mirrors
[dev
].rdev
;
2673 if (bio
== IO_MADE_GOOD
) {
2674 rdev_clear_badblocks(
2676 r10_bio
->devs
[m
].addr
,
2677 r10_bio
->sectors
, 0);
2678 rdev_dec_pending(rdev
, conf
->mddev
);
2679 } else if (bio
!= NULL
&& bio
->bi_error
) {
2681 if (!narrow_write_error(r10_bio
, m
)) {
2682 md_error(conf
->mddev
, rdev
);
2683 set_bit(R10BIO_Degraded
,
2686 rdev_dec_pending(rdev
, conf
->mddev
);
2688 bio
= r10_bio
->devs
[m
].repl_bio
;
2689 rdev
= conf
->mirrors
[dev
].replacement
;
2690 if (rdev
&& bio
== IO_MADE_GOOD
) {
2691 rdev_clear_badblocks(
2693 r10_bio
->devs
[m
].addr
,
2694 r10_bio
->sectors
, 0);
2695 rdev_dec_pending(rdev
, conf
->mddev
);
2699 spin_lock_irq(&conf
->device_lock
);
2700 list_add(&r10_bio
->retry_list
, &conf
->bio_end_io_list
);
2702 spin_unlock_irq(&conf
->device_lock
);
2704 * In case freeze_array() is waiting for condition
2705 * nr_pending == nr_queued + extra to be true.
2707 wake_up(&conf
->wait_barrier
);
2708 md_wakeup_thread(conf
->mddev
->thread
);
2710 if (test_bit(R10BIO_WriteError
,
2712 close_write(r10_bio
);
2713 raid_end_bio_io(r10_bio
);
2718 static void raid10d(struct md_thread
*thread
)
2720 struct mddev
*mddev
= thread
->mddev
;
2721 struct r10bio
*r10_bio
;
2722 unsigned long flags
;
2723 struct r10conf
*conf
= mddev
->private;
2724 struct list_head
*head
= &conf
->retry_list
;
2725 struct blk_plug plug
;
2727 md_check_recovery(mddev
);
2729 if (!list_empty_careful(&conf
->bio_end_io_list
) &&
2730 !test_bit(MD_CHANGE_PENDING
, &mddev
->flags
)) {
2732 spin_lock_irqsave(&conf
->device_lock
, flags
);
2733 if (!test_bit(MD_CHANGE_PENDING
, &mddev
->flags
)) {
2734 while (!list_empty(&conf
->bio_end_io_list
)) {
2735 list_move(conf
->bio_end_io_list
.prev
, &tmp
);
2739 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2740 while (!list_empty(&tmp
)) {
2741 r10_bio
= list_first_entry(&tmp
, struct r10bio
,
2743 list_del(&r10_bio
->retry_list
);
2744 if (mddev
->degraded
)
2745 set_bit(R10BIO_Degraded
, &r10_bio
->state
);
2747 if (test_bit(R10BIO_WriteError
,
2749 close_write(r10_bio
);
2750 raid_end_bio_io(r10_bio
);
2754 blk_start_plug(&plug
);
2757 flush_pending_writes(conf
);
2759 spin_lock_irqsave(&conf
->device_lock
, flags
);
2760 if (list_empty(head
)) {
2761 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2764 r10_bio
= list_entry(head
->prev
, struct r10bio
, retry_list
);
2765 list_del(head
->prev
);
2767 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2769 mddev
= r10_bio
->mddev
;
2770 conf
= mddev
->private;
2771 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
2772 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
2773 handle_write_completed(conf
, r10_bio
);
2774 else if (test_bit(R10BIO_IsReshape
, &r10_bio
->state
))
2775 reshape_request_write(mddev
, r10_bio
);
2776 else if (test_bit(R10BIO_IsSync
, &r10_bio
->state
))
2777 sync_request_write(mddev
, r10_bio
);
2778 else if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
))
2779 recovery_request_write(mddev
, r10_bio
);
2780 else if (test_bit(R10BIO_ReadError
, &r10_bio
->state
))
2781 handle_read_error(mddev
, r10_bio
);
2783 /* just a partial read to be scheduled from a
2786 int slot
= r10_bio
->read_slot
;
2787 generic_make_request(r10_bio
->devs
[slot
].bio
);
2791 if (mddev
->flags
& ~(1<<MD_CHANGE_PENDING
))
2792 md_check_recovery(mddev
);
2794 blk_finish_plug(&plug
);
2797 static int init_resync(struct r10conf
*conf
)
2802 buffs
= RESYNC_WINDOW
/ RESYNC_BLOCK_SIZE
;
2803 BUG_ON(conf
->r10buf_pool
);
2804 conf
->have_replacement
= 0;
2805 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++)
2806 if (conf
->mirrors
[i
].replacement
)
2807 conf
->have_replacement
= 1;
2808 conf
->r10buf_pool
= mempool_create(buffs
, r10buf_pool_alloc
, r10buf_pool_free
, conf
);
2809 if (!conf
->r10buf_pool
)
2811 conf
->next_resync
= 0;
2816 * perform a "sync" on one "block"
2818 * We need to make sure that no normal I/O request - particularly write
2819 * requests - conflict with active sync requests.
2821 * This is achieved by tracking pending requests and a 'barrier' concept
2822 * that can be installed to exclude normal IO requests.
2824 * Resync and recovery are handled very differently.
2825 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2827 * For resync, we iterate over virtual addresses, read all copies,
2828 * and update if there are differences. If only one copy is live,
2830 * For recovery, we iterate over physical addresses, read a good
2831 * value for each non-in_sync drive, and over-write.
2833 * So, for recovery we may have several outstanding complex requests for a
2834 * given address, one for each out-of-sync device. We model this by allocating
2835 * a number of r10_bio structures, one for each out-of-sync device.
2836 * As we setup these structures, we collect all bio's together into a list
2837 * which we then process collectively to add pages, and then process again
2838 * to pass to generic_make_request.
2840 * The r10_bio structures are linked using a borrowed master_bio pointer.
2841 * This link is counted in ->remaining. When the r10_bio that points to NULL
2842 * has its remaining count decremented to 0, the whole complex operation
2847 static sector_t
sync_request(struct mddev
*mddev
, sector_t sector_nr
,
2850 struct r10conf
*conf
= mddev
->private;
2851 struct r10bio
*r10_bio
;
2852 struct bio
*biolist
= NULL
, *bio
;
2853 sector_t max_sector
, nr_sectors
;
2856 sector_t sync_blocks
;
2857 sector_t sectors_skipped
= 0;
2858 int chunks_skipped
= 0;
2859 sector_t chunk_mask
= conf
->geo
.chunk_mask
;
2861 if (!conf
->r10buf_pool
)
2862 if (init_resync(conf
))
2866 * Allow skipping a full rebuild for incremental assembly
2867 * of a clean array, like RAID1 does.
2869 if (mddev
->bitmap
== NULL
&&
2870 mddev
->recovery_cp
== MaxSector
&&
2871 mddev
->reshape_position
== MaxSector
&&
2872 !test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) &&
2873 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
2874 !test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
) &&
2875 conf
->fullsync
== 0) {
2877 return mddev
->dev_sectors
- sector_nr
;
2881 max_sector
= mddev
->dev_sectors
;
2882 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) ||
2883 test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
2884 max_sector
= mddev
->resync_max_sectors
;
2885 if (sector_nr
>= max_sector
) {
2886 /* If we aborted, we need to abort the
2887 * sync on the 'current' bitmap chucks (there can
2888 * be several when recovering multiple devices).
2889 * as we may have started syncing it but not finished.
2890 * We can find the current address in
2891 * mddev->curr_resync, but for recovery,
2892 * we need to convert that to several
2893 * virtual addresses.
2895 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
)) {
2901 if (mddev
->curr_resync
< max_sector
) { /* aborted */
2902 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))
2903 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
2905 else for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
2907 raid10_find_virt(conf
, mddev
->curr_resync
, i
);
2908 bitmap_end_sync(mddev
->bitmap
, sect
,
2912 /* completed sync */
2913 if ((!mddev
->bitmap
|| conf
->fullsync
)
2914 && conf
->have_replacement
2915 && test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
2916 /* Completed a full sync so the replacements
2917 * are now fully recovered.
2919 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++)
2920 if (conf
->mirrors
[i
].replacement
)
2921 conf
->mirrors
[i
].replacement
2927 bitmap_close_sync(mddev
->bitmap
);
2930 return sectors_skipped
;
2933 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
2934 return reshape_request(mddev
, sector_nr
, skipped
);
2936 if (chunks_skipped
>= conf
->geo
.raid_disks
) {
2937 /* if there has been nothing to do on any drive,
2938 * then there is nothing to do at all..
2941 return (max_sector
- sector_nr
) + sectors_skipped
;
2944 if (max_sector
> mddev
->resync_max
)
2945 max_sector
= mddev
->resync_max
; /* Don't do IO beyond here */
2947 /* make sure whole request will fit in a chunk - if chunks
2950 if (conf
->geo
.near_copies
< conf
->geo
.raid_disks
&&
2951 max_sector
> (sector_nr
| chunk_mask
))
2952 max_sector
= (sector_nr
| chunk_mask
) + 1;
2954 /* Again, very different code for resync and recovery.
2955 * Both must result in an r10bio with a list of bios that
2956 * have bi_end_io, bi_sector, bi_bdev set,
2957 * and bi_private set to the r10bio.
2958 * For recovery, we may actually create several r10bios
2959 * with 2 bios in each, that correspond to the bios in the main one.
2960 * In this case, the subordinate r10bios link back through a
2961 * borrowed master_bio pointer, and the counter in the master
2962 * includes a ref from each subordinate.
2964 /* First, we decide what to do and set ->bi_end_io
2965 * To end_sync_read if we want to read, and
2966 * end_sync_write if we will want to write.
2969 max_sync
= RESYNC_PAGES
<< (PAGE_SHIFT
-9);
2970 if (!test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
2971 /* recovery... the complicated one */
2975 for (i
= 0 ; i
< conf
->geo
.raid_disks
; i
++) {
2981 struct raid10_info
*mirror
= &conf
->mirrors
[i
];
2983 if ((mirror
->rdev
== NULL
||
2984 test_bit(In_sync
, &mirror
->rdev
->flags
))
2986 (mirror
->replacement
== NULL
||
2988 &mirror
->replacement
->flags
)))
2992 /* want to reconstruct this device */
2994 sect
= raid10_find_virt(conf
, sector_nr
, i
);
2995 if (sect
>= mddev
->resync_max_sectors
) {
2996 /* last stripe is not complete - don't
2997 * try to recover this sector.
3001 /* Unless we are doing a full sync, or a replacement
3002 * we only need to recover the block if it is set in
3005 must_sync
= bitmap_start_sync(mddev
->bitmap
, sect
,
3007 if (sync_blocks
< max_sync
)
3008 max_sync
= sync_blocks
;
3010 mirror
->replacement
== NULL
&&
3012 /* yep, skip the sync_blocks here, but don't assume
3013 * that there will never be anything to do here
3015 chunks_skipped
= -1;
3019 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
3021 raise_barrier(conf
, rb2
!= NULL
);
3022 atomic_set(&r10_bio
->remaining
, 0);
3024 r10_bio
->master_bio
= (struct bio
*)rb2
;
3026 atomic_inc(&rb2
->remaining
);
3027 r10_bio
->mddev
= mddev
;
3028 set_bit(R10BIO_IsRecover
, &r10_bio
->state
);
3029 r10_bio
->sector
= sect
;
3031 raid10_find_phys(conf
, r10_bio
);
3033 /* Need to check if the array will still be
3036 for (j
= 0; j
< conf
->geo
.raid_disks
; j
++)
3037 if (conf
->mirrors
[j
].rdev
== NULL
||
3038 test_bit(Faulty
, &conf
->mirrors
[j
].rdev
->flags
)) {
3043 must_sync
= bitmap_start_sync(mddev
->bitmap
, sect
,
3044 &sync_blocks
, still_degraded
);
3047 for (j
=0; j
<conf
->copies
;j
++) {
3049 int d
= r10_bio
->devs
[j
].devnum
;
3050 sector_t from_addr
, to_addr
;
3051 struct md_rdev
*rdev
;
3052 sector_t sector
, first_bad
;
3054 if (!conf
->mirrors
[d
].rdev
||
3055 !test_bit(In_sync
, &conf
->mirrors
[d
].rdev
->flags
))
3057 /* This is where we read from */
3059 rdev
= conf
->mirrors
[d
].rdev
;
3060 sector
= r10_bio
->devs
[j
].addr
;
3062 if (is_badblock(rdev
, sector
, max_sync
,
3063 &first_bad
, &bad_sectors
)) {
3064 if (first_bad
> sector
)
3065 max_sync
= first_bad
- sector
;
3067 bad_sectors
-= (sector
3069 if (max_sync
> bad_sectors
)
3070 max_sync
= bad_sectors
;
3074 bio
= r10_bio
->devs
[0].bio
;
3076 bio
->bi_next
= biolist
;
3078 bio
->bi_private
= r10_bio
;
3079 bio
->bi_end_io
= end_sync_read
;
3081 from_addr
= r10_bio
->devs
[j
].addr
;
3082 bio
->bi_iter
.bi_sector
= from_addr
+
3084 bio
->bi_bdev
= rdev
->bdev
;
3085 atomic_inc(&rdev
->nr_pending
);
3086 /* and we write to 'i' (if not in_sync) */
3088 for (k
=0; k
<conf
->copies
; k
++)
3089 if (r10_bio
->devs
[k
].devnum
== i
)
3091 BUG_ON(k
== conf
->copies
);
3092 to_addr
= r10_bio
->devs
[k
].addr
;
3093 r10_bio
->devs
[0].devnum
= d
;
3094 r10_bio
->devs
[0].addr
= from_addr
;
3095 r10_bio
->devs
[1].devnum
= i
;
3096 r10_bio
->devs
[1].addr
= to_addr
;
3098 rdev
= mirror
->rdev
;
3099 if (!test_bit(In_sync
, &rdev
->flags
)) {
3100 bio
= r10_bio
->devs
[1].bio
;
3102 bio
->bi_next
= biolist
;
3104 bio
->bi_private
= r10_bio
;
3105 bio
->bi_end_io
= end_sync_write
;
3107 bio
->bi_iter
.bi_sector
= to_addr
3108 + rdev
->data_offset
;
3109 bio
->bi_bdev
= rdev
->bdev
;
3110 atomic_inc(&r10_bio
->remaining
);
3112 r10_bio
->devs
[1].bio
->bi_end_io
= NULL
;
3114 /* and maybe write to replacement */
3115 bio
= r10_bio
->devs
[1].repl_bio
;
3117 bio
->bi_end_io
= NULL
;
3118 rdev
= mirror
->replacement
;
3119 /* Note: if rdev != NULL, then bio
3120 * cannot be NULL as r10buf_pool_alloc will
3121 * have allocated it.
3122 * So the second test here is pointless.
3123 * But it keeps semantic-checkers happy, and
3124 * this comment keeps human reviewers
3127 if (rdev
== NULL
|| bio
== NULL
||
3128 test_bit(Faulty
, &rdev
->flags
))
3131 bio
->bi_next
= biolist
;
3133 bio
->bi_private
= r10_bio
;
3134 bio
->bi_end_io
= end_sync_write
;
3136 bio
->bi_iter
.bi_sector
= to_addr
+
3138 bio
->bi_bdev
= rdev
->bdev
;
3139 atomic_inc(&r10_bio
->remaining
);
3142 if (j
== conf
->copies
) {
3143 /* Cannot recover, so abort the recovery or
3144 * record a bad block */
3146 /* problem is that there are bad blocks
3147 * on other device(s)
3150 for (k
= 0; k
< conf
->copies
; k
++)
3151 if (r10_bio
->devs
[k
].devnum
== i
)
3153 if (!test_bit(In_sync
,
3154 &mirror
->rdev
->flags
)
3155 && !rdev_set_badblocks(
3157 r10_bio
->devs
[k
].addr
,
3160 if (mirror
->replacement
&&
3161 !rdev_set_badblocks(
3162 mirror
->replacement
,
3163 r10_bio
->devs
[k
].addr
,
3168 if (!test_and_set_bit(MD_RECOVERY_INTR
,
3170 printk(KERN_INFO
"md/raid10:%s: insufficient "
3171 "working devices for recovery.\n",
3173 mirror
->recovery_disabled
3174 = mddev
->recovery_disabled
;
3178 atomic_dec(&rb2
->remaining
);
3183 if (biolist
== NULL
) {
3185 struct r10bio
*rb2
= r10_bio
;
3186 r10_bio
= (struct r10bio
*) rb2
->master_bio
;
3187 rb2
->master_bio
= NULL
;
3193 /* resync. Schedule a read for every block at this virt offset */
3196 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
, 0);
3198 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
,
3199 &sync_blocks
, mddev
->degraded
) &&
3200 !conf
->fullsync
&& !test_bit(MD_RECOVERY_REQUESTED
,
3201 &mddev
->recovery
)) {
3202 /* We can skip this block */
3204 return sync_blocks
+ sectors_skipped
;
3206 if (sync_blocks
< max_sync
)
3207 max_sync
= sync_blocks
;
3208 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
3211 r10_bio
->mddev
= mddev
;
3212 atomic_set(&r10_bio
->remaining
, 0);
3213 raise_barrier(conf
, 0);
3214 conf
->next_resync
= sector_nr
;
3216 r10_bio
->master_bio
= NULL
;
3217 r10_bio
->sector
= sector_nr
;
3218 set_bit(R10BIO_IsSync
, &r10_bio
->state
);
3219 raid10_find_phys(conf
, r10_bio
);
3220 r10_bio
->sectors
= (sector_nr
| chunk_mask
) - sector_nr
+ 1;
3222 for (i
= 0; i
< conf
->copies
; i
++) {
3223 int d
= r10_bio
->devs
[i
].devnum
;
3224 sector_t first_bad
, sector
;
3227 if (r10_bio
->devs
[i
].repl_bio
)
3228 r10_bio
->devs
[i
].repl_bio
->bi_end_io
= NULL
;
3230 bio
= r10_bio
->devs
[i
].bio
;
3232 bio
->bi_error
= -EIO
;
3233 if (conf
->mirrors
[d
].rdev
== NULL
||
3234 test_bit(Faulty
, &conf
->mirrors
[d
].rdev
->flags
))
3236 sector
= r10_bio
->devs
[i
].addr
;
3237 if (is_badblock(conf
->mirrors
[d
].rdev
,
3239 &first_bad
, &bad_sectors
)) {
3240 if (first_bad
> sector
)
3241 max_sync
= first_bad
- sector
;
3243 bad_sectors
-= (sector
- first_bad
);
3244 if (max_sync
> bad_sectors
)
3245 max_sync
= bad_sectors
;
3249 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
3250 atomic_inc(&r10_bio
->remaining
);
3251 bio
->bi_next
= biolist
;
3253 bio
->bi_private
= r10_bio
;
3254 bio
->bi_end_io
= end_sync_read
;
3256 bio
->bi_iter
.bi_sector
= sector
+
3257 conf
->mirrors
[d
].rdev
->data_offset
;
3258 bio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
3261 if (conf
->mirrors
[d
].replacement
== NULL
||
3263 &conf
->mirrors
[d
].replacement
->flags
))
3266 /* Need to set up for writing to the replacement */
3267 bio
= r10_bio
->devs
[i
].repl_bio
;
3269 bio
->bi_error
= -EIO
;
3271 sector
= r10_bio
->devs
[i
].addr
;
3272 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
3273 bio
->bi_next
= biolist
;
3275 bio
->bi_private
= r10_bio
;
3276 bio
->bi_end_io
= end_sync_write
;
3278 bio
->bi_iter
.bi_sector
= sector
+
3279 conf
->mirrors
[d
].replacement
->data_offset
;
3280 bio
->bi_bdev
= conf
->mirrors
[d
].replacement
->bdev
;
3285 for (i
=0; i
<conf
->copies
; i
++) {
3286 int d
= r10_bio
->devs
[i
].devnum
;
3287 if (r10_bio
->devs
[i
].bio
->bi_end_io
)
3288 rdev_dec_pending(conf
->mirrors
[d
].rdev
,
3290 if (r10_bio
->devs
[i
].repl_bio
&&
3291 r10_bio
->devs
[i
].repl_bio
->bi_end_io
)
3293 conf
->mirrors
[d
].replacement
,
3303 if (sector_nr
+ max_sync
< max_sector
)
3304 max_sector
= sector_nr
+ max_sync
;
3307 int len
= PAGE_SIZE
;
3308 if (sector_nr
+ (len
>>9) > max_sector
)
3309 len
= (max_sector
- sector_nr
) << 9;
3312 for (bio
= biolist
; bio
; bio
=bio
->bi_next
) {
3314 page
= bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
;
3315 if (bio_add_page(bio
, page
, len
, 0))
3319 bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
= page
;
3320 for (bio2
= biolist
;
3321 bio2
&& bio2
!= bio
;
3322 bio2
= bio2
->bi_next
) {
3323 /* remove last page from this bio */
3325 bio2
->bi_iter
.bi_size
-= len
;
3326 bio_clear_flag(bio2
, BIO_SEG_VALID
);
3330 nr_sectors
+= len
>>9;
3331 sector_nr
+= len
>>9;
3332 } while (biolist
->bi_vcnt
< RESYNC_PAGES
);
3334 r10_bio
->sectors
= nr_sectors
;
3338 biolist
= biolist
->bi_next
;
3340 bio
->bi_next
= NULL
;
3341 r10_bio
= bio
->bi_private
;
3342 r10_bio
->sectors
= nr_sectors
;
3344 if (bio
->bi_end_io
== end_sync_read
) {
3345 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
3347 generic_make_request(bio
);
3351 if (sectors_skipped
)
3352 /* pretend they weren't skipped, it makes
3353 * no important difference in this case
3355 md_done_sync(mddev
, sectors_skipped
, 1);
3357 return sectors_skipped
+ nr_sectors
;
3359 /* There is nowhere to write, so all non-sync
3360 * drives must be failed or in resync, all drives
3361 * have a bad block, so try the next chunk...
3363 if (sector_nr
+ max_sync
< max_sector
)
3364 max_sector
= sector_nr
+ max_sync
;
3366 sectors_skipped
+= (max_sector
- sector_nr
);
3368 sector_nr
= max_sector
;
3373 raid10_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
)
3376 struct r10conf
*conf
= mddev
->private;
3379 raid_disks
= min(conf
->geo
.raid_disks
,
3380 conf
->prev
.raid_disks
);
3382 sectors
= conf
->dev_sectors
;
3384 size
= sectors
>> conf
->geo
.chunk_shift
;
3385 sector_div(size
, conf
->geo
.far_copies
);
3386 size
= size
* raid_disks
;
3387 sector_div(size
, conf
->geo
.near_copies
);
3389 return size
<< conf
->geo
.chunk_shift
;
3392 static void calc_sectors(struct r10conf
*conf
, sector_t size
)
3394 /* Calculate the number of sectors-per-device that will
3395 * actually be used, and set conf->dev_sectors and
3399 size
= size
>> conf
->geo
.chunk_shift
;
3400 sector_div(size
, conf
->geo
.far_copies
);
3401 size
= size
* conf
->geo
.raid_disks
;
3402 sector_div(size
, conf
->geo
.near_copies
);
3403 /* 'size' is now the number of chunks in the array */
3404 /* calculate "used chunks per device" */
3405 size
= size
* conf
->copies
;
3407 /* We need to round up when dividing by raid_disks to
3408 * get the stride size.
3410 size
= DIV_ROUND_UP_SECTOR_T(size
, conf
->geo
.raid_disks
);
3412 conf
->dev_sectors
= size
<< conf
->geo
.chunk_shift
;
3414 if (conf
->geo
.far_offset
)
3415 conf
->geo
.stride
= 1 << conf
->geo
.chunk_shift
;
3417 sector_div(size
, conf
->geo
.far_copies
);
3418 conf
->geo
.stride
= size
<< conf
->geo
.chunk_shift
;
3422 enum geo_type
{geo_new
, geo_old
, geo_start
};
3423 static int setup_geo(struct geom
*geo
, struct mddev
*mddev
, enum geo_type
new)
3426 int layout
, chunk
, disks
;
3429 layout
= mddev
->layout
;
3430 chunk
= mddev
->chunk_sectors
;
3431 disks
= mddev
->raid_disks
- mddev
->delta_disks
;
3434 layout
= mddev
->new_layout
;
3435 chunk
= mddev
->new_chunk_sectors
;
3436 disks
= mddev
->raid_disks
;
3438 default: /* avoid 'may be unused' warnings */
3439 case geo_start
: /* new when starting reshape - raid_disks not
3441 layout
= mddev
->new_layout
;
3442 chunk
= mddev
->new_chunk_sectors
;
3443 disks
= mddev
->raid_disks
+ mddev
->delta_disks
;
3448 if (chunk
< (PAGE_SIZE
>> 9) ||
3449 !is_power_of_2(chunk
))
3452 fc
= (layout
>> 8) & 255;
3453 fo
= layout
& (1<<16);
3454 geo
->raid_disks
= disks
;
3455 geo
->near_copies
= nc
;
3456 geo
->far_copies
= fc
;
3457 geo
->far_offset
= fo
;
3458 switch (layout
>> 17) {
3459 case 0: /* original layout. simple but not always optimal */
3460 geo
->far_set_size
= disks
;
3462 case 1: /* "improved" layout which was buggy. Hopefully no-one is
3463 * actually using this, but leave code here just in case.*/
3464 geo
->far_set_size
= disks
/fc
;
3465 WARN(geo
->far_set_size
< fc
,
3466 "This RAID10 layout does not provide data safety - please backup and create new array\n");
3468 case 2: /* "improved" layout fixed to match documentation */
3469 geo
->far_set_size
= fc
* nc
;
3471 default: /* Not a valid layout */
3474 geo
->chunk_mask
= chunk
- 1;
3475 geo
->chunk_shift
= ffz(~chunk
);
3479 static struct r10conf
*setup_conf(struct mddev
*mddev
)
3481 struct r10conf
*conf
= NULL
;
3486 copies
= setup_geo(&geo
, mddev
, geo_new
);
3489 printk(KERN_ERR
"md/raid10:%s: chunk size must be "
3490 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3491 mdname(mddev
), PAGE_SIZE
);
3495 if (copies
< 2 || copies
> mddev
->raid_disks
) {
3496 printk(KERN_ERR
"md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3497 mdname(mddev
), mddev
->new_layout
);
3502 conf
= kzalloc(sizeof(struct r10conf
), GFP_KERNEL
);
3506 /* FIXME calc properly */
3507 conf
->mirrors
= kzalloc(sizeof(struct raid10_info
)*(mddev
->raid_disks
+
3508 max(0,-mddev
->delta_disks
)),
3513 conf
->tmppage
= alloc_page(GFP_KERNEL
);
3518 conf
->copies
= copies
;
3519 conf
->r10bio_pool
= mempool_create(NR_RAID10_BIOS
, r10bio_pool_alloc
,
3520 r10bio_pool_free
, conf
);
3521 if (!conf
->r10bio_pool
)
3524 calc_sectors(conf
, mddev
->dev_sectors
);
3525 if (mddev
->reshape_position
== MaxSector
) {
3526 conf
->prev
= conf
->geo
;
3527 conf
->reshape_progress
= MaxSector
;
3529 if (setup_geo(&conf
->prev
, mddev
, geo_old
) != conf
->copies
) {
3533 conf
->reshape_progress
= mddev
->reshape_position
;
3534 if (conf
->prev
.far_offset
)
3535 conf
->prev
.stride
= 1 << conf
->prev
.chunk_shift
;
3537 /* far_copies must be 1 */
3538 conf
->prev
.stride
= conf
->dev_sectors
;
3540 conf
->reshape_safe
= conf
->reshape_progress
;
3541 spin_lock_init(&conf
->device_lock
);
3542 INIT_LIST_HEAD(&conf
->retry_list
);
3543 INIT_LIST_HEAD(&conf
->bio_end_io_list
);
3545 spin_lock_init(&conf
->resync_lock
);
3546 init_waitqueue_head(&conf
->wait_barrier
);
3548 conf
->thread
= md_register_thread(raid10d
, mddev
, "raid10");
3552 conf
->mddev
= mddev
;
3557 printk(KERN_ERR
"md/raid10:%s: couldn't allocate memory.\n",
3560 mempool_destroy(conf
->r10bio_pool
);
3561 kfree(conf
->mirrors
);
3562 safe_put_page(conf
->tmppage
);
3565 return ERR_PTR(err
);
3568 static int run(struct mddev
*mddev
)
3570 struct r10conf
*conf
;
3571 int i
, disk_idx
, chunk_size
;
3572 struct raid10_info
*disk
;
3573 struct md_rdev
*rdev
;
3575 sector_t min_offset_diff
= 0;
3577 bool discard_supported
= false;
3579 if (mddev
->private == NULL
) {
3580 conf
= setup_conf(mddev
);
3582 return PTR_ERR(conf
);
3583 mddev
->private = conf
;
3585 conf
= mddev
->private;
3589 mddev
->thread
= conf
->thread
;
3590 conf
->thread
= NULL
;
3592 chunk_size
= mddev
->chunk_sectors
<< 9;
3594 blk_queue_max_discard_sectors(mddev
->queue
,
3595 mddev
->chunk_sectors
);
3596 blk_queue_max_write_same_sectors(mddev
->queue
, 0);
3597 blk_queue_io_min(mddev
->queue
, chunk_size
);
3598 if (conf
->geo
.raid_disks
% conf
->geo
.near_copies
)
3599 blk_queue_io_opt(mddev
->queue
, chunk_size
* conf
->geo
.raid_disks
);
3601 blk_queue_io_opt(mddev
->queue
, chunk_size
*
3602 (conf
->geo
.raid_disks
/ conf
->geo
.near_copies
));
3605 rdev_for_each(rdev
, mddev
) {
3607 struct request_queue
*q
;
3609 disk_idx
= rdev
->raid_disk
;
3612 if (disk_idx
>= conf
->geo
.raid_disks
&&
3613 disk_idx
>= conf
->prev
.raid_disks
)
3615 disk
= conf
->mirrors
+ disk_idx
;
3617 if (test_bit(Replacement
, &rdev
->flags
)) {
3618 if (disk
->replacement
)
3620 disk
->replacement
= rdev
;
3626 q
= bdev_get_queue(rdev
->bdev
);
3627 diff
= (rdev
->new_data_offset
- rdev
->data_offset
);
3628 if (!mddev
->reshape_backwards
)
3632 if (first
|| diff
< min_offset_diff
)
3633 min_offset_diff
= diff
;
3636 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
3637 rdev
->data_offset
<< 9);
3639 disk
->head_position
= 0;
3641 if (blk_queue_discard(bdev_get_queue(rdev
->bdev
)))
3642 discard_supported
= true;
3647 if (discard_supported
)
3648 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
,
3651 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD
,
3654 /* need to check that every block has at least one working mirror */
3655 if (!enough(conf
, -1)) {
3656 printk(KERN_ERR
"md/raid10:%s: not enough operational mirrors.\n",
3661 if (conf
->reshape_progress
!= MaxSector
) {
3662 /* must ensure that shape change is supported */
3663 if (conf
->geo
.far_copies
!= 1 &&
3664 conf
->geo
.far_offset
== 0)
3666 if (conf
->prev
.far_copies
!= 1 &&
3667 conf
->prev
.far_offset
== 0)
3671 mddev
->degraded
= 0;
3673 i
< conf
->geo
.raid_disks
3674 || i
< conf
->prev
.raid_disks
;
3677 disk
= conf
->mirrors
+ i
;
3679 if (!disk
->rdev
&& disk
->replacement
) {
3680 /* The replacement is all we have - use it */
3681 disk
->rdev
= disk
->replacement
;
3682 disk
->replacement
= NULL
;
3683 clear_bit(Replacement
, &disk
->rdev
->flags
);
3687 !test_bit(In_sync
, &disk
->rdev
->flags
)) {
3688 disk
->head_position
= 0;
3691 disk
->rdev
->saved_raid_disk
< 0)
3695 if (disk
->replacement
&&
3696 !test_bit(In_sync
, &disk
->replacement
->flags
) &&
3697 disk
->replacement
->saved_raid_disk
< 0) {
3701 disk
->recovery_disabled
= mddev
->recovery_disabled
- 1;
3704 if (mddev
->recovery_cp
!= MaxSector
)
3705 printk(KERN_NOTICE
"md/raid10:%s: not clean"
3706 " -- starting background reconstruction\n",
3709 "md/raid10:%s: active with %d out of %d devices\n",
3710 mdname(mddev
), conf
->geo
.raid_disks
- mddev
->degraded
,
3711 conf
->geo
.raid_disks
);
3713 * Ok, everything is just fine now
3715 mddev
->dev_sectors
= conf
->dev_sectors
;
3716 size
= raid10_size(mddev
, 0, 0);
3717 md_set_array_sectors(mddev
, size
);
3718 mddev
->resync_max_sectors
= size
;
3721 int stripe
= conf
->geo
.raid_disks
*
3722 ((mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
3724 /* Calculate max read-ahead size.
3725 * We need to readahead at least twice a whole stripe....
3728 stripe
/= conf
->geo
.near_copies
;
3729 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
3730 mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
3733 if (md_integrity_register(mddev
))
3736 if (conf
->reshape_progress
!= MaxSector
) {
3737 unsigned long before_length
, after_length
;
3739 before_length
= ((1 << conf
->prev
.chunk_shift
) *
3740 conf
->prev
.far_copies
);
3741 after_length
= ((1 << conf
->geo
.chunk_shift
) *
3742 conf
->geo
.far_copies
);
3744 if (max(before_length
, after_length
) > min_offset_diff
) {
3745 /* This cannot work */
3746 printk("md/raid10: offset difference not enough to continue reshape\n");
3749 conf
->offset_diff
= min_offset_diff
;
3751 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
3752 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
3753 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
3754 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
3755 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
3762 md_unregister_thread(&mddev
->thread
);
3763 mempool_destroy(conf
->r10bio_pool
);
3764 safe_put_page(conf
->tmppage
);
3765 kfree(conf
->mirrors
);
3767 mddev
->private = NULL
;
3772 static void raid10_free(struct mddev
*mddev
, void *priv
)
3774 struct r10conf
*conf
= priv
;
3776 mempool_destroy(conf
->r10bio_pool
);
3777 safe_put_page(conf
->tmppage
);
3778 kfree(conf
->mirrors
);
3779 kfree(conf
->mirrors_old
);
3780 kfree(conf
->mirrors_new
);
3784 static void raid10_quiesce(struct mddev
*mddev
, int state
)
3786 struct r10conf
*conf
= mddev
->private;
3790 raise_barrier(conf
, 0);
3793 lower_barrier(conf
);
3798 static int raid10_resize(struct mddev
*mddev
, sector_t sectors
)
3800 /* Resize of 'far' arrays is not supported.
3801 * For 'near' and 'offset' arrays we can set the
3802 * number of sectors used to be an appropriate multiple
3803 * of the chunk size.
3804 * For 'offset', this is far_copies*chunksize.
3805 * For 'near' the multiplier is the LCM of
3806 * near_copies and raid_disks.
3807 * So if far_copies > 1 && !far_offset, fail.
3808 * Else find LCM(raid_disks, near_copy)*far_copies and
3809 * multiply by chunk_size. Then round to this number.
3810 * This is mostly done by raid10_size()
3812 struct r10conf
*conf
= mddev
->private;
3813 sector_t oldsize
, size
;
3815 if (mddev
->reshape_position
!= MaxSector
)
3818 if (conf
->geo
.far_copies
> 1 && !conf
->geo
.far_offset
)
3821 oldsize
= raid10_size(mddev
, 0, 0);
3822 size
= raid10_size(mddev
, sectors
, 0);
3823 if (mddev
->external_size
&&
3824 mddev
->array_sectors
> size
)
3826 if (mddev
->bitmap
) {
3827 int ret
= bitmap_resize(mddev
->bitmap
, size
, 0, 0);
3831 md_set_array_sectors(mddev
, size
);
3832 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
3833 revalidate_disk(mddev
->gendisk
);
3834 if (sectors
> mddev
->dev_sectors
&&
3835 mddev
->recovery_cp
> oldsize
) {
3836 mddev
->recovery_cp
= oldsize
;
3837 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
3839 calc_sectors(conf
, sectors
);
3840 mddev
->dev_sectors
= conf
->dev_sectors
;
3841 mddev
->resync_max_sectors
= size
;
3845 static void *raid10_takeover_raid0(struct mddev
*mddev
, sector_t size
, int devs
)
3847 struct md_rdev
*rdev
;
3848 struct r10conf
*conf
;
3850 if (mddev
->degraded
> 0) {
3851 printk(KERN_ERR
"md/raid10:%s: Error: degraded raid0!\n",
3853 return ERR_PTR(-EINVAL
);
3855 sector_div(size
, devs
);
3857 /* Set new parameters */
3858 mddev
->new_level
= 10;
3859 /* new layout: far_copies = 1, near_copies = 2 */
3860 mddev
->new_layout
= (1<<8) + 2;
3861 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
3862 mddev
->delta_disks
= mddev
->raid_disks
;
3863 mddev
->raid_disks
*= 2;
3864 /* make sure it will be not marked as dirty */
3865 mddev
->recovery_cp
= MaxSector
;
3866 mddev
->dev_sectors
= size
;
3868 conf
= setup_conf(mddev
);
3869 if (!IS_ERR(conf
)) {
3870 rdev_for_each(rdev
, mddev
)
3871 if (rdev
->raid_disk
>= 0) {
3872 rdev
->new_raid_disk
= rdev
->raid_disk
* 2;
3873 rdev
->sectors
= size
;
3881 static void *raid10_takeover(struct mddev
*mddev
)
3883 struct r0conf
*raid0_conf
;
3885 /* raid10 can take over:
3886 * raid0 - providing it has only two drives
3888 if (mddev
->level
== 0) {
3889 /* for raid0 takeover only one zone is supported */
3890 raid0_conf
= mddev
->private;
3891 if (raid0_conf
->nr_strip_zones
> 1) {
3892 printk(KERN_ERR
"md/raid10:%s: cannot takeover raid 0"
3893 " with more than one zone.\n",
3895 return ERR_PTR(-EINVAL
);
3897 return raid10_takeover_raid0(mddev
,
3898 raid0_conf
->strip_zone
->zone_end
,
3899 raid0_conf
->strip_zone
->nb_dev
);
3901 return ERR_PTR(-EINVAL
);
3904 static int raid10_check_reshape(struct mddev
*mddev
)
3906 /* Called when there is a request to change
3907 * - layout (to ->new_layout)
3908 * - chunk size (to ->new_chunk_sectors)
3909 * - raid_disks (by delta_disks)
3910 * or when trying to restart a reshape that was ongoing.
3912 * We need to validate the request and possibly allocate
3913 * space if that might be an issue later.
3915 * Currently we reject any reshape of a 'far' mode array,
3916 * allow chunk size to change if new is generally acceptable,
3917 * allow raid_disks to increase, and allow
3918 * a switch between 'near' mode and 'offset' mode.
3920 struct r10conf
*conf
= mddev
->private;
3923 if (conf
->geo
.far_copies
!= 1 && !conf
->geo
.far_offset
)
3926 if (setup_geo(&geo
, mddev
, geo_start
) != conf
->copies
)
3927 /* mustn't change number of copies */
3929 if (geo
.far_copies
> 1 && !geo
.far_offset
)
3930 /* Cannot switch to 'far' mode */
3933 if (mddev
->array_sectors
& geo
.chunk_mask
)
3934 /* not factor of array size */
3937 if (!enough(conf
, -1))
3940 kfree(conf
->mirrors_new
);
3941 conf
->mirrors_new
= NULL
;
3942 if (mddev
->delta_disks
> 0) {
3943 /* allocate new 'mirrors' list */
3944 conf
->mirrors_new
= kzalloc(
3945 sizeof(struct raid10_info
)
3946 *(mddev
->raid_disks
+
3947 mddev
->delta_disks
),
3949 if (!conf
->mirrors_new
)
3956 * Need to check if array has failed when deciding whether to:
3958 * - remove non-faulty devices
3961 * This determination is simple when no reshape is happening.
3962 * However if there is a reshape, we need to carefully check
3963 * both the before and after sections.
3964 * This is because some failed devices may only affect one
3965 * of the two sections, and some non-in_sync devices may
3966 * be insync in the section most affected by failed devices.
3968 static int calc_degraded(struct r10conf
*conf
)
3970 int degraded
, degraded2
;
3975 /* 'prev' section first */
3976 for (i
= 0; i
< conf
->prev
.raid_disks
; i
++) {
3977 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
3978 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
3980 else if (!test_bit(In_sync
, &rdev
->flags
))
3981 /* When we can reduce the number of devices in
3982 * an array, this might not contribute to
3983 * 'degraded'. It does now.
3988 if (conf
->geo
.raid_disks
== conf
->prev
.raid_disks
)
3992 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
3993 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
3994 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
3996 else if (!test_bit(In_sync
, &rdev
->flags
)) {
3997 /* If reshape is increasing the number of devices,
3998 * this section has already been recovered, so
3999 * it doesn't contribute to degraded.
4002 if (conf
->geo
.raid_disks
<= conf
->prev
.raid_disks
)
4007 if (degraded2
> degraded
)
4012 static int raid10_start_reshape(struct mddev
*mddev
)
4014 /* A 'reshape' has been requested. This commits
4015 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4016 * This also checks if there are enough spares and adds them
4018 * We currently require enough spares to make the final
4019 * array non-degraded. We also require that the difference
4020 * between old and new data_offset - on each device - is
4021 * enough that we never risk over-writing.
4024 unsigned long before_length
, after_length
;
4025 sector_t min_offset_diff
= 0;
4028 struct r10conf
*conf
= mddev
->private;
4029 struct md_rdev
*rdev
;
4033 if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
4036 if (setup_geo(&new, mddev
, geo_start
) != conf
->copies
)
4039 before_length
= ((1 << conf
->prev
.chunk_shift
) *
4040 conf
->prev
.far_copies
);
4041 after_length
= ((1 << conf
->geo
.chunk_shift
) *
4042 conf
->geo
.far_copies
);
4044 rdev_for_each(rdev
, mddev
) {
4045 if (!test_bit(In_sync
, &rdev
->flags
)
4046 && !test_bit(Faulty
, &rdev
->flags
))
4048 if (rdev
->raid_disk
>= 0) {
4049 long long diff
= (rdev
->new_data_offset
4050 - rdev
->data_offset
);
4051 if (!mddev
->reshape_backwards
)
4055 if (first
|| diff
< min_offset_diff
)
4056 min_offset_diff
= diff
;
4061 if (max(before_length
, after_length
) > min_offset_diff
)
4064 if (spares
< mddev
->delta_disks
)
4067 conf
->offset_diff
= min_offset_diff
;
4068 spin_lock_irq(&conf
->device_lock
);
4069 if (conf
->mirrors_new
) {
4070 memcpy(conf
->mirrors_new
, conf
->mirrors
,
4071 sizeof(struct raid10_info
)*conf
->prev
.raid_disks
);
4073 kfree(conf
->mirrors_old
);
4074 conf
->mirrors_old
= conf
->mirrors
;
4075 conf
->mirrors
= conf
->mirrors_new
;
4076 conf
->mirrors_new
= NULL
;
4078 setup_geo(&conf
->geo
, mddev
, geo_start
);
4080 if (mddev
->reshape_backwards
) {
4081 sector_t size
= raid10_size(mddev
, 0, 0);
4082 if (size
< mddev
->array_sectors
) {
4083 spin_unlock_irq(&conf
->device_lock
);
4084 printk(KERN_ERR
"md/raid10:%s: array size must be reduce before number of disks\n",
4088 mddev
->resync_max_sectors
= size
;
4089 conf
->reshape_progress
= size
;
4091 conf
->reshape_progress
= 0;
4092 conf
->reshape_safe
= conf
->reshape_progress
;
4093 spin_unlock_irq(&conf
->device_lock
);
4095 if (mddev
->delta_disks
&& mddev
->bitmap
) {
4096 ret
= bitmap_resize(mddev
->bitmap
,
4097 raid10_size(mddev
, 0,
4098 conf
->geo
.raid_disks
),
4103 if (mddev
->delta_disks
> 0) {
4104 rdev_for_each(rdev
, mddev
)
4105 if (rdev
->raid_disk
< 0 &&
4106 !test_bit(Faulty
, &rdev
->flags
)) {
4107 if (raid10_add_disk(mddev
, rdev
) == 0) {
4108 if (rdev
->raid_disk
>=
4109 conf
->prev
.raid_disks
)
4110 set_bit(In_sync
, &rdev
->flags
);
4112 rdev
->recovery_offset
= 0;
4114 if (sysfs_link_rdev(mddev
, rdev
))
4115 /* Failure here is OK */;
4117 } else if (rdev
->raid_disk
>= conf
->prev
.raid_disks
4118 && !test_bit(Faulty
, &rdev
->flags
)) {
4119 /* This is a spare that was manually added */
4120 set_bit(In_sync
, &rdev
->flags
);
4123 /* When a reshape changes the number of devices,
4124 * ->degraded is measured against the larger of the
4125 * pre and post numbers.
4127 spin_lock_irq(&conf
->device_lock
);
4128 mddev
->degraded
= calc_degraded(conf
);
4129 spin_unlock_irq(&conf
->device_lock
);
4130 mddev
->raid_disks
= conf
->geo
.raid_disks
;
4131 mddev
->reshape_position
= conf
->reshape_progress
;
4132 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
4134 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
4135 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
4136 clear_bit(MD_RECOVERY_DONE
, &mddev
->recovery
);
4137 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
4138 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
4140 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
4142 if (!mddev
->sync_thread
) {
4146 conf
->reshape_checkpoint
= jiffies
;
4147 md_wakeup_thread(mddev
->sync_thread
);
4148 md_new_event(mddev
);
4152 mddev
->recovery
= 0;
4153 spin_lock_irq(&conf
->device_lock
);
4154 conf
->geo
= conf
->prev
;
4155 mddev
->raid_disks
= conf
->geo
.raid_disks
;
4156 rdev_for_each(rdev
, mddev
)
4157 rdev
->new_data_offset
= rdev
->data_offset
;
4159 conf
->reshape_progress
= MaxSector
;
4160 conf
->reshape_safe
= MaxSector
;
4161 mddev
->reshape_position
= MaxSector
;
4162 spin_unlock_irq(&conf
->device_lock
);
4166 /* Calculate the last device-address that could contain
4167 * any block from the chunk that includes the array-address 's'
4168 * and report the next address.
4169 * i.e. the address returned will be chunk-aligned and after
4170 * any data that is in the chunk containing 's'.
4172 static sector_t
last_dev_address(sector_t s
, struct geom
*geo
)
4174 s
= (s
| geo
->chunk_mask
) + 1;
4175 s
>>= geo
->chunk_shift
;
4176 s
*= geo
->near_copies
;
4177 s
= DIV_ROUND_UP_SECTOR_T(s
, geo
->raid_disks
);
4178 s
*= geo
->far_copies
;
4179 s
<<= geo
->chunk_shift
;
4183 /* Calculate the first device-address that could contain
4184 * any block from the chunk that includes the array-address 's'.
4185 * This too will be the start of a chunk
4187 static sector_t
first_dev_address(sector_t s
, struct geom
*geo
)
4189 s
>>= geo
->chunk_shift
;
4190 s
*= geo
->near_copies
;
4191 sector_div(s
, geo
->raid_disks
);
4192 s
*= geo
->far_copies
;
4193 s
<<= geo
->chunk_shift
;
4197 static sector_t
reshape_request(struct mddev
*mddev
, sector_t sector_nr
,
4200 /* We simply copy at most one chunk (smallest of old and new)
4201 * at a time, possibly less if that exceeds RESYNC_PAGES,
4202 * or we hit a bad block or something.
4203 * This might mean we pause for normal IO in the middle of
4204 * a chunk, but that is not a problem as mddev->reshape_position
4205 * can record any location.
4207 * If we will want to write to a location that isn't
4208 * yet recorded as 'safe' (i.e. in metadata on disk) then
4209 * we need to flush all reshape requests and update the metadata.
4211 * When reshaping forwards (e.g. to more devices), we interpret
4212 * 'safe' as the earliest block which might not have been copied
4213 * down yet. We divide this by previous stripe size and multiply
4214 * by previous stripe length to get lowest device offset that we
4215 * cannot write to yet.
4216 * We interpret 'sector_nr' as an address that we want to write to.
4217 * From this we use last_device_address() to find where we might
4218 * write to, and first_device_address on the 'safe' position.
4219 * If this 'next' write position is after the 'safe' position,
4220 * we must update the metadata to increase the 'safe' position.
4222 * When reshaping backwards, we round in the opposite direction
4223 * and perform the reverse test: next write position must not be
4224 * less than current safe position.
4226 * In all this the minimum difference in data offsets
4227 * (conf->offset_diff - always positive) allows a bit of slack,
4228 * so next can be after 'safe', but not by more than offset_diff
4230 * We need to prepare all the bios here before we start any IO
4231 * to ensure the size we choose is acceptable to all devices.
4232 * The means one for each copy for write-out and an extra one for
4234 * We store the read-in bio in ->master_bio and the others in
4235 * ->devs[x].bio and ->devs[x].repl_bio.
4237 struct r10conf
*conf
= mddev
->private;
4238 struct r10bio
*r10_bio
;
4239 sector_t next
, safe
, last
;
4243 struct md_rdev
*rdev
;
4246 struct bio
*bio
, *read_bio
;
4247 int sectors_done
= 0;
4249 if (sector_nr
== 0) {
4250 /* If restarting in the middle, skip the initial sectors */
4251 if (mddev
->reshape_backwards
&&
4252 conf
->reshape_progress
< raid10_size(mddev
, 0, 0)) {
4253 sector_nr
= (raid10_size(mddev
, 0, 0)
4254 - conf
->reshape_progress
);
4255 } else if (!mddev
->reshape_backwards
&&
4256 conf
->reshape_progress
> 0)
4257 sector_nr
= conf
->reshape_progress
;
4259 mddev
->curr_resync_completed
= sector_nr
;
4260 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
4266 /* We don't use sector_nr to track where we are up to
4267 * as that doesn't work well for ->reshape_backwards.
4268 * So just use ->reshape_progress.
4270 if (mddev
->reshape_backwards
) {
4271 /* 'next' is the earliest device address that we might
4272 * write to for this chunk in the new layout
4274 next
= first_dev_address(conf
->reshape_progress
- 1,
4277 /* 'safe' is the last device address that we might read from
4278 * in the old layout after a restart
4280 safe
= last_dev_address(conf
->reshape_safe
- 1,
4283 if (next
+ conf
->offset_diff
< safe
)
4286 last
= conf
->reshape_progress
- 1;
4287 sector_nr
= last
& ~(sector_t
)(conf
->geo
.chunk_mask
4288 & conf
->prev
.chunk_mask
);
4289 if (sector_nr
+ RESYNC_BLOCK_SIZE
/512 < last
)
4290 sector_nr
= last
+ 1 - RESYNC_BLOCK_SIZE
/512;
4292 /* 'next' is after the last device address that we
4293 * might write to for this chunk in the new layout
4295 next
= last_dev_address(conf
->reshape_progress
, &conf
->geo
);
4297 /* 'safe' is the earliest device address that we might
4298 * read from in the old layout after a restart
4300 safe
= first_dev_address(conf
->reshape_safe
, &conf
->prev
);
4302 /* Need to update metadata if 'next' might be beyond 'safe'
4303 * as that would possibly corrupt data
4305 if (next
> safe
+ conf
->offset_diff
)
4308 sector_nr
= conf
->reshape_progress
;
4309 last
= sector_nr
| (conf
->geo
.chunk_mask
4310 & conf
->prev
.chunk_mask
);
4312 if (sector_nr
+ RESYNC_BLOCK_SIZE
/512 <= last
)
4313 last
= sector_nr
+ RESYNC_BLOCK_SIZE
/512 - 1;
4317 time_after(jiffies
, conf
->reshape_checkpoint
+ 10*HZ
)) {
4318 /* Need to update reshape_position in metadata */
4320 mddev
->reshape_position
= conf
->reshape_progress
;
4321 if (mddev
->reshape_backwards
)
4322 mddev
->curr_resync_completed
= raid10_size(mddev
, 0, 0)
4323 - conf
->reshape_progress
;
4325 mddev
->curr_resync_completed
= conf
->reshape_progress
;
4326 conf
->reshape_checkpoint
= jiffies
;
4327 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
4328 md_wakeup_thread(mddev
->thread
);
4329 wait_event(mddev
->sb_wait
, mddev
->flags
== 0 ||
4330 test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
4331 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
)) {
4332 allow_barrier(conf
);
4333 return sectors_done
;
4335 conf
->reshape_safe
= mddev
->reshape_position
;
4336 allow_barrier(conf
);
4339 raise_barrier(conf
, 0);
4341 /* Now schedule reads for blocks from sector_nr to last */
4342 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
4344 raise_barrier(conf
, 1);
4345 atomic_set(&r10_bio
->remaining
, 0);
4346 r10_bio
->mddev
= mddev
;
4347 r10_bio
->sector
= sector_nr
;
4348 set_bit(R10BIO_IsReshape
, &r10_bio
->state
);
4349 r10_bio
->sectors
= last
- sector_nr
+ 1;
4350 rdev
= read_balance(conf
, r10_bio
, &max_sectors
);
4351 BUG_ON(!test_bit(R10BIO_Previous
, &r10_bio
->state
));
4354 /* Cannot read from here, so need to record bad blocks
4355 * on all the target devices.
4358 mempool_free(r10_bio
, conf
->r10buf_pool
);
4359 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
4360 return sectors_done
;
4363 read_bio
= bio_alloc_mddev(GFP_KERNEL
, RESYNC_PAGES
, mddev
);
4365 read_bio
->bi_bdev
= rdev
->bdev
;
4366 read_bio
->bi_iter
.bi_sector
= (r10_bio
->devs
[r10_bio
->read_slot
].addr
4367 + rdev
->data_offset
);
4368 read_bio
->bi_private
= r10_bio
;
4369 read_bio
->bi_end_io
= end_sync_read
;
4370 read_bio
->bi_rw
= READ
;
4371 read_bio
->bi_flags
&= (~0UL << BIO_RESET_BITS
);
4372 read_bio
->bi_error
= 0;
4373 read_bio
->bi_vcnt
= 0;
4374 read_bio
->bi_iter
.bi_size
= 0;
4375 r10_bio
->master_bio
= read_bio
;
4376 r10_bio
->read_slot
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
4378 /* Now find the locations in the new layout */
4379 __raid10_find_phys(&conf
->geo
, r10_bio
);
4382 read_bio
->bi_next
= NULL
;
4384 for (s
= 0; s
< conf
->copies
*2; s
++) {
4386 int d
= r10_bio
->devs
[s
/2].devnum
;
4387 struct md_rdev
*rdev2
;
4389 rdev2
= conf
->mirrors
[d
].replacement
;
4390 b
= r10_bio
->devs
[s
/2].repl_bio
;
4392 rdev2
= conf
->mirrors
[d
].rdev
;
4393 b
= r10_bio
->devs
[s
/2].bio
;
4395 if (!rdev2
|| test_bit(Faulty
, &rdev2
->flags
))
4399 b
->bi_bdev
= rdev2
->bdev
;
4400 b
->bi_iter
.bi_sector
= r10_bio
->devs
[s
/2].addr
+
4401 rdev2
->new_data_offset
;
4402 b
->bi_private
= r10_bio
;
4403 b
->bi_end_io
= end_reshape_write
;
4409 /* Now add as many pages as possible to all of these bios. */
4412 for (s
= 0 ; s
< max_sectors
; s
+= PAGE_SIZE
>> 9) {
4413 struct page
*page
= r10_bio
->devs
[0].bio
->bi_io_vec
[s
/(PAGE_SIZE
>>9)].bv_page
;
4414 int len
= (max_sectors
- s
) << 9;
4415 if (len
> PAGE_SIZE
)
4417 for (bio
= blist
; bio
; bio
= bio
->bi_next
) {
4419 if (bio_add_page(bio
, page
, len
, 0))
4422 /* Didn't fit, must stop */
4424 bio2
&& bio2
!= bio
;
4425 bio2
= bio2
->bi_next
) {
4426 /* Remove last page from this bio */
4428 bio2
->bi_iter
.bi_size
-= len
;
4429 bio_clear_flag(bio2
, BIO_SEG_VALID
);
4433 sector_nr
+= len
>> 9;
4434 nr_sectors
+= len
>> 9;
4437 r10_bio
->sectors
= nr_sectors
;
4439 /* Now submit the read */
4440 md_sync_acct(read_bio
->bi_bdev
, r10_bio
->sectors
);
4441 atomic_inc(&r10_bio
->remaining
);
4442 read_bio
->bi_next
= NULL
;
4443 generic_make_request(read_bio
);
4444 sector_nr
+= nr_sectors
;
4445 sectors_done
+= nr_sectors
;
4446 if (sector_nr
<= last
)
4449 lower_barrier(conf
);
4451 /* Now that we have done the whole section we can
4452 * update reshape_progress
4454 if (mddev
->reshape_backwards
)
4455 conf
->reshape_progress
-= sectors_done
;
4457 conf
->reshape_progress
+= sectors_done
;
4459 return sectors_done
;
4462 static void end_reshape_request(struct r10bio
*r10_bio
);
4463 static int handle_reshape_read_error(struct mddev
*mddev
,
4464 struct r10bio
*r10_bio
);
4465 static void reshape_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
)
4467 /* Reshape read completed. Hopefully we have a block
4469 * If we got a read error then we do sync 1-page reads from
4470 * elsewhere until we find the data - or give up.
4472 struct r10conf
*conf
= mddev
->private;
4475 if (!test_bit(R10BIO_Uptodate
, &r10_bio
->state
))
4476 if (handle_reshape_read_error(mddev
, r10_bio
) < 0) {
4477 /* Reshape has been aborted */
4478 md_done_sync(mddev
, r10_bio
->sectors
, 0);
4482 /* We definitely have the data in the pages, schedule the
4485 atomic_set(&r10_bio
->remaining
, 1);
4486 for (s
= 0; s
< conf
->copies
*2; s
++) {
4488 int d
= r10_bio
->devs
[s
/2].devnum
;
4489 struct md_rdev
*rdev
;
4491 rdev
= conf
->mirrors
[d
].replacement
;
4492 b
= r10_bio
->devs
[s
/2].repl_bio
;
4494 rdev
= conf
->mirrors
[d
].rdev
;
4495 b
= r10_bio
->devs
[s
/2].bio
;
4497 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
4499 atomic_inc(&rdev
->nr_pending
);
4500 md_sync_acct(b
->bi_bdev
, r10_bio
->sectors
);
4501 atomic_inc(&r10_bio
->remaining
);
4503 generic_make_request(b
);
4505 end_reshape_request(r10_bio
);
4508 static void end_reshape(struct r10conf
*conf
)
4510 if (test_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
))
4513 spin_lock_irq(&conf
->device_lock
);
4514 conf
->prev
= conf
->geo
;
4515 md_finish_reshape(conf
->mddev
);
4517 conf
->reshape_progress
= MaxSector
;
4518 conf
->reshape_safe
= MaxSector
;
4519 spin_unlock_irq(&conf
->device_lock
);
4521 /* read-ahead size must cover two whole stripes, which is
4522 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4524 if (conf
->mddev
->queue
) {
4525 int stripe
= conf
->geo
.raid_disks
*
4526 ((conf
->mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
4527 stripe
/= conf
->geo
.near_copies
;
4528 if (conf
->mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
4529 conf
->mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
4534 static int handle_reshape_read_error(struct mddev
*mddev
,
4535 struct r10bio
*r10_bio
)
4537 /* Use sync reads to get the blocks from somewhere else */
4538 int sectors
= r10_bio
->sectors
;
4539 struct r10conf
*conf
= mddev
->private;
4541 struct r10bio r10_bio
;
4542 struct r10dev devs
[conf
->copies
];
4544 struct r10bio
*r10b
= &on_stack
.r10_bio
;
4547 struct bio_vec
*bvec
= r10_bio
->master_bio
->bi_io_vec
;
4549 r10b
->sector
= r10_bio
->sector
;
4550 __raid10_find_phys(&conf
->prev
, r10b
);
4555 int first_slot
= slot
;
4557 if (s
> (PAGE_SIZE
>> 9))
4561 int d
= r10b
->devs
[slot
].devnum
;
4562 struct md_rdev
*rdev
= conf
->mirrors
[d
].rdev
;
4565 test_bit(Faulty
, &rdev
->flags
) ||
4566 !test_bit(In_sync
, &rdev
->flags
))
4569 addr
= r10b
->devs
[slot
].addr
+ idx
* PAGE_SIZE
;
4570 success
= sync_page_io(rdev
,
4579 if (slot
>= conf
->copies
)
4581 if (slot
== first_slot
)
4585 /* couldn't read this block, must give up */
4586 set_bit(MD_RECOVERY_INTR
,
4596 static void end_reshape_write(struct bio
*bio
)
4598 struct r10bio
*r10_bio
= bio
->bi_private
;
4599 struct mddev
*mddev
= r10_bio
->mddev
;
4600 struct r10conf
*conf
= mddev
->private;
4604 struct md_rdev
*rdev
= NULL
;
4606 d
= find_bio_disk(conf
, r10_bio
, bio
, &slot
, &repl
);
4608 rdev
= conf
->mirrors
[d
].replacement
;
4611 rdev
= conf
->mirrors
[d
].rdev
;
4614 if (bio
->bi_error
) {
4615 /* FIXME should record badblock */
4616 md_error(mddev
, rdev
);
4619 rdev_dec_pending(rdev
, mddev
);
4620 end_reshape_request(r10_bio
);
4623 static void end_reshape_request(struct r10bio
*r10_bio
)
4625 if (!atomic_dec_and_test(&r10_bio
->remaining
))
4627 md_done_sync(r10_bio
->mddev
, r10_bio
->sectors
, 1);
4628 bio_put(r10_bio
->master_bio
);
4632 static void raid10_finish_reshape(struct mddev
*mddev
)
4634 struct r10conf
*conf
= mddev
->private;
4636 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
))
4639 if (mddev
->delta_disks
> 0) {
4640 sector_t size
= raid10_size(mddev
, 0, 0);
4641 md_set_array_sectors(mddev
, size
);
4642 if (mddev
->recovery_cp
> mddev
->resync_max_sectors
) {
4643 mddev
->recovery_cp
= mddev
->resync_max_sectors
;
4644 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
4646 mddev
->resync_max_sectors
= size
;
4647 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
4648 revalidate_disk(mddev
->gendisk
);
4651 for (d
= conf
->geo
.raid_disks
;
4652 d
< conf
->geo
.raid_disks
- mddev
->delta_disks
;
4654 struct md_rdev
*rdev
= conf
->mirrors
[d
].rdev
;
4656 clear_bit(In_sync
, &rdev
->flags
);
4657 rdev
= conf
->mirrors
[d
].replacement
;
4659 clear_bit(In_sync
, &rdev
->flags
);
4662 mddev
->layout
= mddev
->new_layout
;
4663 mddev
->chunk_sectors
= 1 << conf
->geo
.chunk_shift
;
4664 mddev
->reshape_position
= MaxSector
;
4665 mddev
->delta_disks
= 0;
4666 mddev
->reshape_backwards
= 0;
4669 static struct md_personality raid10_personality
=
4673 .owner
= THIS_MODULE
,
4674 .make_request
= make_request
,
4676 .free
= raid10_free
,
4678 .error_handler
= error
,
4679 .hot_add_disk
= raid10_add_disk
,
4680 .hot_remove_disk
= raid10_remove_disk
,
4681 .spare_active
= raid10_spare_active
,
4682 .sync_request
= sync_request
,
4683 .quiesce
= raid10_quiesce
,
4684 .size
= raid10_size
,
4685 .resize
= raid10_resize
,
4686 .takeover
= raid10_takeover
,
4687 .check_reshape
= raid10_check_reshape
,
4688 .start_reshape
= raid10_start_reshape
,
4689 .finish_reshape
= raid10_finish_reshape
,
4690 .congested
= raid10_congested
,
4693 static int __init
raid_init(void)
4695 return register_md_personality(&raid10_personality
);
4698 static void raid_exit(void)
4700 unregister_md_personality(&raid10_personality
);
4703 module_init(raid_init
);
4704 module_exit(raid_exit
);
4705 MODULE_LICENSE("GPL");
4706 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4707 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4708 MODULE_ALIAS("md-raid10");
4709 MODULE_ALIAS("md-level-10");
4711 module_param(max_queued_requests
, int, S_IRUGO
|S_IWUSR
);