2 * IBM Accelerator Family 'GenWQE'
4 * (C) Copyright IBM Corp. 2013
6 * Author: Frank Haverkamp <haver@linux.vnet.ibm.com>
7 * Author: Joerg-Stephan Vogt <jsvogt@de.ibm.com>
8 * Author: Michael Jung <mijung@gmx.net>
9 * Author: Michael Ruettger <michael@ibmra.de>
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License (version 2 only)
13 * as published by the Free Software Foundation.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
22 * Miscelanous functionality used in the other GenWQE driver parts.
25 #include <linux/kernel.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/sched.h>
28 #include <linux/vmalloc.h>
29 #include <linux/page-flags.h>
30 #include <linux/scatterlist.h>
31 #include <linux/hugetlb.h>
32 #include <linux/iommu.h>
33 #include <linux/delay.h>
34 #include <linux/pci.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/ctype.h>
37 #include <linux/module.h>
38 #include <linux/platform_device.h>
39 #include <linux/delay.h>
40 #include <asm/pgtable.h>
42 #include "genwqe_driver.h"
43 #include "card_base.h"
44 #include "card_ddcb.h"
47 * __genwqe_writeq() - Write 64-bit register
48 * @cd: genwqe device descriptor
49 * @byte_offs: byte offset within BAR
52 * Return: 0 if success; < 0 if error
54 int __genwqe_writeq(struct genwqe_dev
*cd
, u64 byte_offs
, u64 val
)
56 struct pci_dev
*pci_dev
= cd
->pci_dev
;
58 if (cd
->err_inject
& GENWQE_INJECT_HARDWARE_FAILURE
)
64 if (pci_channel_offline(pci_dev
))
67 __raw_writeq((__force u64
)cpu_to_be64(val
), cd
->mmio
+ byte_offs
);
72 * __genwqe_readq() - Read 64-bit register
73 * @cd: genwqe device descriptor
74 * @byte_offs: offset within BAR
76 * Return: value from register
78 u64
__genwqe_readq(struct genwqe_dev
*cd
, u64 byte_offs
)
80 if (cd
->err_inject
& GENWQE_INJECT_HARDWARE_FAILURE
)
81 return 0xffffffffffffffffull
;
83 if ((cd
->err_inject
& GENWQE_INJECT_GFIR_FATAL
) &&
84 (byte_offs
== IO_SLC_CFGREG_GFIR
))
85 return 0x000000000000ffffull
;
87 if ((cd
->err_inject
& GENWQE_INJECT_GFIR_INFO
) &&
88 (byte_offs
== IO_SLC_CFGREG_GFIR
))
89 return 0x00000000ffff0000ull
;
92 return 0xffffffffffffffffull
;
94 return be64_to_cpu((__force __be64
)__raw_readq(cd
->mmio
+ byte_offs
));
98 * __genwqe_writel() - Write 32-bit register
99 * @cd: genwqe device descriptor
100 * @byte_offs: byte offset within BAR
103 * Return: 0 if success; < 0 if error
105 int __genwqe_writel(struct genwqe_dev
*cd
, u64 byte_offs
, u32 val
)
107 struct pci_dev
*pci_dev
= cd
->pci_dev
;
109 if (cd
->err_inject
& GENWQE_INJECT_HARDWARE_FAILURE
)
112 if (cd
->mmio
== NULL
)
115 if (pci_channel_offline(pci_dev
))
118 __raw_writel((__force u32
)cpu_to_be32(val
), cd
->mmio
+ byte_offs
);
123 * __genwqe_readl() - Read 32-bit register
124 * @cd: genwqe device descriptor
125 * @byte_offs: offset within BAR
127 * Return: Value from register
129 u32
__genwqe_readl(struct genwqe_dev
*cd
, u64 byte_offs
)
131 if (cd
->err_inject
& GENWQE_INJECT_HARDWARE_FAILURE
)
134 if (cd
->mmio
== NULL
)
137 return be32_to_cpu((__force __be32
)__raw_readl(cd
->mmio
+ byte_offs
));
141 * genwqe_read_app_id() - Extract app_id
143 * app_unitcfg need to be filled with valid data first
145 int genwqe_read_app_id(struct genwqe_dev
*cd
, char *app_name
, int len
)
148 u32 app_id
= (u32
)cd
->app_unitcfg
;
150 memset(app_name
, 0, len
);
151 for (i
= 0, j
= 0; j
< min(len
, 4); j
++) {
152 char ch
= (char)((app_id
>> (24 - j
*8)) & 0xff);
156 app_name
[i
++] = isprint(ch
) ? ch
: 'X';
162 * genwqe_init_crc32() - Prepare a lookup table for fast crc32 calculations
164 * Existing kernel functions seem to use a different polynom,
165 * therefore we could not use them here.
167 * Genwqe's Polynomial = 0x20044009
169 #define CRC32_POLYNOMIAL 0x20044009
170 static u32 crc32_tab
[256]; /* crc32 lookup table */
172 void genwqe_init_crc32(void)
177 for (i
= 0; i
< 256; i
++) {
179 for (j
= 0; j
< 8; j
++) {
180 if (crc
& 0x80000000)
181 crc
= (crc
<< 1) ^ CRC32_POLYNOMIAL
;
190 * genwqe_crc32() - Generate 32-bit crc as required for DDCBs
191 * @buff: pointer to data buffer
192 * @len: length of data for calculation
193 * @init: initial crc (0xffffffff at start)
195 * polynomial = x^32 * + x^29 + x^18 + x^14 + x^3 + 1 (0x20044009)
197 * Example: 4 bytes 0x01 0x02 0x03 0x04 with init=0xffffffff should
198 * result in a crc32 of 0xf33cb7d3.
200 * The existing kernel crc functions did not cover this polynom yet.
202 * Return: crc32 checksum.
204 u32
genwqe_crc32(u8
*buff
, size_t len
, u32 init
)
211 i
= ((crc
>> 24) ^ *buff
++) & 0xFF;
212 crc
= (crc
<< 8) ^ crc32_tab
[i
];
217 void *__genwqe_alloc_consistent(struct genwqe_dev
*cd
, size_t size
,
218 dma_addr_t
*dma_handle
)
220 if (get_order(size
) > MAX_ORDER
)
223 return dma_alloc_coherent(&cd
->pci_dev
->dev
, size
, dma_handle
,
227 void __genwqe_free_consistent(struct genwqe_dev
*cd
, size_t size
,
228 void *vaddr
, dma_addr_t dma_handle
)
233 dma_free_coherent(&cd
->pci_dev
->dev
, size
, vaddr
, dma_handle
);
236 static void genwqe_unmap_pages(struct genwqe_dev
*cd
, dma_addr_t
*dma_list
,
240 struct pci_dev
*pci_dev
= cd
->pci_dev
;
242 for (i
= 0; (i
< num_pages
) && (dma_list
[i
] != 0x0); i
++) {
243 pci_unmap_page(pci_dev
, dma_list
[i
],
244 PAGE_SIZE
, PCI_DMA_BIDIRECTIONAL
);
249 static int genwqe_map_pages(struct genwqe_dev
*cd
,
250 struct page
**page_list
, int num_pages
,
251 dma_addr_t
*dma_list
)
254 struct pci_dev
*pci_dev
= cd
->pci_dev
;
256 /* establish DMA mapping for requested pages */
257 for (i
= 0; i
< num_pages
; i
++) {
261 daddr
= pci_map_page(pci_dev
, page_list
[i
],
264 PCI_DMA_BIDIRECTIONAL
); /* FIXME rd/rw */
266 if (pci_dma_mapping_error(pci_dev
, daddr
)) {
267 dev_err(&pci_dev
->dev
,
268 "[%s] err: no dma addr daddr=%016llx!\n",
269 __func__
, (long long)daddr
);
278 genwqe_unmap_pages(cd
, dma_list
, num_pages
);
282 static int genwqe_sgl_size(int num_pages
)
284 int len
, num_tlb
= num_pages
/ 7;
286 len
= sizeof(struct sg_entry
) * (num_pages
+num_tlb
+ 1);
287 return roundup(len
, PAGE_SIZE
);
291 * genwqe_alloc_sync_sgl() - Allocate memory for sgl and overlapping pages
293 * Allocates memory for sgl and overlapping pages. Pages which might
294 * overlap other user-space memory blocks are being cached for DMAs,
295 * such that we do not run into syncronization issues. Data is copied
296 * from user-space into the cached pages.
298 int genwqe_alloc_sync_sgl(struct genwqe_dev
*cd
, struct genwqe_sgl
*sgl
,
299 void __user
*user_addr
, size_t user_size
)
302 struct pci_dev
*pci_dev
= cd
->pci_dev
;
304 sgl
->fpage_offs
= offset_in_page((unsigned long)user_addr
);
305 sgl
->fpage_size
= min_t(size_t, PAGE_SIZE
-sgl
->fpage_offs
, user_size
);
306 sgl
->nr_pages
= DIV_ROUND_UP(sgl
->fpage_offs
+ user_size
, PAGE_SIZE
);
307 sgl
->lpage_size
= (user_size
- sgl
->fpage_size
) % PAGE_SIZE
;
309 dev_dbg(&pci_dev
->dev
, "[%s] uaddr=%p usize=%8ld nr_pages=%ld fpage_offs=%lx fpage_size=%ld lpage_size=%ld\n",
310 __func__
, user_addr
, user_size
, sgl
->nr_pages
,
311 sgl
->fpage_offs
, sgl
->fpage_size
, sgl
->lpage_size
);
313 sgl
->user_addr
= user_addr
;
314 sgl
->user_size
= user_size
;
315 sgl
->sgl_size
= genwqe_sgl_size(sgl
->nr_pages
);
317 if (get_order(sgl
->sgl_size
) > MAX_ORDER
) {
318 dev_err(&pci_dev
->dev
,
319 "[%s] err: too much memory requested!\n", __func__
);
323 sgl
->sgl
= __genwqe_alloc_consistent(cd
, sgl
->sgl_size
,
325 if (sgl
->sgl
== NULL
) {
326 dev_err(&pci_dev
->dev
,
327 "[%s] err: no memory available!\n", __func__
);
331 /* Only use buffering on incomplete pages */
332 if ((sgl
->fpage_size
!= 0) && (sgl
->fpage_size
!= PAGE_SIZE
)) {
333 sgl
->fpage
= __genwqe_alloc_consistent(cd
, PAGE_SIZE
,
334 &sgl
->fpage_dma_addr
);
335 if (sgl
->fpage
== NULL
)
338 /* Sync with user memory */
339 if (copy_from_user(sgl
->fpage
+ sgl
->fpage_offs
,
340 user_addr
, sgl
->fpage_size
)) {
345 if (sgl
->lpage_size
!= 0) {
346 sgl
->lpage
= __genwqe_alloc_consistent(cd
, PAGE_SIZE
,
347 &sgl
->lpage_dma_addr
);
348 if (sgl
->lpage
== NULL
)
351 /* Sync with user memory */
352 if (copy_from_user(sgl
->lpage
, user_addr
+ user_size
-
353 sgl
->lpage_size
, sgl
->lpage_size
)) {
361 __genwqe_free_consistent(cd
, PAGE_SIZE
, sgl
->lpage
,
362 sgl
->lpage_dma_addr
);
364 sgl
->lpage_dma_addr
= 0;
366 __genwqe_free_consistent(cd
, PAGE_SIZE
, sgl
->fpage
,
367 sgl
->fpage_dma_addr
);
369 sgl
->fpage_dma_addr
= 0;
371 __genwqe_free_consistent(cd
, sgl
->sgl_size
, sgl
->sgl
,
374 sgl
->sgl_dma_addr
= 0;
379 int genwqe_setup_sgl(struct genwqe_dev
*cd
, struct genwqe_sgl
*sgl
,
380 dma_addr_t
*dma_list
)
383 unsigned long dma_offs
, map_offs
;
384 dma_addr_t prev_daddr
= 0;
385 struct sg_entry
*s
, *last_s
= NULL
;
386 size_t size
= sgl
->user_size
;
388 dma_offs
= 128; /* next block if needed/dma_offset */
389 map_offs
= sgl
->fpage_offs
; /* offset in first page */
391 s
= &sgl
->sgl
[0]; /* first set of 8 entries */
393 while (p
< sgl
->nr_pages
) {
395 unsigned int size_to_map
;
397 /* always write the chaining entry, cleanup is done later */
399 s
[j
].target_addr
= cpu_to_be64(sgl
->sgl_dma_addr
+ dma_offs
);
400 s
[j
].len
= cpu_to_be32(128);
401 s
[j
].flags
= cpu_to_be32(SG_CHAINED
);
405 /* DMA mapping for requested page, offs, size */
406 size_to_map
= min(size
, PAGE_SIZE
- map_offs
);
408 if ((p
== 0) && (sgl
->fpage
!= NULL
)) {
409 daddr
= sgl
->fpage_dma_addr
+ map_offs
;
411 } else if ((p
== sgl
->nr_pages
- 1) &&
412 (sgl
->lpage
!= NULL
)) {
413 daddr
= sgl
->lpage_dma_addr
;
415 daddr
= dma_list
[p
] + map_offs
;
421 if (prev_daddr
== daddr
) {
422 u32 prev_len
= be32_to_cpu(last_s
->len
);
424 /* pr_info("daddr combining: "
425 "%016llx/%08x -> %016llx\n",
426 prev_daddr, prev_len, daddr); */
428 last_s
->len
= cpu_to_be32(prev_len
+
431 p
++; /* process next page */
432 if (p
== sgl
->nr_pages
)
433 goto fixup
; /* nothing to do */
435 prev_daddr
= daddr
+ size_to_map
;
439 /* start new entry */
440 s
[j
].target_addr
= cpu_to_be64(daddr
);
441 s
[j
].len
= cpu_to_be32(size_to_map
);
442 s
[j
].flags
= cpu_to_be32(SG_DATA
);
443 prev_daddr
= daddr
+ size_to_map
;
447 p
++; /* process next page */
448 if (p
== sgl
->nr_pages
)
449 goto fixup
; /* nothing to do */
452 s
+= 8; /* continue 8 elements further */
455 if (j
== 1) { /* combining happend on last entry! */
456 s
-= 8; /* full shift needed on previous sgl block */
457 j
= 7; /* shift all elements */
460 for (i
= 0; i
< j
; i
++) /* move elements 1 up */
463 s
[i
].target_addr
= cpu_to_be64(0);
464 s
[i
].len
= cpu_to_be32(0);
465 s
[i
].flags
= cpu_to_be32(SG_END_LIST
);
470 * genwqe_free_sync_sgl() - Free memory for sgl and overlapping pages
472 * After the DMA transfer has been completed we free the memory for
473 * the sgl and the cached pages. Data is being transfered from cached
474 * pages into user-space buffers.
476 int genwqe_free_sync_sgl(struct genwqe_dev
*cd
, struct genwqe_sgl
*sgl
)
479 struct pci_dev
*pci_dev
= cd
->pci_dev
;
482 if (copy_to_user(sgl
->user_addr
, sgl
->fpage
+ sgl
->fpage_offs
,
484 dev_err(&pci_dev
->dev
, "[%s] err: copying fpage!\n",
488 __genwqe_free_consistent(cd
, PAGE_SIZE
, sgl
->fpage
,
489 sgl
->fpage_dma_addr
);
491 sgl
->fpage_dma_addr
= 0;
494 if (copy_to_user(sgl
->user_addr
+ sgl
->user_size
-
495 sgl
->lpage_size
, sgl
->lpage
,
497 dev_err(&pci_dev
->dev
, "[%s] err: copying lpage!\n",
501 __genwqe_free_consistent(cd
, PAGE_SIZE
, sgl
->lpage
,
502 sgl
->lpage_dma_addr
);
504 sgl
->lpage_dma_addr
= 0;
506 __genwqe_free_consistent(cd
, sgl
->sgl_size
, sgl
->sgl
,
510 sgl
->sgl_dma_addr
= 0x0;
516 * free_user_pages() - Give pinned pages back
518 * Documentation of get_user_pages is in mm/memory.c:
520 * If the page is written to, set_page_dirty (or set_page_dirty_lock,
521 * as appropriate) must be called after the page is finished with, and
522 * before put_page is called.
524 * FIXME Could be of use to others and might belong in the generic
525 * code, if others agree. E.g.
526 * ll_free_user_pages in drivers/staging/lustre/lustre/llite/rw26.c
527 * ceph_put_page_vector in net/ceph/pagevec.c
530 static int free_user_pages(struct page
**page_list
, unsigned int nr_pages
,
535 for (i
= 0; i
< nr_pages
; i
++) {
536 if (page_list
[i
] != NULL
) {
538 set_page_dirty_lock(page_list
[i
]);
539 put_page(page_list
[i
]);
546 * genwqe_user_vmap() - Map user-space memory to virtual kernel memory
547 * @cd: pointer to genwqe device
549 * @uaddr: user virtual address
550 * @size: size of memory to be mapped
552 * We need to think about how we could speed this up. Of course it is
553 * not a good idea to do this over and over again, like we are
554 * currently doing it. Nevertheless, I am curious where on the path
555 * the performance is spend. Most probably within the memory
556 * allocation functions, but maybe also in the DMA mapping code.
558 * Restrictions: The maximum size of the possible mapping currently depends
559 * on the amount of memory we can get using kzalloc() for the
560 * page_list and pci_alloc_consistent for the sg_list.
561 * The sg_list is currently itself not scattered, which could
562 * be fixed with some effort. The page_list must be split into
563 * PAGE_SIZE chunks too. All that will make the complicated
564 * code more complicated.
566 * Return: 0 if success
568 int genwqe_user_vmap(struct genwqe_dev
*cd
, struct dma_mapping
*m
, void *uaddr
,
569 unsigned long size
, struct ddcb_requ
*req
)
572 unsigned long data
, offs
;
573 struct pci_dev
*pci_dev
= cd
->pci_dev
;
575 if ((uaddr
== NULL
) || (size
== 0)) {
576 m
->size
= 0; /* mark unused and not added */
582 /* determine space needed for page_list. */
583 data
= (unsigned long)uaddr
;
584 offs
= offset_in_page(data
);
585 m
->nr_pages
= DIV_ROUND_UP(offs
+ size
, PAGE_SIZE
);
587 m
->page_list
= kcalloc(m
->nr_pages
,
588 sizeof(struct page
*) + sizeof(dma_addr_t
),
591 dev_err(&pci_dev
->dev
, "err: alloc page_list failed\n");
594 m
->size
= 0; /* mark unused and not added */
597 m
->dma_list
= (dma_addr_t
*)(m
->page_list
+ m
->nr_pages
);
599 /* pin user pages in memory */
600 rc
= get_user_pages_fast(data
& PAGE_MASK
, /* page aligned addr */
602 1, /* write by caller */
603 m
->page_list
); /* ptrs to pages */
605 goto fail_get_user_pages
;
607 /* assumption: get_user_pages can be killed by signals. */
608 if (rc
< m
->nr_pages
) {
609 free_user_pages(m
->page_list
, rc
, 0);
611 goto fail_get_user_pages
;
614 rc
= genwqe_map_pages(cd
, m
->page_list
, m
->nr_pages
, m
->dma_list
);
616 goto fail_free_user_pages
;
620 fail_free_user_pages
:
621 free_user_pages(m
->page_list
, m
->nr_pages
, 0);
629 m
->size
= 0; /* mark unused and not added */
634 * genwqe_user_vunmap() - Undo mapping of user-space mem to virtual kernel
636 * @cd: pointer to genwqe device
639 int genwqe_user_vunmap(struct genwqe_dev
*cd
, struct dma_mapping
*m
,
640 struct ddcb_requ
*req
)
642 struct pci_dev
*pci_dev
= cd
->pci_dev
;
644 if (!dma_mapping_used(m
)) {
645 dev_err(&pci_dev
->dev
, "[%s] err: mapping %p not used!\n",
651 genwqe_unmap_pages(cd
, m
->dma_list
, m
->nr_pages
);
654 free_user_pages(m
->page_list
, m
->nr_pages
, 1);
663 m
->size
= 0; /* mark as unused and not added */
668 * genwqe_card_type() - Get chip type SLU Configuration Register
669 * @cd: pointer to the genwqe device descriptor
670 * Return: 0: Altera Stratix-IV 230
671 * 1: Altera Stratix-IV 530
672 * 2: Altera Stratix-V A4
673 * 3: Altera Stratix-V A7
675 u8
genwqe_card_type(struct genwqe_dev
*cd
)
677 u64 card_type
= cd
->slu_unitcfg
;
679 return (u8
)((card_type
& IO_SLU_UNITCFG_TYPE_MASK
) >> 20);
683 * genwqe_card_reset() - Reset the card
684 * @cd: pointer to the genwqe device descriptor
686 int genwqe_card_reset(struct genwqe_dev
*cd
)
689 struct pci_dev
*pci_dev
= cd
->pci_dev
;
691 if (!genwqe_is_privileged(cd
))
695 __genwqe_writeq(cd
, IO_SLC_CFGREG_SOFTRESET
, 0x1ull
);
697 __genwqe_readq(cd
, IO_HSU_FIR_CLR
);
698 __genwqe_readq(cd
, IO_APP_FIR_CLR
);
699 __genwqe_readq(cd
, IO_SLU_FIR_CLR
);
702 * Read-modify-write to preserve the stealth bits
704 * For SL >= 039, Stealth WE bit allows removing
705 * the read-modify-wrote.
706 * r-m-w may require a mask 0x3C to avoid hitting hard
707 * reset again for error reset (should be 0, chicken).
709 softrst
= __genwqe_readq(cd
, IO_SLC_CFGREG_SOFTRESET
) & 0x3cull
;
710 __genwqe_writeq(cd
, IO_SLC_CFGREG_SOFTRESET
, softrst
| 0x2ull
);
712 /* give ERRORRESET some time to finish */
715 if (genwqe_need_err_masking(cd
)) {
716 dev_info(&pci_dev
->dev
,
717 "[%s] masking errors for old bitstreams\n", __func__
);
718 __genwqe_writeq(cd
, IO_SLC_MISC_DEBUG
, 0x0aull
);
723 int genwqe_read_softreset(struct genwqe_dev
*cd
)
727 if (!genwqe_is_privileged(cd
))
730 bitstream
= __genwqe_readq(cd
, IO_SLU_BITSTREAM
) & 0x1;
731 cd
->softreset
= (bitstream
== 0) ? 0x8ull
: 0xcull
;
736 * genwqe_set_interrupt_capability() - Configure MSI capability structure
737 * @cd: pointer to the device
738 * Return: 0 if no error
740 int genwqe_set_interrupt_capability(struct genwqe_dev
*cd
, int count
)
743 struct pci_dev
*pci_dev
= cd
->pci_dev
;
745 rc
= pci_enable_msi_range(pci_dev
, 1, count
);
749 cd
->flags
|= GENWQE_FLAG_MSI_ENABLED
;
754 * genwqe_reset_interrupt_capability() - Undo genwqe_set_interrupt_capability()
755 * @cd: pointer to the device
757 void genwqe_reset_interrupt_capability(struct genwqe_dev
*cd
)
759 struct pci_dev
*pci_dev
= cd
->pci_dev
;
761 if (cd
->flags
& GENWQE_FLAG_MSI_ENABLED
) {
762 pci_disable_msi(pci_dev
);
763 cd
->flags
&= ~GENWQE_FLAG_MSI_ENABLED
;
768 * set_reg_idx() - Fill array with data. Ignore illegal offsets.
770 * @r: debug register array
771 * @i: index to desired entry
772 * @m: maximum possible entries
773 * @addr: addr which is read
774 * @index: index in debug array
777 static int set_reg_idx(struct genwqe_dev
*cd
, struct genwqe_reg
*r
,
778 unsigned int *i
, unsigned int m
, u32 addr
, u32 idx
,
781 if (WARN_ON_ONCE(*i
>= m
))
791 static int set_reg(struct genwqe_dev
*cd
, struct genwqe_reg
*r
,
792 unsigned int *i
, unsigned int m
, u32 addr
, u64 val
)
794 return set_reg_idx(cd
, r
, i
, m
, addr
, 0, val
);
797 int genwqe_read_ffdc_regs(struct genwqe_dev
*cd
, struct genwqe_reg
*regs
,
798 unsigned int max_regs
, int all
)
800 unsigned int i
, j
, idx
= 0;
801 u32 ufir_addr
, ufec_addr
, sfir_addr
, sfec_addr
;
802 u64 gfir
, sluid
, appid
, ufir
, ufec
, sfir
, sfec
;
805 gfir
= __genwqe_readq(cd
, IO_SLC_CFGREG_GFIR
);
806 set_reg(cd
, regs
, &idx
, max_regs
, IO_SLC_CFGREG_GFIR
, gfir
);
808 /* UnitCfg for SLU */
809 sluid
= __genwqe_readq(cd
, IO_SLU_UNITCFG
); /* 0x00000000 */
810 set_reg(cd
, regs
, &idx
, max_regs
, IO_SLU_UNITCFG
, sluid
);
812 /* UnitCfg for APP */
813 appid
= __genwqe_readq(cd
, IO_APP_UNITCFG
); /* 0x02000000 */
814 set_reg(cd
, regs
, &idx
, max_regs
, IO_APP_UNITCFG
, appid
);
816 /* Check all chip Units */
817 for (i
= 0; i
< GENWQE_MAX_UNITS
; i
++) {
820 ufir_addr
= (i
<< 24) | 0x008;
821 ufir
= __genwqe_readq(cd
, ufir_addr
);
822 set_reg(cd
, regs
, &idx
, max_regs
, ufir_addr
, ufir
);
825 ufec_addr
= (i
<< 24) | 0x018;
826 ufec
= __genwqe_readq(cd
, ufec_addr
);
827 set_reg(cd
, regs
, &idx
, max_regs
, ufec_addr
, ufec
);
829 for (j
= 0; j
< 64; j
++) {
830 /* wherever there is a primary 1, read the 2ndary */
831 if (!all
&& (!(ufir
& (1ull << j
))))
834 sfir_addr
= (i
<< 24) | (0x100 + 8 * j
);
835 sfir
= __genwqe_readq(cd
, sfir_addr
);
836 set_reg(cd
, regs
, &idx
, max_regs
, sfir_addr
, sfir
);
838 sfec_addr
= (i
<< 24) | (0x300 + 8 * j
);
839 sfec
= __genwqe_readq(cd
, sfec_addr
);
840 set_reg(cd
, regs
, &idx
, max_regs
, sfec_addr
, sfec
);
844 /* fill with invalid data until end */
845 for (i
= idx
; i
< max_regs
; i
++) {
846 regs
[i
].addr
= 0xffffffff;
847 regs
[i
].val
= 0xffffffffffffffffull
;
853 * genwqe_ffdc_buff_size() - Calculates the number of dump registers
855 int genwqe_ffdc_buff_size(struct genwqe_dev
*cd
, int uid
)
857 int entries
= 0, ring
, traps
, traces
, trace_entries
;
858 u32 eevptr_addr
, l_addr
, d_len
, d_type
;
859 u64 eevptr
, val
, addr
;
861 eevptr_addr
= GENWQE_UID_OFFS(uid
) | IO_EXTENDED_ERROR_POINTER
;
862 eevptr
= __genwqe_readq(cd
, eevptr_addr
);
864 if ((eevptr
!= 0x0) && (eevptr
!= -1ull)) {
865 l_addr
= GENWQE_UID_OFFS(uid
) | eevptr
;
868 val
= __genwqe_readq(cd
, l_addr
);
870 if ((val
== 0x0) || (val
== -1ull))
874 d_len
= (val
& 0x0000007fff000000ull
) >> 24;
877 d_type
= (val
& 0x0000008000000000ull
) >> 36;
879 if (d_type
) { /* repeat */
881 } else { /* size in bytes! */
882 entries
+= d_len
>> 3;
889 for (ring
= 0; ring
< 8; ring
++) {
890 addr
= GENWQE_UID_OFFS(uid
) | IO_EXTENDED_DIAG_MAP(ring
);
891 val
= __genwqe_readq(cd
, addr
);
893 if ((val
== 0x0ull
) || (val
== -1ull))
896 traps
= (val
>> 24) & 0xff;
897 traces
= (val
>> 16) & 0xff;
898 trace_entries
= val
& 0xffff;
900 entries
+= traps
+ (traces
* trace_entries
);
906 * genwqe_ffdc_buff_read() - Implements LogoutExtendedErrorRegisters procedure
908 int genwqe_ffdc_buff_read(struct genwqe_dev
*cd
, int uid
,
909 struct genwqe_reg
*regs
, unsigned int max_regs
)
911 int i
, traps
, traces
, trace
, trace_entries
, trace_entry
, ring
;
912 unsigned int idx
= 0;
913 u32 eevptr_addr
, l_addr
, d_addr
, d_len
, d_type
;
914 u64 eevptr
, e
, val
, addr
;
916 eevptr_addr
= GENWQE_UID_OFFS(uid
) | IO_EXTENDED_ERROR_POINTER
;
917 eevptr
= __genwqe_readq(cd
, eevptr_addr
);
919 if ((eevptr
!= 0x0) && (eevptr
!= 0xffffffffffffffffull
)) {
920 l_addr
= GENWQE_UID_OFFS(uid
) | eevptr
;
922 e
= __genwqe_readq(cd
, l_addr
);
923 if ((e
== 0x0) || (e
== 0xffffffffffffffffull
))
926 d_addr
= (e
& 0x0000000000ffffffull
); /* 23:0 */
927 d_len
= (e
& 0x0000007fff000000ull
) >> 24; /* 38:24 */
928 d_type
= (e
& 0x0000008000000000ull
) >> 36; /* 39 */
929 d_addr
|= GENWQE_UID_OFFS(uid
);
932 for (i
= 0; i
< (int)d_len
; i
++) {
933 val
= __genwqe_readq(cd
, d_addr
);
934 set_reg_idx(cd
, regs
, &idx
, max_regs
,
938 d_len
>>= 3; /* Size in bytes! */
939 for (i
= 0; i
< (int)d_len
; i
++, d_addr
+= 8) {
940 val
= __genwqe_readq(cd
, d_addr
);
941 set_reg_idx(cd
, regs
, &idx
, max_regs
,
950 * To save time, there are only 6 traces poplulated on Uid=2,
951 * Ring=1. each with iters=512.
953 for (ring
= 0; ring
< 8; ring
++) { /* 0 is fls, 1 is fds,
954 2...7 are ASI rings */
955 addr
= GENWQE_UID_OFFS(uid
) | IO_EXTENDED_DIAG_MAP(ring
);
956 val
= __genwqe_readq(cd
, addr
);
958 if ((val
== 0x0ull
) || (val
== -1ull))
961 traps
= (val
>> 24) & 0xff; /* Number of Traps */
962 traces
= (val
>> 16) & 0xff; /* Number of Traces */
963 trace_entries
= val
& 0xffff; /* Entries per trace */
965 /* Note: This is a combined loop that dumps both the traps */
966 /* (for the trace == 0 case) as well as the traces 1 to */
968 for (trace
= 0; trace
<= traces
; trace
++) {
970 GENWQE_EXTENDED_DIAG_SELECTOR(ring
, trace
);
972 addr
= (GENWQE_UID_OFFS(uid
) |
973 IO_EXTENDED_DIAG_SELECTOR
);
974 __genwqe_writeq(cd
, addr
, diag_sel
);
976 for (trace_entry
= 0;
977 trace_entry
< (trace
? trace_entries
: traps
);
979 addr
= (GENWQE_UID_OFFS(uid
) |
980 IO_EXTENDED_DIAG_READ_MBX
);
981 val
= __genwqe_readq(cd
, addr
);
982 set_reg_idx(cd
, regs
, &idx
, max_regs
, addr
,
983 (diag_sel
<<16) | trace_entry
, val
);
991 * genwqe_write_vreg() - Write register in virtual window
993 * Note, these registers are only accessible to the PF through the
994 * VF-window. It is not intended for the VF to access.
996 int genwqe_write_vreg(struct genwqe_dev
*cd
, u32 reg
, u64 val
, int func
)
998 __genwqe_writeq(cd
, IO_PF_SLC_VIRTUAL_WINDOW
, func
& 0xf);
999 __genwqe_writeq(cd
, reg
, val
);
1004 * genwqe_read_vreg() - Read register in virtual window
1006 * Note, these registers are only accessible to the PF through the
1007 * VF-window. It is not intended for the VF to access.
1009 u64
genwqe_read_vreg(struct genwqe_dev
*cd
, u32 reg
, int func
)
1011 __genwqe_writeq(cd
, IO_PF_SLC_VIRTUAL_WINDOW
, func
& 0xf);
1012 return __genwqe_readq(cd
, reg
);
1016 * genwqe_base_clock_frequency() - Deteremine base clock frequency of the card
1018 * Note: From a design perspective it turned out to be a bad idea to
1019 * use codes here to specifiy the frequency/speed values. An old
1020 * driver cannot understand new codes and is therefore always a
1021 * problem. Better is to measure out the value or put the
1022 * speed/frequency directly into a register which is always a valid
1023 * value for old as well as for new software.
1025 * Return: Card clock in MHz
1027 int genwqe_base_clock_frequency(struct genwqe_dev
*cd
)
1029 u16 speed
; /* MHz MHz MHz MHz */
1030 static const int speed_grade
[] = { 250, 200, 166, 175 };
1032 speed
= (u16
)((cd
->slu_unitcfg
>> 28) & 0x0full
);
1033 if (speed
>= ARRAY_SIZE(speed_grade
))
1034 return 0; /* illegal value */
1036 return speed_grade
[speed
];
1040 * genwqe_stop_traps() - Stop traps
1042 * Before reading out the analysis data, we need to stop the traps.
1044 void genwqe_stop_traps(struct genwqe_dev
*cd
)
1046 __genwqe_writeq(cd
, IO_SLC_MISC_DEBUG_SET
, 0xcull
);
1050 * genwqe_start_traps() - Start traps
1052 * After having read the data, we can/must enable the traps again.
1054 void genwqe_start_traps(struct genwqe_dev
*cd
)
1056 __genwqe_writeq(cd
, IO_SLC_MISC_DEBUG_CLR
, 0xcull
);
1058 if (genwqe_need_err_masking(cd
))
1059 __genwqe_writeq(cd
, IO_SLC_MISC_DEBUG
, 0x0aull
);