2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
68 static bool devices_handle_discard_safely
= false;
69 module_param(devices_handle_discard_safely
, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely
,
71 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct
*raid5_wq
;
77 #define NR_STRIPES 256
78 #define STRIPE_SIZE PAGE_SIZE
79 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
80 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
81 #define IO_THRESHOLD 1
82 #define BYPASS_THRESHOLD 1
83 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
84 #define HASH_MASK (NR_HASH - 1)
85 #define MAX_STRIPE_BATCH 8
87 static inline struct hlist_head
*stripe_hash(struct r5conf
*conf
, sector_t sect
)
89 int hash
= (sect
>> STRIPE_SHIFT
) & HASH_MASK
;
90 return &conf
->stripe_hashtbl
[hash
];
93 static inline int stripe_hash_locks_hash(sector_t sect
)
95 return (sect
>> STRIPE_SHIFT
) & STRIPE_HASH_LOCKS_MASK
;
98 static inline void lock_device_hash_lock(struct r5conf
*conf
, int hash
)
100 spin_lock_irq(conf
->hash_locks
+ hash
);
101 spin_lock(&conf
->device_lock
);
104 static inline void unlock_device_hash_lock(struct r5conf
*conf
, int hash
)
106 spin_unlock(&conf
->device_lock
);
107 spin_unlock_irq(conf
->hash_locks
+ hash
);
110 static inline void lock_all_device_hash_locks_irq(struct r5conf
*conf
)
113 spin_lock_irq(conf
->hash_locks
);
114 for (i
= 1; i
< NR_STRIPE_HASH_LOCKS
; i
++)
115 spin_lock_nest_lock(conf
->hash_locks
+ i
, conf
->hash_locks
);
116 spin_lock(&conf
->device_lock
);
119 static inline void unlock_all_device_hash_locks_irq(struct r5conf
*conf
)
122 spin_unlock(&conf
->device_lock
);
123 for (i
= NR_STRIPE_HASH_LOCKS
- 1; i
; i
--)
124 spin_unlock(conf
->hash_locks
+ i
);
125 spin_unlock_irq(conf
->hash_locks
);
128 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
129 * order without overlap. There may be several bio's per stripe+device, and
130 * a bio could span several devices.
131 * When walking this list for a particular stripe+device, we must never proceed
132 * beyond a bio that extends past this device, as the next bio might no longer
134 * This function is used to determine the 'next' bio in the list, given the sector
135 * of the current stripe+device
137 static inline struct bio
*r5_next_bio(struct bio
*bio
, sector_t sector
)
139 int sectors
= bio_sectors(bio
);
140 if (bio
->bi_iter
.bi_sector
+ sectors
< sector
+ STRIPE_SECTORS
)
147 * We maintain a biased count of active stripes in the bottom 16 bits of
148 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
150 static inline int raid5_bi_processed_stripes(struct bio
*bio
)
152 atomic_t
*segments
= (atomic_t
*)&bio
->bi_phys_segments
;
153 return (atomic_read(segments
) >> 16) & 0xffff;
156 static inline int raid5_dec_bi_active_stripes(struct bio
*bio
)
158 atomic_t
*segments
= (atomic_t
*)&bio
->bi_phys_segments
;
159 return atomic_sub_return(1, segments
) & 0xffff;
162 static inline void raid5_inc_bi_active_stripes(struct bio
*bio
)
164 atomic_t
*segments
= (atomic_t
*)&bio
->bi_phys_segments
;
165 atomic_inc(segments
);
168 static inline void raid5_set_bi_processed_stripes(struct bio
*bio
,
171 atomic_t
*segments
= (atomic_t
*)&bio
->bi_phys_segments
;
175 old
= atomic_read(segments
);
176 new = (old
& 0xffff) | (cnt
<< 16);
177 } while (atomic_cmpxchg(segments
, old
, new) != old
);
180 static inline void raid5_set_bi_stripes(struct bio
*bio
, unsigned int cnt
)
182 atomic_t
*segments
= (atomic_t
*)&bio
->bi_phys_segments
;
183 atomic_set(segments
, cnt
);
186 /* Find first data disk in a raid6 stripe */
187 static inline int raid6_d0(struct stripe_head
*sh
)
190 /* ddf always start from first device */
192 /* md starts just after Q block */
193 if (sh
->qd_idx
== sh
->disks
- 1)
196 return sh
->qd_idx
+ 1;
198 static inline int raid6_next_disk(int disk
, int raid_disks
)
201 return (disk
< raid_disks
) ? disk
: 0;
204 /* When walking through the disks in a raid5, starting at raid6_d0,
205 * We need to map each disk to a 'slot', where the data disks are slot
206 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
207 * is raid_disks-1. This help does that mapping.
209 static int raid6_idx_to_slot(int idx
, struct stripe_head
*sh
,
210 int *count
, int syndrome_disks
)
216 if (idx
== sh
->pd_idx
)
217 return syndrome_disks
;
218 if (idx
== sh
->qd_idx
)
219 return syndrome_disks
+ 1;
225 static void return_io(struct bio_list
*return_bi
)
228 while ((bi
= bio_list_pop(return_bi
)) != NULL
) {
229 bi
->bi_iter
.bi_size
= 0;
230 trace_block_bio_complete(bdev_get_queue(bi
->bi_bdev
),
236 static void print_raid5_conf (struct r5conf
*conf
);
238 static int stripe_operations_active(struct stripe_head
*sh
)
240 return sh
->check_state
|| sh
->reconstruct_state
||
241 test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
) ||
242 test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
245 static void raid5_wakeup_stripe_thread(struct stripe_head
*sh
)
247 struct r5conf
*conf
= sh
->raid_conf
;
248 struct r5worker_group
*group
;
250 int i
, cpu
= sh
->cpu
;
252 if (!cpu_online(cpu
)) {
253 cpu
= cpumask_any(cpu_online_mask
);
257 if (list_empty(&sh
->lru
)) {
258 struct r5worker_group
*group
;
259 group
= conf
->worker_groups
+ cpu_to_group(cpu
);
260 list_add_tail(&sh
->lru
, &group
->handle_list
);
261 group
->stripes_cnt
++;
265 if (conf
->worker_cnt_per_group
== 0) {
266 md_wakeup_thread(conf
->mddev
->thread
);
270 group
= conf
->worker_groups
+ cpu_to_group(sh
->cpu
);
272 group
->workers
[0].working
= true;
273 /* at least one worker should run to avoid race */
274 queue_work_on(sh
->cpu
, raid5_wq
, &group
->workers
[0].work
);
276 thread_cnt
= group
->stripes_cnt
/ MAX_STRIPE_BATCH
- 1;
277 /* wakeup more workers */
278 for (i
= 1; i
< conf
->worker_cnt_per_group
&& thread_cnt
> 0; i
++) {
279 if (group
->workers
[i
].working
== false) {
280 group
->workers
[i
].working
= true;
281 queue_work_on(sh
->cpu
, raid5_wq
,
282 &group
->workers
[i
].work
);
288 static void do_release_stripe(struct r5conf
*conf
, struct stripe_head
*sh
,
289 struct list_head
*temp_inactive_list
)
291 BUG_ON(!list_empty(&sh
->lru
));
292 BUG_ON(atomic_read(&conf
->active_stripes
)==0);
293 if (test_bit(STRIPE_HANDLE
, &sh
->state
)) {
294 if (test_bit(STRIPE_DELAYED
, &sh
->state
) &&
295 !test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
296 list_add_tail(&sh
->lru
, &conf
->delayed_list
);
297 else if (test_bit(STRIPE_BIT_DELAY
, &sh
->state
) &&
298 sh
->bm_seq
- conf
->seq_write
> 0)
299 list_add_tail(&sh
->lru
, &conf
->bitmap_list
);
301 clear_bit(STRIPE_DELAYED
, &sh
->state
);
302 clear_bit(STRIPE_BIT_DELAY
, &sh
->state
);
303 if (conf
->worker_cnt_per_group
== 0) {
304 list_add_tail(&sh
->lru
, &conf
->handle_list
);
306 raid5_wakeup_stripe_thread(sh
);
310 md_wakeup_thread(conf
->mddev
->thread
);
312 BUG_ON(stripe_operations_active(sh
));
313 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
314 if (atomic_dec_return(&conf
->preread_active_stripes
)
316 md_wakeup_thread(conf
->mddev
->thread
);
317 atomic_dec(&conf
->active_stripes
);
318 if (!test_bit(STRIPE_EXPANDING
, &sh
->state
))
319 list_add_tail(&sh
->lru
, temp_inactive_list
);
323 static void __release_stripe(struct r5conf
*conf
, struct stripe_head
*sh
,
324 struct list_head
*temp_inactive_list
)
326 if (atomic_dec_and_test(&sh
->count
))
327 do_release_stripe(conf
, sh
, temp_inactive_list
);
331 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
333 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
334 * given time. Adding stripes only takes device lock, while deleting stripes
335 * only takes hash lock.
337 static void release_inactive_stripe_list(struct r5conf
*conf
,
338 struct list_head
*temp_inactive_list
,
342 bool do_wakeup
= false;
345 if (hash
== NR_STRIPE_HASH_LOCKS
) {
346 size
= NR_STRIPE_HASH_LOCKS
;
347 hash
= NR_STRIPE_HASH_LOCKS
- 1;
351 struct list_head
*list
= &temp_inactive_list
[size
- 1];
354 * We don't hold any lock here yet, raid5_get_active_stripe() might
355 * remove stripes from the list
357 if (!list_empty_careful(list
)) {
358 spin_lock_irqsave(conf
->hash_locks
+ hash
, flags
);
359 if (list_empty(conf
->inactive_list
+ hash
) &&
361 atomic_dec(&conf
->empty_inactive_list_nr
);
362 list_splice_tail_init(list
, conf
->inactive_list
+ hash
);
364 spin_unlock_irqrestore(conf
->hash_locks
+ hash
, flags
);
371 wake_up(&conf
->wait_for_stripe
);
372 if (atomic_read(&conf
->active_stripes
) == 0)
373 wake_up(&conf
->wait_for_quiescent
);
374 if (conf
->retry_read_aligned
)
375 md_wakeup_thread(conf
->mddev
->thread
);
379 /* should hold conf->device_lock already */
380 static int release_stripe_list(struct r5conf
*conf
,
381 struct list_head
*temp_inactive_list
)
383 struct stripe_head
*sh
;
385 struct llist_node
*head
;
387 head
= llist_del_all(&conf
->released_stripes
);
388 head
= llist_reverse_order(head
);
392 sh
= llist_entry(head
, struct stripe_head
, release_list
);
393 head
= llist_next(head
);
394 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
396 clear_bit(STRIPE_ON_RELEASE_LIST
, &sh
->state
);
398 * Don't worry the bit is set here, because if the bit is set
399 * again, the count is always > 1. This is true for
400 * STRIPE_ON_UNPLUG_LIST bit too.
402 hash
= sh
->hash_lock_index
;
403 __release_stripe(conf
, sh
, &temp_inactive_list
[hash
]);
410 void raid5_release_stripe(struct stripe_head
*sh
)
412 struct r5conf
*conf
= sh
->raid_conf
;
414 struct list_head list
;
418 /* Avoid release_list until the last reference.
420 if (atomic_add_unless(&sh
->count
, -1, 1))
423 if (unlikely(!conf
->mddev
->thread
) ||
424 test_and_set_bit(STRIPE_ON_RELEASE_LIST
, &sh
->state
))
426 wakeup
= llist_add(&sh
->release_list
, &conf
->released_stripes
);
428 md_wakeup_thread(conf
->mddev
->thread
);
431 local_irq_save(flags
);
432 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
433 if (atomic_dec_and_lock(&sh
->count
, &conf
->device_lock
)) {
434 INIT_LIST_HEAD(&list
);
435 hash
= sh
->hash_lock_index
;
436 do_release_stripe(conf
, sh
, &list
);
437 spin_unlock(&conf
->device_lock
);
438 release_inactive_stripe_list(conf
, &list
, hash
);
440 local_irq_restore(flags
);
443 static inline void remove_hash(struct stripe_head
*sh
)
445 pr_debug("remove_hash(), stripe %llu\n",
446 (unsigned long long)sh
->sector
);
448 hlist_del_init(&sh
->hash
);
451 static inline void insert_hash(struct r5conf
*conf
, struct stripe_head
*sh
)
453 struct hlist_head
*hp
= stripe_hash(conf
, sh
->sector
);
455 pr_debug("insert_hash(), stripe %llu\n",
456 (unsigned long long)sh
->sector
);
458 hlist_add_head(&sh
->hash
, hp
);
461 /* find an idle stripe, make sure it is unhashed, and return it. */
462 static struct stripe_head
*get_free_stripe(struct r5conf
*conf
, int hash
)
464 struct stripe_head
*sh
= NULL
;
465 struct list_head
*first
;
467 if (list_empty(conf
->inactive_list
+ hash
))
469 first
= (conf
->inactive_list
+ hash
)->next
;
470 sh
= list_entry(first
, struct stripe_head
, lru
);
471 list_del_init(first
);
473 atomic_inc(&conf
->active_stripes
);
474 BUG_ON(hash
!= sh
->hash_lock_index
);
475 if (list_empty(conf
->inactive_list
+ hash
))
476 atomic_inc(&conf
->empty_inactive_list_nr
);
481 static void shrink_buffers(struct stripe_head
*sh
)
485 int num
= sh
->raid_conf
->pool_size
;
487 for (i
= 0; i
< num
; i
++) {
488 WARN_ON(sh
->dev
[i
].page
!= sh
->dev
[i
].orig_page
);
492 sh
->dev
[i
].page
= NULL
;
497 static int grow_buffers(struct stripe_head
*sh
, gfp_t gfp
)
500 int num
= sh
->raid_conf
->pool_size
;
502 for (i
= 0; i
< num
; i
++) {
505 if (!(page
= alloc_page(gfp
))) {
508 sh
->dev
[i
].page
= page
;
509 sh
->dev
[i
].orig_page
= page
;
514 static void raid5_build_block(struct stripe_head
*sh
, int i
, int previous
);
515 static void stripe_set_idx(sector_t stripe
, struct r5conf
*conf
, int previous
,
516 struct stripe_head
*sh
);
518 static void init_stripe(struct stripe_head
*sh
, sector_t sector
, int previous
)
520 struct r5conf
*conf
= sh
->raid_conf
;
523 BUG_ON(atomic_read(&sh
->count
) != 0);
524 BUG_ON(test_bit(STRIPE_HANDLE
, &sh
->state
));
525 BUG_ON(stripe_operations_active(sh
));
526 BUG_ON(sh
->batch_head
);
528 pr_debug("init_stripe called, stripe %llu\n",
529 (unsigned long long)sector
);
531 seq
= read_seqcount_begin(&conf
->gen_lock
);
532 sh
->generation
= conf
->generation
- previous
;
533 sh
->disks
= previous
? conf
->previous_raid_disks
: conf
->raid_disks
;
535 stripe_set_idx(sector
, conf
, previous
, sh
);
538 for (i
= sh
->disks
; i
--; ) {
539 struct r5dev
*dev
= &sh
->dev
[i
];
541 if (dev
->toread
|| dev
->read
|| dev
->towrite
|| dev
->written
||
542 test_bit(R5_LOCKED
, &dev
->flags
)) {
543 printk(KERN_ERR
"sector=%llx i=%d %p %p %p %p %d\n",
544 (unsigned long long)sh
->sector
, i
, dev
->toread
,
545 dev
->read
, dev
->towrite
, dev
->written
,
546 test_bit(R5_LOCKED
, &dev
->flags
));
550 raid5_build_block(sh
, i
, previous
);
552 if (read_seqcount_retry(&conf
->gen_lock
, seq
))
554 sh
->overwrite_disks
= 0;
555 insert_hash(conf
, sh
);
556 sh
->cpu
= smp_processor_id();
557 set_bit(STRIPE_BATCH_READY
, &sh
->state
);
560 static struct stripe_head
*__find_stripe(struct r5conf
*conf
, sector_t sector
,
563 struct stripe_head
*sh
;
565 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector
);
566 hlist_for_each_entry(sh
, stripe_hash(conf
, sector
), hash
)
567 if (sh
->sector
== sector
&& sh
->generation
== generation
)
569 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector
);
574 * Need to check if array has failed when deciding whether to:
576 * - remove non-faulty devices
579 * This determination is simple when no reshape is happening.
580 * However if there is a reshape, we need to carefully check
581 * both the before and after sections.
582 * This is because some failed devices may only affect one
583 * of the two sections, and some non-in_sync devices may
584 * be insync in the section most affected by failed devices.
586 static int calc_degraded(struct r5conf
*conf
)
588 int degraded
, degraded2
;
593 for (i
= 0; i
< conf
->previous_raid_disks
; i
++) {
594 struct md_rdev
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
595 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
596 rdev
= rcu_dereference(conf
->disks
[i
].replacement
);
597 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
599 else if (test_bit(In_sync
, &rdev
->flags
))
602 /* not in-sync or faulty.
603 * If the reshape increases the number of devices,
604 * this is being recovered by the reshape, so
605 * this 'previous' section is not in_sync.
606 * If the number of devices is being reduced however,
607 * the device can only be part of the array if
608 * we are reverting a reshape, so this section will
611 if (conf
->raid_disks
>= conf
->previous_raid_disks
)
615 if (conf
->raid_disks
== conf
->previous_raid_disks
)
619 for (i
= 0; i
< conf
->raid_disks
; i
++) {
620 struct md_rdev
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
621 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
622 rdev
= rcu_dereference(conf
->disks
[i
].replacement
);
623 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
625 else if (test_bit(In_sync
, &rdev
->flags
))
628 /* not in-sync or faulty.
629 * If reshape increases the number of devices, this
630 * section has already been recovered, else it
631 * almost certainly hasn't.
633 if (conf
->raid_disks
<= conf
->previous_raid_disks
)
637 if (degraded2
> degraded
)
642 static int has_failed(struct r5conf
*conf
)
646 if (conf
->mddev
->reshape_position
== MaxSector
)
647 return conf
->mddev
->degraded
> conf
->max_degraded
;
649 degraded
= calc_degraded(conf
);
650 if (degraded
> conf
->max_degraded
)
656 raid5_get_active_stripe(struct r5conf
*conf
, sector_t sector
,
657 int previous
, int noblock
, int noquiesce
)
659 struct stripe_head
*sh
;
660 int hash
= stripe_hash_locks_hash(sector
);
662 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector
);
664 spin_lock_irq(conf
->hash_locks
+ hash
);
667 wait_event_lock_irq(conf
->wait_for_quiescent
,
668 conf
->quiesce
== 0 || noquiesce
,
669 *(conf
->hash_locks
+ hash
));
670 sh
= __find_stripe(conf
, sector
, conf
->generation
- previous
);
672 if (!test_bit(R5_INACTIVE_BLOCKED
, &conf
->cache_state
)) {
673 sh
= get_free_stripe(conf
, hash
);
674 if (!sh
&& !test_bit(R5_DID_ALLOC
,
676 set_bit(R5_ALLOC_MORE
,
679 if (noblock
&& sh
== NULL
)
682 set_bit(R5_INACTIVE_BLOCKED
,
685 conf
->wait_for_stripe
,
686 !list_empty(conf
->inactive_list
+ hash
) &&
687 (atomic_read(&conf
->active_stripes
)
688 < (conf
->max_nr_stripes
* 3 / 4)
689 || !test_bit(R5_INACTIVE_BLOCKED
,
690 &conf
->cache_state
)),
691 *(conf
->hash_locks
+ hash
));
692 clear_bit(R5_INACTIVE_BLOCKED
,
695 init_stripe(sh
, sector
, previous
);
696 atomic_inc(&sh
->count
);
698 } else if (!atomic_inc_not_zero(&sh
->count
)) {
699 spin_lock(&conf
->device_lock
);
700 if (!atomic_read(&sh
->count
)) {
701 if (!test_bit(STRIPE_HANDLE
, &sh
->state
))
702 atomic_inc(&conf
->active_stripes
);
703 BUG_ON(list_empty(&sh
->lru
) &&
704 !test_bit(STRIPE_EXPANDING
, &sh
->state
));
705 list_del_init(&sh
->lru
);
707 sh
->group
->stripes_cnt
--;
711 atomic_inc(&sh
->count
);
712 spin_unlock(&conf
->device_lock
);
714 } while (sh
== NULL
);
716 spin_unlock_irq(conf
->hash_locks
+ hash
);
720 static bool is_full_stripe_write(struct stripe_head
*sh
)
722 BUG_ON(sh
->overwrite_disks
> (sh
->disks
- sh
->raid_conf
->max_degraded
));
723 return sh
->overwrite_disks
== (sh
->disks
- sh
->raid_conf
->max_degraded
);
726 static void lock_two_stripes(struct stripe_head
*sh1
, struct stripe_head
*sh2
)
729 spin_lock_irq(&sh2
->stripe_lock
);
730 spin_lock_nested(&sh1
->stripe_lock
, 1);
732 spin_lock_irq(&sh1
->stripe_lock
);
733 spin_lock_nested(&sh2
->stripe_lock
, 1);
737 static void unlock_two_stripes(struct stripe_head
*sh1
, struct stripe_head
*sh2
)
739 spin_unlock(&sh1
->stripe_lock
);
740 spin_unlock_irq(&sh2
->stripe_lock
);
743 /* Only freshly new full stripe normal write stripe can be added to a batch list */
744 static bool stripe_can_batch(struct stripe_head
*sh
)
746 struct r5conf
*conf
= sh
->raid_conf
;
750 return test_bit(STRIPE_BATCH_READY
, &sh
->state
) &&
751 !test_bit(STRIPE_BITMAP_PENDING
, &sh
->state
) &&
752 is_full_stripe_write(sh
);
755 /* we only do back search */
756 static void stripe_add_to_batch_list(struct r5conf
*conf
, struct stripe_head
*sh
)
758 struct stripe_head
*head
;
759 sector_t head_sector
, tmp_sec
;
763 if (!stripe_can_batch(sh
))
765 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
766 tmp_sec
= sh
->sector
;
767 if (!sector_div(tmp_sec
, conf
->chunk_sectors
))
769 head_sector
= sh
->sector
- STRIPE_SECTORS
;
771 hash
= stripe_hash_locks_hash(head_sector
);
772 spin_lock_irq(conf
->hash_locks
+ hash
);
773 head
= __find_stripe(conf
, head_sector
, conf
->generation
);
774 if (head
&& !atomic_inc_not_zero(&head
->count
)) {
775 spin_lock(&conf
->device_lock
);
776 if (!atomic_read(&head
->count
)) {
777 if (!test_bit(STRIPE_HANDLE
, &head
->state
))
778 atomic_inc(&conf
->active_stripes
);
779 BUG_ON(list_empty(&head
->lru
) &&
780 !test_bit(STRIPE_EXPANDING
, &head
->state
));
781 list_del_init(&head
->lru
);
783 head
->group
->stripes_cnt
--;
787 atomic_inc(&head
->count
);
788 spin_unlock(&conf
->device_lock
);
790 spin_unlock_irq(conf
->hash_locks
+ hash
);
794 if (!stripe_can_batch(head
))
797 lock_two_stripes(head
, sh
);
798 /* clear_batch_ready clear the flag */
799 if (!stripe_can_batch(head
) || !stripe_can_batch(sh
))
806 while (dd_idx
== sh
->pd_idx
|| dd_idx
== sh
->qd_idx
)
808 if (head
->dev
[dd_idx
].towrite
->bi_rw
!= sh
->dev
[dd_idx
].towrite
->bi_rw
)
811 if (head
->batch_head
) {
812 spin_lock(&head
->batch_head
->batch_lock
);
813 /* This batch list is already running */
814 if (!stripe_can_batch(head
)) {
815 spin_unlock(&head
->batch_head
->batch_lock
);
819 * We must assign batch_head of this stripe within the
820 * batch_lock, otherwise clear_batch_ready of batch head
821 * stripe could clear BATCH_READY bit of this stripe and
822 * this stripe->batch_head doesn't get assigned, which
823 * could confuse clear_batch_ready for this stripe
825 sh
->batch_head
= head
->batch_head
;
828 * at this point, head's BATCH_READY could be cleared, but we
829 * can still add the stripe to batch list
831 list_add(&sh
->batch_list
, &head
->batch_list
);
832 spin_unlock(&head
->batch_head
->batch_lock
);
834 head
->batch_head
= head
;
835 sh
->batch_head
= head
->batch_head
;
836 spin_lock(&head
->batch_lock
);
837 list_add_tail(&sh
->batch_list
, &head
->batch_list
);
838 spin_unlock(&head
->batch_lock
);
841 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
842 if (atomic_dec_return(&conf
->preread_active_stripes
)
844 md_wakeup_thread(conf
->mddev
->thread
);
846 if (test_and_clear_bit(STRIPE_BIT_DELAY
, &sh
->state
)) {
847 int seq
= sh
->bm_seq
;
848 if (test_bit(STRIPE_BIT_DELAY
, &sh
->batch_head
->state
) &&
849 sh
->batch_head
->bm_seq
> seq
)
850 seq
= sh
->batch_head
->bm_seq
;
851 set_bit(STRIPE_BIT_DELAY
, &sh
->batch_head
->state
);
852 sh
->batch_head
->bm_seq
= seq
;
855 atomic_inc(&sh
->count
);
857 unlock_two_stripes(head
, sh
);
859 raid5_release_stripe(head
);
862 /* Determine if 'data_offset' or 'new_data_offset' should be used
863 * in this stripe_head.
865 static int use_new_offset(struct r5conf
*conf
, struct stripe_head
*sh
)
867 sector_t progress
= conf
->reshape_progress
;
868 /* Need a memory barrier to make sure we see the value
869 * of conf->generation, or ->data_offset that was set before
870 * reshape_progress was updated.
873 if (progress
== MaxSector
)
875 if (sh
->generation
== conf
->generation
- 1)
877 /* We are in a reshape, and this is a new-generation stripe,
878 * so use new_data_offset.
884 raid5_end_read_request(struct bio
*bi
);
886 raid5_end_write_request(struct bio
*bi
);
888 static void ops_run_io(struct stripe_head
*sh
, struct stripe_head_state
*s
)
890 struct r5conf
*conf
= sh
->raid_conf
;
891 int i
, disks
= sh
->disks
;
892 struct stripe_head
*head_sh
= sh
;
896 if (r5l_write_stripe(conf
->log
, sh
) == 0)
898 for (i
= disks
; i
--; ) {
900 int replace_only
= 0;
901 struct bio
*bi
, *rbi
;
902 struct md_rdev
*rdev
, *rrdev
= NULL
;
905 if (test_and_clear_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
)) {
906 if (test_and_clear_bit(R5_WantFUA
, &sh
->dev
[i
].flags
))
910 if (test_bit(R5_Discard
, &sh
->dev
[i
].flags
))
912 } else if (test_and_clear_bit(R5_Wantread
, &sh
->dev
[i
].flags
))
914 else if (test_and_clear_bit(R5_WantReplace
,
915 &sh
->dev
[i
].flags
)) {
920 if (test_and_clear_bit(R5_SyncIO
, &sh
->dev
[i
].flags
))
924 bi
= &sh
->dev
[i
].req
;
925 rbi
= &sh
->dev
[i
].rreq
; /* For writing to replacement */
928 rrdev
= rcu_dereference(conf
->disks
[i
].replacement
);
929 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
930 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
939 /* We raced and saw duplicates */
942 if (test_bit(R5_ReadRepl
, &head_sh
->dev
[i
].flags
) && rrdev
)
947 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
950 atomic_inc(&rdev
->nr_pending
);
951 if (rrdev
&& test_bit(Faulty
, &rrdev
->flags
))
954 atomic_inc(&rrdev
->nr_pending
);
957 /* We have already checked bad blocks for reads. Now
958 * need to check for writes. We never accept write errors
959 * on the replacement, so we don't to check rrdev.
961 while ((rw
& WRITE
) && rdev
&&
962 test_bit(WriteErrorSeen
, &rdev
->flags
)) {
965 int bad
= is_badblock(rdev
, sh
->sector
, STRIPE_SECTORS
,
966 &first_bad
, &bad_sectors
);
971 set_bit(BlockedBadBlocks
, &rdev
->flags
);
972 if (!conf
->mddev
->external
&&
973 conf
->mddev
->flags
) {
974 /* It is very unlikely, but we might
975 * still need to write out the
976 * bad block log - better give it
978 md_check_recovery(conf
->mddev
);
981 * Because md_wait_for_blocked_rdev
982 * will dec nr_pending, we must
983 * increment it first.
985 atomic_inc(&rdev
->nr_pending
);
986 md_wait_for_blocked_rdev(rdev
, conf
->mddev
);
988 /* Acknowledged bad block - skip the write */
989 rdev_dec_pending(rdev
, conf
->mddev
);
995 if (s
->syncing
|| s
->expanding
|| s
->expanded
997 md_sync_acct(rdev
->bdev
, STRIPE_SECTORS
);
999 set_bit(STRIPE_IO_STARTED
, &sh
->state
);
1002 bi
->bi_bdev
= rdev
->bdev
;
1004 bi
->bi_end_io
= (rw
& WRITE
)
1005 ? raid5_end_write_request
1006 : raid5_end_read_request
;
1007 bi
->bi_private
= sh
;
1009 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
1010 __func__
, (unsigned long long)sh
->sector
,
1012 atomic_inc(&sh
->count
);
1014 atomic_inc(&head_sh
->count
);
1015 if (use_new_offset(conf
, sh
))
1016 bi
->bi_iter
.bi_sector
= (sh
->sector
1017 + rdev
->new_data_offset
);
1019 bi
->bi_iter
.bi_sector
= (sh
->sector
1020 + rdev
->data_offset
);
1021 if (test_bit(R5_ReadNoMerge
, &head_sh
->dev
[i
].flags
))
1022 bi
->bi_rw
|= REQ_NOMERGE
;
1024 if (test_bit(R5_SkipCopy
, &sh
->dev
[i
].flags
))
1025 WARN_ON(test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
));
1026 sh
->dev
[i
].vec
.bv_page
= sh
->dev
[i
].page
;
1028 bi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
1029 bi
->bi_io_vec
[0].bv_offset
= 0;
1030 bi
->bi_iter
.bi_size
= STRIPE_SIZE
;
1032 * If this is discard request, set bi_vcnt 0. We don't
1033 * want to confuse SCSI because SCSI will replace payload
1035 if (rw
& REQ_DISCARD
)
1038 set_bit(R5_DOUBLE_LOCKED
, &sh
->dev
[i
].flags
);
1040 if (conf
->mddev
->gendisk
)
1041 trace_block_bio_remap(bdev_get_queue(bi
->bi_bdev
),
1042 bi
, disk_devt(conf
->mddev
->gendisk
),
1044 generic_make_request(bi
);
1047 if (s
->syncing
|| s
->expanding
|| s
->expanded
1049 md_sync_acct(rrdev
->bdev
, STRIPE_SECTORS
);
1051 set_bit(STRIPE_IO_STARTED
, &sh
->state
);
1054 rbi
->bi_bdev
= rrdev
->bdev
;
1056 BUG_ON(!(rw
& WRITE
));
1057 rbi
->bi_end_io
= raid5_end_write_request
;
1058 rbi
->bi_private
= sh
;
1060 pr_debug("%s: for %llu schedule op %ld on "
1061 "replacement disc %d\n",
1062 __func__
, (unsigned long long)sh
->sector
,
1064 atomic_inc(&sh
->count
);
1066 atomic_inc(&head_sh
->count
);
1067 if (use_new_offset(conf
, sh
))
1068 rbi
->bi_iter
.bi_sector
= (sh
->sector
1069 + rrdev
->new_data_offset
);
1071 rbi
->bi_iter
.bi_sector
= (sh
->sector
1072 + rrdev
->data_offset
);
1073 if (test_bit(R5_SkipCopy
, &sh
->dev
[i
].flags
))
1074 WARN_ON(test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
));
1075 sh
->dev
[i
].rvec
.bv_page
= sh
->dev
[i
].page
;
1077 rbi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
1078 rbi
->bi_io_vec
[0].bv_offset
= 0;
1079 rbi
->bi_iter
.bi_size
= STRIPE_SIZE
;
1081 * If this is discard request, set bi_vcnt 0. We don't
1082 * want to confuse SCSI because SCSI will replace payload
1084 if (rw
& REQ_DISCARD
)
1086 if (conf
->mddev
->gendisk
)
1087 trace_block_bio_remap(bdev_get_queue(rbi
->bi_bdev
),
1088 rbi
, disk_devt(conf
->mddev
->gendisk
),
1090 generic_make_request(rbi
);
1092 if (!rdev
&& !rrdev
) {
1094 set_bit(STRIPE_DEGRADED
, &sh
->state
);
1095 pr_debug("skip op %ld on disc %d for sector %llu\n",
1096 bi
->bi_rw
, i
, (unsigned long long)sh
->sector
);
1097 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1098 set_bit(STRIPE_HANDLE
, &sh
->state
);
1101 if (!head_sh
->batch_head
)
1103 sh
= list_first_entry(&sh
->batch_list
, struct stripe_head
,
1110 static struct dma_async_tx_descriptor
*
1111 async_copy_data(int frombio
, struct bio
*bio
, struct page
**page
,
1112 sector_t sector
, struct dma_async_tx_descriptor
*tx
,
1113 struct stripe_head
*sh
)
1116 struct bvec_iter iter
;
1117 struct page
*bio_page
;
1119 struct async_submit_ctl submit
;
1120 enum async_tx_flags flags
= 0;
1122 if (bio
->bi_iter
.bi_sector
>= sector
)
1123 page_offset
= (signed)(bio
->bi_iter
.bi_sector
- sector
) * 512;
1125 page_offset
= (signed)(sector
- bio
->bi_iter
.bi_sector
) * -512;
1128 flags
|= ASYNC_TX_FENCE
;
1129 init_async_submit(&submit
, flags
, tx
, NULL
, NULL
, NULL
);
1131 bio_for_each_segment(bvl
, bio
, iter
) {
1132 int len
= bvl
.bv_len
;
1136 if (page_offset
< 0) {
1137 b_offset
= -page_offset
;
1138 page_offset
+= b_offset
;
1142 if (len
> 0 && page_offset
+ len
> STRIPE_SIZE
)
1143 clen
= STRIPE_SIZE
- page_offset
;
1148 b_offset
+= bvl
.bv_offset
;
1149 bio_page
= bvl
.bv_page
;
1151 if (sh
->raid_conf
->skip_copy
&&
1152 b_offset
== 0 && page_offset
== 0 &&
1153 clen
== STRIPE_SIZE
)
1156 tx
= async_memcpy(*page
, bio_page
, page_offset
,
1157 b_offset
, clen
, &submit
);
1159 tx
= async_memcpy(bio_page
, *page
, b_offset
,
1160 page_offset
, clen
, &submit
);
1162 /* chain the operations */
1163 submit
.depend_tx
= tx
;
1165 if (clen
< len
) /* hit end of page */
1173 static void ops_complete_biofill(void *stripe_head_ref
)
1175 struct stripe_head
*sh
= stripe_head_ref
;
1176 struct bio_list return_bi
= BIO_EMPTY_LIST
;
1179 pr_debug("%s: stripe %llu\n", __func__
,
1180 (unsigned long long)sh
->sector
);
1182 /* clear completed biofills */
1183 for (i
= sh
->disks
; i
--; ) {
1184 struct r5dev
*dev
= &sh
->dev
[i
];
1186 /* acknowledge completion of a biofill operation */
1187 /* and check if we need to reply to a read request,
1188 * new R5_Wantfill requests are held off until
1189 * !STRIPE_BIOFILL_RUN
1191 if (test_and_clear_bit(R5_Wantfill
, &dev
->flags
)) {
1192 struct bio
*rbi
, *rbi2
;
1197 while (rbi
&& rbi
->bi_iter
.bi_sector
<
1198 dev
->sector
+ STRIPE_SECTORS
) {
1199 rbi2
= r5_next_bio(rbi
, dev
->sector
);
1200 if (!raid5_dec_bi_active_stripes(rbi
))
1201 bio_list_add(&return_bi
, rbi
);
1206 clear_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
1208 return_io(&return_bi
);
1210 set_bit(STRIPE_HANDLE
, &sh
->state
);
1211 raid5_release_stripe(sh
);
1214 static void ops_run_biofill(struct stripe_head
*sh
)
1216 struct dma_async_tx_descriptor
*tx
= NULL
;
1217 struct async_submit_ctl submit
;
1220 BUG_ON(sh
->batch_head
);
1221 pr_debug("%s: stripe %llu\n", __func__
,
1222 (unsigned long long)sh
->sector
);
1224 for (i
= sh
->disks
; i
--; ) {
1225 struct r5dev
*dev
= &sh
->dev
[i
];
1226 if (test_bit(R5_Wantfill
, &dev
->flags
)) {
1228 spin_lock_irq(&sh
->stripe_lock
);
1229 dev
->read
= rbi
= dev
->toread
;
1231 spin_unlock_irq(&sh
->stripe_lock
);
1232 while (rbi
&& rbi
->bi_iter
.bi_sector
<
1233 dev
->sector
+ STRIPE_SECTORS
) {
1234 tx
= async_copy_data(0, rbi
, &dev
->page
,
1235 dev
->sector
, tx
, sh
);
1236 rbi
= r5_next_bio(rbi
, dev
->sector
);
1241 atomic_inc(&sh
->count
);
1242 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_biofill
, sh
, NULL
);
1243 async_trigger_callback(&submit
);
1246 static void mark_target_uptodate(struct stripe_head
*sh
, int target
)
1253 tgt
= &sh
->dev
[target
];
1254 set_bit(R5_UPTODATE
, &tgt
->flags
);
1255 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
1256 clear_bit(R5_Wantcompute
, &tgt
->flags
);
1259 static void ops_complete_compute(void *stripe_head_ref
)
1261 struct stripe_head
*sh
= stripe_head_ref
;
1263 pr_debug("%s: stripe %llu\n", __func__
,
1264 (unsigned long long)sh
->sector
);
1266 /* mark the computed target(s) as uptodate */
1267 mark_target_uptodate(sh
, sh
->ops
.target
);
1268 mark_target_uptodate(sh
, sh
->ops
.target2
);
1270 clear_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
1271 if (sh
->check_state
== check_state_compute_run
)
1272 sh
->check_state
= check_state_compute_result
;
1273 set_bit(STRIPE_HANDLE
, &sh
->state
);
1274 raid5_release_stripe(sh
);
1277 /* return a pointer to the address conversion region of the scribble buffer */
1278 static addr_conv_t
*to_addr_conv(struct stripe_head
*sh
,
1279 struct raid5_percpu
*percpu
, int i
)
1283 addr
= flex_array_get(percpu
->scribble
, i
);
1284 return addr
+ sizeof(struct page
*) * (sh
->disks
+ 2);
1287 /* return a pointer to the address conversion region of the scribble buffer */
1288 static struct page
**to_addr_page(struct raid5_percpu
*percpu
, int i
)
1292 addr
= flex_array_get(percpu
->scribble
, i
);
1296 static struct dma_async_tx_descriptor
*
1297 ops_run_compute5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1299 int disks
= sh
->disks
;
1300 struct page
**xor_srcs
= to_addr_page(percpu
, 0);
1301 int target
= sh
->ops
.target
;
1302 struct r5dev
*tgt
= &sh
->dev
[target
];
1303 struct page
*xor_dest
= tgt
->page
;
1305 struct dma_async_tx_descriptor
*tx
;
1306 struct async_submit_ctl submit
;
1309 BUG_ON(sh
->batch_head
);
1311 pr_debug("%s: stripe %llu block: %d\n",
1312 __func__
, (unsigned long long)sh
->sector
, target
);
1313 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
1315 for (i
= disks
; i
--; )
1317 xor_srcs
[count
++] = sh
->dev
[i
].page
;
1319 atomic_inc(&sh
->count
);
1321 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
, NULL
,
1322 ops_complete_compute
, sh
, to_addr_conv(sh
, percpu
, 0));
1323 if (unlikely(count
== 1))
1324 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
, &submit
);
1326 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
1331 /* set_syndrome_sources - populate source buffers for gen_syndrome
1332 * @srcs - (struct page *) array of size sh->disks
1333 * @sh - stripe_head to parse
1335 * Populates srcs in proper layout order for the stripe and returns the
1336 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1337 * destination buffer is recorded in srcs[count] and the Q destination
1338 * is recorded in srcs[count+1]].
1340 static int set_syndrome_sources(struct page
**srcs
,
1341 struct stripe_head
*sh
,
1344 int disks
= sh
->disks
;
1345 int syndrome_disks
= sh
->ddf_layout
? disks
: (disks
- 2);
1346 int d0_idx
= raid6_d0(sh
);
1350 for (i
= 0; i
< disks
; i
++)
1356 int slot
= raid6_idx_to_slot(i
, sh
, &count
, syndrome_disks
);
1357 struct r5dev
*dev
= &sh
->dev
[i
];
1359 if (i
== sh
->qd_idx
|| i
== sh
->pd_idx
||
1360 (srctype
== SYNDROME_SRC_ALL
) ||
1361 (srctype
== SYNDROME_SRC_WANT_DRAIN
&&
1362 test_bit(R5_Wantdrain
, &dev
->flags
)) ||
1363 (srctype
== SYNDROME_SRC_WRITTEN
&&
1365 srcs
[slot
] = sh
->dev
[i
].page
;
1366 i
= raid6_next_disk(i
, disks
);
1367 } while (i
!= d0_idx
);
1369 return syndrome_disks
;
1372 static struct dma_async_tx_descriptor
*
1373 ops_run_compute6_1(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1375 int disks
= sh
->disks
;
1376 struct page
**blocks
= to_addr_page(percpu
, 0);
1378 int qd_idx
= sh
->qd_idx
;
1379 struct dma_async_tx_descriptor
*tx
;
1380 struct async_submit_ctl submit
;
1386 BUG_ON(sh
->batch_head
);
1387 if (sh
->ops
.target
< 0)
1388 target
= sh
->ops
.target2
;
1389 else if (sh
->ops
.target2
< 0)
1390 target
= sh
->ops
.target
;
1392 /* we should only have one valid target */
1395 pr_debug("%s: stripe %llu block: %d\n",
1396 __func__
, (unsigned long long)sh
->sector
, target
);
1398 tgt
= &sh
->dev
[target
];
1399 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
1402 atomic_inc(&sh
->count
);
1404 if (target
== qd_idx
) {
1405 count
= set_syndrome_sources(blocks
, sh
, SYNDROME_SRC_ALL
);
1406 blocks
[count
] = NULL
; /* regenerating p is not necessary */
1407 BUG_ON(blocks
[count
+1] != dest
); /* q should already be set */
1408 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
1409 ops_complete_compute
, sh
,
1410 to_addr_conv(sh
, percpu
, 0));
1411 tx
= async_gen_syndrome(blocks
, 0, count
+2, STRIPE_SIZE
, &submit
);
1413 /* Compute any data- or p-drive using XOR */
1415 for (i
= disks
; i
-- ; ) {
1416 if (i
== target
|| i
== qd_idx
)
1418 blocks
[count
++] = sh
->dev
[i
].page
;
1421 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
,
1422 NULL
, ops_complete_compute
, sh
,
1423 to_addr_conv(sh
, percpu
, 0));
1424 tx
= async_xor(dest
, blocks
, 0, count
, STRIPE_SIZE
, &submit
);
1430 static struct dma_async_tx_descriptor
*
1431 ops_run_compute6_2(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1433 int i
, count
, disks
= sh
->disks
;
1434 int syndrome_disks
= sh
->ddf_layout
? disks
: disks
-2;
1435 int d0_idx
= raid6_d0(sh
);
1436 int faila
= -1, failb
= -1;
1437 int target
= sh
->ops
.target
;
1438 int target2
= sh
->ops
.target2
;
1439 struct r5dev
*tgt
= &sh
->dev
[target
];
1440 struct r5dev
*tgt2
= &sh
->dev
[target2
];
1441 struct dma_async_tx_descriptor
*tx
;
1442 struct page
**blocks
= to_addr_page(percpu
, 0);
1443 struct async_submit_ctl submit
;
1445 BUG_ON(sh
->batch_head
);
1446 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1447 __func__
, (unsigned long long)sh
->sector
, target
, target2
);
1448 BUG_ON(target
< 0 || target2
< 0);
1449 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
1450 BUG_ON(!test_bit(R5_Wantcompute
, &tgt2
->flags
));
1452 /* we need to open-code set_syndrome_sources to handle the
1453 * slot number conversion for 'faila' and 'failb'
1455 for (i
= 0; i
< disks
; i
++)
1460 int slot
= raid6_idx_to_slot(i
, sh
, &count
, syndrome_disks
);
1462 blocks
[slot
] = sh
->dev
[i
].page
;
1468 i
= raid6_next_disk(i
, disks
);
1469 } while (i
!= d0_idx
);
1471 BUG_ON(faila
== failb
);
1474 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1475 __func__
, (unsigned long long)sh
->sector
, faila
, failb
);
1477 atomic_inc(&sh
->count
);
1479 if (failb
== syndrome_disks
+1) {
1480 /* Q disk is one of the missing disks */
1481 if (faila
== syndrome_disks
) {
1482 /* Missing P+Q, just recompute */
1483 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
1484 ops_complete_compute
, sh
,
1485 to_addr_conv(sh
, percpu
, 0));
1486 return async_gen_syndrome(blocks
, 0, syndrome_disks
+2,
1487 STRIPE_SIZE
, &submit
);
1491 int qd_idx
= sh
->qd_idx
;
1493 /* Missing D+Q: recompute D from P, then recompute Q */
1494 if (target
== qd_idx
)
1495 data_target
= target2
;
1497 data_target
= target
;
1500 for (i
= disks
; i
-- ; ) {
1501 if (i
== data_target
|| i
== qd_idx
)
1503 blocks
[count
++] = sh
->dev
[i
].page
;
1505 dest
= sh
->dev
[data_target
].page
;
1506 init_async_submit(&submit
,
1507 ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
,
1509 to_addr_conv(sh
, percpu
, 0));
1510 tx
= async_xor(dest
, blocks
, 0, count
, STRIPE_SIZE
,
1513 count
= set_syndrome_sources(blocks
, sh
, SYNDROME_SRC_ALL
);
1514 init_async_submit(&submit
, ASYNC_TX_FENCE
, tx
,
1515 ops_complete_compute
, sh
,
1516 to_addr_conv(sh
, percpu
, 0));
1517 return async_gen_syndrome(blocks
, 0, count
+2,
1518 STRIPE_SIZE
, &submit
);
1521 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
1522 ops_complete_compute
, sh
,
1523 to_addr_conv(sh
, percpu
, 0));
1524 if (failb
== syndrome_disks
) {
1525 /* We're missing D+P. */
1526 return async_raid6_datap_recov(syndrome_disks
+2,
1530 /* We're missing D+D. */
1531 return async_raid6_2data_recov(syndrome_disks
+2,
1532 STRIPE_SIZE
, faila
, failb
,
1538 static void ops_complete_prexor(void *stripe_head_ref
)
1540 struct stripe_head
*sh
= stripe_head_ref
;
1542 pr_debug("%s: stripe %llu\n", __func__
,
1543 (unsigned long long)sh
->sector
);
1546 static struct dma_async_tx_descriptor
*
1547 ops_run_prexor5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1548 struct dma_async_tx_descriptor
*tx
)
1550 int disks
= sh
->disks
;
1551 struct page
**xor_srcs
= to_addr_page(percpu
, 0);
1552 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
1553 struct async_submit_ctl submit
;
1555 /* existing parity data subtracted */
1556 struct page
*xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
1558 BUG_ON(sh
->batch_head
);
1559 pr_debug("%s: stripe %llu\n", __func__
,
1560 (unsigned long long)sh
->sector
);
1562 for (i
= disks
; i
--; ) {
1563 struct r5dev
*dev
= &sh
->dev
[i
];
1564 /* Only process blocks that are known to be uptodate */
1565 if (test_bit(R5_Wantdrain
, &dev
->flags
))
1566 xor_srcs
[count
++] = dev
->page
;
1569 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_DROP_DST
, tx
,
1570 ops_complete_prexor
, sh
, to_addr_conv(sh
, percpu
, 0));
1571 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
1576 static struct dma_async_tx_descriptor
*
1577 ops_run_prexor6(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1578 struct dma_async_tx_descriptor
*tx
)
1580 struct page
**blocks
= to_addr_page(percpu
, 0);
1582 struct async_submit_ctl submit
;
1584 pr_debug("%s: stripe %llu\n", __func__
,
1585 (unsigned long long)sh
->sector
);
1587 count
= set_syndrome_sources(blocks
, sh
, SYNDROME_SRC_WANT_DRAIN
);
1589 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_PQ_XOR_DST
, tx
,
1590 ops_complete_prexor
, sh
, to_addr_conv(sh
, percpu
, 0));
1591 tx
= async_gen_syndrome(blocks
, 0, count
+2, STRIPE_SIZE
, &submit
);
1596 static struct dma_async_tx_descriptor
*
1597 ops_run_biodrain(struct stripe_head
*sh
, struct dma_async_tx_descriptor
*tx
)
1599 int disks
= sh
->disks
;
1601 struct stripe_head
*head_sh
= sh
;
1603 pr_debug("%s: stripe %llu\n", __func__
,
1604 (unsigned long long)sh
->sector
);
1606 for (i
= disks
; i
--; ) {
1611 if (test_and_clear_bit(R5_Wantdrain
, &head_sh
->dev
[i
].flags
)) {
1616 spin_lock_irq(&sh
->stripe_lock
);
1617 chosen
= dev
->towrite
;
1618 dev
->towrite
= NULL
;
1619 sh
->overwrite_disks
= 0;
1620 BUG_ON(dev
->written
);
1621 wbi
= dev
->written
= chosen
;
1622 spin_unlock_irq(&sh
->stripe_lock
);
1623 WARN_ON(dev
->page
!= dev
->orig_page
);
1625 while (wbi
&& wbi
->bi_iter
.bi_sector
<
1626 dev
->sector
+ STRIPE_SECTORS
) {
1627 if (wbi
->bi_rw
& REQ_FUA
)
1628 set_bit(R5_WantFUA
, &dev
->flags
);
1629 if (wbi
->bi_rw
& REQ_SYNC
)
1630 set_bit(R5_SyncIO
, &dev
->flags
);
1631 if (wbi
->bi_rw
& REQ_DISCARD
)
1632 set_bit(R5_Discard
, &dev
->flags
);
1634 tx
= async_copy_data(1, wbi
, &dev
->page
,
1635 dev
->sector
, tx
, sh
);
1636 if (dev
->page
!= dev
->orig_page
) {
1637 set_bit(R5_SkipCopy
, &dev
->flags
);
1638 clear_bit(R5_UPTODATE
, &dev
->flags
);
1639 clear_bit(R5_OVERWRITE
, &dev
->flags
);
1642 wbi
= r5_next_bio(wbi
, dev
->sector
);
1645 if (head_sh
->batch_head
) {
1646 sh
= list_first_entry(&sh
->batch_list
,
1659 static void ops_complete_reconstruct(void *stripe_head_ref
)
1661 struct stripe_head
*sh
= stripe_head_ref
;
1662 int disks
= sh
->disks
;
1663 int pd_idx
= sh
->pd_idx
;
1664 int qd_idx
= sh
->qd_idx
;
1666 bool fua
= false, sync
= false, discard
= false;
1668 pr_debug("%s: stripe %llu\n", __func__
,
1669 (unsigned long long)sh
->sector
);
1671 for (i
= disks
; i
--; ) {
1672 fua
|= test_bit(R5_WantFUA
, &sh
->dev
[i
].flags
);
1673 sync
|= test_bit(R5_SyncIO
, &sh
->dev
[i
].flags
);
1674 discard
|= test_bit(R5_Discard
, &sh
->dev
[i
].flags
);
1677 for (i
= disks
; i
--; ) {
1678 struct r5dev
*dev
= &sh
->dev
[i
];
1680 if (dev
->written
|| i
== pd_idx
|| i
== qd_idx
) {
1681 if (!discard
&& !test_bit(R5_SkipCopy
, &dev
->flags
)) {
1682 set_bit(R5_UPTODATE
, &dev
->flags
);
1683 if (test_bit(STRIPE_EXPAND_READY
, &sh
->state
))
1684 set_bit(R5_Expanded
, &dev
->flags
);
1687 set_bit(R5_WantFUA
, &dev
->flags
);
1689 set_bit(R5_SyncIO
, &dev
->flags
);
1693 if (sh
->reconstruct_state
== reconstruct_state_drain_run
)
1694 sh
->reconstruct_state
= reconstruct_state_drain_result
;
1695 else if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
)
1696 sh
->reconstruct_state
= reconstruct_state_prexor_drain_result
;
1698 BUG_ON(sh
->reconstruct_state
!= reconstruct_state_run
);
1699 sh
->reconstruct_state
= reconstruct_state_result
;
1702 set_bit(STRIPE_HANDLE
, &sh
->state
);
1703 raid5_release_stripe(sh
);
1707 ops_run_reconstruct5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1708 struct dma_async_tx_descriptor
*tx
)
1710 int disks
= sh
->disks
;
1711 struct page
**xor_srcs
;
1712 struct async_submit_ctl submit
;
1713 int count
, pd_idx
= sh
->pd_idx
, i
;
1714 struct page
*xor_dest
;
1716 unsigned long flags
;
1718 struct stripe_head
*head_sh
= sh
;
1721 pr_debug("%s: stripe %llu\n", __func__
,
1722 (unsigned long long)sh
->sector
);
1724 for (i
= 0; i
< sh
->disks
; i
++) {
1727 if (!test_bit(R5_Discard
, &sh
->dev
[i
].flags
))
1730 if (i
>= sh
->disks
) {
1731 atomic_inc(&sh
->count
);
1732 set_bit(R5_Discard
, &sh
->dev
[pd_idx
].flags
);
1733 ops_complete_reconstruct(sh
);
1738 xor_srcs
= to_addr_page(percpu
, j
);
1739 /* check if prexor is active which means only process blocks
1740 * that are part of a read-modify-write (written)
1742 if (head_sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
) {
1744 xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
1745 for (i
= disks
; i
--; ) {
1746 struct r5dev
*dev
= &sh
->dev
[i
];
1747 if (head_sh
->dev
[i
].written
)
1748 xor_srcs
[count
++] = dev
->page
;
1751 xor_dest
= sh
->dev
[pd_idx
].page
;
1752 for (i
= disks
; i
--; ) {
1753 struct r5dev
*dev
= &sh
->dev
[i
];
1755 xor_srcs
[count
++] = dev
->page
;
1759 /* 1/ if we prexor'd then the dest is reused as a source
1760 * 2/ if we did not prexor then we are redoing the parity
1761 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1762 * for the synchronous xor case
1764 last_stripe
= !head_sh
->batch_head
||
1765 list_first_entry(&sh
->batch_list
,
1766 struct stripe_head
, batch_list
) == head_sh
;
1768 flags
= ASYNC_TX_ACK
|
1769 (prexor
? ASYNC_TX_XOR_DROP_DST
: ASYNC_TX_XOR_ZERO_DST
);
1771 atomic_inc(&head_sh
->count
);
1772 init_async_submit(&submit
, flags
, tx
, ops_complete_reconstruct
, head_sh
,
1773 to_addr_conv(sh
, percpu
, j
));
1775 flags
= prexor
? ASYNC_TX_XOR_DROP_DST
: ASYNC_TX_XOR_ZERO_DST
;
1776 init_async_submit(&submit
, flags
, tx
, NULL
, NULL
,
1777 to_addr_conv(sh
, percpu
, j
));
1780 if (unlikely(count
== 1))
1781 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
, &submit
);
1783 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
1786 sh
= list_first_entry(&sh
->batch_list
, struct stripe_head
,
1793 ops_run_reconstruct6(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1794 struct dma_async_tx_descriptor
*tx
)
1796 struct async_submit_ctl submit
;
1797 struct page
**blocks
;
1798 int count
, i
, j
= 0;
1799 struct stripe_head
*head_sh
= sh
;
1802 unsigned long txflags
;
1804 pr_debug("%s: stripe %llu\n", __func__
, (unsigned long long)sh
->sector
);
1806 for (i
= 0; i
< sh
->disks
; i
++) {
1807 if (sh
->pd_idx
== i
|| sh
->qd_idx
== i
)
1809 if (!test_bit(R5_Discard
, &sh
->dev
[i
].flags
))
1812 if (i
>= sh
->disks
) {
1813 atomic_inc(&sh
->count
);
1814 set_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
);
1815 set_bit(R5_Discard
, &sh
->dev
[sh
->qd_idx
].flags
);
1816 ops_complete_reconstruct(sh
);
1821 blocks
= to_addr_page(percpu
, j
);
1823 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
) {
1824 synflags
= SYNDROME_SRC_WRITTEN
;
1825 txflags
= ASYNC_TX_ACK
| ASYNC_TX_PQ_XOR_DST
;
1827 synflags
= SYNDROME_SRC_ALL
;
1828 txflags
= ASYNC_TX_ACK
;
1831 count
= set_syndrome_sources(blocks
, sh
, synflags
);
1832 last_stripe
= !head_sh
->batch_head
||
1833 list_first_entry(&sh
->batch_list
,
1834 struct stripe_head
, batch_list
) == head_sh
;
1837 atomic_inc(&head_sh
->count
);
1838 init_async_submit(&submit
, txflags
, tx
, ops_complete_reconstruct
,
1839 head_sh
, to_addr_conv(sh
, percpu
, j
));
1841 init_async_submit(&submit
, 0, tx
, NULL
, NULL
,
1842 to_addr_conv(sh
, percpu
, j
));
1843 tx
= async_gen_syndrome(blocks
, 0, count
+2, STRIPE_SIZE
, &submit
);
1846 sh
= list_first_entry(&sh
->batch_list
, struct stripe_head
,
1852 static void ops_complete_check(void *stripe_head_ref
)
1854 struct stripe_head
*sh
= stripe_head_ref
;
1856 pr_debug("%s: stripe %llu\n", __func__
,
1857 (unsigned long long)sh
->sector
);
1859 sh
->check_state
= check_state_check_result
;
1860 set_bit(STRIPE_HANDLE
, &sh
->state
);
1861 raid5_release_stripe(sh
);
1864 static void ops_run_check_p(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1866 int disks
= sh
->disks
;
1867 int pd_idx
= sh
->pd_idx
;
1868 int qd_idx
= sh
->qd_idx
;
1869 struct page
*xor_dest
;
1870 struct page
**xor_srcs
= to_addr_page(percpu
, 0);
1871 struct dma_async_tx_descriptor
*tx
;
1872 struct async_submit_ctl submit
;
1876 pr_debug("%s: stripe %llu\n", __func__
,
1877 (unsigned long long)sh
->sector
);
1879 BUG_ON(sh
->batch_head
);
1881 xor_dest
= sh
->dev
[pd_idx
].page
;
1882 xor_srcs
[count
++] = xor_dest
;
1883 for (i
= disks
; i
--; ) {
1884 if (i
== pd_idx
|| i
== qd_idx
)
1886 xor_srcs
[count
++] = sh
->dev
[i
].page
;
1889 init_async_submit(&submit
, 0, NULL
, NULL
, NULL
,
1890 to_addr_conv(sh
, percpu
, 0));
1891 tx
= async_xor_val(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
1892 &sh
->ops
.zero_sum_result
, &submit
);
1894 atomic_inc(&sh
->count
);
1895 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_check
, sh
, NULL
);
1896 tx
= async_trigger_callback(&submit
);
1899 static void ops_run_check_pq(struct stripe_head
*sh
, struct raid5_percpu
*percpu
, int checkp
)
1901 struct page
**srcs
= to_addr_page(percpu
, 0);
1902 struct async_submit_ctl submit
;
1905 pr_debug("%s: stripe %llu checkp: %d\n", __func__
,
1906 (unsigned long long)sh
->sector
, checkp
);
1908 BUG_ON(sh
->batch_head
);
1909 count
= set_syndrome_sources(srcs
, sh
, SYNDROME_SRC_ALL
);
1913 atomic_inc(&sh
->count
);
1914 init_async_submit(&submit
, ASYNC_TX_ACK
, NULL
, ops_complete_check
,
1915 sh
, to_addr_conv(sh
, percpu
, 0));
1916 async_syndrome_val(srcs
, 0, count
+2, STRIPE_SIZE
,
1917 &sh
->ops
.zero_sum_result
, percpu
->spare_page
, &submit
);
1920 static void raid_run_ops(struct stripe_head
*sh
, unsigned long ops_request
)
1922 int overlap_clear
= 0, i
, disks
= sh
->disks
;
1923 struct dma_async_tx_descriptor
*tx
= NULL
;
1924 struct r5conf
*conf
= sh
->raid_conf
;
1925 int level
= conf
->level
;
1926 struct raid5_percpu
*percpu
;
1930 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
1931 if (test_bit(STRIPE_OP_BIOFILL
, &ops_request
)) {
1932 ops_run_biofill(sh
);
1936 if (test_bit(STRIPE_OP_COMPUTE_BLK
, &ops_request
)) {
1938 tx
= ops_run_compute5(sh
, percpu
);
1940 if (sh
->ops
.target2
< 0 || sh
->ops
.target
< 0)
1941 tx
= ops_run_compute6_1(sh
, percpu
);
1943 tx
= ops_run_compute6_2(sh
, percpu
);
1945 /* terminate the chain if reconstruct is not set to be run */
1946 if (tx
&& !test_bit(STRIPE_OP_RECONSTRUCT
, &ops_request
))
1950 if (test_bit(STRIPE_OP_PREXOR
, &ops_request
)) {
1952 tx
= ops_run_prexor5(sh
, percpu
, tx
);
1954 tx
= ops_run_prexor6(sh
, percpu
, tx
);
1957 if (test_bit(STRIPE_OP_BIODRAIN
, &ops_request
)) {
1958 tx
= ops_run_biodrain(sh
, tx
);
1962 if (test_bit(STRIPE_OP_RECONSTRUCT
, &ops_request
)) {
1964 ops_run_reconstruct5(sh
, percpu
, tx
);
1966 ops_run_reconstruct6(sh
, percpu
, tx
);
1969 if (test_bit(STRIPE_OP_CHECK
, &ops_request
)) {
1970 if (sh
->check_state
== check_state_run
)
1971 ops_run_check_p(sh
, percpu
);
1972 else if (sh
->check_state
== check_state_run_q
)
1973 ops_run_check_pq(sh
, percpu
, 0);
1974 else if (sh
->check_state
== check_state_run_pq
)
1975 ops_run_check_pq(sh
, percpu
, 1);
1980 if (overlap_clear
&& !sh
->batch_head
)
1981 for (i
= disks
; i
--; ) {
1982 struct r5dev
*dev
= &sh
->dev
[i
];
1983 if (test_and_clear_bit(R5_Overlap
, &dev
->flags
))
1984 wake_up(&sh
->raid_conf
->wait_for_overlap
);
1989 static struct stripe_head
*alloc_stripe(struct kmem_cache
*sc
, gfp_t gfp
)
1991 struct stripe_head
*sh
;
1993 sh
= kmem_cache_zalloc(sc
, gfp
);
1995 spin_lock_init(&sh
->stripe_lock
);
1996 spin_lock_init(&sh
->batch_lock
);
1997 INIT_LIST_HEAD(&sh
->batch_list
);
1998 INIT_LIST_HEAD(&sh
->lru
);
1999 atomic_set(&sh
->count
, 1);
2003 static int grow_one_stripe(struct r5conf
*conf
, gfp_t gfp
)
2005 struct stripe_head
*sh
;
2007 sh
= alloc_stripe(conf
->slab_cache
, gfp
);
2011 sh
->raid_conf
= conf
;
2013 if (grow_buffers(sh
, gfp
)) {
2015 kmem_cache_free(conf
->slab_cache
, sh
);
2018 sh
->hash_lock_index
=
2019 conf
->max_nr_stripes
% NR_STRIPE_HASH_LOCKS
;
2020 /* we just created an active stripe so... */
2021 atomic_inc(&conf
->active_stripes
);
2023 raid5_release_stripe(sh
);
2024 conf
->max_nr_stripes
++;
2028 static int grow_stripes(struct r5conf
*conf
, int num
)
2030 struct kmem_cache
*sc
;
2031 size_t namelen
= sizeof(conf
->cache_name
[0]);
2032 int devs
= max(conf
->raid_disks
, conf
->previous_raid_disks
);
2034 if (conf
->mddev
->gendisk
)
2035 snprintf(conf
->cache_name
[0], namelen
,
2036 "raid%d-%s", conf
->level
, mdname(conf
->mddev
));
2038 snprintf(conf
->cache_name
[0], namelen
,
2039 "raid%d-%p", conf
->level
, conf
->mddev
);
2040 snprintf(conf
->cache_name
[1], namelen
, "%.27s-alt", conf
->cache_name
[0]);
2042 conf
->active_name
= 0;
2043 sc
= kmem_cache_create(conf
->cache_name
[conf
->active_name
],
2044 sizeof(struct stripe_head
)+(devs
-1)*sizeof(struct r5dev
),
2048 conf
->slab_cache
= sc
;
2049 conf
->pool_size
= devs
;
2051 if (!grow_one_stripe(conf
, GFP_KERNEL
))
2058 * scribble_len - return the required size of the scribble region
2059 * @num - total number of disks in the array
2061 * The size must be enough to contain:
2062 * 1/ a struct page pointer for each device in the array +2
2063 * 2/ room to convert each entry in (1) to its corresponding dma
2064 * (dma_map_page()) or page (page_address()) address.
2066 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2067 * calculate over all devices (not just the data blocks), using zeros in place
2068 * of the P and Q blocks.
2070 static struct flex_array
*scribble_alloc(int num
, int cnt
, gfp_t flags
)
2072 struct flex_array
*ret
;
2075 len
= sizeof(struct page
*) * (num
+2) + sizeof(addr_conv_t
) * (num
+2);
2076 ret
= flex_array_alloc(len
, cnt
, flags
);
2079 /* always prealloc all elements, so no locking is required */
2080 if (flex_array_prealloc(ret
, 0, cnt
, flags
)) {
2081 flex_array_free(ret
);
2087 static int resize_chunks(struct r5conf
*conf
, int new_disks
, int new_sectors
)
2093 * Never shrink. And mddev_suspend() could deadlock if this is called
2094 * from raid5d. In that case, scribble_disks and scribble_sectors
2095 * should equal to new_disks and new_sectors
2097 if (conf
->scribble_disks
>= new_disks
&&
2098 conf
->scribble_sectors
>= new_sectors
)
2100 mddev_suspend(conf
->mddev
);
2102 for_each_present_cpu(cpu
) {
2103 struct raid5_percpu
*percpu
;
2104 struct flex_array
*scribble
;
2106 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
2107 scribble
= scribble_alloc(new_disks
,
2108 new_sectors
/ STRIPE_SECTORS
,
2112 flex_array_free(percpu
->scribble
);
2113 percpu
->scribble
= scribble
;
2120 mddev_resume(conf
->mddev
);
2122 conf
->scribble_disks
= new_disks
;
2123 conf
->scribble_sectors
= new_sectors
;
2128 static int resize_stripes(struct r5conf
*conf
, int newsize
)
2130 /* Make all the stripes able to hold 'newsize' devices.
2131 * New slots in each stripe get 'page' set to a new page.
2133 * This happens in stages:
2134 * 1/ create a new kmem_cache and allocate the required number of
2136 * 2/ gather all the old stripe_heads and transfer the pages across
2137 * to the new stripe_heads. This will have the side effect of
2138 * freezing the array as once all stripe_heads have been collected,
2139 * no IO will be possible. Old stripe heads are freed once their
2140 * pages have been transferred over, and the old kmem_cache is
2141 * freed when all stripes are done.
2142 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2143 * we simple return a failre status - no need to clean anything up.
2144 * 4/ allocate new pages for the new slots in the new stripe_heads.
2145 * If this fails, we don't bother trying the shrink the
2146 * stripe_heads down again, we just leave them as they are.
2147 * As each stripe_head is processed the new one is released into
2150 * Once step2 is started, we cannot afford to wait for a write,
2151 * so we use GFP_NOIO allocations.
2153 struct stripe_head
*osh
, *nsh
;
2154 LIST_HEAD(newstripes
);
2155 struct disk_info
*ndisks
;
2157 struct kmem_cache
*sc
;
2161 if (newsize
<= conf
->pool_size
)
2162 return 0; /* never bother to shrink */
2164 err
= md_allow_write(conf
->mddev
);
2169 sc
= kmem_cache_create(conf
->cache_name
[1-conf
->active_name
],
2170 sizeof(struct stripe_head
)+(newsize
-1)*sizeof(struct r5dev
),
2175 /* Need to ensure auto-resizing doesn't interfere */
2176 mutex_lock(&conf
->cache_size_mutex
);
2178 for (i
= conf
->max_nr_stripes
; i
; i
--) {
2179 nsh
= alloc_stripe(sc
, GFP_KERNEL
);
2183 nsh
->raid_conf
= conf
;
2184 list_add(&nsh
->lru
, &newstripes
);
2187 /* didn't get enough, give up */
2188 while (!list_empty(&newstripes
)) {
2189 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
2190 list_del(&nsh
->lru
);
2191 kmem_cache_free(sc
, nsh
);
2193 kmem_cache_destroy(sc
);
2194 mutex_unlock(&conf
->cache_size_mutex
);
2197 /* Step 2 - Must use GFP_NOIO now.
2198 * OK, we have enough stripes, start collecting inactive
2199 * stripes and copying them over
2203 list_for_each_entry(nsh
, &newstripes
, lru
) {
2204 lock_device_hash_lock(conf
, hash
);
2205 wait_event_cmd(conf
->wait_for_stripe
,
2206 !list_empty(conf
->inactive_list
+ hash
),
2207 unlock_device_hash_lock(conf
, hash
),
2208 lock_device_hash_lock(conf
, hash
));
2209 osh
= get_free_stripe(conf
, hash
);
2210 unlock_device_hash_lock(conf
, hash
);
2212 for(i
=0; i
<conf
->pool_size
; i
++) {
2213 nsh
->dev
[i
].page
= osh
->dev
[i
].page
;
2214 nsh
->dev
[i
].orig_page
= osh
->dev
[i
].page
;
2216 nsh
->hash_lock_index
= hash
;
2217 kmem_cache_free(conf
->slab_cache
, osh
);
2219 if (cnt
>= conf
->max_nr_stripes
/ NR_STRIPE_HASH_LOCKS
+
2220 !!((conf
->max_nr_stripes
% NR_STRIPE_HASH_LOCKS
) > hash
)) {
2225 kmem_cache_destroy(conf
->slab_cache
);
2228 * At this point, we are holding all the stripes so the array
2229 * is completely stalled, so now is a good time to resize
2230 * conf->disks and the scribble region
2232 ndisks
= kzalloc(newsize
* sizeof(struct disk_info
), GFP_NOIO
);
2234 for (i
=0; i
<conf
->raid_disks
; i
++)
2235 ndisks
[i
] = conf
->disks
[i
];
2237 conf
->disks
= ndisks
;
2241 mutex_unlock(&conf
->cache_size_mutex
);
2243 conf
->slab_cache
= sc
;
2244 conf
->active_name
= 1-conf
->active_name
;
2246 /* Step 4, return new stripes to service */
2247 while(!list_empty(&newstripes
)) {
2248 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
2249 list_del_init(&nsh
->lru
);
2251 for (i
=conf
->raid_disks
; i
< newsize
; i
++)
2252 if (nsh
->dev
[i
].page
== NULL
) {
2253 struct page
*p
= alloc_page(GFP_NOIO
);
2254 nsh
->dev
[i
].page
= p
;
2255 nsh
->dev
[i
].orig_page
= p
;
2259 raid5_release_stripe(nsh
);
2261 /* critical section pass, GFP_NOIO no longer needed */
2264 conf
->pool_size
= newsize
;
2268 static int drop_one_stripe(struct r5conf
*conf
)
2270 struct stripe_head
*sh
;
2271 int hash
= (conf
->max_nr_stripes
- 1) & STRIPE_HASH_LOCKS_MASK
;
2273 spin_lock_irq(conf
->hash_locks
+ hash
);
2274 sh
= get_free_stripe(conf
, hash
);
2275 spin_unlock_irq(conf
->hash_locks
+ hash
);
2278 BUG_ON(atomic_read(&sh
->count
));
2280 kmem_cache_free(conf
->slab_cache
, sh
);
2281 atomic_dec(&conf
->active_stripes
);
2282 conf
->max_nr_stripes
--;
2286 static void shrink_stripes(struct r5conf
*conf
)
2288 while (conf
->max_nr_stripes
&&
2289 drop_one_stripe(conf
))
2292 kmem_cache_destroy(conf
->slab_cache
);
2293 conf
->slab_cache
= NULL
;
2296 static void raid5_end_read_request(struct bio
* bi
)
2298 struct stripe_head
*sh
= bi
->bi_private
;
2299 struct r5conf
*conf
= sh
->raid_conf
;
2300 int disks
= sh
->disks
, i
;
2301 char b
[BDEVNAME_SIZE
];
2302 struct md_rdev
*rdev
= NULL
;
2305 for (i
=0 ; i
<disks
; i
++)
2306 if (bi
== &sh
->dev
[i
].req
)
2309 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2310 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
2316 if (test_bit(R5_ReadRepl
, &sh
->dev
[i
].flags
))
2317 /* If replacement finished while this request was outstanding,
2318 * 'replacement' might be NULL already.
2319 * In that case it moved down to 'rdev'.
2320 * rdev is not removed until all requests are finished.
2322 rdev
= conf
->disks
[i
].replacement
;
2324 rdev
= conf
->disks
[i
].rdev
;
2326 if (use_new_offset(conf
, sh
))
2327 s
= sh
->sector
+ rdev
->new_data_offset
;
2329 s
= sh
->sector
+ rdev
->data_offset
;
2330 if (!bi
->bi_error
) {
2331 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
2332 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
2333 /* Note that this cannot happen on a
2334 * replacement device. We just fail those on
2339 "md/raid:%s: read error corrected"
2340 " (%lu sectors at %llu on %s)\n",
2341 mdname(conf
->mddev
), STRIPE_SECTORS
,
2342 (unsigned long long)s
,
2343 bdevname(rdev
->bdev
, b
));
2344 atomic_add(STRIPE_SECTORS
, &rdev
->corrected_errors
);
2345 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
2346 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
2347 } else if (test_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
))
2348 clear_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
);
2350 if (atomic_read(&rdev
->read_errors
))
2351 atomic_set(&rdev
->read_errors
, 0);
2353 const char *bdn
= bdevname(rdev
->bdev
, b
);
2357 clear_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
2358 atomic_inc(&rdev
->read_errors
);
2359 if (test_bit(R5_ReadRepl
, &sh
->dev
[i
].flags
))
2362 "md/raid:%s: read error on replacement device "
2363 "(sector %llu on %s).\n",
2364 mdname(conf
->mddev
),
2365 (unsigned long long)s
,
2367 else if (conf
->mddev
->degraded
>= conf
->max_degraded
) {
2371 "md/raid:%s: read error not correctable "
2372 "(sector %llu on %s).\n",
2373 mdname(conf
->mddev
),
2374 (unsigned long long)s
,
2376 } else if (test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
)) {
2381 "md/raid:%s: read error NOT corrected!! "
2382 "(sector %llu on %s).\n",
2383 mdname(conf
->mddev
),
2384 (unsigned long long)s
,
2386 } else if (atomic_read(&rdev
->read_errors
)
2387 > conf
->max_nr_stripes
)
2389 "md/raid:%s: Too many read errors, failing device %s.\n",
2390 mdname(conf
->mddev
), bdn
);
2393 if (set_bad
&& test_bit(In_sync
, &rdev
->flags
)
2394 && !test_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
))
2397 if (test_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
)) {
2398 set_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
2399 clear_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
);
2401 set_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
);
2403 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
2404 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
2406 && test_bit(In_sync
, &rdev
->flags
)
2407 && rdev_set_badblocks(
2408 rdev
, sh
->sector
, STRIPE_SECTORS
, 0)))
2409 md_error(conf
->mddev
, rdev
);
2412 rdev_dec_pending(rdev
, conf
->mddev
);
2413 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
2414 set_bit(STRIPE_HANDLE
, &sh
->state
);
2415 raid5_release_stripe(sh
);
2418 static void raid5_end_write_request(struct bio
*bi
)
2420 struct stripe_head
*sh
= bi
->bi_private
;
2421 struct r5conf
*conf
= sh
->raid_conf
;
2422 int disks
= sh
->disks
, i
;
2423 struct md_rdev
*uninitialized_var(rdev
);
2426 int replacement
= 0;
2428 for (i
= 0 ; i
< disks
; i
++) {
2429 if (bi
== &sh
->dev
[i
].req
) {
2430 rdev
= conf
->disks
[i
].rdev
;
2433 if (bi
== &sh
->dev
[i
].rreq
) {
2434 rdev
= conf
->disks
[i
].replacement
;
2438 /* rdev was removed and 'replacement'
2439 * replaced it. rdev is not removed
2440 * until all requests are finished.
2442 rdev
= conf
->disks
[i
].rdev
;
2446 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2447 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
2456 md_error(conf
->mddev
, rdev
);
2457 else if (is_badblock(rdev
, sh
->sector
,
2459 &first_bad
, &bad_sectors
))
2460 set_bit(R5_MadeGoodRepl
, &sh
->dev
[i
].flags
);
2463 set_bit(STRIPE_DEGRADED
, &sh
->state
);
2464 set_bit(WriteErrorSeen
, &rdev
->flags
);
2465 set_bit(R5_WriteError
, &sh
->dev
[i
].flags
);
2466 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
2467 set_bit(MD_RECOVERY_NEEDED
,
2468 &rdev
->mddev
->recovery
);
2469 } else if (is_badblock(rdev
, sh
->sector
,
2471 &first_bad
, &bad_sectors
)) {
2472 set_bit(R5_MadeGood
, &sh
->dev
[i
].flags
);
2473 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
))
2474 /* That was a successful write so make
2475 * sure it looks like we already did
2478 set_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
2481 rdev_dec_pending(rdev
, conf
->mddev
);
2483 if (sh
->batch_head
&& bi
->bi_error
&& !replacement
)
2484 set_bit(STRIPE_BATCH_ERR
, &sh
->batch_head
->state
);
2486 if (!test_and_clear_bit(R5_DOUBLE_LOCKED
, &sh
->dev
[i
].flags
))
2487 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
2488 set_bit(STRIPE_HANDLE
, &sh
->state
);
2489 raid5_release_stripe(sh
);
2491 if (sh
->batch_head
&& sh
!= sh
->batch_head
)
2492 raid5_release_stripe(sh
->batch_head
);
2495 static void raid5_build_block(struct stripe_head
*sh
, int i
, int previous
)
2497 struct r5dev
*dev
= &sh
->dev
[i
];
2499 bio_init(&dev
->req
);
2500 dev
->req
.bi_io_vec
= &dev
->vec
;
2501 dev
->req
.bi_max_vecs
= 1;
2502 dev
->req
.bi_private
= sh
;
2504 bio_init(&dev
->rreq
);
2505 dev
->rreq
.bi_io_vec
= &dev
->rvec
;
2506 dev
->rreq
.bi_max_vecs
= 1;
2507 dev
->rreq
.bi_private
= sh
;
2510 dev
->sector
= raid5_compute_blocknr(sh
, i
, previous
);
2513 static void error(struct mddev
*mddev
, struct md_rdev
*rdev
)
2515 char b
[BDEVNAME_SIZE
];
2516 struct r5conf
*conf
= mddev
->private;
2517 unsigned long flags
;
2518 pr_debug("raid456: error called\n");
2520 spin_lock_irqsave(&conf
->device_lock
, flags
);
2521 clear_bit(In_sync
, &rdev
->flags
);
2522 mddev
->degraded
= calc_degraded(conf
);
2523 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2524 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
2526 set_bit(Blocked
, &rdev
->flags
);
2527 set_bit(Faulty
, &rdev
->flags
);
2528 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
2529 set_bit(MD_CHANGE_PENDING
, &mddev
->flags
);
2531 "md/raid:%s: Disk failure on %s, disabling device.\n"
2532 "md/raid:%s: Operation continuing on %d devices.\n",
2534 bdevname(rdev
->bdev
, b
),
2536 conf
->raid_disks
- mddev
->degraded
);
2540 * Input: a 'big' sector number,
2541 * Output: index of the data and parity disk, and the sector # in them.
2543 sector_t
raid5_compute_sector(struct r5conf
*conf
, sector_t r_sector
,
2544 int previous
, int *dd_idx
,
2545 struct stripe_head
*sh
)
2547 sector_t stripe
, stripe2
;
2548 sector_t chunk_number
;
2549 unsigned int chunk_offset
;
2552 sector_t new_sector
;
2553 int algorithm
= previous
? conf
->prev_algo
2555 int sectors_per_chunk
= previous
? conf
->prev_chunk_sectors
2556 : conf
->chunk_sectors
;
2557 int raid_disks
= previous
? conf
->previous_raid_disks
2559 int data_disks
= raid_disks
- conf
->max_degraded
;
2561 /* First compute the information on this sector */
2564 * Compute the chunk number and the sector offset inside the chunk
2566 chunk_offset
= sector_div(r_sector
, sectors_per_chunk
);
2567 chunk_number
= r_sector
;
2570 * Compute the stripe number
2572 stripe
= chunk_number
;
2573 *dd_idx
= sector_div(stripe
, data_disks
);
2576 * Select the parity disk based on the user selected algorithm.
2578 pd_idx
= qd_idx
= -1;
2579 switch(conf
->level
) {
2581 pd_idx
= data_disks
;
2584 switch (algorithm
) {
2585 case ALGORITHM_LEFT_ASYMMETRIC
:
2586 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
);
2587 if (*dd_idx
>= pd_idx
)
2590 case ALGORITHM_RIGHT_ASYMMETRIC
:
2591 pd_idx
= sector_div(stripe2
, raid_disks
);
2592 if (*dd_idx
>= pd_idx
)
2595 case ALGORITHM_LEFT_SYMMETRIC
:
2596 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
);
2597 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
2599 case ALGORITHM_RIGHT_SYMMETRIC
:
2600 pd_idx
= sector_div(stripe2
, raid_disks
);
2601 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
2603 case ALGORITHM_PARITY_0
:
2607 case ALGORITHM_PARITY_N
:
2608 pd_idx
= data_disks
;
2616 switch (algorithm
) {
2617 case ALGORITHM_LEFT_ASYMMETRIC
:
2618 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
2619 qd_idx
= pd_idx
+ 1;
2620 if (pd_idx
== raid_disks
-1) {
2621 (*dd_idx
)++; /* Q D D D P */
2623 } else if (*dd_idx
>= pd_idx
)
2624 (*dd_idx
) += 2; /* D D P Q D */
2626 case ALGORITHM_RIGHT_ASYMMETRIC
:
2627 pd_idx
= sector_div(stripe2
, raid_disks
);
2628 qd_idx
= pd_idx
+ 1;
2629 if (pd_idx
== raid_disks
-1) {
2630 (*dd_idx
)++; /* Q D D D P */
2632 } else if (*dd_idx
>= pd_idx
)
2633 (*dd_idx
) += 2; /* D D P Q D */
2635 case ALGORITHM_LEFT_SYMMETRIC
:
2636 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
2637 qd_idx
= (pd_idx
+ 1) % raid_disks
;
2638 *dd_idx
= (pd_idx
+ 2 + *dd_idx
) % raid_disks
;
2640 case ALGORITHM_RIGHT_SYMMETRIC
:
2641 pd_idx
= sector_div(stripe2
, raid_disks
);
2642 qd_idx
= (pd_idx
+ 1) % raid_disks
;
2643 *dd_idx
= (pd_idx
+ 2 + *dd_idx
) % raid_disks
;
2646 case ALGORITHM_PARITY_0
:
2651 case ALGORITHM_PARITY_N
:
2652 pd_idx
= data_disks
;
2653 qd_idx
= data_disks
+ 1;
2656 case ALGORITHM_ROTATING_ZERO_RESTART
:
2657 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2658 * of blocks for computing Q is different.
2660 pd_idx
= sector_div(stripe2
, raid_disks
);
2661 qd_idx
= pd_idx
+ 1;
2662 if (pd_idx
== raid_disks
-1) {
2663 (*dd_idx
)++; /* Q D D D P */
2665 } else if (*dd_idx
>= pd_idx
)
2666 (*dd_idx
) += 2; /* D D P Q D */
2670 case ALGORITHM_ROTATING_N_RESTART
:
2671 /* Same a left_asymmetric, by first stripe is
2672 * D D D P Q rather than
2676 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
2677 qd_idx
= pd_idx
+ 1;
2678 if (pd_idx
== raid_disks
-1) {
2679 (*dd_idx
)++; /* Q D D D P */
2681 } else if (*dd_idx
>= pd_idx
)
2682 (*dd_idx
) += 2; /* D D P Q D */
2686 case ALGORITHM_ROTATING_N_CONTINUE
:
2687 /* Same as left_symmetric but Q is before P */
2688 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
2689 qd_idx
= (pd_idx
+ raid_disks
- 1) % raid_disks
;
2690 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
2694 case ALGORITHM_LEFT_ASYMMETRIC_6
:
2695 /* RAID5 left_asymmetric, with Q on last device */
2696 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
-1);
2697 if (*dd_idx
>= pd_idx
)
2699 qd_idx
= raid_disks
- 1;
2702 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
2703 pd_idx
= sector_div(stripe2
, raid_disks
-1);
2704 if (*dd_idx
>= pd_idx
)
2706 qd_idx
= raid_disks
- 1;
2709 case ALGORITHM_LEFT_SYMMETRIC_6
:
2710 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
-1);
2711 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % (raid_disks
-1);
2712 qd_idx
= raid_disks
- 1;
2715 case ALGORITHM_RIGHT_SYMMETRIC_6
:
2716 pd_idx
= sector_div(stripe2
, raid_disks
-1);
2717 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % (raid_disks
-1);
2718 qd_idx
= raid_disks
- 1;
2721 case ALGORITHM_PARITY_0_6
:
2724 qd_idx
= raid_disks
- 1;
2734 sh
->pd_idx
= pd_idx
;
2735 sh
->qd_idx
= qd_idx
;
2736 sh
->ddf_layout
= ddf_layout
;
2739 * Finally, compute the new sector number
2741 new_sector
= (sector_t
)stripe
* sectors_per_chunk
+ chunk_offset
;
2745 sector_t
raid5_compute_blocknr(struct stripe_head
*sh
, int i
, int previous
)
2747 struct r5conf
*conf
= sh
->raid_conf
;
2748 int raid_disks
= sh
->disks
;
2749 int data_disks
= raid_disks
- conf
->max_degraded
;
2750 sector_t new_sector
= sh
->sector
, check
;
2751 int sectors_per_chunk
= previous
? conf
->prev_chunk_sectors
2752 : conf
->chunk_sectors
;
2753 int algorithm
= previous
? conf
->prev_algo
2757 sector_t chunk_number
;
2758 int dummy1
, dd_idx
= i
;
2760 struct stripe_head sh2
;
2762 chunk_offset
= sector_div(new_sector
, sectors_per_chunk
);
2763 stripe
= new_sector
;
2765 if (i
== sh
->pd_idx
)
2767 switch(conf
->level
) {
2770 switch (algorithm
) {
2771 case ALGORITHM_LEFT_ASYMMETRIC
:
2772 case ALGORITHM_RIGHT_ASYMMETRIC
:
2776 case ALGORITHM_LEFT_SYMMETRIC
:
2777 case ALGORITHM_RIGHT_SYMMETRIC
:
2780 i
-= (sh
->pd_idx
+ 1);
2782 case ALGORITHM_PARITY_0
:
2785 case ALGORITHM_PARITY_N
:
2792 if (i
== sh
->qd_idx
)
2793 return 0; /* It is the Q disk */
2794 switch (algorithm
) {
2795 case ALGORITHM_LEFT_ASYMMETRIC
:
2796 case ALGORITHM_RIGHT_ASYMMETRIC
:
2797 case ALGORITHM_ROTATING_ZERO_RESTART
:
2798 case ALGORITHM_ROTATING_N_RESTART
:
2799 if (sh
->pd_idx
== raid_disks
-1)
2800 i
--; /* Q D D D P */
2801 else if (i
> sh
->pd_idx
)
2802 i
-= 2; /* D D P Q D */
2804 case ALGORITHM_LEFT_SYMMETRIC
:
2805 case ALGORITHM_RIGHT_SYMMETRIC
:
2806 if (sh
->pd_idx
== raid_disks
-1)
2807 i
--; /* Q D D D P */
2812 i
-= (sh
->pd_idx
+ 2);
2815 case ALGORITHM_PARITY_0
:
2818 case ALGORITHM_PARITY_N
:
2820 case ALGORITHM_ROTATING_N_CONTINUE
:
2821 /* Like left_symmetric, but P is before Q */
2822 if (sh
->pd_idx
== 0)
2823 i
--; /* P D D D Q */
2828 i
-= (sh
->pd_idx
+ 1);
2831 case ALGORITHM_LEFT_ASYMMETRIC_6
:
2832 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
2836 case ALGORITHM_LEFT_SYMMETRIC_6
:
2837 case ALGORITHM_RIGHT_SYMMETRIC_6
:
2839 i
+= data_disks
+ 1;
2840 i
-= (sh
->pd_idx
+ 1);
2842 case ALGORITHM_PARITY_0_6
:
2851 chunk_number
= stripe
* data_disks
+ i
;
2852 r_sector
= chunk_number
* sectors_per_chunk
+ chunk_offset
;
2854 check
= raid5_compute_sector(conf
, r_sector
,
2855 previous
, &dummy1
, &sh2
);
2856 if (check
!= sh
->sector
|| dummy1
!= dd_idx
|| sh2
.pd_idx
!= sh
->pd_idx
2857 || sh2
.qd_idx
!= sh
->qd_idx
) {
2858 printk(KERN_ERR
"md/raid:%s: compute_blocknr: map not correct\n",
2859 mdname(conf
->mddev
));
2866 schedule_reconstruction(struct stripe_head
*sh
, struct stripe_head_state
*s
,
2867 int rcw
, int expand
)
2869 int i
, pd_idx
= sh
->pd_idx
, qd_idx
= sh
->qd_idx
, disks
= sh
->disks
;
2870 struct r5conf
*conf
= sh
->raid_conf
;
2871 int level
= conf
->level
;
2875 for (i
= disks
; i
--; ) {
2876 struct r5dev
*dev
= &sh
->dev
[i
];
2879 set_bit(R5_LOCKED
, &dev
->flags
);
2880 set_bit(R5_Wantdrain
, &dev
->flags
);
2882 clear_bit(R5_UPTODATE
, &dev
->flags
);
2886 /* if we are not expanding this is a proper write request, and
2887 * there will be bios with new data to be drained into the
2892 /* False alarm, nothing to do */
2894 sh
->reconstruct_state
= reconstruct_state_drain_run
;
2895 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
2897 sh
->reconstruct_state
= reconstruct_state_run
;
2899 set_bit(STRIPE_OP_RECONSTRUCT
, &s
->ops_request
);
2901 if (s
->locked
+ conf
->max_degraded
== disks
)
2902 if (!test_and_set_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2903 atomic_inc(&conf
->pending_full_writes
);
2905 BUG_ON(!(test_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
) ||
2906 test_bit(R5_Wantcompute
, &sh
->dev
[pd_idx
].flags
)));
2907 BUG_ON(level
== 6 &&
2908 (!(test_bit(R5_UPTODATE
, &sh
->dev
[qd_idx
].flags
) ||
2909 test_bit(R5_Wantcompute
, &sh
->dev
[qd_idx
].flags
))));
2911 for (i
= disks
; i
--; ) {
2912 struct r5dev
*dev
= &sh
->dev
[i
];
2913 if (i
== pd_idx
|| i
== qd_idx
)
2917 (test_bit(R5_UPTODATE
, &dev
->flags
) ||
2918 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2919 set_bit(R5_Wantdrain
, &dev
->flags
);
2920 set_bit(R5_LOCKED
, &dev
->flags
);
2921 clear_bit(R5_UPTODATE
, &dev
->flags
);
2926 /* False alarm - nothing to do */
2928 sh
->reconstruct_state
= reconstruct_state_prexor_drain_run
;
2929 set_bit(STRIPE_OP_PREXOR
, &s
->ops_request
);
2930 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
2931 set_bit(STRIPE_OP_RECONSTRUCT
, &s
->ops_request
);
2934 /* keep the parity disk(s) locked while asynchronous operations
2937 set_bit(R5_LOCKED
, &sh
->dev
[pd_idx
].flags
);
2938 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
2942 int qd_idx
= sh
->qd_idx
;
2943 struct r5dev
*dev
= &sh
->dev
[qd_idx
];
2945 set_bit(R5_LOCKED
, &dev
->flags
);
2946 clear_bit(R5_UPTODATE
, &dev
->flags
);
2950 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2951 __func__
, (unsigned long long)sh
->sector
,
2952 s
->locked
, s
->ops_request
);
2956 * Each stripe/dev can have one or more bion attached.
2957 * toread/towrite point to the first in a chain.
2958 * The bi_next chain must be in order.
2960 static int add_stripe_bio(struct stripe_head
*sh
, struct bio
*bi
, int dd_idx
,
2961 int forwrite
, int previous
)
2964 struct r5conf
*conf
= sh
->raid_conf
;
2967 pr_debug("adding bi b#%llu to stripe s#%llu\n",
2968 (unsigned long long)bi
->bi_iter
.bi_sector
,
2969 (unsigned long long)sh
->sector
);
2972 * If several bio share a stripe. The bio bi_phys_segments acts as a
2973 * reference count to avoid race. The reference count should already be
2974 * increased before this function is called (for example, in
2975 * make_request()), so other bio sharing this stripe will not free the
2976 * stripe. If a stripe is owned by one stripe, the stripe lock will
2979 spin_lock_irq(&sh
->stripe_lock
);
2980 /* Don't allow new IO added to stripes in batch list */
2984 bip
= &sh
->dev
[dd_idx
].towrite
;
2988 bip
= &sh
->dev
[dd_idx
].toread
;
2989 while (*bip
&& (*bip
)->bi_iter
.bi_sector
< bi
->bi_iter
.bi_sector
) {
2990 if (bio_end_sector(*bip
) > bi
->bi_iter
.bi_sector
)
2992 bip
= & (*bip
)->bi_next
;
2994 if (*bip
&& (*bip
)->bi_iter
.bi_sector
< bio_end_sector(bi
))
2997 if (!forwrite
|| previous
)
2998 clear_bit(STRIPE_BATCH_READY
, &sh
->state
);
3000 BUG_ON(*bip
&& bi
->bi_next
&& (*bip
) != bi
->bi_next
);
3004 raid5_inc_bi_active_stripes(bi
);
3007 /* check if page is covered */
3008 sector_t sector
= sh
->dev
[dd_idx
].sector
;
3009 for (bi
=sh
->dev
[dd_idx
].towrite
;
3010 sector
< sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
&&
3011 bi
&& bi
->bi_iter
.bi_sector
<= sector
;
3012 bi
= r5_next_bio(bi
, sh
->dev
[dd_idx
].sector
)) {
3013 if (bio_end_sector(bi
) >= sector
)
3014 sector
= bio_end_sector(bi
);
3016 if (sector
>= sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
)
3017 if (!test_and_set_bit(R5_OVERWRITE
, &sh
->dev
[dd_idx
].flags
))
3018 sh
->overwrite_disks
++;
3021 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3022 (unsigned long long)(*bip
)->bi_iter
.bi_sector
,
3023 (unsigned long long)sh
->sector
, dd_idx
);
3025 if (conf
->mddev
->bitmap
&& firstwrite
) {
3026 /* Cannot hold spinlock over bitmap_startwrite,
3027 * but must ensure this isn't added to a batch until
3028 * we have added to the bitmap and set bm_seq.
3029 * So set STRIPE_BITMAP_PENDING to prevent
3031 * If multiple add_stripe_bio() calls race here they
3032 * much all set STRIPE_BITMAP_PENDING. So only the first one
3033 * to complete "bitmap_startwrite" gets to set
3034 * STRIPE_BIT_DELAY. This is important as once a stripe
3035 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3038 set_bit(STRIPE_BITMAP_PENDING
, &sh
->state
);
3039 spin_unlock_irq(&sh
->stripe_lock
);
3040 bitmap_startwrite(conf
->mddev
->bitmap
, sh
->sector
,
3042 spin_lock_irq(&sh
->stripe_lock
);
3043 clear_bit(STRIPE_BITMAP_PENDING
, &sh
->state
);
3044 if (!sh
->batch_head
) {
3045 sh
->bm_seq
= conf
->seq_flush
+1;
3046 set_bit(STRIPE_BIT_DELAY
, &sh
->state
);
3049 spin_unlock_irq(&sh
->stripe_lock
);
3051 if (stripe_can_batch(sh
))
3052 stripe_add_to_batch_list(conf
, sh
);
3056 set_bit(R5_Overlap
, &sh
->dev
[dd_idx
].flags
);
3057 spin_unlock_irq(&sh
->stripe_lock
);
3061 static void end_reshape(struct r5conf
*conf
);
3063 static void stripe_set_idx(sector_t stripe
, struct r5conf
*conf
, int previous
,
3064 struct stripe_head
*sh
)
3066 int sectors_per_chunk
=
3067 previous
? conf
->prev_chunk_sectors
: conf
->chunk_sectors
;
3069 int chunk_offset
= sector_div(stripe
, sectors_per_chunk
);
3070 int disks
= previous
? conf
->previous_raid_disks
: conf
->raid_disks
;
3072 raid5_compute_sector(conf
,
3073 stripe
* (disks
- conf
->max_degraded
)
3074 *sectors_per_chunk
+ chunk_offset
,
3080 handle_failed_stripe(struct r5conf
*conf
, struct stripe_head
*sh
,
3081 struct stripe_head_state
*s
, int disks
,
3082 struct bio_list
*return_bi
)
3085 BUG_ON(sh
->batch_head
);
3086 for (i
= disks
; i
--; ) {
3090 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
3091 struct md_rdev
*rdev
;
3093 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3094 if (rdev
&& test_bit(In_sync
, &rdev
->flags
))
3095 atomic_inc(&rdev
->nr_pending
);
3100 if (!rdev_set_badblocks(
3104 md_error(conf
->mddev
, rdev
);
3105 rdev_dec_pending(rdev
, conf
->mddev
);
3108 spin_lock_irq(&sh
->stripe_lock
);
3109 /* fail all writes first */
3110 bi
= sh
->dev
[i
].towrite
;
3111 sh
->dev
[i
].towrite
= NULL
;
3112 sh
->overwrite_disks
= 0;
3113 spin_unlock_irq(&sh
->stripe_lock
);
3117 r5l_stripe_write_finished(sh
);
3119 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
3120 wake_up(&conf
->wait_for_overlap
);
3122 while (bi
&& bi
->bi_iter
.bi_sector
<
3123 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
3124 struct bio
*nextbi
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
3126 bi
->bi_error
= -EIO
;
3127 if (!raid5_dec_bi_active_stripes(bi
)) {
3128 md_write_end(conf
->mddev
);
3129 bio_list_add(return_bi
, bi
);
3134 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
3135 STRIPE_SECTORS
, 0, 0);
3137 /* and fail all 'written' */
3138 bi
= sh
->dev
[i
].written
;
3139 sh
->dev
[i
].written
= NULL
;
3140 if (test_and_clear_bit(R5_SkipCopy
, &sh
->dev
[i
].flags
)) {
3141 WARN_ON(test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
));
3142 sh
->dev
[i
].page
= sh
->dev
[i
].orig_page
;
3145 if (bi
) bitmap_end
= 1;
3146 while (bi
&& bi
->bi_iter
.bi_sector
<
3147 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
3148 struct bio
*bi2
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
3150 bi
->bi_error
= -EIO
;
3151 if (!raid5_dec_bi_active_stripes(bi
)) {
3152 md_write_end(conf
->mddev
);
3153 bio_list_add(return_bi
, bi
);
3158 /* fail any reads if this device is non-operational and
3159 * the data has not reached the cache yet.
3161 if (!test_bit(R5_Wantfill
, &sh
->dev
[i
].flags
) &&
3162 s
->failed
> conf
->max_degraded
&&
3163 (!test_bit(R5_Insync
, &sh
->dev
[i
].flags
) ||
3164 test_bit(R5_ReadError
, &sh
->dev
[i
].flags
))) {
3165 spin_lock_irq(&sh
->stripe_lock
);
3166 bi
= sh
->dev
[i
].toread
;
3167 sh
->dev
[i
].toread
= NULL
;
3168 spin_unlock_irq(&sh
->stripe_lock
);
3169 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
3170 wake_up(&conf
->wait_for_overlap
);
3173 while (bi
&& bi
->bi_iter
.bi_sector
<
3174 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
3175 struct bio
*nextbi
=
3176 r5_next_bio(bi
, sh
->dev
[i
].sector
);
3178 bi
->bi_error
= -EIO
;
3179 if (!raid5_dec_bi_active_stripes(bi
))
3180 bio_list_add(return_bi
, bi
);
3185 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
3186 STRIPE_SECTORS
, 0, 0);
3187 /* If we were in the middle of a write the parity block might
3188 * still be locked - so just clear all R5_LOCKED flags
3190 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
3195 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
3196 if (atomic_dec_and_test(&conf
->pending_full_writes
))
3197 md_wakeup_thread(conf
->mddev
->thread
);
3201 handle_failed_sync(struct r5conf
*conf
, struct stripe_head
*sh
,
3202 struct stripe_head_state
*s
)
3207 BUG_ON(sh
->batch_head
);
3208 clear_bit(STRIPE_SYNCING
, &sh
->state
);
3209 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
))
3210 wake_up(&conf
->wait_for_overlap
);
3213 /* There is nothing more to do for sync/check/repair.
3214 * Don't even need to abort as that is handled elsewhere
3215 * if needed, and not always wanted e.g. if there is a known
3217 * For recover/replace we need to record a bad block on all
3218 * non-sync devices, or abort the recovery
3220 if (test_bit(MD_RECOVERY_RECOVER
, &conf
->mddev
->recovery
)) {
3221 /* During recovery devices cannot be removed, so
3222 * locking and refcounting of rdevs is not needed
3224 for (i
= 0; i
< conf
->raid_disks
; i
++) {
3225 struct md_rdev
*rdev
= conf
->disks
[i
].rdev
;
3227 && !test_bit(Faulty
, &rdev
->flags
)
3228 && !test_bit(In_sync
, &rdev
->flags
)
3229 && !rdev_set_badblocks(rdev
, sh
->sector
,
3232 rdev
= conf
->disks
[i
].replacement
;
3234 && !test_bit(Faulty
, &rdev
->flags
)
3235 && !test_bit(In_sync
, &rdev
->flags
)
3236 && !rdev_set_badblocks(rdev
, sh
->sector
,
3241 conf
->recovery_disabled
=
3242 conf
->mddev
->recovery_disabled
;
3244 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, !abort
);
3247 static int want_replace(struct stripe_head
*sh
, int disk_idx
)
3249 struct md_rdev
*rdev
;
3251 /* Doing recovery so rcu locking not required */
3252 rdev
= sh
->raid_conf
->disks
[disk_idx
].replacement
;
3254 && !test_bit(Faulty
, &rdev
->flags
)
3255 && !test_bit(In_sync
, &rdev
->flags
)
3256 && (rdev
->recovery_offset
<= sh
->sector
3257 || rdev
->mddev
->recovery_cp
<= sh
->sector
))
3263 /* fetch_block - checks the given member device to see if its data needs
3264 * to be read or computed to satisfy a request.
3266 * Returns 1 when no more member devices need to be checked, otherwise returns
3267 * 0 to tell the loop in handle_stripe_fill to continue
3270 static int need_this_block(struct stripe_head
*sh
, struct stripe_head_state
*s
,
3271 int disk_idx
, int disks
)
3273 struct r5dev
*dev
= &sh
->dev
[disk_idx
];
3274 struct r5dev
*fdev
[2] = { &sh
->dev
[s
->failed_num
[0]],
3275 &sh
->dev
[s
->failed_num
[1]] };
3279 if (test_bit(R5_LOCKED
, &dev
->flags
) ||
3280 test_bit(R5_UPTODATE
, &dev
->flags
))
3281 /* No point reading this as we already have it or have
3282 * decided to get it.
3287 (dev
->towrite
&& !test_bit(R5_OVERWRITE
, &dev
->flags
)))
3288 /* We need this block to directly satisfy a request */
3291 if (s
->syncing
|| s
->expanding
||
3292 (s
->replacing
&& want_replace(sh
, disk_idx
)))
3293 /* When syncing, or expanding we read everything.
3294 * When replacing, we need the replaced block.
3298 if ((s
->failed
>= 1 && fdev
[0]->toread
) ||
3299 (s
->failed
>= 2 && fdev
[1]->toread
))
3300 /* If we want to read from a failed device, then
3301 * we need to actually read every other device.
3305 /* Sometimes neither read-modify-write nor reconstruct-write
3306 * cycles can work. In those cases we read every block we
3307 * can. Then the parity-update is certain to have enough to
3309 * This can only be a problem when we need to write something,
3310 * and some device has failed. If either of those tests
3311 * fail we need look no further.
3313 if (!s
->failed
|| !s
->to_write
)
3316 if (test_bit(R5_Insync
, &dev
->flags
) &&
3317 !test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
3318 /* Pre-reads at not permitted until after short delay
3319 * to gather multiple requests. However if this
3320 * device is no Insync, the block could only be be computed
3321 * and there is no need to delay that.
3325 for (i
= 0; i
< s
->failed
&& i
< 2; i
++) {
3326 if (fdev
[i
]->towrite
&&
3327 !test_bit(R5_UPTODATE
, &fdev
[i
]->flags
) &&
3328 !test_bit(R5_OVERWRITE
, &fdev
[i
]->flags
))
3329 /* If we have a partial write to a failed
3330 * device, then we will need to reconstruct
3331 * the content of that device, so all other
3332 * devices must be read.
3337 /* If we are forced to do a reconstruct-write, either because
3338 * the current RAID6 implementation only supports that, or
3339 * or because parity cannot be trusted and we are currently
3340 * recovering it, there is extra need to be careful.
3341 * If one of the devices that we would need to read, because
3342 * it is not being overwritten (and maybe not written at all)
3343 * is missing/faulty, then we need to read everything we can.
3345 if (sh
->raid_conf
->level
!= 6 &&
3346 sh
->sector
< sh
->raid_conf
->mddev
->recovery_cp
)
3347 /* reconstruct-write isn't being forced */
3349 for (i
= 0; i
< s
->failed
&& i
< 2; i
++) {
3350 if (s
->failed_num
[i
] != sh
->pd_idx
&&
3351 s
->failed_num
[i
] != sh
->qd_idx
&&
3352 !test_bit(R5_UPTODATE
, &fdev
[i
]->flags
) &&
3353 !test_bit(R5_OVERWRITE
, &fdev
[i
]->flags
))
3360 static int fetch_block(struct stripe_head
*sh
, struct stripe_head_state
*s
,
3361 int disk_idx
, int disks
)
3363 struct r5dev
*dev
= &sh
->dev
[disk_idx
];
3365 /* is the data in this block needed, and can we get it? */
3366 if (need_this_block(sh
, s
, disk_idx
, disks
)) {
3367 /* we would like to get this block, possibly by computing it,
3368 * otherwise read it if the backing disk is insync
3370 BUG_ON(test_bit(R5_Wantcompute
, &dev
->flags
));
3371 BUG_ON(test_bit(R5_Wantread
, &dev
->flags
));
3372 BUG_ON(sh
->batch_head
);
3375 * In the raid6 case if the only non-uptodate disk is P
3376 * then we already trusted P to compute the other failed
3377 * drives. It is safe to compute rather than re-read P.
3378 * In other cases we only compute blocks from failed
3379 * devices, otherwise check/repair might fail to detect
3380 * a real inconsistency.
3383 if ((s
->uptodate
== disks
- 1) &&
3384 ((sh
->qd_idx
>= 0 && sh
->pd_idx
== disk_idx
) ||
3385 (s
->failed
&& (disk_idx
== s
->failed_num
[0] ||
3386 disk_idx
== s
->failed_num
[1])))) {
3387 /* have disk failed, and we're requested to fetch it;
3390 pr_debug("Computing stripe %llu block %d\n",
3391 (unsigned long long)sh
->sector
, disk_idx
);
3392 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
3393 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
3394 set_bit(R5_Wantcompute
, &dev
->flags
);
3395 sh
->ops
.target
= disk_idx
;
3396 sh
->ops
.target2
= -1; /* no 2nd target */
3398 /* Careful: from this point on 'uptodate' is in the eye
3399 * of raid_run_ops which services 'compute' operations
3400 * before writes. R5_Wantcompute flags a block that will
3401 * be R5_UPTODATE by the time it is needed for a
3402 * subsequent operation.
3406 } else if (s
->uptodate
== disks
-2 && s
->failed
>= 2) {
3407 /* Computing 2-failure is *very* expensive; only
3408 * do it if failed >= 2
3411 for (other
= disks
; other
--; ) {
3412 if (other
== disk_idx
)
3414 if (!test_bit(R5_UPTODATE
,
3415 &sh
->dev
[other
].flags
))
3419 pr_debug("Computing stripe %llu blocks %d,%d\n",
3420 (unsigned long long)sh
->sector
,
3422 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
3423 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
3424 set_bit(R5_Wantcompute
, &sh
->dev
[disk_idx
].flags
);
3425 set_bit(R5_Wantcompute
, &sh
->dev
[other
].flags
);
3426 sh
->ops
.target
= disk_idx
;
3427 sh
->ops
.target2
= other
;
3431 } else if (test_bit(R5_Insync
, &dev
->flags
)) {
3432 set_bit(R5_LOCKED
, &dev
->flags
);
3433 set_bit(R5_Wantread
, &dev
->flags
);
3435 pr_debug("Reading block %d (sync=%d)\n",
3436 disk_idx
, s
->syncing
);
3444 * handle_stripe_fill - read or compute data to satisfy pending requests.
3446 static void handle_stripe_fill(struct stripe_head
*sh
,
3447 struct stripe_head_state
*s
,
3452 /* look for blocks to read/compute, skip this if a compute
3453 * is already in flight, or if the stripe contents are in the
3454 * midst of changing due to a write
3456 if (!test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) && !sh
->check_state
&&
3457 !sh
->reconstruct_state
)
3458 for (i
= disks
; i
--; )
3459 if (fetch_block(sh
, s
, i
, disks
))
3461 set_bit(STRIPE_HANDLE
, &sh
->state
);
3464 static void break_stripe_batch_list(struct stripe_head
*head_sh
,
3465 unsigned long handle_flags
);
3466 /* handle_stripe_clean_event
3467 * any written block on an uptodate or failed drive can be returned.
3468 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3469 * never LOCKED, so we don't need to test 'failed' directly.
3471 static void handle_stripe_clean_event(struct r5conf
*conf
,
3472 struct stripe_head
*sh
, int disks
, struct bio_list
*return_bi
)
3476 int discard_pending
= 0;
3477 struct stripe_head
*head_sh
= sh
;
3478 bool do_endio
= false;
3480 for (i
= disks
; i
--; )
3481 if (sh
->dev
[i
].written
) {
3483 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
3484 (test_bit(R5_UPTODATE
, &dev
->flags
) ||
3485 test_bit(R5_Discard
, &dev
->flags
) ||
3486 test_bit(R5_SkipCopy
, &dev
->flags
))) {
3487 /* We can return any write requests */
3488 struct bio
*wbi
, *wbi2
;
3489 pr_debug("Return write for disc %d\n", i
);
3490 if (test_and_clear_bit(R5_Discard
, &dev
->flags
))
3491 clear_bit(R5_UPTODATE
, &dev
->flags
);
3492 if (test_and_clear_bit(R5_SkipCopy
, &dev
->flags
)) {
3493 WARN_ON(test_bit(R5_UPTODATE
, &dev
->flags
));
3498 dev
->page
= dev
->orig_page
;
3500 dev
->written
= NULL
;
3501 while (wbi
&& wbi
->bi_iter
.bi_sector
<
3502 dev
->sector
+ STRIPE_SECTORS
) {
3503 wbi2
= r5_next_bio(wbi
, dev
->sector
);
3504 if (!raid5_dec_bi_active_stripes(wbi
)) {
3505 md_write_end(conf
->mddev
);
3506 bio_list_add(return_bi
, wbi
);
3510 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
3512 !test_bit(STRIPE_DEGRADED
, &sh
->state
),
3514 if (head_sh
->batch_head
) {
3515 sh
= list_first_entry(&sh
->batch_list
,
3518 if (sh
!= head_sh
) {
3525 } else if (test_bit(R5_Discard
, &dev
->flags
))
3526 discard_pending
= 1;
3527 WARN_ON(test_bit(R5_SkipCopy
, &dev
->flags
));
3528 WARN_ON(dev
->page
!= dev
->orig_page
);
3531 r5l_stripe_write_finished(sh
);
3533 if (!discard_pending
&&
3534 test_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
)) {
3536 clear_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
);
3537 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
);
3538 if (sh
->qd_idx
>= 0) {
3539 clear_bit(R5_Discard
, &sh
->dev
[sh
->qd_idx
].flags
);
3540 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->qd_idx
].flags
);
3542 /* now that discard is done we can proceed with any sync */
3543 clear_bit(STRIPE_DISCARD
, &sh
->state
);
3545 * SCSI discard will change some bio fields and the stripe has
3546 * no updated data, so remove it from hash list and the stripe
3547 * will be reinitialized
3550 hash
= sh
->hash_lock_index
;
3551 spin_lock_irq(conf
->hash_locks
+ hash
);
3553 spin_unlock_irq(conf
->hash_locks
+ hash
);
3554 if (head_sh
->batch_head
) {
3555 sh
= list_first_entry(&sh
->batch_list
,
3556 struct stripe_head
, batch_list
);
3562 if (test_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
))
3563 set_bit(STRIPE_HANDLE
, &sh
->state
);
3567 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
3568 if (atomic_dec_and_test(&conf
->pending_full_writes
))
3569 md_wakeup_thread(conf
->mddev
->thread
);
3571 if (head_sh
->batch_head
&& do_endio
)
3572 break_stripe_batch_list(head_sh
, STRIPE_EXPAND_SYNC_FLAGS
);
3575 static void handle_stripe_dirtying(struct r5conf
*conf
,
3576 struct stripe_head
*sh
,
3577 struct stripe_head_state
*s
,
3580 int rmw
= 0, rcw
= 0, i
;
3581 sector_t recovery_cp
= conf
->mddev
->recovery_cp
;
3583 /* Check whether resync is now happening or should start.
3584 * If yes, then the array is dirty (after unclean shutdown or
3585 * initial creation), so parity in some stripes might be inconsistent.
3586 * In this case, we need to always do reconstruct-write, to ensure
3587 * that in case of drive failure or read-error correction, we
3588 * generate correct data from the parity.
3590 if (conf
->rmw_level
== PARITY_DISABLE_RMW
||
3591 (recovery_cp
< MaxSector
&& sh
->sector
>= recovery_cp
&&
3593 /* Calculate the real rcw later - for now make it
3594 * look like rcw is cheaper
3597 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3598 conf
->rmw_level
, (unsigned long long)recovery_cp
,
3599 (unsigned long long)sh
->sector
);
3600 } else for (i
= disks
; i
--; ) {
3601 /* would I have to read this buffer for read_modify_write */
3602 struct r5dev
*dev
= &sh
->dev
[i
];
3603 if ((dev
->towrite
|| i
== sh
->pd_idx
|| i
== sh
->qd_idx
) &&
3604 !test_bit(R5_LOCKED
, &dev
->flags
) &&
3605 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
3606 test_bit(R5_Wantcompute
, &dev
->flags
))) {
3607 if (test_bit(R5_Insync
, &dev
->flags
))
3610 rmw
+= 2*disks
; /* cannot read it */
3612 /* Would I have to read this buffer for reconstruct_write */
3613 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) &&
3614 i
!= sh
->pd_idx
&& i
!= sh
->qd_idx
&&
3615 !test_bit(R5_LOCKED
, &dev
->flags
) &&
3616 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
3617 test_bit(R5_Wantcompute
, &dev
->flags
))) {
3618 if (test_bit(R5_Insync
, &dev
->flags
))
3624 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3625 (unsigned long long)sh
->sector
, rmw
, rcw
);
3626 set_bit(STRIPE_HANDLE
, &sh
->state
);
3627 if ((rmw
< rcw
|| (rmw
== rcw
&& conf
->rmw_level
== PARITY_ENABLE_RMW
)) && rmw
> 0) {
3628 /* prefer read-modify-write, but need to get some data */
3629 if (conf
->mddev
->queue
)
3630 blk_add_trace_msg(conf
->mddev
->queue
,
3631 "raid5 rmw %llu %d",
3632 (unsigned long long)sh
->sector
, rmw
);
3633 for (i
= disks
; i
--; ) {
3634 struct r5dev
*dev
= &sh
->dev
[i
];
3635 if ((dev
->towrite
|| i
== sh
->pd_idx
|| i
== sh
->qd_idx
) &&
3636 !test_bit(R5_LOCKED
, &dev
->flags
) &&
3637 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
3638 test_bit(R5_Wantcompute
, &dev
->flags
)) &&
3639 test_bit(R5_Insync
, &dev
->flags
)) {
3640 if (test_bit(STRIPE_PREREAD_ACTIVE
,
3642 pr_debug("Read_old block %d for r-m-w\n",
3644 set_bit(R5_LOCKED
, &dev
->flags
);
3645 set_bit(R5_Wantread
, &dev
->flags
);
3648 set_bit(STRIPE_DELAYED
, &sh
->state
);
3649 set_bit(STRIPE_HANDLE
, &sh
->state
);
3654 if ((rcw
< rmw
|| (rcw
== rmw
&& conf
->rmw_level
!= PARITY_ENABLE_RMW
)) && rcw
> 0) {
3655 /* want reconstruct write, but need to get some data */
3658 for (i
= disks
; i
--; ) {
3659 struct r5dev
*dev
= &sh
->dev
[i
];
3660 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) &&
3661 i
!= sh
->pd_idx
&& i
!= sh
->qd_idx
&&
3662 !test_bit(R5_LOCKED
, &dev
->flags
) &&
3663 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
3664 test_bit(R5_Wantcompute
, &dev
->flags
))) {
3666 if (test_bit(R5_Insync
, &dev
->flags
) &&
3667 test_bit(STRIPE_PREREAD_ACTIVE
,
3669 pr_debug("Read_old block "
3670 "%d for Reconstruct\n", i
);
3671 set_bit(R5_LOCKED
, &dev
->flags
);
3672 set_bit(R5_Wantread
, &dev
->flags
);
3676 set_bit(STRIPE_DELAYED
, &sh
->state
);
3677 set_bit(STRIPE_HANDLE
, &sh
->state
);
3681 if (rcw
&& conf
->mddev
->queue
)
3682 blk_add_trace_msg(conf
->mddev
->queue
, "raid5 rcw %llu %d %d %d",
3683 (unsigned long long)sh
->sector
,
3684 rcw
, qread
, test_bit(STRIPE_DELAYED
, &sh
->state
));
3687 if (rcw
> disks
&& rmw
> disks
&&
3688 !test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
3689 set_bit(STRIPE_DELAYED
, &sh
->state
);
3691 /* now if nothing is locked, and if we have enough data,
3692 * we can start a write request
3694 /* since handle_stripe can be called at any time we need to handle the
3695 * case where a compute block operation has been submitted and then a
3696 * subsequent call wants to start a write request. raid_run_ops only
3697 * handles the case where compute block and reconstruct are requested
3698 * simultaneously. If this is not the case then new writes need to be
3699 * held off until the compute completes.
3701 if ((s
->req_compute
|| !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
)) &&
3702 (s
->locked
== 0 && (rcw
== 0 || rmw
== 0) &&
3703 !test_bit(STRIPE_BIT_DELAY
, &sh
->state
)))
3704 schedule_reconstruction(sh
, s
, rcw
== 0, 0);
3707 static void handle_parity_checks5(struct r5conf
*conf
, struct stripe_head
*sh
,
3708 struct stripe_head_state
*s
, int disks
)
3710 struct r5dev
*dev
= NULL
;
3712 BUG_ON(sh
->batch_head
);
3713 set_bit(STRIPE_HANDLE
, &sh
->state
);
3715 switch (sh
->check_state
) {
3716 case check_state_idle
:
3717 /* start a new check operation if there are no failures */
3718 if (s
->failed
== 0) {
3719 BUG_ON(s
->uptodate
!= disks
);
3720 sh
->check_state
= check_state_run
;
3721 set_bit(STRIPE_OP_CHECK
, &s
->ops_request
);
3722 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
);
3726 dev
= &sh
->dev
[s
->failed_num
[0]];
3728 case check_state_compute_result
:
3729 sh
->check_state
= check_state_idle
;
3731 dev
= &sh
->dev
[sh
->pd_idx
];
3733 /* check that a write has not made the stripe insync */
3734 if (test_bit(STRIPE_INSYNC
, &sh
->state
))
3737 /* either failed parity check, or recovery is happening */
3738 BUG_ON(!test_bit(R5_UPTODATE
, &dev
->flags
));
3739 BUG_ON(s
->uptodate
!= disks
);
3741 set_bit(R5_LOCKED
, &dev
->flags
);
3743 set_bit(R5_Wantwrite
, &dev
->flags
);
3745 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
3746 set_bit(STRIPE_INSYNC
, &sh
->state
);
3748 case check_state_run
:
3749 break; /* we will be called again upon completion */
3750 case check_state_check_result
:
3751 sh
->check_state
= check_state_idle
;
3753 /* if a failure occurred during the check operation, leave
3754 * STRIPE_INSYNC not set and let the stripe be handled again
3759 /* handle a successful check operation, if parity is correct
3760 * we are done. Otherwise update the mismatch count and repair
3761 * parity if !MD_RECOVERY_CHECK
3763 if ((sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) == 0)
3764 /* parity is correct (on disc,
3765 * not in buffer any more)
3767 set_bit(STRIPE_INSYNC
, &sh
->state
);
3769 atomic64_add(STRIPE_SECTORS
, &conf
->mddev
->resync_mismatches
);
3770 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
3771 /* don't try to repair!! */
3772 set_bit(STRIPE_INSYNC
, &sh
->state
);
3774 sh
->check_state
= check_state_compute_run
;
3775 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
3776 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
3777 set_bit(R5_Wantcompute
,
3778 &sh
->dev
[sh
->pd_idx
].flags
);
3779 sh
->ops
.target
= sh
->pd_idx
;
3780 sh
->ops
.target2
= -1;
3785 case check_state_compute_run
:
3788 printk(KERN_ERR
"%s: unknown check_state: %d sector: %llu\n",
3789 __func__
, sh
->check_state
,
3790 (unsigned long long) sh
->sector
);
3795 static void handle_parity_checks6(struct r5conf
*conf
, struct stripe_head
*sh
,
3796 struct stripe_head_state
*s
,
3799 int pd_idx
= sh
->pd_idx
;
3800 int qd_idx
= sh
->qd_idx
;
3803 BUG_ON(sh
->batch_head
);
3804 set_bit(STRIPE_HANDLE
, &sh
->state
);
3806 BUG_ON(s
->failed
> 2);
3808 /* Want to check and possibly repair P and Q.
3809 * However there could be one 'failed' device, in which
3810 * case we can only check one of them, possibly using the
3811 * other to generate missing data
3814 switch (sh
->check_state
) {
3815 case check_state_idle
:
3816 /* start a new check operation if there are < 2 failures */
3817 if (s
->failed
== s
->q_failed
) {
3818 /* The only possible failed device holds Q, so it
3819 * makes sense to check P (If anything else were failed,
3820 * we would have used P to recreate it).
3822 sh
->check_state
= check_state_run
;
3824 if (!s
->q_failed
&& s
->failed
< 2) {
3825 /* Q is not failed, and we didn't use it to generate
3826 * anything, so it makes sense to check it
3828 if (sh
->check_state
== check_state_run
)
3829 sh
->check_state
= check_state_run_pq
;
3831 sh
->check_state
= check_state_run_q
;
3834 /* discard potentially stale zero_sum_result */
3835 sh
->ops
.zero_sum_result
= 0;
3837 if (sh
->check_state
== check_state_run
) {
3838 /* async_xor_zero_sum destroys the contents of P */
3839 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
3842 if (sh
->check_state
>= check_state_run
&&
3843 sh
->check_state
<= check_state_run_pq
) {
3844 /* async_syndrome_zero_sum preserves P and Q, so
3845 * no need to mark them !uptodate here
3847 set_bit(STRIPE_OP_CHECK
, &s
->ops_request
);
3851 /* we have 2-disk failure */
3852 BUG_ON(s
->failed
!= 2);
3854 case check_state_compute_result
:
3855 sh
->check_state
= check_state_idle
;
3857 /* check that a write has not made the stripe insync */
3858 if (test_bit(STRIPE_INSYNC
, &sh
->state
))
3861 /* now write out any block on a failed drive,
3862 * or P or Q if they were recomputed
3864 BUG_ON(s
->uptodate
< disks
- 1); /* We don't need Q to recover */
3865 if (s
->failed
== 2) {
3866 dev
= &sh
->dev
[s
->failed_num
[1]];
3868 set_bit(R5_LOCKED
, &dev
->flags
);
3869 set_bit(R5_Wantwrite
, &dev
->flags
);
3871 if (s
->failed
>= 1) {
3872 dev
= &sh
->dev
[s
->failed_num
[0]];
3874 set_bit(R5_LOCKED
, &dev
->flags
);
3875 set_bit(R5_Wantwrite
, &dev
->flags
);
3877 if (sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) {
3878 dev
= &sh
->dev
[pd_idx
];
3880 set_bit(R5_LOCKED
, &dev
->flags
);
3881 set_bit(R5_Wantwrite
, &dev
->flags
);
3883 if (sh
->ops
.zero_sum_result
& SUM_CHECK_Q_RESULT
) {
3884 dev
= &sh
->dev
[qd_idx
];
3886 set_bit(R5_LOCKED
, &dev
->flags
);
3887 set_bit(R5_Wantwrite
, &dev
->flags
);
3889 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
3891 set_bit(STRIPE_INSYNC
, &sh
->state
);
3893 case check_state_run
:
3894 case check_state_run_q
:
3895 case check_state_run_pq
:
3896 break; /* we will be called again upon completion */
3897 case check_state_check_result
:
3898 sh
->check_state
= check_state_idle
;
3900 /* handle a successful check operation, if parity is correct
3901 * we are done. Otherwise update the mismatch count and repair
3902 * parity if !MD_RECOVERY_CHECK
3904 if (sh
->ops
.zero_sum_result
== 0) {
3905 /* both parities are correct */
3907 set_bit(STRIPE_INSYNC
, &sh
->state
);
3909 /* in contrast to the raid5 case we can validate
3910 * parity, but still have a failure to write
3913 sh
->check_state
= check_state_compute_result
;
3914 /* Returning at this point means that we may go
3915 * off and bring p and/or q uptodate again so
3916 * we make sure to check zero_sum_result again
3917 * to verify if p or q need writeback
3921 atomic64_add(STRIPE_SECTORS
, &conf
->mddev
->resync_mismatches
);
3922 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
3923 /* don't try to repair!! */
3924 set_bit(STRIPE_INSYNC
, &sh
->state
);
3926 int *target
= &sh
->ops
.target
;
3928 sh
->ops
.target
= -1;
3929 sh
->ops
.target2
= -1;
3930 sh
->check_state
= check_state_compute_run
;
3931 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
3932 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
3933 if (sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) {
3934 set_bit(R5_Wantcompute
,
3935 &sh
->dev
[pd_idx
].flags
);
3937 target
= &sh
->ops
.target2
;
3940 if (sh
->ops
.zero_sum_result
& SUM_CHECK_Q_RESULT
) {
3941 set_bit(R5_Wantcompute
,
3942 &sh
->dev
[qd_idx
].flags
);
3949 case check_state_compute_run
:
3952 printk(KERN_ERR
"%s: unknown check_state: %d sector: %llu\n",
3953 __func__
, sh
->check_state
,
3954 (unsigned long long) sh
->sector
);
3959 static void handle_stripe_expansion(struct r5conf
*conf
, struct stripe_head
*sh
)
3963 /* We have read all the blocks in this stripe and now we need to
3964 * copy some of them into a target stripe for expand.
3966 struct dma_async_tx_descriptor
*tx
= NULL
;
3967 BUG_ON(sh
->batch_head
);
3968 clear_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
3969 for (i
= 0; i
< sh
->disks
; i
++)
3970 if (i
!= sh
->pd_idx
&& i
!= sh
->qd_idx
) {
3972 struct stripe_head
*sh2
;
3973 struct async_submit_ctl submit
;
3975 sector_t bn
= raid5_compute_blocknr(sh
, i
, 1);
3976 sector_t s
= raid5_compute_sector(conf
, bn
, 0,
3978 sh2
= raid5_get_active_stripe(conf
, s
, 0, 1, 1);
3980 /* so far only the early blocks of this stripe
3981 * have been requested. When later blocks
3982 * get requested, we will try again
3985 if (!test_bit(STRIPE_EXPANDING
, &sh2
->state
) ||
3986 test_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
)) {
3987 /* must have already done this block */
3988 raid5_release_stripe(sh2
);
3992 /* place all the copies on one channel */
3993 init_async_submit(&submit
, 0, tx
, NULL
, NULL
, NULL
);
3994 tx
= async_memcpy(sh2
->dev
[dd_idx
].page
,
3995 sh
->dev
[i
].page
, 0, 0, STRIPE_SIZE
,
3998 set_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
);
3999 set_bit(R5_UPTODATE
, &sh2
->dev
[dd_idx
].flags
);
4000 for (j
= 0; j
< conf
->raid_disks
; j
++)
4001 if (j
!= sh2
->pd_idx
&&
4003 !test_bit(R5_Expanded
, &sh2
->dev
[j
].flags
))
4005 if (j
== conf
->raid_disks
) {
4006 set_bit(STRIPE_EXPAND_READY
, &sh2
->state
);
4007 set_bit(STRIPE_HANDLE
, &sh2
->state
);
4009 raid5_release_stripe(sh2
);
4012 /* done submitting copies, wait for them to complete */
4013 async_tx_quiesce(&tx
);
4017 * handle_stripe - do things to a stripe.
4019 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4020 * state of various bits to see what needs to be done.
4022 * return some read requests which now have data
4023 * return some write requests which are safely on storage
4024 * schedule a read on some buffers
4025 * schedule a write of some buffers
4026 * return confirmation of parity correctness
4030 static void analyse_stripe(struct stripe_head
*sh
, struct stripe_head_state
*s
)
4032 struct r5conf
*conf
= sh
->raid_conf
;
4033 int disks
= sh
->disks
;
4036 int do_recovery
= 0;
4038 memset(s
, 0, sizeof(*s
));
4040 s
->expanding
= test_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
) && !sh
->batch_head
;
4041 s
->expanded
= test_bit(STRIPE_EXPAND_READY
, &sh
->state
) && !sh
->batch_head
;
4042 s
->failed_num
[0] = -1;
4043 s
->failed_num
[1] = -1;
4044 s
->log_failed
= r5l_log_disk_error(conf
);
4046 /* Now to look around and see what can be done */
4048 for (i
=disks
; i
--; ) {
4049 struct md_rdev
*rdev
;
4056 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4058 dev
->toread
, dev
->towrite
, dev
->written
);
4059 /* maybe we can reply to a read
4061 * new wantfill requests are only permitted while
4062 * ops_complete_biofill is guaranteed to be inactive
4064 if (test_bit(R5_UPTODATE
, &dev
->flags
) && dev
->toread
&&
4065 !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
))
4066 set_bit(R5_Wantfill
, &dev
->flags
);
4068 /* now count some things */
4069 if (test_bit(R5_LOCKED
, &dev
->flags
))
4071 if (test_bit(R5_UPTODATE
, &dev
->flags
))
4073 if (test_bit(R5_Wantcompute
, &dev
->flags
)) {
4075 BUG_ON(s
->compute
> 2);
4078 if (test_bit(R5_Wantfill
, &dev
->flags
))
4080 else if (dev
->toread
)
4084 if (!test_bit(R5_OVERWRITE
, &dev
->flags
))
4089 /* Prefer to use the replacement for reads, but only
4090 * if it is recovered enough and has no bad blocks.
4092 rdev
= rcu_dereference(conf
->disks
[i
].replacement
);
4093 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
) &&
4094 rdev
->recovery_offset
>= sh
->sector
+ STRIPE_SECTORS
&&
4095 !is_badblock(rdev
, sh
->sector
, STRIPE_SECTORS
,
4096 &first_bad
, &bad_sectors
))
4097 set_bit(R5_ReadRepl
, &dev
->flags
);
4099 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
))
4100 set_bit(R5_NeedReplace
, &dev
->flags
);
4102 clear_bit(R5_NeedReplace
, &dev
->flags
);
4103 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
4104 clear_bit(R5_ReadRepl
, &dev
->flags
);
4106 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
4109 is_bad
= is_badblock(rdev
, sh
->sector
, STRIPE_SECTORS
,
4110 &first_bad
, &bad_sectors
);
4111 if (s
->blocked_rdev
== NULL
4112 && (test_bit(Blocked
, &rdev
->flags
)
4115 set_bit(BlockedBadBlocks
,
4117 s
->blocked_rdev
= rdev
;
4118 atomic_inc(&rdev
->nr_pending
);
4121 clear_bit(R5_Insync
, &dev
->flags
);
4125 /* also not in-sync */
4126 if (!test_bit(WriteErrorSeen
, &rdev
->flags
) &&
4127 test_bit(R5_UPTODATE
, &dev
->flags
)) {
4128 /* treat as in-sync, but with a read error
4129 * which we can now try to correct
4131 set_bit(R5_Insync
, &dev
->flags
);
4132 set_bit(R5_ReadError
, &dev
->flags
);
4134 } else if (test_bit(In_sync
, &rdev
->flags
))
4135 set_bit(R5_Insync
, &dev
->flags
);
4136 else if (sh
->sector
+ STRIPE_SECTORS
<= rdev
->recovery_offset
)
4137 /* in sync if before recovery_offset */
4138 set_bit(R5_Insync
, &dev
->flags
);
4139 else if (test_bit(R5_UPTODATE
, &dev
->flags
) &&
4140 test_bit(R5_Expanded
, &dev
->flags
))
4141 /* If we've reshaped into here, we assume it is Insync.
4142 * We will shortly update recovery_offset to make
4145 set_bit(R5_Insync
, &dev
->flags
);
4147 if (test_bit(R5_WriteError
, &dev
->flags
)) {
4148 /* This flag does not apply to '.replacement'
4149 * only to .rdev, so make sure to check that*/
4150 struct md_rdev
*rdev2
= rcu_dereference(
4151 conf
->disks
[i
].rdev
);
4153 clear_bit(R5_Insync
, &dev
->flags
);
4154 if (rdev2
&& !test_bit(Faulty
, &rdev2
->flags
)) {
4155 s
->handle_bad_blocks
= 1;
4156 atomic_inc(&rdev2
->nr_pending
);
4158 clear_bit(R5_WriteError
, &dev
->flags
);
4160 if (test_bit(R5_MadeGood
, &dev
->flags
)) {
4161 /* This flag does not apply to '.replacement'
4162 * only to .rdev, so make sure to check that*/
4163 struct md_rdev
*rdev2
= rcu_dereference(
4164 conf
->disks
[i
].rdev
);
4165 if (rdev2
&& !test_bit(Faulty
, &rdev2
->flags
)) {
4166 s
->handle_bad_blocks
= 1;
4167 atomic_inc(&rdev2
->nr_pending
);
4169 clear_bit(R5_MadeGood
, &dev
->flags
);
4171 if (test_bit(R5_MadeGoodRepl
, &dev
->flags
)) {
4172 struct md_rdev
*rdev2
= rcu_dereference(
4173 conf
->disks
[i
].replacement
);
4174 if (rdev2
&& !test_bit(Faulty
, &rdev2
->flags
)) {
4175 s
->handle_bad_blocks
= 1;
4176 atomic_inc(&rdev2
->nr_pending
);
4178 clear_bit(R5_MadeGoodRepl
, &dev
->flags
);
4180 if (!test_bit(R5_Insync
, &dev
->flags
)) {
4181 /* The ReadError flag will just be confusing now */
4182 clear_bit(R5_ReadError
, &dev
->flags
);
4183 clear_bit(R5_ReWrite
, &dev
->flags
);
4185 if (test_bit(R5_ReadError
, &dev
->flags
))
4186 clear_bit(R5_Insync
, &dev
->flags
);
4187 if (!test_bit(R5_Insync
, &dev
->flags
)) {
4189 s
->failed_num
[s
->failed
] = i
;
4191 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
))
4194 rdev
= rcu_dereference(
4195 conf
->disks
[i
].replacement
);
4196 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
))
4201 if (test_bit(STRIPE_SYNCING
, &sh
->state
)) {
4202 /* If there is a failed device being replaced,
4203 * we must be recovering.
4204 * else if we are after recovery_cp, we must be syncing
4205 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4206 * else we can only be replacing
4207 * sync and recovery both need to read all devices, and so
4208 * use the same flag.
4211 sh
->sector
>= conf
->mddev
->recovery_cp
||
4212 test_bit(MD_RECOVERY_REQUESTED
, &(conf
->mddev
->recovery
)))
4220 static int clear_batch_ready(struct stripe_head
*sh
)
4222 /* Return '1' if this is a member of batch, or
4223 * '0' if it is a lone stripe or a head which can now be
4226 struct stripe_head
*tmp
;
4227 if (!test_and_clear_bit(STRIPE_BATCH_READY
, &sh
->state
))
4228 return (sh
->batch_head
&& sh
->batch_head
!= sh
);
4229 spin_lock(&sh
->stripe_lock
);
4230 if (!sh
->batch_head
) {
4231 spin_unlock(&sh
->stripe_lock
);
4236 * this stripe could be added to a batch list before we check
4237 * BATCH_READY, skips it
4239 if (sh
->batch_head
!= sh
) {
4240 spin_unlock(&sh
->stripe_lock
);
4243 spin_lock(&sh
->batch_lock
);
4244 list_for_each_entry(tmp
, &sh
->batch_list
, batch_list
)
4245 clear_bit(STRIPE_BATCH_READY
, &tmp
->state
);
4246 spin_unlock(&sh
->batch_lock
);
4247 spin_unlock(&sh
->stripe_lock
);
4250 * BATCH_READY is cleared, no new stripes can be added.
4251 * batch_list can be accessed without lock
4256 static void break_stripe_batch_list(struct stripe_head
*head_sh
,
4257 unsigned long handle_flags
)
4259 struct stripe_head
*sh
, *next
;
4263 list_for_each_entry_safe(sh
, next
, &head_sh
->batch_list
, batch_list
) {
4265 list_del_init(&sh
->batch_list
);
4267 WARN_ON_ONCE(sh
->state
& ((1 << STRIPE_ACTIVE
) |
4268 (1 << STRIPE_SYNCING
) |
4269 (1 << STRIPE_REPLACED
) |
4270 (1 << STRIPE_DELAYED
) |
4271 (1 << STRIPE_BIT_DELAY
) |
4272 (1 << STRIPE_FULL_WRITE
) |
4273 (1 << STRIPE_BIOFILL_RUN
) |
4274 (1 << STRIPE_COMPUTE_RUN
) |
4275 (1 << STRIPE_OPS_REQ_PENDING
) |
4276 (1 << STRIPE_DISCARD
) |
4277 (1 << STRIPE_BATCH_READY
) |
4278 (1 << STRIPE_BATCH_ERR
) |
4279 (1 << STRIPE_BITMAP_PENDING
)));
4280 WARN_ON_ONCE(head_sh
->state
& ((1 << STRIPE_DISCARD
) |
4281 (1 << STRIPE_REPLACED
)));
4283 set_mask_bits(&sh
->state
, ~(STRIPE_EXPAND_SYNC_FLAGS
|
4284 (1 << STRIPE_PREREAD_ACTIVE
) |
4285 (1 << STRIPE_DEGRADED
) |
4286 (1 << STRIPE_ON_UNPLUG_LIST
)),
4287 head_sh
->state
& (1 << STRIPE_INSYNC
));
4289 sh
->check_state
= head_sh
->check_state
;
4290 sh
->reconstruct_state
= head_sh
->reconstruct_state
;
4291 for (i
= 0; i
< sh
->disks
; i
++) {
4292 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
4294 sh
->dev
[i
].flags
= head_sh
->dev
[i
].flags
&
4295 (~((1 << R5_WriteError
) | (1 << R5_Overlap
)));
4297 spin_lock_irq(&sh
->stripe_lock
);
4298 sh
->batch_head
= NULL
;
4299 spin_unlock_irq(&sh
->stripe_lock
);
4300 if (handle_flags
== 0 ||
4301 sh
->state
& handle_flags
)
4302 set_bit(STRIPE_HANDLE
, &sh
->state
);
4303 raid5_release_stripe(sh
);
4305 spin_lock_irq(&head_sh
->stripe_lock
);
4306 head_sh
->batch_head
= NULL
;
4307 spin_unlock_irq(&head_sh
->stripe_lock
);
4308 for (i
= 0; i
< head_sh
->disks
; i
++)
4309 if (test_and_clear_bit(R5_Overlap
, &head_sh
->dev
[i
].flags
))
4311 if (head_sh
->state
& handle_flags
)
4312 set_bit(STRIPE_HANDLE
, &head_sh
->state
);
4315 wake_up(&head_sh
->raid_conf
->wait_for_overlap
);
4318 static void handle_stripe(struct stripe_head
*sh
)
4320 struct stripe_head_state s
;
4321 struct r5conf
*conf
= sh
->raid_conf
;
4324 int disks
= sh
->disks
;
4325 struct r5dev
*pdev
, *qdev
;
4327 clear_bit(STRIPE_HANDLE
, &sh
->state
);
4328 if (test_and_set_bit_lock(STRIPE_ACTIVE
, &sh
->state
)) {
4329 /* already being handled, ensure it gets handled
4330 * again when current action finishes */
4331 set_bit(STRIPE_HANDLE
, &sh
->state
);
4335 if (clear_batch_ready(sh
) ) {
4336 clear_bit_unlock(STRIPE_ACTIVE
, &sh
->state
);
4340 if (test_and_clear_bit(STRIPE_BATCH_ERR
, &sh
->state
))
4341 break_stripe_batch_list(sh
, 0);
4343 if (test_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
) && !sh
->batch_head
) {
4344 spin_lock(&sh
->stripe_lock
);
4345 /* Cannot process 'sync' concurrently with 'discard' */
4346 if (!test_bit(STRIPE_DISCARD
, &sh
->state
) &&
4347 test_and_clear_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
)) {
4348 set_bit(STRIPE_SYNCING
, &sh
->state
);
4349 clear_bit(STRIPE_INSYNC
, &sh
->state
);
4350 clear_bit(STRIPE_REPLACED
, &sh
->state
);
4352 spin_unlock(&sh
->stripe_lock
);
4354 clear_bit(STRIPE_DELAYED
, &sh
->state
);
4356 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4357 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4358 (unsigned long long)sh
->sector
, sh
->state
,
4359 atomic_read(&sh
->count
), sh
->pd_idx
, sh
->qd_idx
,
4360 sh
->check_state
, sh
->reconstruct_state
);
4362 analyse_stripe(sh
, &s
);
4364 if (test_bit(STRIPE_LOG_TRAPPED
, &sh
->state
))
4367 if (s
.handle_bad_blocks
) {
4368 set_bit(STRIPE_HANDLE
, &sh
->state
);
4372 if (unlikely(s
.blocked_rdev
)) {
4373 if (s
.syncing
|| s
.expanding
|| s
.expanded
||
4374 s
.replacing
|| s
.to_write
|| s
.written
) {
4375 set_bit(STRIPE_HANDLE
, &sh
->state
);
4378 /* There is nothing for the blocked_rdev to block */
4379 rdev_dec_pending(s
.blocked_rdev
, conf
->mddev
);
4380 s
.blocked_rdev
= NULL
;
4383 if (s
.to_fill
&& !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
)) {
4384 set_bit(STRIPE_OP_BIOFILL
, &s
.ops_request
);
4385 set_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
4388 pr_debug("locked=%d uptodate=%d to_read=%d"
4389 " to_write=%d failed=%d failed_num=%d,%d\n",
4390 s
.locked
, s
.uptodate
, s
.to_read
, s
.to_write
, s
.failed
,
4391 s
.failed_num
[0], s
.failed_num
[1]);
4392 /* check if the array has lost more than max_degraded devices and,
4393 * if so, some requests might need to be failed.
4395 if (s
.failed
> conf
->max_degraded
|| s
.log_failed
) {
4396 sh
->check_state
= 0;
4397 sh
->reconstruct_state
= 0;
4398 break_stripe_batch_list(sh
, 0);
4399 if (s
.to_read
+s
.to_write
+s
.written
)
4400 handle_failed_stripe(conf
, sh
, &s
, disks
, &s
.return_bi
);
4401 if (s
.syncing
+ s
.replacing
)
4402 handle_failed_sync(conf
, sh
, &s
);
4405 /* Now we check to see if any write operations have recently
4409 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
)
4411 if (sh
->reconstruct_state
== reconstruct_state_drain_result
||
4412 sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
) {
4413 sh
->reconstruct_state
= reconstruct_state_idle
;
4415 /* All the 'written' buffers and the parity block are ready to
4416 * be written back to disk
4418 BUG_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
) &&
4419 !test_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
));
4420 BUG_ON(sh
->qd_idx
>= 0 &&
4421 !test_bit(R5_UPTODATE
, &sh
->dev
[sh
->qd_idx
].flags
) &&
4422 !test_bit(R5_Discard
, &sh
->dev
[sh
->qd_idx
].flags
));
4423 for (i
= disks
; i
--; ) {
4424 struct r5dev
*dev
= &sh
->dev
[i
];
4425 if (test_bit(R5_LOCKED
, &dev
->flags
) &&
4426 (i
== sh
->pd_idx
|| i
== sh
->qd_idx
||
4428 pr_debug("Writing block %d\n", i
);
4429 set_bit(R5_Wantwrite
, &dev
->flags
);
4434 if (!test_bit(R5_Insync
, &dev
->flags
) ||
4435 ((i
== sh
->pd_idx
|| i
== sh
->qd_idx
) &&
4437 set_bit(STRIPE_INSYNC
, &sh
->state
);
4440 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
4441 s
.dec_preread_active
= 1;
4445 * might be able to return some write requests if the parity blocks
4446 * are safe, or on a failed drive
4448 pdev
= &sh
->dev
[sh
->pd_idx
];
4449 s
.p_failed
= (s
.failed
>= 1 && s
.failed_num
[0] == sh
->pd_idx
)
4450 || (s
.failed
>= 2 && s
.failed_num
[1] == sh
->pd_idx
);
4451 qdev
= &sh
->dev
[sh
->qd_idx
];
4452 s
.q_failed
= (s
.failed
>= 1 && s
.failed_num
[0] == sh
->qd_idx
)
4453 || (s
.failed
>= 2 && s
.failed_num
[1] == sh
->qd_idx
)
4457 (s
.p_failed
|| ((test_bit(R5_Insync
, &pdev
->flags
)
4458 && !test_bit(R5_LOCKED
, &pdev
->flags
)
4459 && (test_bit(R5_UPTODATE
, &pdev
->flags
) ||
4460 test_bit(R5_Discard
, &pdev
->flags
))))) &&
4461 (s
.q_failed
|| ((test_bit(R5_Insync
, &qdev
->flags
)
4462 && !test_bit(R5_LOCKED
, &qdev
->flags
)
4463 && (test_bit(R5_UPTODATE
, &qdev
->flags
) ||
4464 test_bit(R5_Discard
, &qdev
->flags
))))))
4465 handle_stripe_clean_event(conf
, sh
, disks
, &s
.return_bi
);
4467 /* Now we might consider reading some blocks, either to check/generate
4468 * parity, or to satisfy requests
4469 * or to load a block that is being partially written.
4471 if (s
.to_read
|| s
.non_overwrite
4472 || (conf
->level
== 6 && s
.to_write
&& s
.failed
)
4473 || (s
.syncing
&& (s
.uptodate
+ s
.compute
< disks
))
4476 handle_stripe_fill(sh
, &s
, disks
);
4478 /* Now to consider new write requests and what else, if anything
4479 * should be read. We do not handle new writes when:
4480 * 1/ A 'write' operation (copy+xor) is already in flight.
4481 * 2/ A 'check' operation is in flight, as it may clobber the parity
4484 if (s
.to_write
&& !sh
->reconstruct_state
&& !sh
->check_state
)
4485 handle_stripe_dirtying(conf
, sh
, &s
, disks
);
4487 /* maybe we need to check and possibly fix the parity for this stripe
4488 * Any reads will already have been scheduled, so we just see if enough
4489 * data is available. The parity check is held off while parity
4490 * dependent operations are in flight.
4492 if (sh
->check_state
||
4493 (s
.syncing
&& s
.locked
== 0 &&
4494 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) &&
4495 !test_bit(STRIPE_INSYNC
, &sh
->state
))) {
4496 if (conf
->level
== 6)
4497 handle_parity_checks6(conf
, sh
, &s
, disks
);
4499 handle_parity_checks5(conf
, sh
, &s
, disks
);
4502 if ((s
.replacing
|| s
.syncing
) && s
.locked
== 0
4503 && !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
)
4504 && !test_bit(STRIPE_REPLACED
, &sh
->state
)) {
4505 /* Write out to replacement devices where possible */
4506 for (i
= 0; i
< conf
->raid_disks
; i
++)
4507 if (test_bit(R5_NeedReplace
, &sh
->dev
[i
].flags
)) {
4508 WARN_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
));
4509 set_bit(R5_WantReplace
, &sh
->dev
[i
].flags
);
4510 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
4514 set_bit(STRIPE_INSYNC
, &sh
->state
);
4515 set_bit(STRIPE_REPLACED
, &sh
->state
);
4517 if ((s
.syncing
|| s
.replacing
) && s
.locked
== 0 &&
4518 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) &&
4519 test_bit(STRIPE_INSYNC
, &sh
->state
)) {
4520 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
4521 clear_bit(STRIPE_SYNCING
, &sh
->state
);
4522 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
))
4523 wake_up(&conf
->wait_for_overlap
);
4526 /* If the failed drives are just a ReadError, then we might need
4527 * to progress the repair/check process
4529 if (s
.failed
<= conf
->max_degraded
&& !conf
->mddev
->ro
)
4530 for (i
= 0; i
< s
.failed
; i
++) {
4531 struct r5dev
*dev
= &sh
->dev
[s
.failed_num
[i
]];
4532 if (test_bit(R5_ReadError
, &dev
->flags
)
4533 && !test_bit(R5_LOCKED
, &dev
->flags
)
4534 && test_bit(R5_UPTODATE
, &dev
->flags
)
4536 if (!test_bit(R5_ReWrite
, &dev
->flags
)) {
4537 set_bit(R5_Wantwrite
, &dev
->flags
);
4538 set_bit(R5_ReWrite
, &dev
->flags
);
4539 set_bit(R5_LOCKED
, &dev
->flags
);
4542 /* let's read it back */
4543 set_bit(R5_Wantread
, &dev
->flags
);
4544 set_bit(R5_LOCKED
, &dev
->flags
);
4550 /* Finish reconstruct operations initiated by the expansion process */
4551 if (sh
->reconstruct_state
== reconstruct_state_result
) {
4552 struct stripe_head
*sh_src
4553 = raid5_get_active_stripe(conf
, sh
->sector
, 1, 1, 1);
4554 if (sh_src
&& test_bit(STRIPE_EXPAND_SOURCE
, &sh_src
->state
)) {
4555 /* sh cannot be written until sh_src has been read.
4556 * so arrange for sh to be delayed a little
4558 set_bit(STRIPE_DELAYED
, &sh
->state
);
4559 set_bit(STRIPE_HANDLE
, &sh
->state
);
4560 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
,
4562 atomic_inc(&conf
->preread_active_stripes
);
4563 raid5_release_stripe(sh_src
);
4567 raid5_release_stripe(sh_src
);
4569 sh
->reconstruct_state
= reconstruct_state_idle
;
4570 clear_bit(STRIPE_EXPANDING
, &sh
->state
);
4571 for (i
= conf
->raid_disks
; i
--; ) {
4572 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
4573 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
4578 if (s
.expanded
&& test_bit(STRIPE_EXPANDING
, &sh
->state
) &&
4579 !sh
->reconstruct_state
) {
4580 /* Need to write out all blocks after computing parity */
4581 sh
->disks
= conf
->raid_disks
;
4582 stripe_set_idx(sh
->sector
, conf
, 0, sh
);
4583 schedule_reconstruction(sh
, &s
, 1, 1);
4584 } else if (s
.expanded
&& !sh
->reconstruct_state
&& s
.locked
== 0) {
4585 clear_bit(STRIPE_EXPAND_READY
, &sh
->state
);
4586 atomic_dec(&conf
->reshape_stripes
);
4587 wake_up(&conf
->wait_for_overlap
);
4588 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
4591 if (s
.expanding
&& s
.locked
== 0 &&
4592 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
))
4593 handle_stripe_expansion(conf
, sh
);
4596 /* wait for this device to become unblocked */
4597 if (unlikely(s
.blocked_rdev
)) {
4598 if (conf
->mddev
->external
)
4599 md_wait_for_blocked_rdev(s
.blocked_rdev
,
4602 /* Internal metadata will immediately
4603 * be written by raid5d, so we don't
4604 * need to wait here.
4606 rdev_dec_pending(s
.blocked_rdev
,
4610 if (s
.handle_bad_blocks
)
4611 for (i
= disks
; i
--; ) {
4612 struct md_rdev
*rdev
;
4613 struct r5dev
*dev
= &sh
->dev
[i
];
4614 if (test_and_clear_bit(R5_WriteError
, &dev
->flags
)) {
4615 /* We own a safe reference to the rdev */
4616 rdev
= conf
->disks
[i
].rdev
;
4617 if (!rdev_set_badblocks(rdev
, sh
->sector
,
4619 md_error(conf
->mddev
, rdev
);
4620 rdev_dec_pending(rdev
, conf
->mddev
);
4622 if (test_and_clear_bit(R5_MadeGood
, &dev
->flags
)) {
4623 rdev
= conf
->disks
[i
].rdev
;
4624 rdev_clear_badblocks(rdev
, sh
->sector
,
4626 rdev_dec_pending(rdev
, conf
->mddev
);
4628 if (test_and_clear_bit(R5_MadeGoodRepl
, &dev
->flags
)) {
4629 rdev
= conf
->disks
[i
].replacement
;
4631 /* rdev have been moved down */
4632 rdev
= conf
->disks
[i
].rdev
;
4633 rdev_clear_badblocks(rdev
, sh
->sector
,
4635 rdev_dec_pending(rdev
, conf
->mddev
);
4640 raid_run_ops(sh
, s
.ops_request
);
4644 if (s
.dec_preread_active
) {
4645 /* We delay this until after ops_run_io so that if make_request
4646 * is waiting on a flush, it won't continue until the writes
4647 * have actually been submitted.
4649 atomic_dec(&conf
->preread_active_stripes
);
4650 if (atomic_read(&conf
->preread_active_stripes
) <
4652 md_wakeup_thread(conf
->mddev
->thread
);
4655 if (!bio_list_empty(&s
.return_bi
)) {
4656 if (test_bit(MD_CHANGE_PENDING
, &conf
->mddev
->flags
)) {
4657 spin_lock_irq(&conf
->device_lock
);
4658 bio_list_merge(&conf
->return_bi
, &s
.return_bi
);
4659 spin_unlock_irq(&conf
->device_lock
);
4660 md_wakeup_thread(conf
->mddev
->thread
);
4662 return_io(&s
.return_bi
);
4665 clear_bit_unlock(STRIPE_ACTIVE
, &sh
->state
);
4668 static void raid5_activate_delayed(struct r5conf
*conf
)
4670 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
) {
4671 while (!list_empty(&conf
->delayed_list
)) {
4672 struct list_head
*l
= conf
->delayed_list
.next
;
4673 struct stripe_head
*sh
;
4674 sh
= list_entry(l
, struct stripe_head
, lru
);
4676 clear_bit(STRIPE_DELAYED
, &sh
->state
);
4677 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
4678 atomic_inc(&conf
->preread_active_stripes
);
4679 list_add_tail(&sh
->lru
, &conf
->hold_list
);
4680 raid5_wakeup_stripe_thread(sh
);
4685 static void activate_bit_delay(struct r5conf
*conf
,
4686 struct list_head
*temp_inactive_list
)
4688 /* device_lock is held */
4689 struct list_head head
;
4690 list_add(&head
, &conf
->bitmap_list
);
4691 list_del_init(&conf
->bitmap_list
);
4692 while (!list_empty(&head
)) {
4693 struct stripe_head
*sh
= list_entry(head
.next
, struct stripe_head
, lru
);
4695 list_del_init(&sh
->lru
);
4696 atomic_inc(&sh
->count
);
4697 hash
= sh
->hash_lock_index
;
4698 __release_stripe(conf
, sh
, &temp_inactive_list
[hash
]);
4702 static int raid5_congested(struct mddev
*mddev
, int bits
)
4704 struct r5conf
*conf
= mddev
->private;
4706 /* No difference between reads and writes. Just check
4707 * how busy the stripe_cache is
4710 if (test_bit(R5_INACTIVE_BLOCKED
, &conf
->cache_state
))
4714 if (atomic_read(&conf
->empty_inactive_list_nr
))
4720 static int in_chunk_boundary(struct mddev
*mddev
, struct bio
*bio
)
4722 struct r5conf
*conf
= mddev
->private;
4723 sector_t sector
= bio
->bi_iter
.bi_sector
+ get_start_sect(bio
->bi_bdev
);
4724 unsigned int chunk_sectors
;
4725 unsigned int bio_sectors
= bio_sectors(bio
);
4727 chunk_sectors
= min(conf
->chunk_sectors
, conf
->prev_chunk_sectors
);
4728 return chunk_sectors
>=
4729 ((sector
& (chunk_sectors
- 1)) + bio_sectors
);
4733 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
4734 * later sampled by raid5d.
4736 static void add_bio_to_retry(struct bio
*bi
,struct r5conf
*conf
)
4738 unsigned long flags
;
4740 spin_lock_irqsave(&conf
->device_lock
, flags
);
4742 bi
->bi_next
= conf
->retry_read_aligned_list
;
4743 conf
->retry_read_aligned_list
= bi
;
4745 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
4746 md_wakeup_thread(conf
->mddev
->thread
);
4749 static struct bio
*remove_bio_from_retry(struct r5conf
*conf
)
4753 bi
= conf
->retry_read_aligned
;
4755 conf
->retry_read_aligned
= NULL
;
4758 bi
= conf
->retry_read_aligned_list
;
4760 conf
->retry_read_aligned_list
= bi
->bi_next
;
4763 * this sets the active strip count to 1 and the processed
4764 * strip count to zero (upper 8 bits)
4766 raid5_set_bi_stripes(bi
, 1); /* biased count of active stripes */
4773 * The "raid5_align_endio" should check if the read succeeded and if it
4774 * did, call bio_endio on the original bio (having bio_put the new bio
4776 * If the read failed..
4778 static void raid5_align_endio(struct bio
*bi
)
4780 struct bio
* raid_bi
= bi
->bi_private
;
4781 struct mddev
*mddev
;
4782 struct r5conf
*conf
;
4783 struct md_rdev
*rdev
;
4784 int error
= bi
->bi_error
;
4788 rdev
= (void*)raid_bi
->bi_next
;
4789 raid_bi
->bi_next
= NULL
;
4790 mddev
= rdev
->mddev
;
4791 conf
= mddev
->private;
4793 rdev_dec_pending(rdev
, conf
->mddev
);
4796 trace_block_bio_complete(bdev_get_queue(raid_bi
->bi_bdev
),
4799 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
4800 wake_up(&conf
->wait_for_quiescent
);
4804 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4806 add_bio_to_retry(raid_bi
, conf
);
4809 static int raid5_read_one_chunk(struct mddev
*mddev
, struct bio
*raid_bio
)
4811 struct r5conf
*conf
= mddev
->private;
4813 struct bio
* align_bi
;
4814 struct md_rdev
*rdev
;
4815 sector_t end_sector
;
4817 if (!in_chunk_boundary(mddev
, raid_bio
)) {
4818 pr_debug("%s: non aligned\n", __func__
);
4822 * use bio_clone_mddev to make a copy of the bio
4824 align_bi
= bio_clone_mddev(raid_bio
, GFP_NOIO
, mddev
);
4828 * set bi_end_io to a new function, and set bi_private to the
4831 align_bi
->bi_end_io
= raid5_align_endio
;
4832 align_bi
->bi_private
= raid_bio
;
4836 align_bi
->bi_iter
.bi_sector
=
4837 raid5_compute_sector(conf
, raid_bio
->bi_iter
.bi_sector
,
4840 end_sector
= bio_end_sector(align_bi
);
4842 rdev
= rcu_dereference(conf
->disks
[dd_idx
].replacement
);
4843 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
) ||
4844 rdev
->recovery_offset
< end_sector
) {
4845 rdev
= rcu_dereference(conf
->disks
[dd_idx
].rdev
);
4847 (test_bit(Faulty
, &rdev
->flags
) ||
4848 !(test_bit(In_sync
, &rdev
->flags
) ||
4849 rdev
->recovery_offset
>= end_sector
)))
4856 atomic_inc(&rdev
->nr_pending
);
4858 raid_bio
->bi_next
= (void*)rdev
;
4859 align_bi
->bi_bdev
= rdev
->bdev
;
4860 bio_clear_flag(align_bi
, BIO_SEG_VALID
);
4862 if (is_badblock(rdev
, align_bi
->bi_iter
.bi_sector
,
4863 bio_sectors(align_bi
),
4864 &first_bad
, &bad_sectors
)) {
4866 rdev_dec_pending(rdev
, mddev
);
4870 /* No reshape active, so we can trust rdev->data_offset */
4871 align_bi
->bi_iter
.bi_sector
+= rdev
->data_offset
;
4873 spin_lock_irq(&conf
->device_lock
);
4874 wait_event_lock_irq(conf
->wait_for_quiescent
,
4877 atomic_inc(&conf
->active_aligned_reads
);
4878 spin_unlock_irq(&conf
->device_lock
);
4881 trace_block_bio_remap(bdev_get_queue(align_bi
->bi_bdev
),
4882 align_bi
, disk_devt(mddev
->gendisk
),
4883 raid_bio
->bi_iter
.bi_sector
);
4884 generic_make_request(align_bi
);
4893 static struct bio
*chunk_aligned_read(struct mddev
*mddev
, struct bio
*raid_bio
)
4898 sector_t sector
= raid_bio
->bi_iter
.bi_sector
;
4899 unsigned chunk_sects
= mddev
->chunk_sectors
;
4900 unsigned sectors
= chunk_sects
- (sector
& (chunk_sects
-1));
4902 if (sectors
< bio_sectors(raid_bio
)) {
4903 split
= bio_split(raid_bio
, sectors
, GFP_NOIO
, fs_bio_set
);
4904 bio_chain(split
, raid_bio
);
4908 if (!raid5_read_one_chunk(mddev
, split
)) {
4909 if (split
!= raid_bio
)
4910 generic_make_request(raid_bio
);
4913 } while (split
!= raid_bio
);
4918 /* __get_priority_stripe - get the next stripe to process
4920 * Full stripe writes are allowed to pass preread active stripes up until
4921 * the bypass_threshold is exceeded. In general the bypass_count
4922 * increments when the handle_list is handled before the hold_list; however, it
4923 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4924 * stripe with in flight i/o. The bypass_count will be reset when the
4925 * head of the hold_list has changed, i.e. the head was promoted to the
4928 static struct stripe_head
*__get_priority_stripe(struct r5conf
*conf
, int group
)
4930 struct stripe_head
*sh
= NULL
, *tmp
;
4931 struct list_head
*handle_list
= NULL
;
4932 struct r5worker_group
*wg
= NULL
;
4934 if (conf
->worker_cnt_per_group
== 0) {
4935 handle_list
= &conf
->handle_list
;
4936 } else if (group
!= ANY_GROUP
) {
4937 handle_list
= &conf
->worker_groups
[group
].handle_list
;
4938 wg
= &conf
->worker_groups
[group
];
4941 for (i
= 0; i
< conf
->group_cnt
; i
++) {
4942 handle_list
= &conf
->worker_groups
[i
].handle_list
;
4943 wg
= &conf
->worker_groups
[i
];
4944 if (!list_empty(handle_list
))
4949 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4951 list_empty(handle_list
) ? "empty" : "busy",
4952 list_empty(&conf
->hold_list
) ? "empty" : "busy",
4953 atomic_read(&conf
->pending_full_writes
), conf
->bypass_count
);
4955 if (!list_empty(handle_list
)) {
4956 sh
= list_entry(handle_list
->next
, typeof(*sh
), lru
);
4958 if (list_empty(&conf
->hold_list
))
4959 conf
->bypass_count
= 0;
4960 else if (!test_bit(STRIPE_IO_STARTED
, &sh
->state
)) {
4961 if (conf
->hold_list
.next
== conf
->last_hold
)
4962 conf
->bypass_count
++;
4964 conf
->last_hold
= conf
->hold_list
.next
;
4965 conf
->bypass_count
-= conf
->bypass_threshold
;
4966 if (conf
->bypass_count
< 0)
4967 conf
->bypass_count
= 0;
4970 } else if (!list_empty(&conf
->hold_list
) &&
4971 ((conf
->bypass_threshold
&&
4972 conf
->bypass_count
> conf
->bypass_threshold
) ||
4973 atomic_read(&conf
->pending_full_writes
) == 0)) {
4975 list_for_each_entry(tmp
, &conf
->hold_list
, lru
) {
4976 if (conf
->worker_cnt_per_group
== 0 ||
4977 group
== ANY_GROUP
||
4978 !cpu_online(tmp
->cpu
) ||
4979 cpu_to_group(tmp
->cpu
) == group
) {
4986 conf
->bypass_count
-= conf
->bypass_threshold
;
4987 if (conf
->bypass_count
< 0)
4988 conf
->bypass_count
= 0;
5000 list_del_init(&sh
->lru
);
5001 BUG_ON(atomic_inc_return(&sh
->count
) != 1);
5005 struct raid5_plug_cb
{
5006 struct blk_plug_cb cb
;
5007 struct list_head list
;
5008 struct list_head temp_inactive_list
[NR_STRIPE_HASH_LOCKS
];
5011 static void raid5_unplug(struct blk_plug_cb
*blk_cb
, bool from_schedule
)
5013 struct raid5_plug_cb
*cb
= container_of(
5014 blk_cb
, struct raid5_plug_cb
, cb
);
5015 struct stripe_head
*sh
;
5016 struct mddev
*mddev
= cb
->cb
.data
;
5017 struct r5conf
*conf
= mddev
->private;
5021 if (cb
->list
.next
&& !list_empty(&cb
->list
)) {
5022 spin_lock_irq(&conf
->device_lock
);
5023 while (!list_empty(&cb
->list
)) {
5024 sh
= list_first_entry(&cb
->list
, struct stripe_head
, lru
);
5025 list_del_init(&sh
->lru
);
5027 * avoid race release_stripe_plug() sees
5028 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5029 * is still in our list
5031 smp_mb__before_atomic();
5032 clear_bit(STRIPE_ON_UNPLUG_LIST
, &sh
->state
);
5034 * STRIPE_ON_RELEASE_LIST could be set here. In that
5035 * case, the count is always > 1 here
5037 hash
= sh
->hash_lock_index
;
5038 __release_stripe(conf
, sh
, &cb
->temp_inactive_list
[hash
]);
5041 spin_unlock_irq(&conf
->device_lock
);
5043 release_inactive_stripe_list(conf
, cb
->temp_inactive_list
,
5044 NR_STRIPE_HASH_LOCKS
);
5046 trace_block_unplug(mddev
->queue
, cnt
, !from_schedule
);
5050 static void release_stripe_plug(struct mddev
*mddev
,
5051 struct stripe_head
*sh
)
5053 struct blk_plug_cb
*blk_cb
= blk_check_plugged(
5054 raid5_unplug
, mddev
,
5055 sizeof(struct raid5_plug_cb
));
5056 struct raid5_plug_cb
*cb
;
5059 raid5_release_stripe(sh
);
5063 cb
= container_of(blk_cb
, struct raid5_plug_cb
, cb
);
5065 if (cb
->list
.next
== NULL
) {
5067 INIT_LIST_HEAD(&cb
->list
);
5068 for (i
= 0; i
< NR_STRIPE_HASH_LOCKS
; i
++)
5069 INIT_LIST_HEAD(cb
->temp_inactive_list
+ i
);
5072 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST
, &sh
->state
))
5073 list_add_tail(&sh
->lru
, &cb
->list
);
5075 raid5_release_stripe(sh
);
5078 static void make_discard_request(struct mddev
*mddev
, struct bio
*bi
)
5080 struct r5conf
*conf
= mddev
->private;
5081 sector_t logical_sector
, last_sector
;
5082 struct stripe_head
*sh
;
5086 if (mddev
->reshape_position
!= MaxSector
)
5087 /* Skip discard while reshape is happening */
5090 logical_sector
= bi
->bi_iter
.bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
5091 last_sector
= bi
->bi_iter
.bi_sector
+ (bi
->bi_iter
.bi_size
>>9);
5094 bi
->bi_phys_segments
= 1; /* over-loaded to count active stripes */
5096 stripe_sectors
= conf
->chunk_sectors
*
5097 (conf
->raid_disks
- conf
->max_degraded
);
5098 logical_sector
= DIV_ROUND_UP_SECTOR_T(logical_sector
,
5100 sector_div(last_sector
, stripe_sectors
);
5102 logical_sector
*= conf
->chunk_sectors
;
5103 last_sector
*= conf
->chunk_sectors
;
5105 for (; logical_sector
< last_sector
;
5106 logical_sector
+= STRIPE_SECTORS
) {
5110 sh
= raid5_get_active_stripe(conf
, logical_sector
, 0, 0, 0);
5111 prepare_to_wait(&conf
->wait_for_overlap
, &w
,
5112 TASK_UNINTERRUPTIBLE
);
5113 set_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
);
5114 if (test_bit(STRIPE_SYNCING
, &sh
->state
)) {
5115 raid5_release_stripe(sh
);
5119 clear_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
);
5120 spin_lock_irq(&sh
->stripe_lock
);
5121 for (d
= 0; d
< conf
->raid_disks
; d
++) {
5122 if (d
== sh
->pd_idx
|| d
== sh
->qd_idx
)
5124 if (sh
->dev
[d
].towrite
|| sh
->dev
[d
].toread
) {
5125 set_bit(R5_Overlap
, &sh
->dev
[d
].flags
);
5126 spin_unlock_irq(&sh
->stripe_lock
);
5127 raid5_release_stripe(sh
);
5132 set_bit(STRIPE_DISCARD
, &sh
->state
);
5133 finish_wait(&conf
->wait_for_overlap
, &w
);
5134 sh
->overwrite_disks
= 0;
5135 for (d
= 0; d
< conf
->raid_disks
; d
++) {
5136 if (d
== sh
->pd_idx
|| d
== sh
->qd_idx
)
5138 sh
->dev
[d
].towrite
= bi
;
5139 set_bit(R5_OVERWRITE
, &sh
->dev
[d
].flags
);
5140 raid5_inc_bi_active_stripes(bi
);
5141 sh
->overwrite_disks
++;
5143 spin_unlock_irq(&sh
->stripe_lock
);
5144 if (conf
->mddev
->bitmap
) {
5146 d
< conf
->raid_disks
- conf
->max_degraded
;
5148 bitmap_startwrite(mddev
->bitmap
,
5152 sh
->bm_seq
= conf
->seq_flush
+ 1;
5153 set_bit(STRIPE_BIT_DELAY
, &sh
->state
);
5156 set_bit(STRIPE_HANDLE
, &sh
->state
);
5157 clear_bit(STRIPE_DELAYED
, &sh
->state
);
5158 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
5159 atomic_inc(&conf
->preread_active_stripes
);
5160 release_stripe_plug(mddev
, sh
);
5163 remaining
= raid5_dec_bi_active_stripes(bi
);
5164 if (remaining
== 0) {
5165 md_write_end(mddev
);
5170 static void make_request(struct mddev
*mddev
, struct bio
* bi
)
5172 struct r5conf
*conf
= mddev
->private;
5174 sector_t new_sector
;
5175 sector_t logical_sector
, last_sector
;
5176 struct stripe_head
*sh
;
5177 const int rw
= bio_data_dir(bi
);
5182 if (unlikely(bi
->bi_rw
& REQ_FLUSH
)) {
5183 int ret
= r5l_handle_flush_request(conf
->log
, bi
);
5187 if (ret
== -ENODEV
) {
5188 md_flush_request(mddev
, bi
);
5191 /* ret == -EAGAIN, fallback */
5194 md_write_start(mddev
, bi
);
5197 * If array is degraded, better not do chunk aligned read because
5198 * later we might have to read it again in order to reconstruct
5199 * data on failed drives.
5201 if (rw
== READ
&& mddev
->degraded
== 0 &&
5202 mddev
->reshape_position
== MaxSector
) {
5203 bi
= chunk_aligned_read(mddev
, bi
);
5208 if (unlikely(bi
->bi_rw
& REQ_DISCARD
)) {
5209 make_discard_request(mddev
, bi
);
5213 logical_sector
= bi
->bi_iter
.bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
5214 last_sector
= bio_end_sector(bi
);
5216 bi
->bi_phys_segments
= 1; /* over-loaded to count active stripes */
5218 prepare_to_wait(&conf
->wait_for_overlap
, &w
, TASK_UNINTERRUPTIBLE
);
5219 for (;logical_sector
< last_sector
; logical_sector
+= STRIPE_SECTORS
) {
5225 seq
= read_seqcount_begin(&conf
->gen_lock
);
5228 prepare_to_wait(&conf
->wait_for_overlap
, &w
,
5229 TASK_UNINTERRUPTIBLE
);
5230 if (unlikely(conf
->reshape_progress
!= MaxSector
)) {
5231 /* spinlock is needed as reshape_progress may be
5232 * 64bit on a 32bit platform, and so it might be
5233 * possible to see a half-updated value
5234 * Of course reshape_progress could change after
5235 * the lock is dropped, so once we get a reference
5236 * to the stripe that we think it is, we will have
5239 spin_lock_irq(&conf
->device_lock
);
5240 if (mddev
->reshape_backwards
5241 ? logical_sector
< conf
->reshape_progress
5242 : logical_sector
>= conf
->reshape_progress
) {
5245 if (mddev
->reshape_backwards
5246 ? logical_sector
< conf
->reshape_safe
5247 : logical_sector
>= conf
->reshape_safe
) {
5248 spin_unlock_irq(&conf
->device_lock
);
5254 spin_unlock_irq(&conf
->device_lock
);
5257 new_sector
= raid5_compute_sector(conf
, logical_sector
,
5260 pr_debug("raid456: make_request, sector %llu logical %llu\n",
5261 (unsigned long long)new_sector
,
5262 (unsigned long long)logical_sector
);
5264 sh
= raid5_get_active_stripe(conf
, new_sector
, previous
,
5265 (bi
->bi_rw
&RWA_MASK
), 0);
5267 if (unlikely(previous
)) {
5268 /* expansion might have moved on while waiting for a
5269 * stripe, so we must do the range check again.
5270 * Expansion could still move past after this
5271 * test, but as we are holding a reference to
5272 * 'sh', we know that if that happens,
5273 * STRIPE_EXPANDING will get set and the expansion
5274 * won't proceed until we finish with the stripe.
5277 spin_lock_irq(&conf
->device_lock
);
5278 if (mddev
->reshape_backwards
5279 ? logical_sector
>= conf
->reshape_progress
5280 : logical_sector
< conf
->reshape_progress
)
5281 /* mismatch, need to try again */
5283 spin_unlock_irq(&conf
->device_lock
);
5285 raid5_release_stripe(sh
);
5291 if (read_seqcount_retry(&conf
->gen_lock
, seq
)) {
5292 /* Might have got the wrong stripe_head
5295 raid5_release_stripe(sh
);
5300 logical_sector
>= mddev
->suspend_lo
&&
5301 logical_sector
< mddev
->suspend_hi
) {
5302 raid5_release_stripe(sh
);
5303 /* As the suspend_* range is controlled by
5304 * userspace, we want an interruptible
5307 prepare_to_wait(&conf
->wait_for_overlap
,
5308 &w
, TASK_INTERRUPTIBLE
);
5309 if (logical_sector
>= mddev
->suspend_lo
&&
5310 logical_sector
< mddev
->suspend_hi
) {
5313 sigprocmask(SIG_BLOCK
, &full
, &old
);
5315 sigprocmask(SIG_SETMASK
, &old
, NULL
);
5321 if (test_bit(STRIPE_EXPANDING
, &sh
->state
) ||
5322 !add_stripe_bio(sh
, bi
, dd_idx
, rw
, previous
)) {
5323 /* Stripe is busy expanding or
5324 * add failed due to overlap. Flush everything
5327 md_wakeup_thread(mddev
->thread
);
5328 raid5_release_stripe(sh
);
5333 set_bit(STRIPE_HANDLE
, &sh
->state
);
5334 clear_bit(STRIPE_DELAYED
, &sh
->state
);
5335 if ((!sh
->batch_head
|| sh
== sh
->batch_head
) &&
5336 (bi
->bi_rw
& REQ_SYNC
) &&
5337 !test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
5338 atomic_inc(&conf
->preread_active_stripes
);
5339 release_stripe_plug(mddev
, sh
);
5341 /* cannot get stripe for read-ahead, just give-up */
5342 bi
->bi_error
= -EIO
;
5346 finish_wait(&conf
->wait_for_overlap
, &w
);
5348 remaining
= raid5_dec_bi_active_stripes(bi
);
5349 if (remaining
== 0) {
5352 md_write_end(mddev
);
5354 trace_block_bio_complete(bdev_get_queue(bi
->bi_bdev
),
5360 static sector_t
raid5_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
);
5362 static sector_t
reshape_request(struct mddev
*mddev
, sector_t sector_nr
, int *skipped
)
5364 /* reshaping is quite different to recovery/resync so it is
5365 * handled quite separately ... here.
5367 * On each call to sync_request, we gather one chunk worth of
5368 * destination stripes and flag them as expanding.
5369 * Then we find all the source stripes and request reads.
5370 * As the reads complete, handle_stripe will copy the data
5371 * into the destination stripe and release that stripe.
5373 struct r5conf
*conf
= mddev
->private;
5374 struct stripe_head
*sh
;
5375 sector_t first_sector
, last_sector
;
5376 int raid_disks
= conf
->previous_raid_disks
;
5377 int data_disks
= raid_disks
- conf
->max_degraded
;
5378 int new_data_disks
= conf
->raid_disks
- conf
->max_degraded
;
5381 sector_t writepos
, readpos
, safepos
;
5382 sector_t stripe_addr
;
5383 int reshape_sectors
;
5384 struct list_head stripes
;
5387 if (sector_nr
== 0) {
5388 /* If restarting in the middle, skip the initial sectors */
5389 if (mddev
->reshape_backwards
&&
5390 conf
->reshape_progress
< raid5_size(mddev
, 0, 0)) {
5391 sector_nr
= raid5_size(mddev
, 0, 0)
5392 - conf
->reshape_progress
;
5393 } else if (mddev
->reshape_backwards
&&
5394 conf
->reshape_progress
== MaxSector
) {
5395 /* shouldn't happen, but just in case, finish up.*/
5396 sector_nr
= MaxSector
;
5397 } else if (!mddev
->reshape_backwards
&&
5398 conf
->reshape_progress
> 0)
5399 sector_nr
= conf
->reshape_progress
;
5400 sector_div(sector_nr
, new_data_disks
);
5402 mddev
->curr_resync_completed
= sector_nr
;
5403 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
5410 /* We need to process a full chunk at a time.
5411 * If old and new chunk sizes differ, we need to process the
5415 reshape_sectors
= max(conf
->chunk_sectors
, conf
->prev_chunk_sectors
);
5417 /* We update the metadata at least every 10 seconds, or when
5418 * the data about to be copied would over-write the source of
5419 * the data at the front of the range. i.e. one new_stripe
5420 * along from reshape_progress new_maps to after where
5421 * reshape_safe old_maps to
5423 writepos
= conf
->reshape_progress
;
5424 sector_div(writepos
, new_data_disks
);
5425 readpos
= conf
->reshape_progress
;
5426 sector_div(readpos
, data_disks
);
5427 safepos
= conf
->reshape_safe
;
5428 sector_div(safepos
, data_disks
);
5429 if (mddev
->reshape_backwards
) {
5430 BUG_ON(writepos
< reshape_sectors
);
5431 writepos
-= reshape_sectors
;
5432 readpos
+= reshape_sectors
;
5433 safepos
+= reshape_sectors
;
5435 writepos
+= reshape_sectors
;
5436 /* readpos and safepos are worst-case calculations.
5437 * A negative number is overly pessimistic, and causes
5438 * obvious problems for unsigned storage. So clip to 0.
5440 readpos
-= min_t(sector_t
, reshape_sectors
, readpos
);
5441 safepos
-= min_t(sector_t
, reshape_sectors
, safepos
);
5444 /* Having calculated the 'writepos' possibly use it
5445 * to set 'stripe_addr' which is where we will write to.
5447 if (mddev
->reshape_backwards
) {
5448 BUG_ON(conf
->reshape_progress
== 0);
5449 stripe_addr
= writepos
;
5450 BUG_ON((mddev
->dev_sectors
&
5451 ~((sector_t
)reshape_sectors
- 1))
5452 - reshape_sectors
- stripe_addr
5455 BUG_ON(writepos
!= sector_nr
+ reshape_sectors
);
5456 stripe_addr
= sector_nr
;
5459 /* 'writepos' is the most advanced device address we might write.
5460 * 'readpos' is the least advanced device address we might read.
5461 * 'safepos' is the least address recorded in the metadata as having
5463 * If there is a min_offset_diff, these are adjusted either by
5464 * increasing the safepos/readpos if diff is negative, or
5465 * increasing writepos if diff is positive.
5466 * If 'readpos' is then behind 'writepos', there is no way that we can
5467 * ensure safety in the face of a crash - that must be done by userspace
5468 * making a backup of the data. So in that case there is no particular
5469 * rush to update metadata.
5470 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5471 * update the metadata to advance 'safepos' to match 'readpos' so that
5472 * we can be safe in the event of a crash.
5473 * So we insist on updating metadata if safepos is behind writepos and
5474 * readpos is beyond writepos.
5475 * In any case, update the metadata every 10 seconds.
5476 * Maybe that number should be configurable, but I'm not sure it is
5477 * worth it.... maybe it could be a multiple of safemode_delay???
5479 if (conf
->min_offset_diff
< 0) {
5480 safepos
+= -conf
->min_offset_diff
;
5481 readpos
+= -conf
->min_offset_diff
;
5483 writepos
+= conf
->min_offset_diff
;
5485 if ((mddev
->reshape_backwards
5486 ? (safepos
> writepos
&& readpos
< writepos
)
5487 : (safepos
< writepos
&& readpos
> writepos
)) ||
5488 time_after(jiffies
, conf
->reshape_checkpoint
+ 10*HZ
)) {
5489 /* Cannot proceed until we've updated the superblock... */
5490 wait_event(conf
->wait_for_overlap
,
5491 atomic_read(&conf
->reshape_stripes
)==0
5492 || test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
5493 if (atomic_read(&conf
->reshape_stripes
) != 0)
5495 mddev
->reshape_position
= conf
->reshape_progress
;
5496 mddev
->curr_resync_completed
= sector_nr
;
5497 conf
->reshape_checkpoint
= jiffies
;
5498 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
5499 md_wakeup_thread(mddev
->thread
);
5500 wait_event(mddev
->sb_wait
, mddev
->flags
== 0 ||
5501 test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
5502 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
))
5504 spin_lock_irq(&conf
->device_lock
);
5505 conf
->reshape_safe
= mddev
->reshape_position
;
5506 spin_unlock_irq(&conf
->device_lock
);
5507 wake_up(&conf
->wait_for_overlap
);
5508 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
5511 INIT_LIST_HEAD(&stripes
);
5512 for (i
= 0; i
< reshape_sectors
; i
+= STRIPE_SECTORS
) {
5514 int skipped_disk
= 0;
5515 sh
= raid5_get_active_stripe(conf
, stripe_addr
+i
, 0, 0, 1);
5516 set_bit(STRIPE_EXPANDING
, &sh
->state
);
5517 atomic_inc(&conf
->reshape_stripes
);
5518 /* If any of this stripe is beyond the end of the old
5519 * array, then we need to zero those blocks
5521 for (j
=sh
->disks
; j
--;) {
5523 if (j
== sh
->pd_idx
)
5525 if (conf
->level
== 6 &&
5528 s
= raid5_compute_blocknr(sh
, j
, 0);
5529 if (s
< raid5_size(mddev
, 0, 0)) {
5533 memset(page_address(sh
->dev
[j
].page
), 0, STRIPE_SIZE
);
5534 set_bit(R5_Expanded
, &sh
->dev
[j
].flags
);
5535 set_bit(R5_UPTODATE
, &sh
->dev
[j
].flags
);
5537 if (!skipped_disk
) {
5538 set_bit(STRIPE_EXPAND_READY
, &sh
->state
);
5539 set_bit(STRIPE_HANDLE
, &sh
->state
);
5541 list_add(&sh
->lru
, &stripes
);
5543 spin_lock_irq(&conf
->device_lock
);
5544 if (mddev
->reshape_backwards
)
5545 conf
->reshape_progress
-= reshape_sectors
* new_data_disks
;
5547 conf
->reshape_progress
+= reshape_sectors
* new_data_disks
;
5548 spin_unlock_irq(&conf
->device_lock
);
5549 /* Ok, those stripe are ready. We can start scheduling
5550 * reads on the source stripes.
5551 * The source stripes are determined by mapping the first and last
5552 * block on the destination stripes.
5555 raid5_compute_sector(conf
, stripe_addr
*(new_data_disks
),
5558 raid5_compute_sector(conf
, ((stripe_addr
+reshape_sectors
)
5559 * new_data_disks
- 1),
5561 if (last_sector
>= mddev
->dev_sectors
)
5562 last_sector
= mddev
->dev_sectors
- 1;
5563 while (first_sector
<= last_sector
) {
5564 sh
= raid5_get_active_stripe(conf
, first_sector
, 1, 0, 1);
5565 set_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
5566 set_bit(STRIPE_HANDLE
, &sh
->state
);
5567 raid5_release_stripe(sh
);
5568 first_sector
+= STRIPE_SECTORS
;
5570 /* Now that the sources are clearly marked, we can release
5571 * the destination stripes
5573 while (!list_empty(&stripes
)) {
5574 sh
= list_entry(stripes
.next
, struct stripe_head
, lru
);
5575 list_del_init(&sh
->lru
);
5576 raid5_release_stripe(sh
);
5578 /* If this takes us to the resync_max point where we have to pause,
5579 * then we need to write out the superblock.
5581 sector_nr
+= reshape_sectors
;
5582 retn
= reshape_sectors
;
5584 if (mddev
->curr_resync_completed
> mddev
->resync_max
||
5585 (sector_nr
- mddev
->curr_resync_completed
) * 2
5586 >= mddev
->resync_max
- mddev
->curr_resync_completed
) {
5587 /* Cannot proceed until we've updated the superblock... */
5588 wait_event(conf
->wait_for_overlap
,
5589 atomic_read(&conf
->reshape_stripes
) == 0
5590 || test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
5591 if (atomic_read(&conf
->reshape_stripes
) != 0)
5593 mddev
->reshape_position
= conf
->reshape_progress
;
5594 mddev
->curr_resync_completed
= sector_nr
;
5595 conf
->reshape_checkpoint
= jiffies
;
5596 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
5597 md_wakeup_thread(mddev
->thread
);
5598 wait_event(mddev
->sb_wait
,
5599 !test_bit(MD_CHANGE_DEVS
, &mddev
->flags
)
5600 || test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
5601 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
))
5603 spin_lock_irq(&conf
->device_lock
);
5604 conf
->reshape_safe
= mddev
->reshape_position
;
5605 spin_unlock_irq(&conf
->device_lock
);
5606 wake_up(&conf
->wait_for_overlap
);
5607 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
5613 static inline sector_t
sync_request(struct mddev
*mddev
, sector_t sector_nr
, int *skipped
)
5615 struct r5conf
*conf
= mddev
->private;
5616 struct stripe_head
*sh
;
5617 sector_t max_sector
= mddev
->dev_sectors
;
5618 sector_t sync_blocks
;
5619 int still_degraded
= 0;
5622 if (sector_nr
>= max_sector
) {
5623 /* just being told to finish up .. nothing much to do */
5625 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
)) {
5630 if (mddev
->curr_resync
< max_sector
) /* aborted */
5631 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
5633 else /* completed sync */
5635 bitmap_close_sync(mddev
->bitmap
);
5640 /* Allow raid5_quiesce to complete */
5641 wait_event(conf
->wait_for_overlap
, conf
->quiesce
!= 2);
5643 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
5644 return reshape_request(mddev
, sector_nr
, skipped
);
5646 /* No need to check resync_max as we never do more than one
5647 * stripe, and as resync_max will always be on a chunk boundary,
5648 * if the check in md_do_sync didn't fire, there is no chance
5649 * of overstepping resync_max here
5652 /* if there is too many failed drives and we are trying
5653 * to resync, then assert that we are finished, because there is
5654 * nothing we can do.
5656 if (mddev
->degraded
>= conf
->max_degraded
&&
5657 test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
5658 sector_t rv
= mddev
->dev_sectors
- sector_nr
;
5662 if (!test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
5664 !bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
5665 sync_blocks
>= STRIPE_SECTORS
) {
5666 /* we can skip this block, and probably more */
5667 sync_blocks
/= STRIPE_SECTORS
;
5669 return sync_blocks
* STRIPE_SECTORS
; /* keep things rounded to whole stripes */
5672 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
, false);
5674 sh
= raid5_get_active_stripe(conf
, sector_nr
, 0, 1, 0);
5676 sh
= raid5_get_active_stripe(conf
, sector_nr
, 0, 0, 0);
5677 /* make sure we don't swamp the stripe cache if someone else
5678 * is trying to get access
5680 schedule_timeout_uninterruptible(1);
5682 /* Need to check if array will still be degraded after recovery/resync
5683 * Note in case of > 1 drive failures it's possible we're rebuilding
5684 * one drive while leaving another faulty drive in array.
5687 for (i
= 0; i
< conf
->raid_disks
; i
++) {
5688 struct md_rdev
*rdev
= ACCESS_ONCE(conf
->disks
[i
].rdev
);
5690 if (rdev
== NULL
|| test_bit(Faulty
, &rdev
->flags
))
5695 bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, still_degraded
);
5697 set_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
);
5698 set_bit(STRIPE_HANDLE
, &sh
->state
);
5700 raid5_release_stripe(sh
);
5702 return STRIPE_SECTORS
;
5705 static int retry_aligned_read(struct r5conf
*conf
, struct bio
*raid_bio
)
5707 /* We may not be able to submit a whole bio at once as there
5708 * may not be enough stripe_heads available.
5709 * We cannot pre-allocate enough stripe_heads as we may need
5710 * more than exist in the cache (if we allow ever large chunks).
5711 * So we do one stripe head at a time and record in
5712 * ->bi_hw_segments how many have been done.
5714 * We *know* that this entire raid_bio is in one chunk, so
5715 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5717 struct stripe_head
*sh
;
5719 sector_t sector
, logical_sector
, last_sector
;
5724 logical_sector
= raid_bio
->bi_iter
.bi_sector
&
5725 ~((sector_t
)STRIPE_SECTORS
-1);
5726 sector
= raid5_compute_sector(conf
, logical_sector
,
5728 last_sector
= bio_end_sector(raid_bio
);
5730 for (; logical_sector
< last_sector
;
5731 logical_sector
+= STRIPE_SECTORS
,
5732 sector
+= STRIPE_SECTORS
,
5735 if (scnt
< raid5_bi_processed_stripes(raid_bio
))
5736 /* already done this stripe */
5739 sh
= raid5_get_active_stripe(conf
, sector
, 0, 1, 1);
5742 /* failed to get a stripe - must wait */
5743 raid5_set_bi_processed_stripes(raid_bio
, scnt
);
5744 conf
->retry_read_aligned
= raid_bio
;
5748 if (!add_stripe_bio(sh
, raid_bio
, dd_idx
, 0, 0)) {
5749 raid5_release_stripe(sh
);
5750 raid5_set_bi_processed_stripes(raid_bio
, scnt
);
5751 conf
->retry_read_aligned
= raid_bio
;
5755 set_bit(R5_ReadNoMerge
, &sh
->dev
[dd_idx
].flags
);
5757 raid5_release_stripe(sh
);
5760 remaining
= raid5_dec_bi_active_stripes(raid_bio
);
5761 if (remaining
== 0) {
5762 trace_block_bio_complete(bdev_get_queue(raid_bio
->bi_bdev
),
5764 bio_endio(raid_bio
);
5766 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
5767 wake_up(&conf
->wait_for_quiescent
);
5771 static int handle_active_stripes(struct r5conf
*conf
, int group
,
5772 struct r5worker
*worker
,
5773 struct list_head
*temp_inactive_list
)
5775 struct stripe_head
*batch
[MAX_STRIPE_BATCH
], *sh
;
5776 int i
, batch_size
= 0, hash
;
5777 bool release_inactive
= false;
5779 while (batch_size
< MAX_STRIPE_BATCH
&&
5780 (sh
= __get_priority_stripe(conf
, group
)) != NULL
)
5781 batch
[batch_size
++] = sh
;
5783 if (batch_size
== 0) {
5784 for (i
= 0; i
< NR_STRIPE_HASH_LOCKS
; i
++)
5785 if (!list_empty(temp_inactive_list
+ i
))
5787 if (i
== NR_STRIPE_HASH_LOCKS
) {
5788 spin_unlock_irq(&conf
->device_lock
);
5789 r5l_flush_stripe_to_raid(conf
->log
);
5790 spin_lock_irq(&conf
->device_lock
);
5793 release_inactive
= true;
5795 spin_unlock_irq(&conf
->device_lock
);
5797 release_inactive_stripe_list(conf
, temp_inactive_list
,
5798 NR_STRIPE_HASH_LOCKS
);
5800 r5l_flush_stripe_to_raid(conf
->log
);
5801 if (release_inactive
) {
5802 spin_lock_irq(&conf
->device_lock
);
5806 for (i
= 0; i
< batch_size
; i
++)
5807 handle_stripe(batch
[i
]);
5808 r5l_write_stripe_run(conf
->log
);
5812 spin_lock_irq(&conf
->device_lock
);
5813 for (i
= 0; i
< batch_size
; i
++) {
5814 hash
= batch
[i
]->hash_lock_index
;
5815 __release_stripe(conf
, batch
[i
], &temp_inactive_list
[hash
]);
5820 static void raid5_do_work(struct work_struct
*work
)
5822 struct r5worker
*worker
= container_of(work
, struct r5worker
, work
);
5823 struct r5worker_group
*group
= worker
->group
;
5824 struct r5conf
*conf
= group
->conf
;
5825 int group_id
= group
- conf
->worker_groups
;
5827 struct blk_plug plug
;
5829 pr_debug("+++ raid5worker active\n");
5831 blk_start_plug(&plug
);
5833 spin_lock_irq(&conf
->device_lock
);
5835 int batch_size
, released
;
5837 released
= release_stripe_list(conf
, worker
->temp_inactive_list
);
5839 batch_size
= handle_active_stripes(conf
, group_id
, worker
,
5840 worker
->temp_inactive_list
);
5841 worker
->working
= false;
5842 if (!batch_size
&& !released
)
5844 handled
+= batch_size
;
5846 pr_debug("%d stripes handled\n", handled
);
5848 spin_unlock_irq(&conf
->device_lock
);
5850 r5l_flush_stripe_to_raid(conf
->log
);
5852 async_tx_issue_pending_all();
5853 blk_finish_plug(&plug
);
5855 pr_debug("--- raid5worker inactive\n");
5859 * This is our raid5 kernel thread.
5861 * We scan the hash table for stripes which can be handled now.
5862 * During the scan, completed stripes are saved for us by the interrupt
5863 * handler, so that they will not have to wait for our next wakeup.
5865 static void raid5d(struct md_thread
*thread
)
5867 struct mddev
*mddev
= thread
->mddev
;
5868 struct r5conf
*conf
= mddev
->private;
5870 struct blk_plug plug
;
5872 pr_debug("+++ raid5d active\n");
5874 md_check_recovery(mddev
);
5876 if (!bio_list_empty(&conf
->return_bi
) &&
5877 !test_bit(MD_CHANGE_PENDING
, &mddev
->flags
)) {
5878 struct bio_list tmp
= BIO_EMPTY_LIST
;
5879 spin_lock_irq(&conf
->device_lock
);
5880 if (!test_bit(MD_CHANGE_PENDING
, &mddev
->flags
)) {
5881 bio_list_merge(&tmp
, &conf
->return_bi
);
5882 bio_list_init(&conf
->return_bi
);
5884 spin_unlock_irq(&conf
->device_lock
);
5888 blk_start_plug(&plug
);
5890 spin_lock_irq(&conf
->device_lock
);
5893 int batch_size
, released
;
5895 released
= release_stripe_list(conf
, conf
->temp_inactive_list
);
5897 clear_bit(R5_DID_ALLOC
, &conf
->cache_state
);
5900 !list_empty(&conf
->bitmap_list
)) {
5901 /* Now is a good time to flush some bitmap updates */
5903 spin_unlock_irq(&conf
->device_lock
);
5904 bitmap_unplug(mddev
->bitmap
);
5905 spin_lock_irq(&conf
->device_lock
);
5906 conf
->seq_write
= conf
->seq_flush
;
5907 activate_bit_delay(conf
, conf
->temp_inactive_list
);
5909 raid5_activate_delayed(conf
);
5911 while ((bio
= remove_bio_from_retry(conf
))) {
5913 spin_unlock_irq(&conf
->device_lock
);
5914 ok
= retry_aligned_read(conf
, bio
);
5915 spin_lock_irq(&conf
->device_lock
);
5921 batch_size
= handle_active_stripes(conf
, ANY_GROUP
, NULL
,
5922 conf
->temp_inactive_list
);
5923 if (!batch_size
&& !released
)
5925 handled
+= batch_size
;
5927 if (mddev
->flags
& ~(1<<MD_CHANGE_PENDING
)) {
5928 spin_unlock_irq(&conf
->device_lock
);
5929 md_check_recovery(mddev
);
5930 spin_lock_irq(&conf
->device_lock
);
5933 pr_debug("%d stripes handled\n", handled
);
5935 spin_unlock_irq(&conf
->device_lock
);
5936 if (test_and_clear_bit(R5_ALLOC_MORE
, &conf
->cache_state
) &&
5937 mutex_trylock(&conf
->cache_size_mutex
)) {
5938 grow_one_stripe(conf
, __GFP_NOWARN
);
5939 /* Set flag even if allocation failed. This helps
5940 * slow down allocation requests when mem is short
5942 set_bit(R5_DID_ALLOC
, &conf
->cache_state
);
5943 mutex_unlock(&conf
->cache_size_mutex
);
5946 r5l_flush_stripe_to_raid(conf
->log
);
5948 async_tx_issue_pending_all();
5949 blk_finish_plug(&plug
);
5951 pr_debug("--- raid5d inactive\n");
5955 raid5_show_stripe_cache_size(struct mddev
*mddev
, char *page
)
5957 struct r5conf
*conf
;
5959 spin_lock(&mddev
->lock
);
5960 conf
= mddev
->private;
5962 ret
= sprintf(page
, "%d\n", conf
->min_nr_stripes
);
5963 spin_unlock(&mddev
->lock
);
5968 raid5_set_cache_size(struct mddev
*mddev
, int size
)
5970 struct r5conf
*conf
= mddev
->private;
5973 if (size
<= 16 || size
> 32768)
5976 conf
->min_nr_stripes
= size
;
5977 mutex_lock(&conf
->cache_size_mutex
);
5978 while (size
< conf
->max_nr_stripes
&&
5979 drop_one_stripe(conf
))
5981 mutex_unlock(&conf
->cache_size_mutex
);
5984 err
= md_allow_write(mddev
);
5988 mutex_lock(&conf
->cache_size_mutex
);
5989 while (size
> conf
->max_nr_stripes
)
5990 if (!grow_one_stripe(conf
, GFP_KERNEL
))
5992 mutex_unlock(&conf
->cache_size_mutex
);
5996 EXPORT_SYMBOL(raid5_set_cache_size
);
5999 raid5_store_stripe_cache_size(struct mddev
*mddev
, const char *page
, size_t len
)
6001 struct r5conf
*conf
;
6005 if (len
>= PAGE_SIZE
)
6007 if (kstrtoul(page
, 10, &new))
6009 err
= mddev_lock(mddev
);
6012 conf
= mddev
->private;
6016 err
= raid5_set_cache_size(mddev
, new);
6017 mddev_unlock(mddev
);
6022 static struct md_sysfs_entry
6023 raid5_stripecache_size
= __ATTR(stripe_cache_size
, S_IRUGO
| S_IWUSR
,
6024 raid5_show_stripe_cache_size
,
6025 raid5_store_stripe_cache_size
);
6028 raid5_show_rmw_level(struct mddev
*mddev
, char *page
)
6030 struct r5conf
*conf
= mddev
->private;
6032 return sprintf(page
, "%d\n", conf
->rmw_level
);
6038 raid5_store_rmw_level(struct mddev
*mddev
, const char *page
, size_t len
)
6040 struct r5conf
*conf
= mddev
->private;
6046 if (len
>= PAGE_SIZE
)
6049 if (kstrtoul(page
, 10, &new))
6052 if (new != PARITY_DISABLE_RMW
&& !raid6_call
.xor_syndrome
)
6055 if (new != PARITY_DISABLE_RMW
&&
6056 new != PARITY_ENABLE_RMW
&&
6057 new != PARITY_PREFER_RMW
)
6060 conf
->rmw_level
= new;
6064 static struct md_sysfs_entry
6065 raid5_rmw_level
= __ATTR(rmw_level
, S_IRUGO
| S_IWUSR
,
6066 raid5_show_rmw_level
,
6067 raid5_store_rmw_level
);
6071 raid5_show_preread_threshold(struct mddev
*mddev
, char *page
)
6073 struct r5conf
*conf
;
6075 spin_lock(&mddev
->lock
);
6076 conf
= mddev
->private;
6078 ret
= sprintf(page
, "%d\n", conf
->bypass_threshold
);
6079 spin_unlock(&mddev
->lock
);
6084 raid5_store_preread_threshold(struct mddev
*mddev
, const char *page
, size_t len
)
6086 struct r5conf
*conf
;
6090 if (len
>= PAGE_SIZE
)
6092 if (kstrtoul(page
, 10, &new))
6095 err
= mddev_lock(mddev
);
6098 conf
= mddev
->private;
6101 else if (new > conf
->min_nr_stripes
)
6104 conf
->bypass_threshold
= new;
6105 mddev_unlock(mddev
);
6109 static struct md_sysfs_entry
6110 raid5_preread_bypass_threshold
= __ATTR(preread_bypass_threshold
,
6112 raid5_show_preread_threshold
,
6113 raid5_store_preread_threshold
);
6116 raid5_show_skip_copy(struct mddev
*mddev
, char *page
)
6118 struct r5conf
*conf
;
6120 spin_lock(&mddev
->lock
);
6121 conf
= mddev
->private;
6123 ret
= sprintf(page
, "%d\n", conf
->skip_copy
);
6124 spin_unlock(&mddev
->lock
);
6129 raid5_store_skip_copy(struct mddev
*mddev
, const char *page
, size_t len
)
6131 struct r5conf
*conf
;
6135 if (len
>= PAGE_SIZE
)
6137 if (kstrtoul(page
, 10, &new))
6141 err
= mddev_lock(mddev
);
6144 conf
= mddev
->private;
6147 else if (new != conf
->skip_copy
) {
6148 mddev_suspend(mddev
);
6149 conf
->skip_copy
= new;
6151 mddev
->queue
->backing_dev_info
.capabilities
|=
6152 BDI_CAP_STABLE_WRITES
;
6154 mddev
->queue
->backing_dev_info
.capabilities
&=
6155 ~BDI_CAP_STABLE_WRITES
;
6156 mddev_resume(mddev
);
6158 mddev_unlock(mddev
);
6162 static struct md_sysfs_entry
6163 raid5_skip_copy
= __ATTR(skip_copy
, S_IRUGO
| S_IWUSR
,
6164 raid5_show_skip_copy
,
6165 raid5_store_skip_copy
);
6168 stripe_cache_active_show(struct mddev
*mddev
, char *page
)
6170 struct r5conf
*conf
= mddev
->private;
6172 return sprintf(page
, "%d\n", atomic_read(&conf
->active_stripes
));
6177 static struct md_sysfs_entry
6178 raid5_stripecache_active
= __ATTR_RO(stripe_cache_active
);
6181 raid5_show_group_thread_cnt(struct mddev
*mddev
, char *page
)
6183 struct r5conf
*conf
;
6185 spin_lock(&mddev
->lock
);
6186 conf
= mddev
->private;
6188 ret
= sprintf(page
, "%d\n", conf
->worker_cnt_per_group
);
6189 spin_unlock(&mddev
->lock
);
6193 static int alloc_thread_groups(struct r5conf
*conf
, int cnt
,
6195 int *worker_cnt_per_group
,
6196 struct r5worker_group
**worker_groups
);
6198 raid5_store_group_thread_cnt(struct mddev
*mddev
, const char *page
, size_t len
)
6200 struct r5conf
*conf
;
6203 struct r5worker_group
*new_groups
, *old_groups
;
6204 int group_cnt
, worker_cnt_per_group
;
6206 if (len
>= PAGE_SIZE
)
6208 if (kstrtoul(page
, 10, &new))
6211 err
= mddev_lock(mddev
);
6214 conf
= mddev
->private;
6217 else if (new != conf
->worker_cnt_per_group
) {
6218 mddev_suspend(mddev
);
6220 old_groups
= conf
->worker_groups
;
6222 flush_workqueue(raid5_wq
);
6224 err
= alloc_thread_groups(conf
, new,
6225 &group_cnt
, &worker_cnt_per_group
,
6228 spin_lock_irq(&conf
->device_lock
);
6229 conf
->group_cnt
= group_cnt
;
6230 conf
->worker_cnt_per_group
= worker_cnt_per_group
;
6231 conf
->worker_groups
= new_groups
;
6232 spin_unlock_irq(&conf
->device_lock
);
6235 kfree(old_groups
[0].workers
);
6238 mddev_resume(mddev
);
6240 mddev_unlock(mddev
);
6245 static struct md_sysfs_entry
6246 raid5_group_thread_cnt
= __ATTR(group_thread_cnt
, S_IRUGO
| S_IWUSR
,
6247 raid5_show_group_thread_cnt
,
6248 raid5_store_group_thread_cnt
);
6250 static struct attribute
*raid5_attrs
[] = {
6251 &raid5_stripecache_size
.attr
,
6252 &raid5_stripecache_active
.attr
,
6253 &raid5_preread_bypass_threshold
.attr
,
6254 &raid5_group_thread_cnt
.attr
,
6255 &raid5_skip_copy
.attr
,
6256 &raid5_rmw_level
.attr
,
6259 static struct attribute_group raid5_attrs_group
= {
6261 .attrs
= raid5_attrs
,
6264 static int alloc_thread_groups(struct r5conf
*conf
, int cnt
,
6266 int *worker_cnt_per_group
,
6267 struct r5worker_group
**worker_groups
)
6271 struct r5worker
*workers
;
6273 *worker_cnt_per_group
= cnt
;
6276 *worker_groups
= NULL
;
6279 *group_cnt
= num_possible_nodes();
6280 size
= sizeof(struct r5worker
) * cnt
;
6281 workers
= kzalloc(size
* *group_cnt
, GFP_NOIO
);
6282 *worker_groups
= kzalloc(sizeof(struct r5worker_group
) *
6283 *group_cnt
, GFP_NOIO
);
6284 if (!*worker_groups
|| !workers
) {
6286 kfree(*worker_groups
);
6290 for (i
= 0; i
< *group_cnt
; i
++) {
6291 struct r5worker_group
*group
;
6293 group
= &(*worker_groups
)[i
];
6294 INIT_LIST_HEAD(&group
->handle_list
);
6296 group
->workers
= workers
+ i
* cnt
;
6298 for (j
= 0; j
< cnt
; j
++) {
6299 struct r5worker
*worker
= group
->workers
+ j
;
6300 worker
->group
= group
;
6301 INIT_WORK(&worker
->work
, raid5_do_work
);
6303 for (k
= 0; k
< NR_STRIPE_HASH_LOCKS
; k
++)
6304 INIT_LIST_HEAD(worker
->temp_inactive_list
+ k
);
6311 static void free_thread_groups(struct r5conf
*conf
)
6313 if (conf
->worker_groups
)
6314 kfree(conf
->worker_groups
[0].workers
);
6315 kfree(conf
->worker_groups
);
6316 conf
->worker_groups
= NULL
;
6320 raid5_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
)
6322 struct r5conf
*conf
= mddev
->private;
6325 sectors
= mddev
->dev_sectors
;
6327 /* size is defined by the smallest of previous and new size */
6328 raid_disks
= min(conf
->raid_disks
, conf
->previous_raid_disks
);
6330 sectors
&= ~((sector_t
)conf
->chunk_sectors
- 1);
6331 sectors
&= ~((sector_t
)conf
->prev_chunk_sectors
- 1);
6332 return sectors
* (raid_disks
- conf
->max_degraded
);
6335 static void free_scratch_buffer(struct r5conf
*conf
, struct raid5_percpu
*percpu
)
6337 safe_put_page(percpu
->spare_page
);
6338 if (percpu
->scribble
)
6339 flex_array_free(percpu
->scribble
);
6340 percpu
->spare_page
= NULL
;
6341 percpu
->scribble
= NULL
;
6344 static int alloc_scratch_buffer(struct r5conf
*conf
, struct raid5_percpu
*percpu
)
6346 if (conf
->level
== 6 && !percpu
->spare_page
)
6347 percpu
->spare_page
= alloc_page(GFP_KERNEL
);
6348 if (!percpu
->scribble
)
6349 percpu
->scribble
= scribble_alloc(max(conf
->raid_disks
,
6350 conf
->previous_raid_disks
),
6351 max(conf
->chunk_sectors
,
6352 conf
->prev_chunk_sectors
)
6356 if (!percpu
->scribble
|| (conf
->level
== 6 && !percpu
->spare_page
)) {
6357 free_scratch_buffer(conf
, percpu
);
6364 static void raid5_free_percpu(struct r5conf
*conf
)
6371 #ifdef CONFIG_HOTPLUG_CPU
6372 unregister_cpu_notifier(&conf
->cpu_notify
);
6376 for_each_possible_cpu(cpu
)
6377 free_scratch_buffer(conf
, per_cpu_ptr(conf
->percpu
, cpu
));
6380 free_percpu(conf
->percpu
);
6383 static void free_conf(struct r5conf
*conf
)
6386 r5l_exit_log(conf
->log
);
6387 if (conf
->shrinker
.seeks
)
6388 unregister_shrinker(&conf
->shrinker
);
6390 free_thread_groups(conf
);
6391 shrink_stripes(conf
);
6392 raid5_free_percpu(conf
);
6394 kfree(conf
->stripe_hashtbl
);
6398 #ifdef CONFIG_HOTPLUG_CPU
6399 static int raid456_cpu_notify(struct notifier_block
*nfb
, unsigned long action
,
6402 struct r5conf
*conf
= container_of(nfb
, struct r5conf
, cpu_notify
);
6403 long cpu
= (long)hcpu
;
6404 struct raid5_percpu
*percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
6407 case CPU_UP_PREPARE
:
6408 case CPU_UP_PREPARE_FROZEN
:
6409 if (alloc_scratch_buffer(conf
, percpu
)) {
6410 pr_err("%s: failed memory allocation for cpu%ld\n",
6412 return notifier_from_errno(-ENOMEM
);
6416 case CPU_DEAD_FROZEN
:
6417 free_scratch_buffer(conf
, per_cpu_ptr(conf
->percpu
, cpu
));
6426 static int raid5_alloc_percpu(struct r5conf
*conf
)
6431 conf
->percpu
= alloc_percpu(struct raid5_percpu
);
6435 #ifdef CONFIG_HOTPLUG_CPU
6436 conf
->cpu_notify
.notifier_call
= raid456_cpu_notify
;
6437 conf
->cpu_notify
.priority
= 0;
6438 err
= register_cpu_notifier(&conf
->cpu_notify
);
6444 for_each_present_cpu(cpu
) {
6445 err
= alloc_scratch_buffer(conf
, per_cpu_ptr(conf
->percpu
, cpu
));
6447 pr_err("%s: failed memory allocation for cpu%ld\n",
6455 conf
->scribble_disks
= max(conf
->raid_disks
,
6456 conf
->previous_raid_disks
);
6457 conf
->scribble_sectors
= max(conf
->chunk_sectors
,
6458 conf
->prev_chunk_sectors
);
6463 static unsigned long raid5_cache_scan(struct shrinker
*shrink
,
6464 struct shrink_control
*sc
)
6466 struct r5conf
*conf
= container_of(shrink
, struct r5conf
, shrinker
);
6467 unsigned long ret
= SHRINK_STOP
;
6469 if (mutex_trylock(&conf
->cache_size_mutex
)) {
6471 while (ret
< sc
->nr_to_scan
&&
6472 conf
->max_nr_stripes
> conf
->min_nr_stripes
) {
6473 if (drop_one_stripe(conf
) == 0) {
6479 mutex_unlock(&conf
->cache_size_mutex
);
6484 static unsigned long raid5_cache_count(struct shrinker
*shrink
,
6485 struct shrink_control
*sc
)
6487 struct r5conf
*conf
= container_of(shrink
, struct r5conf
, shrinker
);
6489 if (conf
->max_nr_stripes
< conf
->min_nr_stripes
)
6490 /* unlikely, but not impossible */
6492 return conf
->max_nr_stripes
- conf
->min_nr_stripes
;
6495 static struct r5conf
*setup_conf(struct mddev
*mddev
)
6497 struct r5conf
*conf
;
6498 int raid_disk
, memory
, max_disks
;
6499 struct md_rdev
*rdev
;
6500 struct disk_info
*disk
;
6503 int group_cnt
, worker_cnt_per_group
;
6504 struct r5worker_group
*new_group
;
6506 if (mddev
->new_level
!= 5
6507 && mddev
->new_level
!= 4
6508 && mddev
->new_level
!= 6) {
6509 printk(KERN_ERR
"md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6510 mdname(mddev
), mddev
->new_level
);
6511 return ERR_PTR(-EIO
);
6513 if ((mddev
->new_level
== 5
6514 && !algorithm_valid_raid5(mddev
->new_layout
)) ||
6515 (mddev
->new_level
== 6
6516 && !algorithm_valid_raid6(mddev
->new_layout
))) {
6517 printk(KERN_ERR
"md/raid:%s: layout %d not supported\n",
6518 mdname(mddev
), mddev
->new_layout
);
6519 return ERR_PTR(-EIO
);
6521 if (mddev
->new_level
== 6 && mddev
->raid_disks
< 4) {
6522 printk(KERN_ERR
"md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6523 mdname(mddev
), mddev
->raid_disks
);
6524 return ERR_PTR(-EINVAL
);
6527 if (!mddev
->new_chunk_sectors
||
6528 (mddev
->new_chunk_sectors
<< 9) % PAGE_SIZE
||
6529 !is_power_of_2(mddev
->new_chunk_sectors
)) {
6530 printk(KERN_ERR
"md/raid:%s: invalid chunk size %d\n",
6531 mdname(mddev
), mddev
->new_chunk_sectors
<< 9);
6532 return ERR_PTR(-EINVAL
);
6535 conf
= kzalloc(sizeof(struct r5conf
), GFP_KERNEL
);
6538 /* Don't enable multi-threading by default*/
6539 if (!alloc_thread_groups(conf
, 0, &group_cnt
, &worker_cnt_per_group
,
6541 conf
->group_cnt
= group_cnt
;
6542 conf
->worker_cnt_per_group
= worker_cnt_per_group
;
6543 conf
->worker_groups
= new_group
;
6546 spin_lock_init(&conf
->device_lock
);
6547 seqcount_init(&conf
->gen_lock
);
6548 mutex_init(&conf
->cache_size_mutex
);
6549 init_waitqueue_head(&conf
->wait_for_quiescent
);
6550 init_waitqueue_head(&conf
->wait_for_stripe
);
6551 init_waitqueue_head(&conf
->wait_for_overlap
);
6552 INIT_LIST_HEAD(&conf
->handle_list
);
6553 INIT_LIST_HEAD(&conf
->hold_list
);
6554 INIT_LIST_HEAD(&conf
->delayed_list
);
6555 INIT_LIST_HEAD(&conf
->bitmap_list
);
6556 bio_list_init(&conf
->return_bi
);
6557 init_llist_head(&conf
->released_stripes
);
6558 atomic_set(&conf
->active_stripes
, 0);
6559 atomic_set(&conf
->preread_active_stripes
, 0);
6560 atomic_set(&conf
->active_aligned_reads
, 0);
6561 conf
->bypass_threshold
= BYPASS_THRESHOLD
;
6562 conf
->recovery_disabled
= mddev
->recovery_disabled
- 1;
6564 conf
->raid_disks
= mddev
->raid_disks
;
6565 if (mddev
->reshape_position
== MaxSector
)
6566 conf
->previous_raid_disks
= mddev
->raid_disks
;
6568 conf
->previous_raid_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
6569 max_disks
= max(conf
->raid_disks
, conf
->previous_raid_disks
);
6571 conf
->disks
= kzalloc(max_disks
* sizeof(struct disk_info
),
6576 conf
->mddev
= mddev
;
6578 if ((conf
->stripe_hashtbl
= kzalloc(PAGE_SIZE
, GFP_KERNEL
)) == NULL
)
6581 /* We init hash_locks[0] separately to that it can be used
6582 * as the reference lock in the spin_lock_nest_lock() call
6583 * in lock_all_device_hash_locks_irq in order to convince
6584 * lockdep that we know what we are doing.
6586 spin_lock_init(conf
->hash_locks
);
6587 for (i
= 1; i
< NR_STRIPE_HASH_LOCKS
; i
++)
6588 spin_lock_init(conf
->hash_locks
+ i
);
6590 for (i
= 0; i
< NR_STRIPE_HASH_LOCKS
; i
++)
6591 INIT_LIST_HEAD(conf
->inactive_list
+ i
);
6593 for (i
= 0; i
< NR_STRIPE_HASH_LOCKS
; i
++)
6594 INIT_LIST_HEAD(conf
->temp_inactive_list
+ i
);
6596 conf
->level
= mddev
->new_level
;
6597 conf
->chunk_sectors
= mddev
->new_chunk_sectors
;
6598 if (raid5_alloc_percpu(conf
) != 0)
6601 pr_debug("raid456: run(%s) called.\n", mdname(mddev
));
6603 rdev_for_each(rdev
, mddev
) {
6604 raid_disk
= rdev
->raid_disk
;
6605 if (raid_disk
>= max_disks
6606 || raid_disk
< 0 || test_bit(Journal
, &rdev
->flags
))
6608 disk
= conf
->disks
+ raid_disk
;
6610 if (test_bit(Replacement
, &rdev
->flags
)) {
6611 if (disk
->replacement
)
6613 disk
->replacement
= rdev
;
6620 if (test_bit(In_sync
, &rdev
->flags
)) {
6621 char b
[BDEVNAME_SIZE
];
6622 printk(KERN_INFO
"md/raid:%s: device %s operational as raid"
6624 mdname(mddev
), bdevname(rdev
->bdev
, b
), raid_disk
);
6625 } else if (rdev
->saved_raid_disk
!= raid_disk
)
6626 /* Cannot rely on bitmap to complete recovery */
6630 conf
->level
= mddev
->new_level
;
6631 if (conf
->level
== 6) {
6632 conf
->max_degraded
= 2;
6633 if (raid6_call
.xor_syndrome
)
6634 conf
->rmw_level
= PARITY_ENABLE_RMW
;
6636 conf
->rmw_level
= PARITY_DISABLE_RMW
;
6638 conf
->max_degraded
= 1;
6639 conf
->rmw_level
= PARITY_ENABLE_RMW
;
6641 conf
->algorithm
= mddev
->new_layout
;
6642 conf
->reshape_progress
= mddev
->reshape_position
;
6643 if (conf
->reshape_progress
!= MaxSector
) {
6644 conf
->prev_chunk_sectors
= mddev
->chunk_sectors
;
6645 conf
->prev_algo
= mddev
->layout
;
6647 conf
->prev_chunk_sectors
= conf
->chunk_sectors
;
6648 conf
->prev_algo
= conf
->algorithm
;
6651 conf
->min_nr_stripes
= NR_STRIPES
;
6652 memory
= conf
->min_nr_stripes
* (sizeof(struct stripe_head
) +
6653 max_disks
* ((sizeof(struct bio
) + PAGE_SIZE
))) / 1024;
6654 atomic_set(&conf
->empty_inactive_list_nr
, NR_STRIPE_HASH_LOCKS
);
6655 if (grow_stripes(conf
, conf
->min_nr_stripes
)) {
6657 "md/raid:%s: couldn't allocate %dkB for buffers\n",
6658 mdname(mddev
), memory
);
6661 printk(KERN_INFO
"md/raid:%s: allocated %dkB\n",
6662 mdname(mddev
), memory
);
6664 * Losing a stripe head costs more than the time to refill it,
6665 * it reduces the queue depth and so can hurt throughput.
6666 * So set it rather large, scaled by number of devices.
6668 conf
->shrinker
.seeks
= DEFAULT_SEEKS
* conf
->raid_disks
* 4;
6669 conf
->shrinker
.scan_objects
= raid5_cache_scan
;
6670 conf
->shrinker
.count_objects
= raid5_cache_count
;
6671 conf
->shrinker
.batch
= 128;
6672 conf
->shrinker
.flags
= 0;
6673 register_shrinker(&conf
->shrinker
);
6675 sprintf(pers_name
, "raid%d", mddev
->new_level
);
6676 conf
->thread
= md_register_thread(raid5d
, mddev
, pers_name
);
6677 if (!conf
->thread
) {
6679 "md/raid:%s: couldn't allocate thread.\n",
6689 return ERR_PTR(-EIO
);
6691 return ERR_PTR(-ENOMEM
);
6694 static int only_parity(int raid_disk
, int algo
, int raid_disks
, int max_degraded
)
6697 case ALGORITHM_PARITY_0
:
6698 if (raid_disk
< max_degraded
)
6701 case ALGORITHM_PARITY_N
:
6702 if (raid_disk
>= raid_disks
- max_degraded
)
6705 case ALGORITHM_PARITY_0_6
:
6706 if (raid_disk
== 0 ||
6707 raid_disk
== raid_disks
- 1)
6710 case ALGORITHM_LEFT_ASYMMETRIC_6
:
6711 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
6712 case ALGORITHM_LEFT_SYMMETRIC_6
:
6713 case ALGORITHM_RIGHT_SYMMETRIC_6
:
6714 if (raid_disk
== raid_disks
- 1)
6720 static int run(struct mddev
*mddev
)
6722 struct r5conf
*conf
;
6723 int working_disks
= 0;
6724 int dirty_parity_disks
= 0;
6725 struct md_rdev
*rdev
;
6726 struct md_rdev
*journal_dev
= NULL
;
6727 sector_t reshape_offset
= 0;
6729 long long min_offset_diff
= 0;
6732 if (mddev
->recovery_cp
!= MaxSector
)
6733 printk(KERN_NOTICE
"md/raid:%s: not clean"
6734 " -- starting background reconstruction\n",
6737 rdev_for_each(rdev
, mddev
) {
6740 if (test_bit(Journal
, &rdev
->flags
)) {
6744 if (rdev
->raid_disk
< 0)
6746 diff
= (rdev
->new_data_offset
- rdev
->data_offset
);
6748 min_offset_diff
= diff
;
6750 } else if (mddev
->reshape_backwards
&&
6751 diff
< min_offset_diff
)
6752 min_offset_diff
= diff
;
6753 else if (!mddev
->reshape_backwards
&&
6754 diff
> min_offset_diff
)
6755 min_offset_diff
= diff
;
6758 if (mddev
->reshape_position
!= MaxSector
) {
6759 /* Check that we can continue the reshape.
6760 * Difficulties arise if the stripe we would write to
6761 * next is at or after the stripe we would read from next.
6762 * For a reshape that changes the number of devices, this
6763 * is only possible for a very short time, and mdadm makes
6764 * sure that time appears to have past before assembling
6765 * the array. So we fail if that time hasn't passed.
6766 * For a reshape that keeps the number of devices the same
6767 * mdadm must be monitoring the reshape can keeping the
6768 * critical areas read-only and backed up. It will start
6769 * the array in read-only mode, so we check for that.
6771 sector_t here_new
, here_old
;
6773 int max_degraded
= (mddev
->level
== 6 ? 2 : 1);
6778 printk(KERN_ERR
"md/raid:%s: don't support reshape with journal - aborting.\n",
6783 if (mddev
->new_level
!= mddev
->level
) {
6784 printk(KERN_ERR
"md/raid:%s: unsupported reshape "
6785 "required - aborting.\n",
6789 old_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
6790 /* reshape_position must be on a new-stripe boundary, and one
6791 * further up in new geometry must map after here in old
6793 * If the chunk sizes are different, then as we perform reshape
6794 * in units of the largest of the two, reshape_position needs
6795 * be a multiple of the largest chunk size times new data disks.
6797 here_new
= mddev
->reshape_position
;
6798 chunk_sectors
= max(mddev
->chunk_sectors
, mddev
->new_chunk_sectors
);
6799 new_data_disks
= mddev
->raid_disks
- max_degraded
;
6800 if (sector_div(here_new
, chunk_sectors
* new_data_disks
)) {
6801 printk(KERN_ERR
"md/raid:%s: reshape_position not "
6802 "on a stripe boundary\n", mdname(mddev
));
6805 reshape_offset
= here_new
* chunk_sectors
;
6806 /* here_new is the stripe we will write to */
6807 here_old
= mddev
->reshape_position
;
6808 sector_div(here_old
, chunk_sectors
* (old_disks
-max_degraded
));
6809 /* here_old is the first stripe that we might need to read
6811 if (mddev
->delta_disks
== 0) {
6812 /* We cannot be sure it is safe to start an in-place
6813 * reshape. It is only safe if user-space is monitoring
6814 * and taking constant backups.
6815 * mdadm always starts a situation like this in
6816 * readonly mode so it can take control before
6817 * allowing any writes. So just check for that.
6819 if (abs(min_offset_diff
) >= mddev
->chunk_sectors
&&
6820 abs(min_offset_diff
) >= mddev
->new_chunk_sectors
)
6821 /* not really in-place - so OK */;
6822 else if (mddev
->ro
== 0) {
6823 printk(KERN_ERR
"md/raid:%s: in-place reshape "
6824 "must be started in read-only mode "
6829 } else if (mddev
->reshape_backwards
6830 ? (here_new
* chunk_sectors
+ min_offset_diff
<=
6831 here_old
* chunk_sectors
)
6832 : (here_new
* chunk_sectors
>=
6833 here_old
* chunk_sectors
+ (-min_offset_diff
))) {
6834 /* Reading from the same stripe as writing to - bad */
6835 printk(KERN_ERR
"md/raid:%s: reshape_position too early for "
6836 "auto-recovery - aborting.\n",
6840 printk(KERN_INFO
"md/raid:%s: reshape will continue\n",
6842 /* OK, we should be able to continue; */
6844 BUG_ON(mddev
->level
!= mddev
->new_level
);
6845 BUG_ON(mddev
->layout
!= mddev
->new_layout
);
6846 BUG_ON(mddev
->chunk_sectors
!= mddev
->new_chunk_sectors
);
6847 BUG_ON(mddev
->delta_disks
!= 0);
6850 if (mddev
->private == NULL
)
6851 conf
= setup_conf(mddev
);
6853 conf
= mddev
->private;
6856 return PTR_ERR(conf
);
6858 if (test_bit(MD_HAS_JOURNAL
, &mddev
->flags
) && !journal_dev
) {
6859 printk(KERN_ERR
"md/raid:%s: journal disk is missing, force array readonly\n",
6862 set_disk_ro(mddev
->gendisk
, 1);
6865 conf
->min_offset_diff
= min_offset_diff
;
6866 mddev
->thread
= conf
->thread
;
6867 conf
->thread
= NULL
;
6868 mddev
->private = conf
;
6870 for (i
= 0; i
< conf
->raid_disks
&& conf
->previous_raid_disks
;
6872 rdev
= conf
->disks
[i
].rdev
;
6873 if (!rdev
&& conf
->disks
[i
].replacement
) {
6874 /* The replacement is all we have yet */
6875 rdev
= conf
->disks
[i
].replacement
;
6876 conf
->disks
[i
].replacement
= NULL
;
6877 clear_bit(Replacement
, &rdev
->flags
);
6878 conf
->disks
[i
].rdev
= rdev
;
6882 if (conf
->disks
[i
].replacement
&&
6883 conf
->reshape_progress
!= MaxSector
) {
6884 /* replacements and reshape simply do not mix. */
6885 printk(KERN_ERR
"md: cannot handle concurrent "
6886 "replacement and reshape.\n");
6889 if (test_bit(In_sync
, &rdev
->flags
)) {
6893 /* This disc is not fully in-sync. However if it
6894 * just stored parity (beyond the recovery_offset),
6895 * when we don't need to be concerned about the
6896 * array being dirty.
6897 * When reshape goes 'backwards', we never have
6898 * partially completed devices, so we only need
6899 * to worry about reshape going forwards.
6901 /* Hack because v0.91 doesn't store recovery_offset properly. */
6902 if (mddev
->major_version
== 0 &&
6903 mddev
->minor_version
> 90)
6904 rdev
->recovery_offset
= reshape_offset
;
6906 if (rdev
->recovery_offset
< reshape_offset
) {
6907 /* We need to check old and new layout */
6908 if (!only_parity(rdev
->raid_disk
,
6911 conf
->max_degraded
))
6914 if (!only_parity(rdev
->raid_disk
,
6916 conf
->previous_raid_disks
,
6917 conf
->max_degraded
))
6919 dirty_parity_disks
++;
6923 * 0 for a fully functional array, 1 or 2 for a degraded array.
6925 mddev
->degraded
= calc_degraded(conf
);
6927 if (has_failed(conf
)) {
6928 printk(KERN_ERR
"md/raid:%s: not enough operational devices"
6929 " (%d/%d failed)\n",
6930 mdname(mddev
), mddev
->degraded
, conf
->raid_disks
);
6934 /* device size must be a multiple of chunk size */
6935 mddev
->dev_sectors
&= ~(mddev
->chunk_sectors
- 1);
6936 mddev
->resync_max_sectors
= mddev
->dev_sectors
;
6938 if (mddev
->degraded
> dirty_parity_disks
&&
6939 mddev
->recovery_cp
!= MaxSector
) {
6940 if (mddev
->ok_start_degraded
)
6942 "md/raid:%s: starting dirty degraded array"
6943 " - data corruption possible.\n",
6947 "md/raid:%s: cannot start dirty degraded array.\n",
6953 if (mddev
->degraded
== 0)
6954 printk(KERN_INFO
"md/raid:%s: raid level %d active with %d out of %d"
6955 " devices, algorithm %d\n", mdname(mddev
), conf
->level
,
6956 mddev
->raid_disks
-mddev
->degraded
, mddev
->raid_disks
,
6959 printk(KERN_ALERT
"md/raid:%s: raid level %d active with %d"
6960 " out of %d devices, algorithm %d\n",
6961 mdname(mddev
), conf
->level
,
6962 mddev
->raid_disks
- mddev
->degraded
,
6963 mddev
->raid_disks
, mddev
->new_layout
);
6965 print_raid5_conf(conf
);
6967 if (conf
->reshape_progress
!= MaxSector
) {
6968 conf
->reshape_safe
= conf
->reshape_progress
;
6969 atomic_set(&conf
->reshape_stripes
, 0);
6970 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
6971 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
6972 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
6973 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
6974 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
6978 /* Ok, everything is just fine now */
6979 if (mddev
->to_remove
== &raid5_attrs_group
)
6980 mddev
->to_remove
= NULL
;
6981 else if (mddev
->kobj
.sd
&&
6982 sysfs_create_group(&mddev
->kobj
, &raid5_attrs_group
))
6984 "raid5: failed to create sysfs attributes for %s\n",
6986 md_set_array_sectors(mddev
, raid5_size(mddev
, 0, 0));
6990 bool discard_supported
= true;
6991 /* read-ahead size must cover two whole stripes, which
6992 * is 2 * (datadisks) * chunksize where 'n' is the
6993 * number of raid devices
6995 int data_disks
= conf
->previous_raid_disks
- conf
->max_degraded
;
6996 int stripe
= data_disks
*
6997 ((mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
6998 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
6999 mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
7001 chunk_size
= mddev
->chunk_sectors
<< 9;
7002 blk_queue_io_min(mddev
->queue
, chunk_size
);
7003 blk_queue_io_opt(mddev
->queue
, chunk_size
*
7004 (conf
->raid_disks
- conf
->max_degraded
));
7005 mddev
->queue
->limits
.raid_partial_stripes_expensive
= 1;
7007 * We can only discard a whole stripe. It doesn't make sense to
7008 * discard data disk but write parity disk
7010 stripe
= stripe
* PAGE_SIZE
;
7011 /* Round up to power of 2, as discard handling
7012 * currently assumes that */
7013 while ((stripe
-1) & stripe
)
7014 stripe
= (stripe
| (stripe
-1)) + 1;
7015 mddev
->queue
->limits
.discard_alignment
= stripe
;
7016 mddev
->queue
->limits
.discard_granularity
= stripe
;
7019 * We use 16-bit counter of active stripes in bi_phys_segments
7020 * (minus one for over-loaded initialization)
7022 blk_queue_max_hw_sectors(mddev
->queue
, 0xfffe * STRIPE_SECTORS
);
7023 blk_queue_max_discard_sectors(mddev
->queue
,
7024 0xfffe * STRIPE_SECTORS
);
7027 * unaligned part of discard request will be ignored, so can't
7028 * guarantee discard_zeroes_data
7030 mddev
->queue
->limits
.discard_zeroes_data
= 0;
7032 blk_queue_max_write_same_sectors(mddev
->queue
, 0);
7034 rdev_for_each(rdev
, mddev
) {
7035 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
7036 rdev
->data_offset
<< 9);
7037 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
7038 rdev
->new_data_offset
<< 9);
7040 * discard_zeroes_data is required, otherwise data
7041 * could be lost. Consider a scenario: discard a stripe
7042 * (the stripe could be inconsistent if
7043 * discard_zeroes_data is 0); write one disk of the
7044 * stripe (the stripe could be inconsistent again
7045 * depending on which disks are used to calculate
7046 * parity); the disk is broken; The stripe data of this
7049 if (!blk_queue_discard(bdev_get_queue(rdev
->bdev
)) ||
7050 !bdev_get_queue(rdev
->bdev
)->
7051 limits
.discard_zeroes_data
)
7052 discard_supported
= false;
7053 /* Unfortunately, discard_zeroes_data is not currently
7054 * a guarantee - just a hint. So we only allow DISCARD
7055 * if the sysadmin has confirmed that only safe devices
7056 * are in use by setting a module parameter.
7058 if (!devices_handle_discard_safely
) {
7059 if (discard_supported
) {
7060 pr_info("md/raid456: discard support disabled due to uncertainty.\n");
7061 pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
7063 discard_supported
= false;
7067 if (discard_supported
&&
7068 mddev
->queue
->limits
.max_discard_sectors
>= (stripe
>> 9) &&
7069 mddev
->queue
->limits
.discard_granularity
>= stripe
)
7070 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
,
7073 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD
,
7078 char b
[BDEVNAME_SIZE
];
7080 printk(KERN_INFO
"md/raid:%s: using device %s as journal\n",
7081 mdname(mddev
), bdevname(journal_dev
->bdev
, b
));
7082 r5l_init_log(conf
, journal_dev
);
7087 md_unregister_thread(&mddev
->thread
);
7088 print_raid5_conf(conf
);
7090 mddev
->private = NULL
;
7091 printk(KERN_ALERT
"md/raid:%s: failed to run raid set.\n", mdname(mddev
));
7095 static void raid5_free(struct mddev
*mddev
, void *priv
)
7097 struct r5conf
*conf
= priv
;
7100 mddev
->to_remove
= &raid5_attrs_group
;
7103 static void status(struct seq_file
*seq
, struct mddev
*mddev
)
7105 struct r5conf
*conf
= mddev
->private;
7108 seq_printf(seq
, " level %d, %dk chunk, algorithm %d", mddev
->level
,
7109 conf
->chunk_sectors
/ 2, mddev
->layout
);
7110 seq_printf (seq
, " [%d/%d] [", conf
->raid_disks
, conf
->raid_disks
- mddev
->degraded
);
7111 for (i
= 0; i
< conf
->raid_disks
; i
++)
7112 seq_printf (seq
, "%s",
7113 conf
->disks
[i
].rdev
&&
7114 test_bit(In_sync
, &conf
->disks
[i
].rdev
->flags
) ? "U" : "_");
7115 seq_printf (seq
, "]");
7118 static void print_raid5_conf (struct r5conf
*conf
)
7121 struct disk_info
*tmp
;
7123 printk(KERN_DEBUG
"RAID conf printout:\n");
7125 printk("(conf==NULL)\n");
7128 printk(KERN_DEBUG
" --- level:%d rd:%d wd:%d\n", conf
->level
,
7130 conf
->raid_disks
- conf
->mddev
->degraded
);
7132 for (i
= 0; i
< conf
->raid_disks
; i
++) {
7133 char b
[BDEVNAME_SIZE
];
7134 tmp
= conf
->disks
+ i
;
7136 printk(KERN_DEBUG
" disk %d, o:%d, dev:%s\n",
7137 i
, !test_bit(Faulty
, &tmp
->rdev
->flags
),
7138 bdevname(tmp
->rdev
->bdev
, b
));
7142 static int raid5_spare_active(struct mddev
*mddev
)
7145 struct r5conf
*conf
= mddev
->private;
7146 struct disk_info
*tmp
;
7148 unsigned long flags
;
7150 for (i
= 0; i
< conf
->raid_disks
; i
++) {
7151 tmp
= conf
->disks
+ i
;
7152 if (tmp
->replacement
7153 && tmp
->replacement
->recovery_offset
== MaxSector
7154 && !test_bit(Faulty
, &tmp
->replacement
->flags
)
7155 && !test_and_set_bit(In_sync
, &tmp
->replacement
->flags
)) {
7156 /* Replacement has just become active. */
7158 || !test_and_clear_bit(In_sync
, &tmp
->rdev
->flags
))
7161 /* Replaced device not technically faulty,
7162 * but we need to be sure it gets removed
7163 * and never re-added.
7165 set_bit(Faulty
, &tmp
->rdev
->flags
);
7166 sysfs_notify_dirent_safe(
7167 tmp
->rdev
->sysfs_state
);
7169 sysfs_notify_dirent_safe(tmp
->replacement
->sysfs_state
);
7170 } else if (tmp
->rdev
7171 && tmp
->rdev
->recovery_offset
== MaxSector
7172 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
7173 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
7175 sysfs_notify_dirent_safe(tmp
->rdev
->sysfs_state
);
7178 spin_lock_irqsave(&conf
->device_lock
, flags
);
7179 mddev
->degraded
= calc_degraded(conf
);
7180 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
7181 print_raid5_conf(conf
);
7185 static int raid5_remove_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
7187 struct r5conf
*conf
= mddev
->private;
7189 int number
= rdev
->raid_disk
;
7190 struct md_rdev
**rdevp
;
7191 struct disk_info
*p
= conf
->disks
+ number
;
7193 print_raid5_conf(conf
);
7194 if (test_bit(Journal
, &rdev
->flags
)) {
7196 * journal disk is not removable, but we need give a chance to
7197 * update superblock of other disks. Otherwise journal disk
7198 * will be considered as 'fresh'
7200 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
7203 if (rdev
== p
->rdev
)
7205 else if (rdev
== p
->replacement
)
7206 rdevp
= &p
->replacement
;
7210 if (number
>= conf
->raid_disks
&&
7211 conf
->reshape_progress
== MaxSector
)
7212 clear_bit(In_sync
, &rdev
->flags
);
7214 if (test_bit(In_sync
, &rdev
->flags
) ||
7215 atomic_read(&rdev
->nr_pending
)) {
7219 /* Only remove non-faulty devices if recovery
7222 if (!test_bit(Faulty
, &rdev
->flags
) &&
7223 mddev
->recovery_disabled
!= conf
->recovery_disabled
&&
7224 !has_failed(conf
) &&
7225 (!p
->replacement
|| p
->replacement
== rdev
) &&
7226 number
< conf
->raid_disks
) {
7232 if (atomic_read(&rdev
->nr_pending
)) {
7233 /* lost the race, try later */
7236 } else if (p
->replacement
) {
7237 /* We must have just cleared 'rdev' */
7238 p
->rdev
= p
->replacement
;
7239 clear_bit(Replacement
, &p
->replacement
->flags
);
7240 smp_mb(); /* Make sure other CPUs may see both as identical
7241 * but will never see neither - if they are careful
7243 p
->replacement
= NULL
;
7244 clear_bit(WantReplacement
, &rdev
->flags
);
7246 /* We might have just removed the Replacement as faulty-
7247 * clear the bit just in case
7249 clear_bit(WantReplacement
, &rdev
->flags
);
7252 print_raid5_conf(conf
);
7256 static int raid5_add_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
7258 struct r5conf
*conf
= mddev
->private;
7261 struct disk_info
*p
;
7263 int last
= conf
->raid_disks
- 1;
7265 if (test_bit(Journal
, &rdev
->flags
))
7267 if (mddev
->recovery_disabled
== conf
->recovery_disabled
)
7270 if (rdev
->saved_raid_disk
< 0 && has_failed(conf
))
7271 /* no point adding a device */
7274 if (rdev
->raid_disk
>= 0)
7275 first
= last
= rdev
->raid_disk
;
7278 * find the disk ... but prefer rdev->saved_raid_disk
7281 if (rdev
->saved_raid_disk
>= 0 &&
7282 rdev
->saved_raid_disk
>= first
&&
7283 conf
->disks
[rdev
->saved_raid_disk
].rdev
== NULL
)
7284 first
= rdev
->saved_raid_disk
;
7286 for (disk
= first
; disk
<= last
; disk
++) {
7287 p
= conf
->disks
+ disk
;
7288 if (p
->rdev
== NULL
) {
7289 clear_bit(In_sync
, &rdev
->flags
);
7290 rdev
->raid_disk
= disk
;
7292 if (rdev
->saved_raid_disk
!= disk
)
7294 rcu_assign_pointer(p
->rdev
, rdev
);
7298 for (disk
= first
; disk
<= last
; disk
++) {
7299 p
= conf
->disks
+ disk
;
7300 if (test_bit(WantReplacement
, &p
->rdev
->flags
) &&
7301 p
->replacement
== NULL
) {
7302 clear_bit(In_sync
, &rdev
->flags
);
7303 set_bit(Replacement
, &rdev
->flags
);
7304 rdev
->raid_disk
= disk
;
7307 rcu_assign_pointer(p
->replacement
, rdev
);
7312 print_raid5_conf(conf
);
7316 static int raid5_resize(struct mddev
*mddev
, sector_t sectors
)
7318 /* no resync is happening, and there is enough space
7319 * on all devices, so we can resize.
7320 * We need to make sure resync covers any new space.
7321 * If the array is shrinking we should possibly wait until
7322 * any io in the removed space completes, but it hardly seems
7326 struct r5conf
*conf
= mddev
->private;
7330 sectors
&= ~((sector_t
)conf
->chunk_sectors
- 1);
7331 newsize
= raid5_size(mddev
, sectors
, mddev
->raid_disks
);
7332 if (mddev
->external_size
&&
7333 mddev
->array_sectors
> newsize
)
7335 if (mddev
->bitmap
) {
7336 int ret
= bitmap_resize(mddev
->bitmap
, sectors
, 0, 0);
7340 md_set_array_sectors(mddev
, newsize
);
7341 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
7342 revalidate_disk(mddev
->gendisk
);
7343 if (sectors
> mddev
->dev_sectors
&&
7344 mddev
->recovery_cp
> mddev
->dev_sectors
) {
7345 mddev
->recovery_cp
= mddev
->dev_sectors
;
7346 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
7348 mddev
->dev_sectors
= sectors
;
7349 mddev
->resync_max_sectors
= sectors
;
7353 static int check_stripe_cache(struct mddev
*mddev
)
7355 /* Can only proceed if there are plenty of stripe_heads.
7356 * We need a minimum of one full stripe,, and for sensible progress
7357 * it is best to have about 4 times that.
7358 * If we require 4 times, then the default 256 4K stripe_heads will
7359 * allow for chunk sizes up to 256K, which is probably OK.
7360 * If the chunk size is greater, user-space should request more
7361 * stripe_heads first.
7363 struct r5conf
*conf
= mddev
->private;
7364 if (((mddev
->chunk_sectors
<< 9) / STRIPE_SIZE
) * 4
7365 > conf
->min_nr_stripes
||
7366 ((mddev
->new_chunk_sectors
<< 9) / STRIPE_SIZE
) * 4
7367 > conf
->min_nr_stripes
) {
7368 printk(KERN_WARNING
"md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7370 ((max(mddev
->chunk_sectors
, mddev
->new_chunk_sectors
) << 9)
7377 static int check_reshape(struct mddev
*mddev
)
7379 struct r5conf
*conf
= mddev
->private;
7383 if (mddev
->delta_disks
== 0 &&
7384 mddev
->new_layout
== mddev
->layout
&&
7385 mddev
->new_chunk_sectors
== mddev
->chunk_sectors
)
7386 return 0; /* nothing to do */
7387 if (has_failed(conf
))
7389 if (mddev
->delta_disks
< 0 && mddev
->reshape_position
== MaxSector
) {
7390 /* We might be able to shrink, but the devices must
7391 * be made bigger first.
7392 * For raid6, 4 is the minimum size.
7393 * Otherwise 2 is the minimum
7396 if (mddev
->level
== 6)
7398 if (mddev
->raid_disks
+ mddev
->delta_disks
< min
)
7402 if (!check_stripe_cache(mddev
))
7405 if (mddev
->new_chunk_sectors
> mddev
->chunk_sectors
||
7406 mddev
->delta_disks
> 0)
7407 if (resize_chunks(conf
,
7408 conf
->previous_raid_disks
7409 + max(0, mddev
->delta_disks
),
7410 max(mddev
->new_chunk_sectors
,
7411 mddev
->chunk_sectors
)
7414 return resize_stripes(conf
, (conf
->previous_raid_disks
7415 + mddev
->delta_disks
));
7418 static int raid5_start_reshape(struct mddev
*mddev
)
7420 struct r5conf
*conf
= mddev
->private;
7421 struct md_rdev
*rdev
;
7423 unsigned long flags
;
7425 if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
7428 if (!check_stripe_cache(mddev
))
7431 if (has_failed(conf
))
7434 rdev_for_each(rdev
, mddev
) {
7435 if (!test_bit(In_sync
, &rdev
->flags
)
7436 && !test_bit(Faulty
, &rdev
->flags
))
7440 if (spares
- mddev
->degraded
< mddev
->delta_disks
- conf
->max_degraded
)
7441 /* Not enough devices even to make a degraded array
7446 /* Refuse to reduce size of the array. Any reductions in
7447 * array size must be through explicit setting of array_size
7450 if (raid5_size(mddev
, 0, conf
->raid_disks
+ mddev
->delta_disks
)
7451 < mddev
->array_sectors
) {
7452 printk(KERN_ERR
"md/raid:%s: array size must be reduced "
7453 "before number of disks\n", mdname(mddev
));
7457 atomic_set(&conf
->reshape_stripes
, 0);
7458 spin_lock_irq(&conf
->device_lock
);
7459 write_seqcount_begin(&conf
->gen_lock
);
7460 conf
->previous_raid_disks
= conf
->raid_disks
;
7461 conf
->raid_disks
+= mddev
->delta_disks
;
7462 conf
->prev_chunk_sectors
= conf
->chunk_sectors
;
7463 conf
->chunk_sectors
= mddev
->new_chunk_sectors
;
7464 conf
->prev_algo
= conf
->algorithm
;
7465 conf
->algorithm
= mddev
->new_layout
;
7467 /* Code that selects data_offset needs to see the generation update
7468 * if reshape_progress has been set - so a memory barrier needed.
7471 if (mddev
->reshape_backwards
)
7472 conf
->reshape_progress
= raid5_size(mddev
, 0, 0);
7474 conf
->reshape_progress
= 0;
7475 conf
->reshape_safe
= conf
->reshape_progress
;
7476 write_seqcount_end(&conf
->gen_lock
);
7477 spin_unlock_irq(&conf
->device_lock
);
7479 /* Now make sure any requests that proceeded on the assumption
7480 * the reshape wasn't running - like Discard or Read - have
7483 mddev_suspend(mddev
);
7484 mddev_resume(mddev
);
7486 /* Add some new drives, as many as will fit.
7487 * We know there are enough to make the newly sized array work.
7488 * Don't add devices if we are reducing the number of
7489 * devices in the array. This is because it is not possible
7490 * to correctly record the "partially reconstructed" state of
7491 * such devices during the reshape and confusion could result.
7493 if (mddev
->delta_disks
>= 0) {
7494 rdev_for_each(rdev
, mddev
)
7495 if (rdev
->raid_disk
< 0 &&
7496 !test_bit(Faulty
, &rdev
->flags
)) {
7497 if (raid5_add_disk(mddev
, rdev
) == 0) {
7499 >= conf
->previous_raid_disks
)
7500 set_bit(In_sync
, &rdev
->flags
);
7502 rdev
->recovery_offset
= 0;
7504 if (sysfs_link_rdev(mddev
, rdev
))
7505 /* Failure here is OK */;
7507 } else if (rdev
->raid_disk
>= conf
->previous_raid_disks
7508 && !test_bit(Faulty
, &rdev
->flags
)) {
7509 /* This is a spare that was manually added */
7510 set_bit(In_sync
, &rdev
->flags
);
7513 /* When a reshape changes the number of devices,
7514 * ->degraded is measured against the larger of the
7515 * pre and post number of devices.
7517 spin_lock_irqsave(&conf
->device_lock
, flags
);
7518 mddev
->degraded
= calc_degraded(conf
);
7519 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
7521 mddev
->raid_disks
= conf
->raid_disks
;
7522 mddev
->reshape_position
= conf
->reshape_progress
;
7523 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
7525 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
7526 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
7527 clear_bit(MD_RECOVERY_DONE
, &mddev
->recovery
);
7528 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
7529 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
7530 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
7532 if (!mddev
->sync_thread
) {
7533 mddev
->recovery
= 0;
7534 spin_lock_irq(&conf
->device_lock
);
7535 write_seqcount_begin(&conf
->gen_lock
);
7536 mddev
->raid_disks
= conf
->raid_disks
= conf
->previous_raid_disks
;
7537 mddev
->new_chunk_sectors
=
7538 conf
->chunk_sectors
= conf
->prev_chunk_sectors
;
7539 mddev
->new_layout
= conf
->algorithm
= conf
->prev_algo
;
7540 rdev_for_each(rdev
, mddev
)
7541 rdev
->new_data_offset
= rdev
->data_offset
;
7543 conf
->generation
--;
7544 conf
->reshape_progress
= MaxSector
;
7545 mddev
->reshape_position
= MaxSector
;
7546 write_seqcount_end(&conf
->gen_lock
);
7547 spin_unlock_irq(&conf
->device_lock
);
7550 conf
->reshape_checkpoint
= jiffies
;
7551 md_wakeup_thread(mddev
->sync_thread
);
7552 md_new_event(mddev
);
7556 /* This is called from the reshape thread and should make any
7557 * changes needed in 'conf'
7559 static void end_reshape(struct r5conf
*conf
)
7562 if (!test_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
)) {
7564 spin_lock_irq(&conf
->device_lock
);
7565 conf
->previous_raid_disks
= conf
->raid_disks
;
7566 md_finish_reshape(conf
->mddev
);
7568 conf
->reshape_progress
= MaxSector
;
7569 conf
->mddev
->reshape_position
= MaxSector
;
7570 spin_unlock_irq(&conf
->device_lock
);
7571 wake_up(&conf
->wait_for_overlap
);
7573 /* read-ahead size must cover two whole stripes, which is
7574 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7576 if (conf
->mddev
->queue
) {
7577 int data_disks
= conf
->raid_disks
- conf
->max_degraded
;
7578 int stripe
= data_disks
* ((conf
->chunk_sectors
<< 9)
7580 if (conf
->mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
7581 conf
->mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
7586 /* This is called from the raid5d thread with mddev_lock held.
7587 * It makes config changes to the device.
7589 static void raid5_finish_reshape(struct mddev
*mddev
)
7591 struct r5conf
*conf
= mddev
->private;
7593 if (!test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
)) {
7595 if (mddev
->delta_disks
> 0) {
7596 md_set_array_sectors(mddev
, raid5_size(mddev
, 0, 0));
7597 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
7598 revalidate_disk(mddev
->gendisk
);
7601 spin_lock_irq(&conf
->device_lock
);
7602 mddev
->degraded
= calc_degraded(conf
);
7603 spin_unlock_irq(&conf
->device_lock
);
7604 for (d
= conf
->raid_disks
;
7605 d
< conf
->raid_disks
- mddev
->delta_disks
;
7607 struct md_rdev
*rdev
= conf
->disks
[d
].rdev
;
7609 clear_bit(In_sync
, &rdev
->flags
);
7610 rdev
= conf
->disks
[d
].replacement
;
7612 clear_bit(In_sync
, &rdev
->flags
);
7615 mddev
->layout
= conf
->algorithm
;
7616 mddev
->chunk_sectors
= conf
->chunk_sectors
;
7617 mddev
->reshape_position
= MaxSector
;
7618 mddev
->delta_disks
= 0;
7619 mddev
->reshape_backwards
= 0;
7623 static void raid5_quiesce(struct mddev
*mddev
, int state
)
7625 struct r5conf
*conf
= mddev
->private;
7628 case 2: /* resume for a suspend */
7629 wake_up(&conf
->wait_for_overlap
);
7632 case 1: /* stop all writes */
7633 lock_all_device_hash_locks_irq(conf
);
7634 /* '2' tells resync/reshape to pause so that all
7635 * active stripes can drain
7638 wait_event_cmd(conf
->wait_for_quiescent
,
7639 atomic_read(&conf
->active_stripes
) == 0 &&
7640 atomic_read(&conf
->active_aligned_reads
) == 0,
7641 unlock_all_device_hash_locks_irq(conf
),
7642 lock_all_device_hash_locks_irq(conf
));
7644 unlock_all_device_hash_locks_irq(conf
);
7645 /* allow reshape to continue */
7646 wake_up(&conf
->wait_for_overlap
);
7649 case 0: /* re-enable writes */
7650 lock_all_device_hash_locks_irq(conf
);
7652 wake_up(&conf
->wait_for_quiescent
);
7653 wake_up(&conf
->wait_for_overlap
);
7654 unlock_all_device_hash_locks_irq(conf
);
7657 r5l_quiesce(conf
->log
, state
);
7660 static void *raid45_takeover_raid0(struct mddev
*mddev
, int level
)
7662 struct r0conf
*raid0_conf
= mddev
->private;
7665 /* for raid0 takeover only one zone is supported */
7666 if (raid0_conf
->nr_strip_zones
> 1) {
7667 printk(KERN_ERR
"md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7669 return ERR_PTR(-EINVAL
);
7672 sectors
= raid0_conf
->strip_zone
[0].zone_end
;
7673 sector_div(sectors
, raid0_conf
->strip_zone
[0].nb_dev
);
7674 mddev
->dev_sectors
= sectors
;
7675 mddev
->new_level
= level
;
7676 mddev
->new_layout
= ALGORITHM_PARITY_N
;
7677 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
7678 mddev
->raid_disks
+= 1;
7679 mddev
->delta_disks
= 1;
7680 /* make sure it will be not marked as dirty */
7681 mddev
->recovery_cp
= MaxSector
;
7683 return setup_conf(mddev
);
7686 static void *raid5_takeover_raid1(struct mddev
*mddev
)
7690 if (mddev
->raid_disks
!= 2 ||
7691 mddev
->degraded
> 1)
7692 return ERR_PTR(-EINVAL
);
7694 /* Should check if there are write-behind devices? */
7696 chunksect
= 64*2; /* 64K by default */
7698 /* The array must be an exact multiple of chunksize */
7699 while (chunksect
&& (mddev
->array_sectors
& (chunksect
-1)))
7702 if ((chunksect
<<9) < STRIPE_SIZE
)
7703 /* array size does not allow a suitable chunk size */
7704 return ERR_PTR(-EINVAL
);
7706 mddev
->new_level
= 5;
7707 mddev
->new_layout
= ALGORITHM_LEFT_SYMMETRIC
;
7708 mddev
->new_chunk_sectors
= chunksect
;
7710 return setup_conf(mddev
);
7713 static void *raid5_takeover_raid6(struct mddev
*mddev
)
7717 switch (mddev
->layout
) {
7718 case ALGORITHM_LEFT_ASYMMETRIC_6
:
7719 new_layout
= ALGORITHM_LEFT_ASYMMETRIC
;
7721 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
7722 new_layout
= ALGORITHM_RIGHT_ASYMMETRIC
;
7724 case ALGORITHM_LEFT_SYMMETRIC_6
:
7725 new_layout
= ALGORITHM_LEFT_SYMMETRIC
;
7727 case ALGORITHM_RIGHT_SYMMETRIC_6
:
7728 new_layout
= ALGORITHM_RIGHT_SYMMETRIC
;
7730 case ALGORITHM_PARITY_0_6
:
7731 new_layout
= ALGORITHM_PARITY_0
;
7733 case ALGORITHM_PARITY_N
:
7734 new_layout
= ALGORITHM_PARITY_N
;
7737 return ERR_PTR(-EINVAL
);
7739 mddev
->new_level
= 5;
7740 mddev
->new_layout
= new_layout
;
7741 mddev
->delta_disks
= -1;
7742 mddev
->raid_disks
-= 1;
7743 return setup_conf(mddev
);
7746 static int raid5_check_reshape(struct mddev
*mddev
)
7748 /* For a 2-drive array, the layout and chunk size can be changed
7749 * immediately as not restriping is needed.
7750 * For larger arrays we record the new value - after validation
7751 * to be used by a reshape pass.
7753 struct r5conf
*conf
= mddev
->private;
7754 int new_chunk
= mddev
->new_chunk_sectors
;
7756 if (mddev
->new_layout
>= 0 && !algorithm_valid_raid5(mddev
->new_layout
))
7758 if (new_chunk
> 0) {
7759 if (!is_power_of_2(new_chunk
))
7761 if (new_chunk
< (PAGE_SIZE
>>9))
7763 if (mddev
->array_sectors
& (new_chunk
-1))
7764 /* not factor of array size */
7768 /* They look valid */
7770 if (mddev
->raid_disks
== 2) {
7771 /* can make the change immediately */
7772 if (mddev
->new_layout
>= 0) {
7773 conf
->algorithm
= mddev
->new_layout
;
7774 mddev
->layout
= mddev
->new_layout
;
7776 if (new_chunk
> 0) {
7777 conf
->chunk_sectors
= new_chunk
;
7778 mddev
->chunk_sectors
= new_chunk
;
7780 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
7781 md_wakeup_thread(mddev
->thread
);
7783 return check_reshape(mddev
);
7786 static int raid6_check_reshape(struct mddev
*mddev
)
7788 int new_chunk
= mddev
->new_chunk_sectors
;
7790 if (mddev
->new_layout
>= 0 && !algorithm_valid_raid6(mddev
->new_layout
))
7792 if (new_chunk
> 0) {
7793 if (!is_power_of_2(new_chunk
))
7795 if (new_chunk
< (PAGE_SIZE
>> 9))
7797 if (mddev
->array_sectors
& (new_chunk
-1))
7798 /* not factor of array size */
7802 /* They look valid */
7803 return check_reshape(mddev
);
7806 static void *raid5_takeover(struct mddev
*mddev
)
7808 /* raid5 can take over:
7809 * raid0 - if there is only one strip zone - make it a raid4 layout
7810 * raid1 - if there are two drives. We need to know the chunk size
7811 * raid4 - trivial - just use a raid4 layout.
7812 * raid6 - Providing it is a *_6 layout
7814 if (mddev
->level
== 0)
7815 return raid45_takeover_raid0(mddev
, 5);
7816 if (mddev
->level
== 1)
7817 return raid5_takeover_raid1(mddev
);
7818 if (mddev
->level
== 4) {
7819 mddev
->new_layout
= ALGORITHM_PARITY_N
;
7820 mddev
->new_level
= 5;
7821 return setup_conf(mddev
);
7823 if (mddev
->level
== 6)
7824 return raid5_takeover_raid6(mddev
);
7826 return ERR_PTR(-EINVAL
);
7829 static void *raid4_takeover(struct mddev
*mddev
)
7831 /* raid4 can take over:
7832 * raid0 - if there is only one strip zone
7833 * raid5 - if layout is right
7835 if (mddev
->level
== 0)
7836 return raid45_takeover_raid0(mddev
, 4);
7837 if (mddev
->level
== 5 &&
7838 mddev
->layout
== ALGORITHM_PARITY_N
) {
7839 mddev
->new_layout
= 0;
7840 mddev
->new_level
= 4;
7841 return setup_conf(mddev
);
7843 return ERR_PTR(-EINVAL
);
7846 static struct md_personality raid5_personality
;
7848 static void *raid6_takeover(struct mddev
*mddev
)
7850 /* Currently can only take over a raid5. We map the
7851 * personality to an equivalent raid6 personality
7852 * with the Q block at the end.
7856 if (mddev
->pers
!= &raid5_personality
)
7857 return ERR_PTR(-EINVAL
);
7858 if (mddev
->degraded
> 1)
7859 return ERR_PTR(-EINVAL
);
7860 if (mddev
->raid_disks
> 253)
7861 return ERR_PTR(-EINVAL
);
7862 if (mddev
->raid_disks
< 3)
7863 return ERR_PTR(-EINVAL
);
7865 switch (mddev
->layout
) {
7866 case ALGORITHM_LEFT_ASYMMETRIC
:
7867 new_layout
= ALGORITHM_LEFT_ASYMMETRIC_6
;
7869 case ALGORITHM_RIGHT_ASYMMETRIC
:
7870 new_layout
= ALGORITHM_RIGHT_ASYMMETRIC_6
;
7872 case ALGORITHM_LEFT_SYMMETRIC
:
7873 new_layout
= ALGORITHM_LEFT_SYMMETRIC_6
;
7875 case ALGORITHM_RIGHT_SYMMETRIC
:
7876 new_layout
= ALGORITHM_RIGHT_SYMMETRIC_6
;
7878 case ALGORITHM_PARITY_0
:
7879 new_layout
= ALGORITHM_PARITY_0_6
;
7881 case ALGORITHM_PARITY_N
:
7882 new_layout
= ALGORITHM_PARITY_N
;
7885 return ERR_PTR(-EINVAL
);
7887 mddev
->new_level
= 6;
7888 mddev
->new_layout
= new_layout
;
7889 mddev
->delta_disks
= 1;
7890 mddev
->raid_disks
+= 1;
7891 return setup_conf(mddev
);
7894 static struct md_personality raid6_personality
=
7898 .owner
= THIS_MODULE
,
7899 .make_request
= make_request
,
7903 .error_handler
= error
,
7904 .hot_add_disk
= raid5_add_disk
,
7905 .hot_remove_disk
= raid5_remove_disk
,
7906 .spare_active
= raid5_spare_active
,
7907 .sync_request
= sync_request
,
7908 .resize
= raid5_resize
,
7910 .check_reshape
= raid6_check_reshape
,
7911 .start_reshape
= raid5_start_reshape
,
7912 .finish_reshape
= raid5_finish_reshape
,
7913 .quiesce
= raid5_quiesce
,
7914 .takeover
= raid6_takeover
,
7915 .congested
= raid5_congested
,
7917 static struct md_personality raid5_personality
=
7921 .owner
= THIS_MODULE
,
7922 .make_request
= make_request
,
7926 .error_handler
= error
,
7927 .hot_add_disk
= raid5_add_disk
,
7928 .hot_remove_disk
= raid5_remove_disk
,
7929 .spare_active
= raid5_spare_active
,
7930 .sync_request
= sync_request
,
7931 .resize
= raid5_resize
,
7933 .check_reshape
= raid5_check_reshape
,
7934 .start_reshape
= raid5_start_reshape
,
7935 .finish_reshape
= raid5_finish_reshape
,
7936 .quiesce
= raid5_quiesce
,
7937 .takeover
= raid5_takeover
,
7938 .congested
= raid5_congested
,
7941 static struct md_personality raid4_personality
=
7945 .owner
= THIS_MODULE
,
7946 .make_request
= make_request
,
7950 .error_handler
= error
,
7951 .hot_add_disk
= raid5_add_disk
,
7952 .hot_remove_disk
= raid5_remove_disk
,
7953 .spare_active
= raid5_spare_active
,
7954 .sync_request
= sync_request
,
7955 .resize
= raid5_resize
,
7957 .check_reshape
= raid5_check_reshape
,
7958 .start_reshape
= raid5_start_reshape
,
7959 .finish_reshape
= raid5_finish_reshape
,
7960 .quiesce
= raid5_quiesce
,
7961 .takeover
= raid4_takeover
,
7962 .congested
= raid5_congested
,
7965 static int __init
raid5_init(void)
7967 raid5_wq
= alloc_workqueue("raid5wq",
7968 WQ_UNBOUND
|WQ_MEM_RECLAIM
|WQ_CPU_INTENSIVE
|WQ_SYSFS
, 0);
7971 register_md_personality(&raid6_personality
);
7972 register_md_personality(&raid5_personality
);
7973 register_md_personality(&raid4_personality
);
7977 static void raid5_exit(void)
7979 unregister_md_personality(&raid6_personality
);
7980 unregister_md_personality(&raid5_personality
);
7981 unregister_md_personality(&raid4_personality
);
7982 destroy_workqueue(raid5_wq
);
7985 module_init(raid5_init
);
7986 module_exit(raid5_exit
);
7987 MODULE_LICENSE("GPL");
7988 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7989 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7990 MODULE_ALIAS("md-raid5");
7991 MODULE_ALIAS("md-raid4");
7992 MODULE_ALIAS("md-level-5");
7993 MODULE_ALIAS("md-level-4");
7994 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7995 MODULE_ALIAS("md-raid6");
7996 MODULE_ALIAS("md-level-6");
7998 /* This used to be two separate modules, they were: */
7999 MODULE_ALIAS("raid5");
8000 MODULE_ALIAS("raid6");