2 * Copyright (C) 2015 Shaohua Li <shli@fb.com>
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 #include <linux/kernel.h>
15 #include <linux/wait.h>
16 #include <linux/blkdev.h>
17 #include <linux/slab.h>
18 #include <linux/raid/md_p.h>
19 #include <linux/crc32c.h>
20 #include <linux/random.h>
25 * metadata/data stored in disk with 4k size unit (a block) regardless
26 * underneath hardware sector size. only works with PAGE_SIZE == 4096
28 #define BLOCK_SECTORS (8)
31 * reclaim runs every 1/4 disk size or 10G reclaimable space. This can prevent
32 * recovery scans a very long log
34 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
35 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
42 sector_t device_size
; /* log device size, round to
44 sector_t max_free_space
; /* reclaim run if free space is at
47 sector_t last_checkpoint
; /* log tail. where recovery scan
49 u64 last_cp_seq
; /* log tail sequence */
51 sector_t log_start
; /* log head. where new data appends */
52 u64 seq
; /* log head sequence */
54 sector_t next_checkpoint
;
57 struct mutex io_mutex
;
58 struct r5l_io_unit
*current_io
; /* current io_unit accepting new data */
60 spinlock_t io_list_lock
;
61 struct list_head running_ios
; /* io_units which are still running,
62 * and have not yet been completely
63 * written to the log */
64 struct list_head io_end_ios
; /* io_units which have been completely
65 * written to the log but not yet written
67 struct list_head flushing_ios
; /* io_units which are waiting for log
69 struct list_head finished_ios
; /* io_units which settle down in log disk */
72 struct kmem_cache
*io_kc
;
74 struct md_thread
*reclaim_thread
;
75 unsigned long reclaim_target
; /* number of space that need to be
76 * reclaimed. if it's 0, reclaim spaces
77 * used by io_units which are in
78 * IO_UNIT_STRIPE_END state (eg, reclaim
79 * dones't wait for specific io_unit
80 * switching to IO_UNIT_STRIPE_END
82 wait_queue_head_t iounit_wait
;
84 struct list_head no_space_stripes
; /* pending stripes, log has no space */
85 spinlock_t no_space_stripes_lock
;
87 bool need_cache_flush
;
92 * an IO range starts from a meta data block and end at the next meta data
93 * block. The io unit's the meta data block tracks data/parity followed it. io
94 * unit is written to log disk with normal write, as we always flush log disk
95 * first and then start move data to raid disks, there is no requirement to
96 * write io unit with FLUSH/FUA
101 struct page
*meta_page
; /* store meta block */
102 int meta_offset
; /* current offset in meta_page */
104 struct bio
*current_bio
;/* current_bio accepting new data */
106 atomic_t pending_stripe
;/* how many stripes not flushed to raid */
107 u64 seq
; /* seq number of the metablock */
108 sector_t log_start
; /* where the io_unit starts */
109 sector_t log_end
; /* where the io_unit ends */
110 struct list_head log_sibling
; /* log->running_ios */
111 struct list_head stripe_list
; /* stripes added to the io_unit */
117 /* r5l_io_unit state */
118 enum r5l_io_unit_state
{
119 IO_UNIT_RUNNING
= 0, /* accepting new IO */
120 IO_UNIT_IO_START
= 1, /* io_unit bio start writing to log,
121 * don't accepting new bio */
122 IO_UNIT_IO_END
= 2, /* io_unit bio finish writing to log */
123 IO_UNIT_STRIPE_END
= 3, /* stripes data finished writing to raid */
126 static sector_t
r5l_ring_add(struct r5l_log
*log
, sector_t start
, sector_t inc
)
129 if (start
>= log
->device_size
)
130 start
= start
- log
->device_size
;
134 static sector_t
r5l_ring_distance(struct r5l_log
*log
, sector_t start
,
140 return end
+ log
->device_size
- start
;
143 static bool r5l_has_free_space(struct r5l_log
*log
, sector_t size
)
147 used_size
= r5l_ring_distance(log
, log
->last_checkpoint
,
150 return log
->device_size
> used_size
+ size
;
153 static void r5l_free_io_unit(struct r5l_log
*log
, struct r5l_io_unit
*io
)
155 __free_page(io
->meta_page
);
156 kmem_cache_free(log
->io_kc
, io
);
159 static void r5l_move_io_unit_list(struct list_head
*from
, struct list_head
*to
,
160 enum r5l_io_unit_state state
)
162 struct r5l_io_unit
*io
;
164 while (!list_empty(from
)) {
165 io
= list_first_entry(from
, struct r5l_io_unit
, log_sibling
);
166 /* don't change list order */
167 if (io
->state
>= state
)
168 list_move_tail(&io
->log_sibling
, to
);
174 static void __r5l_set_io_unit_state(struct r5l_io_unit
*io
,
175 enum r5l_io_unit_state state
)
177 if (WARN_ON(io
->state
>= state
))
182 static void r5l_io_run_stripes(struct r5l_io_unit
*io
)
184 struct stripe_head
*sh
, *next
;
186 list_for_each_entry_safe(sh
, next
, &io
->stripe_list
, log_list
) {
187 list_del_init(&sh
->log_list
);
188 set_bit(STRIPE_HANDLE
, &sh
->state
);
189 raid5_release_stripe(sh
);
193 static void r5l_log_run_stripes(struct r5l_log
*log
)
195 struct r5l_io_unit
*io
, *next
;
197 assert_spin_locked(&log
->io_list_lock
);
199 list_for_each_entry_safe(io
, next
, &log
->running_ios
, log_sibling
) {
200 /* don't change list order */
201 if (io
->state
< IO_UNIT_IO_END
)
204 list_move_tail(&io
->log_sibling
, &log
->finished_ios
);
205 r5l_io_run_stripes(io
);
209 static void r5l_log_endio(struct bio
*bio
)
211 struct r5l_io_unit
*io
= bio
->bi_private
;
212 struct r5l_log
*log
= io
->log
;
216 md_error(log
->rdev
->mddev
, log
->rdev
);
220 spin_lock_irqsave(&log
->io_list_lock
, flags
);
221 __r5l_set_io_unit_state(io
, IO_UNIT_IO_END
);
222 if (log
->need_cache_flush
)
223 r5l_move_io_unit_list(&log
->running_ios
, &log
->io_end_ios
,
226 r5l_log_run_stripes(log
);
227 spin_unlock_irqrestore(&log
->io_list_lock
, flags
);
229 if (log
->need_cache_flush
)
230 md_wakeup_thread(log
->rdev
->mddev
->thread
);
233 static void r5l_submit_current_io(struct r5l_log
*log
)
235 struct r5l_io_unit
*io
= log
->current_io
;
236 struct r5l_meta_block
*block
;
243 block
= page_address(io
->meta_page
);
244 block
->meta_size
= cpu_to_le32(io
->meta_offset
);
245 crc
= crc32c_le(log
->uuid_checksum
, block
, PAGE_SIZE
);
246 block
->checksum
= cpu_to_le32(crc
);
248 log
->current_io
= NULL
;
249 spin_lock_irqsave(&log
->io_list_lock
, flags
);
250 __r5l_set_io_unit_state(io
, IO_UNIT_IO_START
);
251 spin_unlock_irqrestore(&log
->io_list_lock
, flags
);
253 submit_bio(WRITE
, io
->current_bio
);
256 static struct bio
*r5l_bio_alloc(struct r5l_log
*log
)
258 struct bio
*bio
= bio_kmalloc(GFP_NOIO
| __GFP_NOFAIL
, BIO_MAX_PAGES
);
261 bio
->bi_bdev
= log
->rdev
->bdev
;
262 bio
->bi_iter
.bi_sector
= log
->rdev
->data_offset
+ log
->log_start
;
267 static void r5_reserve_log_entry(struct r5l_log
*log
, struct r5l_io_unit
*io
)
269 log
->log_start
= r5l_ring_add(log
, log
->log_start
, BLOCK_SECTORS
);
272 * If we filled up the log device start from the beginning again,
273 * which will require a new bio.
275 * Note: for this to work properly the log size needs to me a multiple
278 if (log
->log_start
== 0)
279 io
->need_split_bio
= true;
281 io
->log_end
= log
->log_start
;
284 static struct r5l_io_unit
*r5l_new_meta(struct r5l_log
*log
)
286 struct r5l_io_unit
*io
;
287 struct r5l_meta_block
*block
;
289 /* We can't handle memory allocate failure so far */
290 io
= kmem_cache_zalloc(log
->io_kc
, GFP_NOIO
| __GFP_NOFAIL
);
292 INIT_LIST_HEAD(&io
->log_sibling
);
293 INIT_LIST_HEAD(&io
->stripe_list
);
294 io
->state
= IO_UNIT_RUNNING
;
296 io
->meta_page
= alloc_page(GFP_NOIO
| __GFP_NOFAIL
| __GFP_ZERO
);
297 block
= page_address(io
->meta_page
);
298 block
->magic
= cpu_to_le32(R5LOG_MAGIC
);
299 block
->version
= R5LOG_VERSION
;
300 block
->seq
= cpu_to_le64(log
->seq
);
301 block
->position
= cpu_to_le64(log
->log_start
);
303 io
->log_start
= log
->log_start
;
304 io
->meta_offset
= sizeof(struct r5l_meta_block
);
305 io
->seq
= log
->seq
++;
307 io
->current_bio
= r5l_bio_alloc(log
);
308 io
->current_bio
->bi_end_io
= r5l_log_endio
;
309 io
->current_bio
->bi_private
= io
;
310 bio_add_page(io
->current_bio
, io
->meta_page
, PAGE_SIZE
, 0);
312 r5_reserve_log_entry(log
, io
);
314 spin_lock_irq(&log
->io_list_lock
);
315 list_add_tail(&io
->log_sibling
, &log
->running_ios
);
316 spin_unlock_irq(&log
->io_list_lock
);
321 static int r5l_get_meta(struct r5l_log
*log
, unsigned int payload_size
)
323 if (log
->current_io
&&
324 log
->current_io
->meta_offset
+ payload_size
> PAGE_SIZE
)
325 r5l_submit_current_io(log
);
327 if (!log
->current_io
)
328 log
->current_io
= r5l_new_meta(log
);
332 static void r5l_append_payload_meta(struct r5l_log
*log
, u16 type
,
334 u32 checksum1
, u32 checksum2
,
335 bool checksum2_valid
)
337 struct r5l_io_unit
*io
= log
->current_io
;
338 struct r5l_payload_data_parity
*payload
;
340 payload
= page_address(io
->meta_page
) + io
->meta_offset
;
341 payload
->header
.type
= cpu_to_le16(type
);
342 payload
->header
.flags
= cpu_to_le16(0);
343 payload
->size
= cpu_to_le32((1 + !!checksum2_valid
) <<
345 payload
->location
= cpu_to_le64(location
);
346 payload
->checksum
[0] = cpu_to_le32(checksum1
);
348 payload
->checksum
[1] = cpu_to_le32(checksum2
);
350 io
->meta_offset
+= sizeof(struct r5l_payload_data_parity
) +
351 sizeof(__le32
) * (1 + !!checksum2_valid
);
354 static void r5l_append_payload_page(struct r5l_log
*log
, struct page
*page
)
356 struct r5l_io_unit
*io
= log
->current_io
;
358 if (io
->need_split_bio
) {
359 struct bio
*prev
= io
->current_bio
;
361 io
->current_bio
= r5l_bio_alloc(log
);
362 bio_chain(io
->current_bio
, prev
);
364 submit_bio(WRITE
, prev
);
367 if (!bio_add_page(io
->current_bio
, page
, PAGE_SIZE
, 0))
370 r5_reserve_log_entry(log
, io
);
373 static void r5l_log_stripe(struct r5l_log
*log
, struct stripe_head
*sh
,
374 int data_pages
, int parity_pages
)
378 struct r5l_io_unit
*io
;
381 ((sizeof(struct r5l_payload_data_parity
) + sizeof(__le32
))
383 sizeof(struct r5l_payload_data_parity
) +
384 sizeof(__le32
) * parity_pages
;
386 r5l_get_meta(log
, meta_size
);
387 io
= log
->current_io
;
389 for (i
= 0; i
< sh
->disks
; i
++) {
390 if (!test_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
))
392 if (i
== sh
->pd_idx
|| i
== sh
->qd_idx
)
394 r5l_append_payload_meta(log
, R5LOG_PAYLOAD_DATA
,
395 raid5_compute_blocknr(sh
, i
, 0),
396 sh
->dev
[i
].log_checksum
, 0, false);
397 r5l_append_payload_page(log
, sh
->dev
[i
].page
);
400 if (sh
->qd_idx
>= 0) {
401 r5l_append_payload_meta(log
, R5LOG_PAYLOAD_PARITY
,
402 sh
->sector
, sh
->dev
[sh
->pd_idx
].log_checksum
,
403 sh
->dev
[sh
->qd_idx
].log_checksum
, true);
404 r5l_append_payload_page(log
, sh
->dev
[sh
->pd_idx
].page
);
405 r5l_append_payload_page(log
, sh
->dev
[sh
->qd_idx
].page
);
407 r5l_append_payload_meta(log
, R5LOG_PAYLOAD_PARITY
,
408 sh
->sector
, sh
->dev
[sh
->pd_idx
].log_checksum
,
410 r5l_append_payload_page(log
, sh
->dev
[sh
->pd_idx
].page
);
413 list_add_tail(&sh
->log_list
, &io
->stripe_list
);
414 atomic_inc(&io
->pending_stripe
);
418 static void r5l_wake_reclaim(struct r5l_log
*log
, sector_t space
);
420 * running in raid5d, where reclaim could wait for raid5d too (when it flushes
421 * data from log to raid disks), so we shouldn't wait for reclaim here
423 int r5l_write_stripe(struct r5l_log
*log
, struct stripe_head
*sh
)
426 int data_pages
, parity_pages
;
433 /* Don't support stripe batch */
434 if (sh
->log_io
|| !test_bit(R5_Wantwrite
, &sh
->dev
[sh
->pd_idx
].flags
) ||
435 test_bit(STRIPE_SYNCING
, &sh
->state
)) {
436 /* the stripe is written to log, we start writing it to raid */
437 clear_bit(STRIPE_LOG_TRAPPED
, &sh
->state
);
441 for (i
= 0; i
< sh
->disks
; i
++) {
444 if (!test_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
))
447 /* checksum is already calculated in last run */
448 if (test_bit(STRIPE_LOG_TRAPPED
, &sh
->state
))
450 addr
= kmap_atomic(sh
->dev
[i
].page
);
451 sh
->dev
[i
].log_checksum
= crc32c_le(log
->uuid_checksum
,
455 parity_pages
= 1 + !!(sh
->qd_idx
>= 0);
456 data_pages
= write_disks
- parity_pages
;
459 ((sizeof(struct r5l_payload_data_parity
) + sizeof(__le32
))
461 sizeof(struct r5l_payload_data_parity
) +
462 sizeof(__le32
) * parity_pages
;
463 /* Doesn't work with very big raid array */
464 if (meta_size
+ sizeof(struct r5l_meta_block
) > PAGE_SIZE
)
467 set_bit(STRIPE_LOG_TRAPPED
, &sh
->state
);
469 * The stripe must enter state machine again to finish the write, so
472 clear_bit(STRIPE_DELAYED
, &sh
->state
);
473 atomic_inc(&sh
->count
);
475 mutex_lock(&log
->io_mutex
);
477 reserve
= (1 + write_disks
) << (PAGE_SHIFT
- 9);
478 if (r5l_has_free_space(log
, reserve
))
479 r5l_log_stripe(log
, sh
, data_pages
, parity_pages
);
481 spin_lock(&log
->no_space_stripes_lock
);
482 list_add_tail(&sh
->log_list
, &log
->no_space_stripes
);
483 spin_unlock(&log
->no_space_stripes_lock
);
485 r5l_wake_reclaim(log
, reserve
);
487 mutex_unlock(&log
->io_mutex
);
492 void r5l_write_stripe_run(struct r5l_log
*log
)
496 mutex_lock(&log
->io_mutex
);
497 r5l_submit_current_io(log
);
498 mutex_unlock(&log
->io_mutex
);
501 int r5l_handle_flush_request(struct r5l_log
*log
, struct bio
*bio
)
506 * we flush log disk cache first, then write stripe data to raid disks.
507 * So if bio is finished, the log disk cache is flushed already. The
508 * recovery guarantees we can recovery the bio from log disk, so we
509 * don't need to flush again
511 if (bio
->bi_iter
.bi_size
== 0) {
515 bio
->bi_rw
&= ~REQ_FLUSH
;
519 /* This will run after log space is reclaimed */
520 static void r5l_run_no_space_stripes(struct r5l_log
*log
)
522 struct stripe_head
*sh
;
524 spin_lock(&log
->no_space_stripes_lock
);
525 while (!list_empty(&log
->no_space_stripes
)) {
526 sh
= list_first_entry(&log
->no_space_stripes
,
527 struct stripe_head
, log_list
);
528 list_del_init(&sh
->log_list
);
529 set_bit(STRIPE_HANDLE
, &sh
->state
);
530 raid5_release_stripe(sh
);
532 spin_unlock(&log
->no_space_stripes_lock
);
535 static sector_t
r5l_reclaimable_space(struct r5l_log
*log
)
537 return r5l_ring_distance(log
, log
->last_checkpoint
,
538 log
->next_checkpoint
);
541 static bool r5l_complete_finished_ios(struct r5l_log
*log
)
543 struct r5l_io_unit
*io
, *next
;
546 assert_spin_locked(&log
->io_list_lock
);
548 list_for_each_entry_safe(io
, next
, &log
->finished_ios
, log_sibling
) {
549 /* don't change list order */
550 if (io
->state
< IO_UNIT_STRIPE_END
)
553 log
->next_checkpoint
= io
->log_start
;
554 log
->next_cp_seq
= io
->seq
;
556 list_del(&io
->log_sibling
);
557 r5l_free_io_unit(log
, io
);
565 static void __r5l_stripe_write_finished(struct r5l_io_unit
*io
)
567 struct r5l_log
*log
= io
->log
;
570 spin_lock_irqsave(&log
->io_list_lock
, flags
);
571 __r5l_set_io_unit_state(io
, IO_UNIT_STRIPE_END
);
573 if (!r5l_complete_finished_ios(log
)) {
574 spin_unlock_irqrestore(&log
->io_list_lock
, flags
);
578 if (r5l_reclaimable_space(log
) > log
->max_free_space
)
579 r5l_wake_reclaim(log
, 0);
581 spin_unlock_irqrestore(&log
->io_list_lock
, flags
);
582 wake_up(&log
->iounit_wait
);
585 void r5l_stripe_write_finished(struct stripe_head
*sh
)
587 struct r5l_io_unit
*io
;
592 if (io
&& atomic_dec_and_test(&io
->pending_stripe
))
593 __r5l_stripe_write_finished(io
);
596 static void r5l_log_flush_endio(struct bio
*bio
)
598 struct r5l_log
*log
= container_of(bio
, struct r5l_log
,
601 struct r5l_io_unit
*io
;
604 md_error(log
->rdev
->mddev
, log
->rdev
);
606 spin_lock_irqsave(&log
->io_list_lock
, flags
);
607 list_for_each_entry(io
, &log
->flushing_ios
, log_sibling
)
608 r5l_io_run_stripes(io
);
609 list_splice_tail_init(&log
->flushing_ios
, &log
->finished_ios
);
610 spin_unlock_irqrestore(&log
->io_list_lock
, flags
);
614 * Starting dispatch IO to raid.
615 * io_unit(meta) consists of a log. There is one situation we want to avoid. A
616 * broken meta in the middle of a log causes recovery can't find meta at the
617 * head of log. If operations require meta at the head persistent in log, we
618 * must make sure meta before it persistent in log too. A case is:
620 * stripe data/parity is in log, we start write stripe to raid disks. stripe
621 * data/parity must be persistent in log before we do the write to raid disks.
623 * The solution is we restrictly maintain io_unit list order. In this case, we
624 * only write stripes of an io_unit to raid disks till the io_unit is the first
625 * one whose data/parity is in log.
627 void r5l_flush_stripe_to_raid(struct r5l_log
*log
)
631 if (!log
|| !log
->need_cache_flush
)
634 spin_lock_irq(&log
->io_list_lock
);
635 /* flush bio is running */
636 if (!list_empty(&log
->flushing_ios
)) {
637 spin_unlock_irq(&log
->io_list_lock
);
640 list_splice_tail_init(&log
->io_end_ios
, &log
->flushing_ios
);
641 do_flush
= !list_empty(&log
->flushing_ios
);
642 spin_unlock_irq(&log
->io_list_lock
);
646 bio_reset(&log
->flush_bio
);
647 log
->flush_bio
.bi_bdev
= log
->rdev
->bdev
;
648 log
->flush_bio
.bi_end_io
= r5l_log_flush_endio
;
649 submit_bio(WRITE_FLUSH
, &log
->flush_bio
);
652 static void r5l_write_super(struct r5l_log
*log
, sector_t cp
);
653 static void r5l_write_super_and_discard_space(struct r5l_log
*log
,
656 struct block_device
*bdev
= log
->rdev
->bdev
;
659 r5l_write_super(log
, end
);
661 if (!blk_queue_discard(bdev_get_queue(bdev
)))
664 mddev
= log
->rdev
->mddev
;
666 * This is to avoid a deadlock. r5l_quiesce holds reconfig_mutex and
667 * wait for this thread to finish. This thread waits for
668 * MD_CHANGE_PENDING clear, which is supposed to be done in
669 * md_check_recovery(). md_check_recovery() tries to get
670 * reconfig_mutex. Since r5l_quiesce already holds the mutex,
671 * md_check_recovery() fails, so the PENDING never get cleared. The
672 * in_teardown check workaround this issue.
674 if (!log
->in_teardown
) {
675 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
676 set_bit(MD_CHANGE_PENDING
, &mddev
->flags
);
677 md_wakeup_thread(mddev
->thread
);
678 wait_event(mddev
->sb_wait
,
679 !test_bit(MD_CHANGE_PENDING
, &mddev
->flags
) ||
682 * r5l_quiesce could run after in_teardown check and hold
683 * mutex first. Superblock might get updated twice.
685 if (log
->in_teardown
)
686 md_update_sb(mddev
, 1);
688 WARN_ON(!mddev_is_locked(mddev
));
689 md_update_sb(mddev
, 1);
692 /* discard IO error really doesn't matter, ignore it */
693 if (log
->last_checkpoint
< end
) {
694 blkdev_issue_discard(bdev
,
695 log
->last_checkpoint
+ log
->rdev
->data_offset
,
696 end
- log
->last_checkpoint
, GFP_NOIO
, 0);
698 blkdev_issue_discard(bdev
,
699 log
->last_checkpoint
+ log
->rdev
->data_offset
,
700 log
->device_size
- log
->last_checkpoint
,
702 blkdev_issue_discard(bdev
, log
->rdev
->data_offset
, end
,
708 static void r5l_do_reclaim(struct r5l_log
*log
)
710 sector_t reclaim_target
= xchg(&log
->reclaim_target
, 0);
711 sector_t reclaimable
;
712 sector_t next_checkpoint
;
715 spin_lock_irq(&log
->io_list_lock
);
717 * move proper io_unit to reclaim list. We should not change the order.
718 * reclaimable/unreclaimable io_unit can be mixed in the list, we
719 * shouldn't reuse space of an unreclaimable io_unit
722 reclaimable
= r5l_reclaimable_space(log
);
723 if (reclaimable
>= reclaim_target
||
724 (list_empty(&log
->running_ios
) &&
725 list_empty(&log
->io_end_ios
) &&
726 list_empty(&log
->flushing_ios
) &&
727 list_empty(&log
->finished_ios
)))
730 md_wakeup_thread(log
->rdev
->mddev
->thread
);
731 wait_event_lock_irq(log
->iounit_wait
,
732 r5l_reclaimable_space(log
) > reclaimable
,
736 next_checkpoint
= log
->next_checkpoint
;
737 next_cp_seq
= log
->next_cp_seq
;
738 spin_unlock_irq(&log
->io_list_lock
);
740 BUG_ON(reclaimable
< 0);
741 if (reclaimable
== 0)
745 * write_super will flush cache of each raid disk. We must write super
746 * here, because the log area might be reused soon and we don't want to
749 r5l_write_super_and_discard_space(log
, next_checkpoint
);
751 mutex_lock(&log
->io_mutex
);
752 log
->last_checkpoint
= next_checkpoint
;
753 log
->last_cp_seq
= next_cp_seq
;
754 mutex_unlock(&log
->io_mutex
);
756 r5l_run_no_space_stripes(log
);
759 static void r5l_reclaim_thread(struct md_thread
*thread
)
761 struct mddev
*mddev
= thread
->mddev
;
762 struct r5conf
*conf
= mddev
->private;
763 struct r5l_log
*log
= conf
->log
;
770 static void r5l_wake_reclaim(struct r5l_log
*log
, sector_t space
)
772 unsigned long target
;
773 unsigned long new = (unsigned long)space
; /* overflow in theory */
776 target
= log
->reclaim_target
;
779 } while (cmpxchg(&log
->reclaim_target
, target
, new) != target
);
780 md_wakeup_thread(log
->reclaim_thread
);
783 void r5l_quiesce(struct r5l_log
*log
, int state
)
786 if (!log
|| state
== 2)
789 log
->in_teardown
= 0;
790 log
->reclaim_thread
= md_register_thread(r5l_reclaim_thread
,
791 log
->rdev
->mddev
, "reclaim");
792 } else if (state
== 1) {
794 * at this point all stripes are finished, so io_unit is at
795 * least in STRIPE_END state
797 log
->in_teardown
= 1;
798 /* make sure r5l_write_super_and_discard_space exits */
799 mddev
= log
->rdev
->mddev
;
800 wake_up(&mddev
->sb_wait
);
801 r5l_wake_reclaim(log
, -1L);
802 md_unregister_thread(&log
->reclaim_thread
);
807 bool r5l_log_disk_error(struct r5conf
*conf
)
809 /* don't allow write if journal disk is missing */
811 return test_bit(MD_HAS_JOURNAL
, &conf
->mddev
->flags
);
812 return test_bit(Faulty
, &conf
->log
->rdev
->flags
);
815 struct r5l_recovery_ctx
{
816 struct page
*meta_page
; /* current meta */
817 sector_t meta_total_blocks
; /* total size of current meta and data */
818 sector_t pos
; /* recovery position */
819 u64 seq
; /* recovery position seq */
822 static int r5l_read_meta_block(struct r5l_log
*log
,
823 struct r5l_recovery_ctx
*ctx
)
825 struct page
*page
= ctx
->meta_page
;
826 struct r5l_meta_block
*mb
;
829 if (!sync_page_io(log
->rdev
, ctx
->pos
, PAGE_SIZE
, page
, READ
, false))
832 mb
= page_address(page
);
833 stored_crc
= le32_to_cpu(mb
->checksum
);
836 if (le32_to_cpu(mb
->magic
) != R5LOG_MAGIC
||
837 le64_to_cpu(mb
->seq
) != ctx
->seq
||
838 mb
->version
!= R5LOG_VERSION
||
839 le64_to_cpu(mb
->position
) != ctx
->pos
)
842 crc
= crc32c_le(log
->uuid_checksum
, mb
, PAGE_SIZE
);
843 if (stored_crc
!= crc
)
846 if (le32_to_cpu(mb
->meta_size
) > PAGE_SIZE
)
849 ctx
->meta_total_blocks
= BLOCK_SECTORS
;
854 static int r5l_recovery_flush_one_stripe(struct r5l_log
*log
,
855 struct r5l_recovery_ctx
*ctx
,
856 sector_t stripe_sect
,
857 int *offset
, sector_t
*log_offset
)
859 struct r5conf
*conf
= log
->rdev
->mddev
->private;
860 struct stripe_head
*sh
;
861 struct r5l_payload_data_parity
*payload
;
864 sh
= raid5_get_active_stripe(conf
, stripe_sect
, 0, 0, 0);
866 payload
= page_address(ctx
->meta_page
) + *offset
;
868 if (le16_to_cpu(payload
->header
.type
) == R5LOG_PAYLOAD_DATA
) {
869 raid5_compute_sector(conf
,
870 le64_to_cpu(payload
->location
), 0,
873 sync_page_io(log
->rdev
, *log_offset
, PAGE_SIZE
,
874 sh
->dev
[disk_index
].page
, READ
, false);
875 sh
->dev
[disk_index
].log_checksum
=
876 le32_to_cpu(payload
->checksum
[0]);
877 set_bit(R5_Wantwrite
, &sh
->dev
[disk_index
].flags
);
878 ctx
->meta_total_blocks
+= BLOCK_SECTORS
;
880 disk_index
= sh
->pd_idx
;
881 sync_page_io(log
->rdev
, *log_offset
, PAGE_SIZE
,
882 sh
->dev
[disk_index
].page
, READ
, false);
883 sh
->dev
[disk_index
].log_checksum
=
884 le32_to_cpu(payload
->checksum
[0]);
885 set_bit(R5_Wantwrite
, &sh
->dev
[disk_index
].flags
);
887 if (sh
->qd_idx
>= 0) {
888 disk_index
= sh
->qd_idx
;
889 sync_page_io(log
->rdev
,
890 r5l_ring_add(log
, *log_offset
, BLOCK_SECTORS
),
891 PAGE_SIZE
, sh
->dev
[disk_index
].page
,
893 sh
->dev
[disk_index
].log_checksum
=
894 le32_to_cpu(payload
->checksum
[1]);
895 set_bit(R5_Wantwrite
,
896 &sh
->dev
[disk_index
].flags
);
898 ctx
->meta_total_blocks
+= BLOCK_SECTORS
* conf
->max_degraded
;
901 *log_offset
= r5l_ring_add(log
, *log_offset
,
902 le32_to_cpu(payload
->size
));
903 *offset
+= sizeof(struct r5l_payload_data_parity
) +
905 (le32_to_cpu(payload
->size
) >> (PAGE_SHIFT
- 9));
906 if (le16_to_cpu(payload
->header
.type
) == R5LOG_PAYLOAD_PARITY
)
910 for (disk_index
= 0; disk_index
< sh
->disks
; disk_index
++) {
914 if (!test_bit(R5_Wantwrite
, &sh
->dev
[disk_index
].flags
))
916 addr
= kmap_atomic(sh
->dev
[disk_index
].page
);
917 checksum
= crc32c_le(log
->uuid_checksum
, addr
, PAGE_SIZE
);
919 if (checksum
!= sh
->dev
[disk_index
].log_checksum
)
923 for (disk_index
= 0; disk_index
< sh
->disks
; disk_index
++) {
924 struct md_rdev
*rdev
, *rrdev
;
926 if (!test_and_clear_bit(R5_Wantwrite
,
927 &sh
->dev
[disk_index
].flags
))
930 /* in case device is broken */
931 rdev
= rcu_dereference(conf
->disks
[disk_index
].rdev
);
933 sync_page_io(rdev
, stripe_sect
, PAGE_SIZE
,
934 sh
->dev
[disk_index
].page
, WRITE
, false);
935 rrdev
= rcu_dereference(conf
->disks
[disk_index
].replacement
);
937 sync_page_io(rrdev
, stripe_sect
, PAGE_SIZE
,
938 sh
->dev
[disk_index
].page
, WRITE
, false);
940 raid5_release_stripe(sh
);
944 for (disk_index
= 0; disk_index
< sh
->disks
; disk_index
++)
945 sh
->dev
[disk_index
].flags
= 0;
946 raid5_release_stripe(sh
);
950 static int r5l_recovery_flush_one_meta(struct r5l_log
*log
,
951 struct r5l_recovery_ctx
*ctx
)
953 struct r5conf
*conf
= log
->rdev
->mddev
->private;
954 struct r5l_payload_data_parity
*payload
;
955 struct r5l_meta_block
*mb
;
958 sector_t stripe_sector
;
960 mb
= page_address(ctx
->meta_page
);
961 offset
= sizeof(struct r5l_meta_block
);
962 log_offset
= r5l_ring_add(log
, ctx
->pos
, BLOCK_SECTORS
);
964 while (offset
< le32_to_cpu(mb
->meta_size
)) {
967 payload
= (void *)mb
+ offset
;
968 stripe_sector
= raid5_compute_sector(conf
,
969 le64_to_cpu(payload
->location
), 0, &dd
, NULL
);
970 if (r5l_recovery_flush_one_stripe(log
, ctx
, stripe_sector
,
971 &offset
, &log_offset
))
977 /* copy data/parity from log to raid disks */
978 static void r5l_recovery_flush_log(struct r5l_log
*log
,
979 struct r5l_recovery_ctx
*ctx
)
982 if (r5l_read_meta_block(log
, ctx
))
984 if (r5l_recovery_flush_one_meta(log
, ctx
))
987 ctx
->pos
= r5l_ring_add(log
, ctx
->pos
, ctx
->meta_total_blocks
);
991 static int r5l_log_write_empty_meta_block(struct r5l_log
*log
, sector_t pos
,
995 struct r5l_meta_block
*mb
;
998 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
1001 mb
= page_address(page
);
1002 mb
->magic
= cpu_to_le32(R5LOG_MAGIC
);
1003 mb
->version
= R5LOG_VERSION
;
1004 mb
->meta_size
= cpu_to_le32(sizeof(struct r5l_meta_block
));
1005 mb
->seq
= cpu_to_le64(seq
);
1006 mb
->position
= cpu_to_le64(pos
);
1007 crc
= crc32c_le(log
->uuid_checksum
, mb
, PAGE_SIZE
);
1008 mb
->checksum
= cpu_to_le32(crc
);
1010 if (!sync_page_io(log
->rdev
, pos
, PAGE_SIZE
, page
, WRITE_FUA
, false)) {
1018 static int r5l_recovery_log(struct r5l_log
*log
)
1020 struct r5l_recovery_ctx ctx
;
1022 ctx
.pos
= log
->last_checkpoint
;
1023 ctx
.seq
= log
->last_cp_seq
;
1024 ctx
.meta_page
= alloc_page(GFP_KERNEL
);
1028 r5l_recovery_flush_log(log
, &ctx
);
1029 __free_page(ctx
.meta_page
);
1032 * we did a recovery. Now ctx.pos points to an invalid meta block. New
1033 * log will start here. but we can't let superblock point to last valid
1034 * meta block. The log might looks like:
1035 * | meta 1| meta 2| meta 3|
1036 * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
1037 * superblock points to meta 1, we write a new valid meta 2n. if crash
1038 * happens again, new recovery will start from meta 1. Since meta 2n is
1039 * valid now, recovery will think meta 3 is valid, which is wrong.
1040 * The solution is we create a new meta in meta2 with its seq == meta
1041 * 1's seq + 10 and let superblock points to meta2. The same recovery will
1042 * not think meta 3 is a valid meta, because its seq doesn't match
1044 if (ctx
.seq
> log
->last_cp_seq
+ 1) {
1047 ret
= r5l_log_write_empty_meta_block(log
, ctx
.pos
, ctx
.seq
+ 10);
1050 log
->seq
= ctx
.seq
+ 11;
1051 log
->log_start
= r5l_ring_add(log
, ctx
.pos
, BLOCK_SECTORS
);
1052 r5l_write_super(log
, ctx
.pos
);
1054 log
->log_start
= ctx
.pos
;
1060 static void r5l_write_super(struct r5l_log
*log
, sector_t cp
)
1062 struct mddev
*mddev
= log
->rdev
->mddev
;
1064 log
->rdev
->journal_tail
= cp
;
1065 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1068 static int r5l_load_log(struct r5l_log
*log
)
1070 struct md_rdev
*rdev
= log
->rdev
;
1072 struct r5l_meta_block
*mb
;
1073 sector_t cp
= log
->rdev
->journal_tail
;
1074 u32 stored_crc
, expected_crc
;
1075 bool create_super
= false;
1078 /* Make sure it's valid */
1079 if (cp
>= rdev
->sectors
|| round_down(cp
, BLOCK_SECTORS
) != cp
)
1081 page
= alloc_page(GFP_KERNEL
);
1085 if (!sync_page_io(rdev
, cp
, PAGE_SIZE
, page
, READ
, false)) {
1089 mb
= page_address(page
);
1091 if (le32_to_cpu(mb
->magic
) != R5LOG_MAGIC
||
1092 mb
->version
!= R5LOG_VERSION
) {
1093 create_super
= true;
1096 stored_crc
= le32_to_cpu(mb
->checksum
);
1098 expected_crc
= crc32c_le(log
->uuid_checksum
, mb
, PAGE_SIZE
);
1099 if (stored_crc
!= expected_crc
) {
1100 create_super
= true;
1103 if (le64_to_cpu(mb
->position
) != cp
) {
1104 create_super
= true;
1109 log
->last_cp_seq
= prandom_u32();
1112 * Make sure super points to correct address. Log might have
1113 * data very soon. If super hasn't correct log tail address,
1114 * recovery can't find the log
1116 r5l_write_super(log
, cp
);
1118 log
->last_cp_seq
= le64_to_cpu(mb
->seq
);
1120 log
->device_size
= round_down(rdev
->sectors
, BLOCK_SECTORS
);
1121 log
->max_free_space
= log
->device_size
>> RECLAIM_MAX_FREE_SPACE_SHIFT
;
1122 if (log
->max_free_space
> RECLAIM_MAX_FREE_SPACE
)
1123 log
->max_free_space
= RECLAIM_MAX_FREE_SPACE
;
1124 log
->last_checkpoint
= cp
;
1128 return r5l_recovery_log(log
);
1134 int r5l_init_log(struct r5conf
*conf
, struct md_rdev
*rdev
)
1136 struct r5l_log
*log
;
1138 if (PAGE_SIZE
!= 4096)
1140 log
= kzalloc(sizeof(*log
), GFP_KERNEL
);
1145 log
->need_cache_flush
= (rdev
->bdev
->bd_disk
->queue
->flush_flags
!= 0);
1147 log
->uuid_checksum
= crc32c_le(~0, rdev
->mddev
->uuid
,
1148 sizeof(rdev
->mddev
->uuid
));
1150 mutex_init(&log
->io_mutex
);
1152 spin_lock_init(&log
->io_list_lock
);
1153 INIT_LIST_HEAD(&log
->running_ios
);
1154 INIT_LIST_HEAD(&log
->io_end_ios
);
1155 INIT_LIST_HEAD(&log
->flushing_ios
);
1156 INIT_LIST_HEAD(&log
->finished_ios
);
1157 bio_init(&log
->flush_bio
);
1159 log
->io_kc
= KMEM_CACHE(r5l_io_unit
, 0);
1163 log
->reclaim_thread
= md_register_thread(r5l_reclaim_thread
,
1164 log
->rdev
->mddev
, "reclaim");
1165 if (!log
->reclaim_thread
)
1166 goto reclaim_thread
;
1167 init_waitqueue_head(&log
->iounit_wait
);
1169 INIT_LIST_HEAD(&log
->no_space_stripes
);
1170 spin_lock_init(&log
->no_space_stripes_lock
);
1172 if (r5l_load_log(log
))
1178 md_unregister_thread(&log
->reclaim_thread
);
1180 kmem_cache_destroy(log
->io_kc
);
1186 void r5l_exit_log(struct r5l_log
*log
)
1188 md_unregister_thread(&log
->reclaim_thread
);
1189 kmem_cache_destroy(log
->io_kc
);