dm thin metadata: fix __udivdi3 undefined on 32-bit
[linux/fpc-iii.git] / drivers / phy / phy-xgene.c
blob385362e5b2f6fbee91a14ff9ba2afb9b14edcb7c
1 /*
2 * AppliedMicro X-Gene Multi-purpose PHY driver
4 * Copyright (c) 2014, Applied Micro Circuits Corporation
5 * Author: Loc Ho <lho@apm.com>
6 * Tuan Phan <tphan@apm.com>
7 * Suman Tripathi <stripathi@apm.com>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
22 * The APM X-Gene PHY consists of two PLL clock macro's (CMU) and lanes.
23 * The first PLL clock macro is used for internal reference clock. The second
24 * PLL clock macro is used to generate the clock for the PHY. This driver
25 * configures the first PLL CMU, the second PLL CMU, and programs the PHY to
26 * operate according to the mode of operation. The first PLL CMU is only
27 * required if internal clock is enabled.
29 * Logical Layer Out Of HW module units:
31 * -----------------
32 * | Internal | |------|
33 * | Ref PLL CMU |----| | ------------- ---------
34 * ------------ ---- | MUX |-----|PHY PLL CMU|----| Serdes|
35 * | | | | ---------
36 * External Clock ------| | -------------
37 * |------|
39 * The Ref PLL CMU CSR (Configuration System Registers) is accessed
40 * indirectly from the SDS offset at 0x2000. It is only required for
41 * internal reference clock.
42 * The PHY PLL CMU CSR is accessed indirectly from the SDS offset at 0x0000.
43 * The Serdes CSR is accessed indirectly from the SDS offset at 0x0400.
45 * The Ref PLL CMU can be located within the same PHY IP or outside the PHY IP
46 * due to shared Ref PLL CMU. For PHY with Ref PLL CMU shared with another IP,
47 * it is located outside the PHY IP. This is the case for the PHY located
48 * at 0x1f23a000 (SATA Port 4/5). For such PHY, another resource is required
49 * to located the SDS/Ref PLL CMU module and its clock for that IP enabled.
51 * Currently, this driver only supports Gen3 SATA mode with external clock.
53 #include <linux/module.h>
54 #include <linux/platform_device.h>
55 #include <linux/io.h>
56 #include <linux/delay.h>
57 #include <linux/phy/phy.h>
58 #include <linux/clk.h>
60 /* Max 2 lanes per a PHY unit */
61 #define MAX_LANE 2
63 /* Register offset inside the PHY */
64 #define SERDES_PLL_INDIRECT_OFFSET 0x0000
65 #define SERDES_PLL_REF_INDIRECT_OFFSET 0x2000
66 #define SERDES_INDIRECT_OFFSET 0x0400
67 #define SERDES_LANE_STRIDE 0x0200
69 /* Some default Serdes parameters */
70 #define DEFAULT_SATA_TXBOOST_GAIN { 0x1e, 0x1e, 0x1e }
71 #define DEFAULT_SATA_TXEYEDIRECTION { 0x0, 0x0, 0x0 }
72 #define DEFAULT_SATA_TXEYETUNING { 0xa, 0xa, 0xa }
73 #define DEFAULT_SATA_SPD_SEL { 0x1, 0x3, 0x7 }
74 #define DEFAULT_SATA_TXAMP { 0x8, 0x8, 0x8 }
75 #define DEFAULT_SATA_TXCN1 { 0x2, 0x2, 0x2 }
76 #define DEFAULT_SATA_TXCN2 { 0x0, 0x0, 0x0 }
77 #define DEFAULT_SATA_TXCP1 { 0xa, 0xa, 0xa }
79 #define SATA_SPD_SEL_GEN3 0x7
80 #define SATA_SPD_SEL_GEN2 0x3
81 #define SATA_SPD_SEL_GEN1 0x1
83 #define SSC_DISABLE 0
84 #define SSC_ENABLE 1
86 #define FBDIV_VAL_50M 0x77
87 #define REFDIV_VAL_50M 0x1
88 #define FBDIV_VAL_100M 0x3B
89 #define REFDIV_VAL_100M 0x0
91 /* SATA Clock/Reset CSR */
92 #define SATACLKENREG 0x00000000
93 #define SATA0_CORE_CLKEN 0x00000002
94 #define SATA1_CORE_CLKEN 0x00000004
95 #define SATASRESETREG 0x00000004
96 #define SATA_MEM_RESET_MASK 0x00000020
97 #define SATA_MEM_RESET_RD(src) (((src) & 0x00000020) >> 5)
98 #define SATA_SDS_RESET_MASK 0x00000004
99 #define SATA_CSR_RESET_MASK 0x00000001
100 #define SATA_CORE_RESET_MASK 0x00000002
101 #define SATA_PMCLK_RESET_MASK 0x00000010
102 #define SATA_PCLK_RESET_MASK 0x00000008
104 /* SDS CSR used for PHY Indirect access */
105 #define SATA_ENET_SDS_PCS_CTL0 0x00000000
106 #define REGSPEC_CFG_I_TX_WORDMODE0_SET(dst, src) \
107 (((dst) & ~0x00070000) | (((u32) (src) << 16) & 0x00070000))
108 #define REGSPEC_CFG_I_RX_WORDMODE0_SET(dst, src) \
109 (((dst) & ~0x00e00000) | (((u32) (src) << 21) & 0x00e00000))
110 #define SATA_ENET_SDS_CTL0 0x0000000c
111 #define REGSPEC_CFG_I_CUSTOMER_PIN_MODE0_SET(dst, src) \
112 (((dst) & ~0x00007fff) | (((u32) (src)) & 0x00007fff))
113 #define SATA_ENET_SDS_CTL1 0x00000010
114 #define CFG_I_SPD_SEL_CDR_OVR1_SET(dst, src) \
115 (((dst) & ~0x0000000f) | (((u32) (src)) & 0x0000000f))
116 #define SATA_ENET_SDS_RST_CTL 0x00000024
117 #define SATA_ENET_SDS_IND_CMD_REG 0x0000003c
118 #define CFG_IND_WR_CMD_MASK 0x00000001
119 #define CFG_IND_RD_CMD_MASK 0x00000002
120 #define CFG_IND_CMD_DONE_MASK 0x00000004
121 #define CFG_IND_ADDR_SET(dst, src) \
122 (((dst) & ~0x003ffff0) | (((u32) (src) << 4) & 0x003ffff0))
123 #define SATA_ENET_SDS_IND_RDATA_REG 0x00000040
124 #define SATA_ENET_SDS_IND_WDATA_REG 0x00000044
125 #define SATA_ENET_CLK_MACRO_REG 0x0000004c
126 #define I_RESET_B_SET(dst, src) \
127 (((dst) & ~0x00000001) | (((u32) (src)) & 0x00000001))
128 #define I_PLL_FBDIV_SET(dst, src) \
129 (((dst) & ~0x001ff000) | (((u32) (src) << 12) & 0x001ff000))
130 #define I_CUSTOMEROV_SET(dst, src) \
131 (((dst) & ~0x00000f80) | (((u32) (src) << 7) & 0x00000f80))
132 #define O_PLL_LOCK_RD(src) (((src) & 0x40000000) >> 30)
133 #define O_PLL_READY_RD(src) (((src) & 0x80000000) >> 31)
135 /* PLL Clock Macro Unit (CMU) CSR accessing from SDS indirectly */
136 #define CMU_REG0 0x00000
137 #define CMU_REG0_PLL_REF_SEL_MASK 0x00002000
138 #define CMU_REG0_PLL_REF_SEL_SET(dst, src) \
139 (((dst) & ~0x00002000) | (((u32) (src) << 13) & 0x00002000))
140 #define CMU_REG0_PDOWN_MASK 0x00004000
141 #define CMU_REG0_CAL_COUNT_RESOL_SET(dst, src) \
142 (((dst) & ~0x000000e0) | (((u32) (src) << 5) & 0x000000e0))
143 #define CMU_REG1 0x00002
144 #define CMU_REG1_PLL_CP_SET(dst, src) \
145 (((dst) & ~0x00003c00) | (((u32) (src) << 10) & 0x00003c00))
146 #define CMU_REG1_PLL_MANUALCAL_SET(dst, src) \
147 (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
148 #define CMU_REG1_PLL_CP_SEL_SET(dst, src) \
149 (((dst) & ~0x000003e0) | (((u32) (src) << 5) & 0x000003e0))
150 #define CMU_REG1_REFCLK_CMOS_SEL_MASK 0x00000001
151 #define CMU_REG1_REFCLK_CMOS_SEL_SET(dst, src) \
152 (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
153 #define CMU_REG2 0x00004
154 #define CMU_REG2_PLL_REFDIV_SET(dst, src) \
155 (((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
156 #define CMU_REG2_PLL_LFRES_SET(dst, src) \
157 (((dst) & ~0x0000001e) | (((u32) (src) << 1) & 0x0000001e))
158 #define CMU_REG2_PLL_FBDIV_SET(dst, src) \
159 (((dst) & ~0x00003fe0) | (((u32) (src) << 5) & 0x00003fe0))
160 #define CMU_REG3 0x00006
161 #define CMU_REG3_VCOVARSEL_SET(dst, src) \
162 (((dst) & ~0x0000000f) | (((u32) (src) << 0) & 0x0000000f))
163 #define CMU_REG3_VCO_MOMSEL_INIT_SET(dst, src) \
164 (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
165 #define CMU_REG3_VCO_MANMOMSEL_SET(dst, src) \
166 (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
167 #define CMU_REG4 0x00008
168 #define CMU_REG5 0x0000a
169 #define CMU_REG5_PLL_LFSMCAP_SET(dst, src) \
170 (((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
171 #define CMU_REG5_PLL_LOCK_RESOLUTION_SET(dst, src) \
172 (((dst) & ~0x0000000e) | (((u32) (src) << 1) & 0x0000000e))
173 #define CMU_REG5_PLL_LFCAP_SET(dst, src) \
174 (((dst) & ~0x00003000) | (((u32) (src) << 12) & 0x00003000))
175 #define CMU_REG5_PLL_RESETB_MASK 0x00000001
176 #define CMU_REG6 0x0000c
177 #define CMU_REG6_PLL_VREGTRIM_SET(dst, src) \
178 (((dst) & ~0x00000600) | (((u32) (src) << 9) & 0x00000600))
179 #define CMU_REG6_MAN_PVT_CAL_SET(dst, src) \
180 (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
181 #define CMU_REG7 0x0000e
182 #define CMU_REG7_PLL_CALIB_DONE_RD(src) ((0x00004000 & (u32) (src)) >> 14)
183 #define CMU_REG7_VCO_CAL_FAIL_RD(src) ((0x00000c00 & (u32) (src)) >> 10)
184 #define CMU_REG8 0x00010
185 #define CMU_REG9 0x00012
186 #define CMU_REG9_WORD_LEN_8BIT 0x000
187 #define CMU_REG9_WORD_LEN_10BIT 0x001
188 #define CMU_REG9_WORD_LEN_16BIT 0x002
189 #define CMU_REG9_WORD_LEN_20BIT 0x003
190 #define CMU_REG9_WORD_LEN_32BIT 0x004
191 #define CMU_REG9_WORD_LEN_40BIT 0x005
192 #define CMU_REG9_WORD_LEN_64BIT 0x006
193 #define CMU_REG9_WORD_LEN_66BIT 0x007
194 #define CMU_REG9_TX_WORD_MODE_CH1_SET(dst, src) \
195 (((dst) & ~0x00000380) | (((u32) (src) << 7) & 0x00000380))
196 #define CMU_REG9_TX_WORD_MODE_CH0_SET(dst, src) \
197 (((dst) & ~0x00000070) | (((u32) (src) << 4) & 0x00000070))
198 #define CMU_REG9_PLL_POST_DIVBY2_SET(dst, src) \
199 (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
200 #define CMU_REG9_VBG_BYPASSB_SET(dst, src) \
201 (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
202 #define CMU_REG9_IGEN_BYPASS_SET(dst, src) \
203 (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
204 #define CMU_REG10 0x00014
205 #define CMU_REG10_VREG_REFSEL_SET(dst, src) \
206 (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
207 #define CMU_REG11 0x00016
208 #define CMU_REG12 0x00018
209 #define CMU_REG12_STATE_DELAY9_SET(dst, src) \
210 (((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))
211 #define CMU_REG13 0x0001a
212 #define CMU_REG14 0x0001c
213 #define CMU_REG15 0x0001e
214 #define CMU_REG16 0x00020
215 #define CMU_REG16_PVT_DN_MAN_ENA_MASK 0x00000001
216 #define CMU_REG16_PVT_UP_MAN_ENA_MASK 0x00000002
217 #define CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(dst, src) \
218 (((dst) & ~0x0000001c) | (((u32) (src) << 2) & 0x0000001c))
219 #define CMU_REG16_CALIBRATION_DONE_OVERRIDE_SET(dst, src) \
220 (((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
221 #define CMU_REG16_BYPASS_PLL_LOCK_SET(dst, src) \
222 (((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))
223 #define CMU_REG17 0x00022
224 #define CMU_REG17_PVT_CODE_R2A_SET(dst, src) \
225 (((dst) & ~0x00007f00) | (((u32) (src) << 8) & 0x00007f00))
226 #define CMU_REG17_RESERVED_7_SET(dst, src) \
227 (((dst) & ~0x000000e0) | (((u32) (src) << 5) & 0x000000e0))
228 #define CMU_REG17_PVT_TERM_MAN_ENA_MASK 0x00008000
229 #define CMU_REG18 0x00024
230 #define CMU_REG19 0x00026
231 #define CMU_REG20 0x00028
232 #define CMU_REG21 0x0002a
233 #define CMU_REG22 0x0002c
234 #define CMU_REG23 0x0002e
235 #define CMU_REG24 0x00030
236 #define CMU_REG25 0x00032
237 #define CMU_REG26 0x00034
238 #define CMU_REG26_FORCE_PLL_LOCK_SET(dst, src) \
239 (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
240 #define CMU_REG27 0x00036
241 #define CMU_REG28 0x00038
242 #define CMU_REG29 0x0003a
243 #define CMU_REG30 0x0003c
244 #define CMU_REG30_LOCK_COUNT_SET(dst, src) \
245 (((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006))
246 #define CMU_REG30_PCIE_MODE_SET(dst, src) \
247 (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
248 #define CMU_REG31 0x0003e
249 #define CMU_REG32 0x00040
250 #define CMU_REG32_FORCE_VCOCAL_START_MASK 0x00004000
251 #define CMU_REG32_PVT_CAL_WAIT_SEL_SET(dst, src) \
252 (((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006))
253 #define CMU_REG32_IREF_ADJ_SET(dst, src) \
254 (((dst) & ~0x00000180) | (((u32) (src) << 7) & 0x00000180))
255 #define CMU_REG33 0x00042
256 #define CMU_REG34 0x00044
257 #define CMU_REG34_VCO_CAL_VTH_LO_MAX_SET(dst, src) \
258 (((dst) & ~0x0000000f) | (((u32) (src) << 0) & 0x0000000f))
259 #define CMU_REG34_VCO_CAL_VTH_HI_MAX_SET(dst, src) \
260 (((dst) & ~0x00000f00) | (((u32) (src) << 8) & 0x00000f00))
261 #define CMU_REG34_VCO_CAL_VTH_LO_MIN_SET(dst, src) \
262 (((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))
263 #define CMU_REG34_VCO_CAL_VTH_HI_MIN_SET(dst, src) \
264 (((dst) & ~0x0000f000) | (((u32) (src) << 12) & 0x0000f000))
265 #define CMU_REG35 0x00046
266 #define CMU_REG35_PLL_SSC_MOD_SET(dst, src) \
267 (((dst) & ~0x0000fe00) | (((u32) (src) << 9) & 0x0000fe00))
268 #define CMU_REG36 0x00048
269 #define CMU_REG36_PLL_SSC_EN_SET(dst, src) \
270 (((dst) & ~0x00000010) | (((u32) (src) << 4) & 0x00000010))
271 #define CMU_REG36_PLL_SSC_VSTEP_SET(dst, src) \
272 (((dst) & ~0x0000ffc0) | (((u32) (src) << 6) & 0x0000ffc0))
273 #define CMU_REG36_PLL_SSC_DSMSEL_SET(dst, src) \
274 (((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))
275 #define CMU_REG37 0x0004a
276 #define CMU_REG38 0x0004c
277 #define CMU_REG39 0x0004e
279 /* PHY lane CSR accessing from SDS indirectly */
280 #define RXTX_REG0 0x000
281 #define RXTX_REG0_CTLE_EQ_HR_SET(dst, src) \
282 (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
283 #define RXTX_REG0_CTLE_EQ_QR_SET(dst, src) \
284 (((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
285 #define RXTX_REG0_CTLE_EQ_FR_SET(dst, src) \
286 (((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
287 #define RXTX_REG1 0x002
288 #define RXTX_REG1_RXACVCM_SET(dst, src) \
289 (((dst) & ~0x0000f000) | (((u32) (src) << 12) & 0x0000f000))
290 #define RXTX_REG1_CTLE_EQ_SET(dst, src) \
291 (((dst) & ~0x00000f80) | (((u32) (src) << 7) & 0x00000f80))
292 #define RXTX_REG1_RXVREG1_SET(dst, src) \
293 (((dst) & ~0x00000060) | (((u32) (src) << 5) & 0x00000060))
294 #define RXTX_REG1_RXIREF_ADJ_SET(dst, src) \
295 (((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006))
296 #define RXTX_REG2 0x004
297 #define RXTX_REG2_VTT_ENA_SET(dst, src) \
298 (((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
299 #define RXTX_REG2_TX_FIFO_ENA_SET(dst, src) \
300 (((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))
301 #define RXTX_REG2_VTT_SEL_SET(dst, src) \
302 (((dst) & ~0x000000c0) | (((u32) (src) << 6) & 0x000000c0))
303 #define RXTX_REG4 0x008
304 #define RXTX_REG4_TX_LOOPBACK_BUF_EN_MASK 0x00000040
305 #define RXTX_REG4_TX_DATA_RATE_SET(dst, src) \
306 (((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
307 #define RXTX_REG4_TX_WORD_MODE_SET(dst, src) \
308 (((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
309 #define RXTX_REG5 0x00a
310 #define RXTX_REG5_TX_CN1_SET(dst, src) \
311 (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
312 #define RXTX_REG5_TX_CP1_SET(dst, src) \
313 (((dst) & ~0x000007e0) | (((u32) (src) << 5) & 0x000007e0))
314 #define RXTX_REG5_TX_CN2_SET(dst, src) \
315 (((dst) & ~0x0000001f) | (((u32) (src) << 0) & 0x0000001f))
316 #define RXTX_REG6 0x00c
317 #define RXTX_REG6_TXAMP_CNTL_SET(dst, src) \
318 (((dst) & ~0x00000780) | (((u32) (src) << 7) & 0x00000780))
319 #define RXTX_REG6_TXAMP_ENA_SET(dst, src) \
320 (((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
321 #define RXTX_REG6_RX_BIST_ERRCNT_RD_SET(dst, src) \
322 (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
323 #define RXTX_REG6_TX_IDLE_SET(dst, src) \
324 (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
325 #define RXTX_REG6_RX_BIST_RESYNC_SET(dst, src) \
326 (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
327 #define RXTX_REG7 0x00e
328 #define RXTX_REG7_RESETB_RXD_MASK 0x00000100
329 #define RXTX_REG7_RESETB_RXA_MASK 0x00000080
330 #define RXTX_REG7_BIST_ENA_RX_SET(dst, src) \
331 (((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
332 #define RXTX_REG7_RX_WORD_MODE_SET(dst, src) \
333 (((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
334 #define RXTX_REG8 0x010
335 #define RXTX_REG8_CDR_LOOP_ENA_SET(dst, src) \
336 (((dst) & ~0x00004000) | (((u32) (src) << 14) & 0x00004000))
337 #define RXTX_REG8_CDR_BYPASS_RXLOS_SET(dst, src) \
338 (((dst) & ~0x00000800) | (((u32) (src) << 11) & 0x00000800))
339 #define RXTX_REG8_SSC_ENABLE_SET(dst, src) \
340 (((dst) & ~0x00000200) | (((u32) (src) << 9) & 0x00000200))
341 #define RXTX_REG8_SD_VREF_SET(dst, src) \
342 (((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))
343 #define RXTX_REG8_SD_DISABLE_SET(dst, src) \
344 (((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
345 #define RXTX_REG7 0x00e
346 #define RXTX_REG7_RESETB_RXD_SET(dst, src) \
347 (((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
348 #define RXTX_REG7_RESETB_RXA_SET(dst, src) \
349 (((dst) & ~0x00000080) | (((u32) (src) << 7) & 0x00000080))
350 #define RXTX_REG7_LOOP_BACK_ENA_CTLE_MASK 0x00004000
351 #define RXTX_REG7_LOOP_BACK_ENA_CTLE_SET(dst, src) \
352 (((dst) & ~0x00004000) | (((u32) (src) << 14) & 0x00004000))
353 #define RXTX_REG11 0x016
354 #define RXTX_REG11_PHASE_ADJUST_LIMIT_SET(dst, src) \
355 (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
356 #define RXTX_REG12 0x018
357 #define RXTX_REG12_LATCH_OFF_ENA_SET(dst, src) \
358 (((dst) & ~0x00002000) | (((u32) (src) << 13) & 0x00002000))
359 #define RXTX_REG12_SUMOS_ENABLE_SET(dst, src) \
360 (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
361 #define RXTX_REG12_RX_DET_TERM_ENABLE_MASK 0x00000002
362 #define RXTX_REG12_RX_DET_TERM_ENABLE_SET(dst, src) \
363 (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
364 #define RXTX_REG13 0x01a
365 #define RXTX_REG14 0x01c
366 #define RXTX_REG14_CLTE_LATCAL_MAN_PROG_SET(dst, src) \
367 (((dst) & ~0x0000003f) | (((u32) (src) << 0) & 0x0000003f))
368 #define RXTX_REG14_CTLE_LATCAL_MAN_ENA_SET(dst, src) \
369 (((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
370 #define RXTX_REG26 0x034
371 #define RXTX_REG26_PERIOD_ERROR_LATCH_SET(dst, src) \
372 (((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
373 #define RXTX_REG26_BLWC_ENA_SET(dst, src) \
374 (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
375 #define RXTX_REG21 0x02a
376 #define RXTX_REG21_DO_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
377 #define RXTX_REG21_XO_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
378 #define RXTX_REG21_LATCH_CAL_FAIL_ODD_RD(src) ((0x0000000f & (u32)(src)))
379 #define RXTX_REG22 0x02c
380 #define RXTX_REG22_SO_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
381 #define RXTX_REG22_EO_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
382 #define RXTX_REG22_LATCH_CAL_FAIL_EVEN_RD(src) ((0x0000000f & (u32)(src)))
383 #define RXTX_REG23 0x02e
384 #define RXTX_REG23_DE_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
385 #define RXTX_REG23_XE_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
386 #define RXTX_REG24 0x030
387 #define RXTX_REG24_EE_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
388 #define RXTX_REG24_SE_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
389 #define RXTX_REG27 0x036
390 #define RXTX_REG28 0x038
391 #define RXTX_REG31 0x03e
392 #define RXTX_REG38 0x04c
393 #define RXTX_REG38_CUSTOMER_PINMODE_INV_SET(dst, src) \
394 (((dst) & 0x0000fffe) | (((u32) (src) << 1) & 0x0000fffe))
395 #define RXTX_REG39 0x04e
396 #define RXTX_REG40 0x050
397 #define RXTX_REG41 0x052
398 #define RXTX_REG42 0x054
399 #define RXTX_REG43 0x056
400 #define RXTX_REG44 0x058
401 #define RXTX_REG45 0x05a
402 #define RXTX_REG46 0x05c
403 #define RXTX_REG47 0x05e
404 #define RXTX_REG48 0x060
405 #define RXTX_REG49 0x062
406 #define RXTX_REG50 0x064
407 #define RXTX_REG51 0x066
408 #define RXTX_REG52 0x068
409 #define RXTX_REG53 0x06a
410 #define RXTX_REG54 0x06c
411 #define RXTX_REG55 0x06e
412 #define RXTX_REG61 0x07a
413 #define RXTX_REG61_ISCAN_INBERT_SET(dst, src) \
414 (((dst) & ~0x00000010) | (((u32) (src) << 4) & 0x00000010))
415 #define RXTX_REG61_LOADFREQ_SHIFT_SET(dst, src) \
416 (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
417 #define RXTX_REG61_EYE_COUNT_WIDTH_SEL_SET(dst, src) \
418 (((dst) & ~0x000000c0) | (((u32) (src) << 6) & 0x000000c0))
419 #define RXTX_REG61_SPD_SEL_CDR_SET(dst, src) \
420 (((dst) & ~0x00003c00) | (((u32) (src) << 10) & 0x00003c00))
421 #define RXTX_REG62 0x07c
422 #define RXTX_REG62_PERIOD_H1_QLATCH_SET(dst, src) \
423 (((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
424 #define RXTX_REG81 0x0a2
425 #define RXTX_REG89_MU_TH7_SET(dst, src) \
426 (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
427 #define RXTX_REG89_MU_TH8_SET(dst, src) \
428 (((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
429 #define RXTX_REG89_MU_TH9_SET(dst, src) \
430 (((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
431 #define RXTX_REG96 0x0c0
432 #define RXTX_REG96_MU_FREQ1_SET(dst, src) \
433 (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
434 #define RXTX_REG96_MU_FREQ2_SET(dst, src) \
435 (((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
436 #define RXTX_REG96_MU_FREQ3_SET(dst, src) \
437 (((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
438 #define RXTX_REG99 0x0c6
439 #define RXTX_REG99_MU_PHASE1_SET(dst, src) \
440 (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
441 #define RXTX_REG99_MU_PHASE2_SET(dst, src) \
442 (((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
443 #define RXTX_REG99_MU_PHASE3_SET(dst, src) \
444 (((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
445 #define RXTX_REG102 0x0cc
446 #define RXTX_REG102_FREQLOOP_LIMIT_SET(dst, src) \
447 (((dst) & ~0x00000060) | (((u32) (src) << 5) & 0x00000060))
448 #define RXTX_REG114 0x0e4
449 #define RXTX_REG121 0x0f2
450 #define RXTX_REG121_SUMOS_CAL_CODE_RD(src) ((0x0000003e & (u32)(src)) >> 0x1)
451 #define RXTX_REG125 0x0fa
452 #define RXTX_REG125_PQ_REG_SET(dst, src) \
453 (((dst) & ~0x0000fe00) | (((u32) (src) << 9) & 0x0000fe00))
454 #define RXTX_REG125_SIGN_PQ_SET(dst, src) \
455 (((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
456 #define RXTX_REG125_SIGN_PQ_2C_SET(dst, src) \
457 (((dst) & ~0x00000080) | (((u32) (src) << 7) & 0x00000080))
458 #define RXTX_REG125_PHZ_MANUALCODE_SET(dst, src) \
459 (((dst) & ~0x0000007c) | (((u32) (src) << 2) & 0x0000007c))
460 #define RXTX_REG125_PHZ_MANUAL_SET(dst, src) \
461 (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
462 #define RXTX_REG127 0x0fe
463 #define RXTX_REG127_FORCE_SUM_CAL_START_MASK 0x00000002
464 #define RXTX_REG127_FORCE_LAT_CAL_START_MASK 0x00000004
465 #define RXTX_REG127_FORCE_SUM_CAL_START_SET(dst, src) \
466 (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
467 #define RXTX_REG127_FORCE_LAT_CAL_START_SET(dst, src) \
468 (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
469 #define RXTX_REG127_LATCH_MAN_CAL_ENA_SET(dst, src) \
470 (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
471 #define RXTX_REG127_DO_LATCH_MANCAL_SET(dst, src) \
472 (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
473 #define RXTX_REG127_XO_LATCH_MANCAL_SET(dst, src) \
474 (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
475 #define RXTX_REG128 0x100
476 #define RXTX_REG128_LATCH_CAL_WAIT_SEL_SET(dst, src) \
477 (((dst) & ~0x0000000c) | (((u32) (src) << 2) & 0x0000000c))
478 #define RXTX_REG128_EO_LATCH_MANCAL_SET(dst, src) \
479 (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
480 #define RXTX_REG128_SO_LATCH_MANCAL_SET(dst, src) \
481 (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
482 #define RXTX_REG129 0x102
483 #define RXTX_REG129_DE_LATCH_MANCAL_SET(dst, src) \
484 (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
485 #define RXTX_REG129_XE_LATCH_MANCAL_SET(dst, src) \
486 (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
487 #define RXTX_REG130 0x104
488 #define RXTX_REG130_EE_LATCH_MANCAL_SET(dst, src) \
489 (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
490 #define RXTX_REG130_SE_LATCH_MANCAL_SET(dst, src) \
491 (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
492 #define RXTX_REG145 0x122
493 #define RXTX_REG145_TX_IDLE_SATA_SET(dst, src) \
494 (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
495 #define RXTX_REG145_RXES_ENA_SET(dst, src) \
496 (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
497 #define RXTX_REG145_RXDFE_CONFIG_SET(dst, src) \
498 (((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
499 #define RXTX_REG145_RXVWES_LATENA_SET(dst, src) \
500 (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
501 #define RXTX_REG147 0x126
502 #define RXTX_REG148 0x128
504 /* Clock macro type */
505 enum cmu_type_t {
506 REF_CMU = 0, /* Clock macro is the internal reference clock */
507 PHY_CMU = 1, /* Clock macro is the PLL for the Serdes */
510 enum mux_type_t {
511 MUX_SELECT_ATA = 0, /* Switch the MUX to ATA */
512 MUX_SELECT_SGMMII = 0, /* Switch the MUX to SGMII */
515 enum clk_type_t {
516 CLK_EXT_DIFF = 0, /* External differential */
517 CLK_INT_DIFF = 1, /* Internal differential */
518 CLK_INT_SING = 2, /* Internal single ended */
521 enum phy_mode {
522 MODE_SATA = 0, /* List them for simple reference */
523 MODE_SGMII = 1,
524 MODE_PCIE = 2,
525 MODE_USB = 3,
526 MODE_XFI = 4,
527 MODE_MAX
530 struct xgene_sata_override_param {
531 u32 speed[MAX_LANE]; /* Index for override parameter per lane */
532 u32 txspeed[3]; /* Tx speed */
533 u32 txboostgain[MAX_LANE*3]; /* Tx freq boost and gain control */
534 u32 txeyetuning[MAX_LANE*3]; /* Tx eye tuning */
535 u32 txeyedirection[MAX_LANE*3]; /* Tx eye tuning direction */
536 u32 txamplitude[MAX_LANE*3]; /* Tx amplitude control */
537 u32 txprecursor_cn1[MAX_LANE*3]; /* Tx emphasis taps 1st pre-cursor */
538 u32 txprecursor_cn2[MAX_LANE*3]; /* Tx emphasis taps 2nd pre-cursor */
539 u32 txpostcursor_cp1[MAX_LANE*3]; /* Tx emphasis taps post-cursor */
542 struct xgene_phy_ctx {
543 struct device *dev;
544 struct phy *phy;
545 enum phy_mode mode; /* Mode of operation */
546 enum clk_type_t clk_type; /* Input clock selection */
547 void __iomem *sds_base; /* PHY CSR base addr */
548 struct clk *clk; /* Optional clock */
550 /* Override Serdes parameters */
551 struct xgene_sata_override_param sata_param;
555 * For chip earlier than A3 version, enable this flag.
556 * To enable, pass boot argument phy_xgene.preA3Chip=1
558 static int preA3Chip;
559 MODULE_PARM_DESC(preA3Chip, "Enable pre-A3 chip support (1=enable 0=disable)");
560 module_param_named(preA3Chip, preA3Chip, int, 0444);
562 static void sds_wr(void __iomem *csr_base, u32 indirect_cmd_reg,
563 u32 indirect_data_reg, u32 addr, u32 data)
565 unsigned long deadline = jiffies + HZ;
566 u32 val;
567 u32 cmd;
569 cmd = CFG_IND_WR_CMD_MASK | CFG_IND_CMD_DONE_MASK;
570 cmd = CFG_IND_ADDR_SET(cmd, addr);
571 writel(data, csr_base + indirect_data_reg);
572 readl(csr_base + indirect_data_reg); /* Force a barrier */
573 writel(cmd, csr_base + indirect_cmd_reg);
574 readl(csr_base + indirect_cmd_reg); /* Force a barrier */
575 do {
576 val = readl(csr_base + indirect_cmd_reg);
577 } while (!(val & CFG_IND_CMD_DONE_MASK) &&
578 time_before(jiffies, deadline));
579 if (!(val & CFG_IND_CMD_DONE_MASK))
580 pr_err("SDS WR timeout at 0x%p offset 0x%08X value 0x%08X\n",
581 csr_base + indirect_cmd_reg, addr, data);
584 static void sds_rd(void __iomem *csr_base, u32 indirect_cmd_reg,
585 u32 indirect_data_reg, u32 addr, u32 *data)
587 unsigned long deadline = jiffies + HZ;
588 u32 val;
589 u32 cmd;
591 cmd = CFG_IND_RD_CMD_MASK | CFG_IND_CMD_DONE_MASK;
592 cmd = CFG_IND_ADDR_SET(cmd, addr);
593 writel(cmd, csr_base + indirect_cmd_reg);
594 readl(csr_base + indirect_cmd_reg); /* Force a barrier */
595 do {
596 val = readl(csr_base + indirect_cmd_reg);
597 } while (!(val & CFG_IND_CMD_DONE_MASK) &&
598 time_before(jiffies, deadline));
599 *data = readl(csr_base + indirect_data_reg);
600 if (!(val & CFG_IND_CMD_DONE_MASK))
601 pr_err("SDS WR timeout at 0x%p offset 0x%08X value 0x%08X\n",
602 csr_base + indirect_cmd_reg, addr, *data);
605 static void cmu_wr(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
606 u32 reg, u32 data)
608 void __iomem *sds_base = ctx->sds_base;
609 u32 val;
611 if (cmu_type == REF_CMU)
612 reg += SERDES_PLL_REF_INDIRECT_OFFSET;
613 else
614 reg += SERDES_PLL_INDIRECT_OFFSET;
615 sds_wr(sds_base, SATA_ENET_SDS_IND_CMD_REG,
616 SATA_ENET_SDS_IND_WDATA_REG, reg, data);
617 sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
618 SATA_ENET_SDS_IND_RDATA_REG, reg, &val);
619 pr_debug("CMU WR addr 0x%X value 0x%08X <-> 0x%08X\n", reg, data, val);
622 static void cmu_rd(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
623 u32 reg, u32 *data)
625 void __iomem *sds_base = ctx->sds_base;
627 if (cmu_type == REF_CMU)
628 reg += SERDES_PLL_REF_INDIRECT_OFFSET;
629 else
630 reg += SERDES_PLL_INDIRECT_OFFSET;
631 sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
632 SATA_ENET_SDS_IND_RDATA_REG, reg, data);
633 pr_debug("CMU RD addr 0x%X value 0x%08X\n", reg, *data);
636 static void cmu_toggle1to0(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
637 u32 reg, u32 bits)
639 u32 val;
641 cmu_rd(ctx, cmu_type, reg, &val);
642 val |= bits;
643 cmu_wr(ctx, cmu_type, reg, val);
644 cmu_rd(ctx, cmu_type, reg, &val);
645 val &= ~bits;
646 cmu_wr(ctx, cmu_type, reg, val);
649 static void cmu_clrbits(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
650 u32 reg, u32 bits)
652 u32 val;
654 cmu_rd(ctx, cmu_type, reg, &val);
655 val &= ~bits;
656 cmu_wr(ctx, cmu_type, reg, val);
659 static void cmu_setbits(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
660 u32 reg, u32 bits)
662 u32 val;
664 cmu_rd(ctx, cmu_type, reg, &val);
665 val |= bits;
666 cmu_wr(ctx, cmu_type, reg, val);
669 static void serdes_wr(struct xgene_phy_ctx *ctx, int lane, u32 reg, u32 data)
671 void __iomem *sds_base = ctx->sds_base;
672 u32 val;
674 reg += SERDES_INDIRECT_OFFSET;
675 reg += lane * SERDES_LANE_STRIDE;
676 sds_wr(sds_base, SATA_ENET_SDS_IND_CMD_REG,
677 SATA_ENET_SDS_IND_WDATA_REG, reg, data);
678 sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
679 SATA_ENET_SDS_IND_RDATA_REG, reg, &val);
680 pr_debug("SERDES WR addr 0x%X value 0x%08X <-> 0x%08X\n", reg, data,
681 val);
684 static void serdes_rd(struct xgene_phy_ctx *ctx, int lane, u32 reg, u32 *data)
686 void __iomem *sds_base = ctx->sds_base;
688 reg += SERDES_INDIRECT_OFFSET;
689 reg += lane * SERDES_LANE_STRIDE;
690 sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
691 SATA_ENET_SDS_IND_RDATA_REG, reg, data);
692 pr_debug("SERDES RD addr 0x%X value 0x%08X\n", reg, *data);
695 static void serdes_clrbits(struct xgene_phy_ctx *ctx, int lane, u32 reg,
696 u32 bits)
698 u32 val;
700 serdes_rd(ctx, lane, reg, &val);
701 val &= ~bits;
702 serdes_wr(ctx, lane, reg, val);
705 static void serdes_setbits(struct xgene_phy_ctx *ctx, int lane, u32 reg,
706 u32 bits)
708 u32 val;
710 serdes_rd(ctx, lane, reg, &val);
711 val |= bits;
712 serdes_wr(ctx, lane, reg, val);
715 static void xgene_phy_cfg_cmu_clk_type(struct xgene_phy_ctx *ctx,
716 enum cmu_type_t cmu_type,
717 enum clk_type_t clk_type)
719 u32 val;
721 /* Set the reset sequence delay for TX ready assertion */
722 cmu_rd(ctx, cmu_type, CMU_REG12, &val);
723 val = CMU_REG12_STATE_DELAY9_SET(val, 0x1);
724 cmu_wr(ctx, cmu_type, CMU_REG12, val);
725 /* Set the programmable stage delays between various enable stages */
726 cmu_wr(ctx, cmu_type, CMU_REG13, 0x0222);
727 cmu_wr(ctx, cmu_type, CMU_REG14, 0x2225);
729 /* Configure clock type */
730 if (clk_type == CLK_EXT_DIFF) {
731 /* Select external clock mux */
732 cmu_rd(ctx, cmu_type, CMU_REG0, &val);
733 val = CMU_REG0_PLL_REF_SEL_SET(val, 0x0);
734 cmu_wr(ctx, cmu_type, CMU_REG0, val);
735 /* Select CMOS as reference clock */
736 cmu_rd(ctx, cmu_type, CMU_REG1, &val);
737 val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x0);
738 cmu_wr(ctx, cmu_type, CMU_REG1, val);
739 dev_dbg(ctx->dev, "Set external reference clock\n");
740 } else if (clk_type == CLK_INT_DIFF) {
741 /* Select internal clock mux */
742 cmu_rd(ctx, cmu_type, CMU_REG0, &val);
743 val = CMU_REG0_PLL_REF_SEL_SET(val, 0x1);
744 cmu_wr(ctx, cmu_type, CMU_REG0, val);
745 /* Select CMOS as reference clock */
746 cmu_rd(ctx, cmu_type, CMU_REG1, &val);
747 val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x1);
748 cmu_wr(ctx, cmu_type, CMU_REG1, val);
749 dev_dbg(ctx->dev, "Set internal reference clock\n");
750 } else if (clk_type == CLK_INT_SING) {
752 * NOTE: This clock type is NOT support for controller
753 * whose internal clock shared in the PCIe controller
755 * Select internal clock mux
757 cmu_rd(ctx, cmu_type, CMU_REG1, &val);
758 val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x1);
759 cmu_wr(ctx, cmu_type, CMU_REG1, val);
760 /* Select CML as reference clock */
761 cmu_rd(ctx, cmu_type, CMU_REG1, &val);
762 val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x0);
763 cmu_wr(ctx, cmu_type, CMU_REG1, val);
764 dev_dbg(ctx->dev,
765 "Set internal single ended reference clock\n");
769 static void xgene_phy_sata_cfg_cmu_core(struct xgene_phy_ctx *ctx,
770 enum cmu_type_t cmu_type,
771 enum clk_type_t clk_type)
773 u32 val;
774 int ref_100MHz;
776 if (cmu_type == REF_CMU) {
777 /* Set VCO calibration voltage threshold */
778 cmu_rd(ctx, cmu_type, CMU_REG34, &val);
779 val = CMU_REG34_VCO_CAL_VTH_LO_MAX_SET(val, 0x7);
780 val = CMU_REG34_VCO_CAL_VTH_HI_MAX_SET(val, 0xc);
781 val = CMU_REG34_VCO_CAL_VTH_LO_MIN_SET(val, 0x3);
782 val = CMU_REG34_VCO_CAL_VTH_HI_MIN_SET(val, 0x8);
783 cmu_wr(ctx, cmu_type, CMU_REG34, val);
786 /* Set the VCO calibration counter */
787 cmu_rd(ctx, cmu_type, CMU_REG0, &val);
788 if (cmu_type == REF_CMU || preA3Chip)
789 val = CMU_REG0_CAL_COUNT_RESOL_SET(val, 0x4);
790 else
791 val = CMU_REG0_CAL_COUNT_RESOL_SET(val, 0x7);
792 cmu_wr(ctx, cmu_type, CMU_REG0, val);
794 /* Configure PLL for calibration */
795 cmu_rd(ctx, cmu_type, CMU_REG1, &val);
796 val = CMU_REG1_PLL_CP_SET(val, 0x1);
797 if (cmu_type == REF_CMU || preA3Chip)
798 val = CMU_REG1_PLL_CP_SEL_SET(val, 0x5);
799 else
800 val = CMU_REG1_PLL_CP_SEL_SET(val, 0x3);
801 if (cmu_type == REF_CMU)
802 val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x0);
803 else
804 val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x1);
805 cmu_wr(ctx, cmu_type, CMU_REG1, val);
807 if (cmu_type != REF_CMU)
808 cmu_clrbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
810 /* Configure the PLL for either 100MHz or 50MHz */
811 cmu_rd(ctx, cmu_type, CMU_REG2, &val);
812 if (cmu_type == REF_CMU) {
813 val = CMU_REG2_PLL_LFRES_SET(val, 0xa);
814 ref_100MHz = 1;
815 } else {
816 val = CMU_REG2_PLL_LFRES_SET(val, 0x3);
817 if (clk_type == CLK_EXT_DIFF)
818 ref_100MHz = 0;
819 else
820 ref_100MHz = 1;
822 if (ref_100MHz) {
823 val = CMU_REG2_PLL_FBDIV_SET(val, FBDIV_VAL_100M);
824 val = CMU_REG2_PLL_REFDIV_SET(val, REFDIV_VAL_100M);
825 } else {
826 val = CMU_REG2_PLL_FBDIV_SET(val, FBDIV_VAL_50M);
827 val = CMU_REG2_PLL_REFDIV_SET(val, REFDIV_VAL_50M);
829 cmu_wr(ctx, cmu_type, CMU_REG2, val);
831 /* Configure the VCO */
832 cmu_rd(ctx, cmu_type, CMU_REG3, &val);
833 if (cmu_type == REF_CMU) {
834 val = CMU_REG3_VCOVARSEL_SET(val, 0x3);
835 val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x10);
836 } else {
837 val = CMU_REG3_VCOVARSEL_SET(val, 0xF);
838 if (preA3Chip)
839 val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x15);
840 else
841 val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x1a);
842 val = CMU_REG3_VCO_MANMOMSEL_SET(val, 0x15);
844 cmu_wr(ctx, cmu_type, CMU_REG3, val);
846 /* Disable force PLL lock */
847 cmu_rd(ctx, cmu_type, CMU_REG26, &val);
848 val = CMU_REG26_FORCE_PLL_LOCK_SET(val, 0x0);
849 cmu_wr(ctx, cmu_type, CMU_REG26, val);
851 /* Setup PLL loop filter */
852 cmu_rd(ctx, cmu_type, CMU_REG5, &val);
853 val = CMU_REG5_PLL_LFSMCAP_SET(val, 0x3);
854 val = CMU_REG5_PLL_LFCAP_SET(val, 0x3);
855 if (cmu_type == REF_CMU || !preA3Chip)
856 val = CMU_REG5_PLL_LOCK_RESOLUTION_SET(val, 0x7);
857 else
858 val = CMU_REG5_PLL_LOCK_RESOLUTION_SET(val, 0x4);
859 cmu_wr(ctx, cmu_type, CMU_REG5, val);
861 /* Enable or disable manual calibration */
862 cmu_rd(ctx, cmu_type, CMU_REG6, &val);
863 val = CMU_REG6_PLL_VREGTRIM_SET(val, preA3Chip ? 0x0 : 0x2);
864 val = CMU_REG6_MAN_PVT_CAL_SET(val, preA3Chip ? 0x1 : 0x0);
865 cmu_wr(ctx, cmu_type, CMU_REG6, val);
867 /* Configure lane for 20-bits */
868 if (cmu_type == PHY_CMU) {
869 cmu_rd(ctx, cmu_type, CMU_REG9, &val);
870 val = CMU_REG9_TX_WORD_MODE_CH1_SET(val,
871 CMU_REG9_WORD_LEN_20BIT);
872 val = CMU_REG9_TX_WORD_MODE_CH0_SET(val,
873 CMU_REG9_WORD_LEN_20BIT);
874 val = CMU_REG9_PLL_POST_DIVBY2_SET(val, 0x1);
875 if (!preA3Chip) {
876 val = CMU_REG9_VBG_BYPASSB_SET(val, 0x0);
877 val = CMU_REG9_IGEN_BYPASS_SET(val , 0x0);
879 cmu_wr(ctx, cmu_type, CMU_REG9, val);
881 if (!preA3Chip) {
882 cmu_rd(ctx, cmu_type, CMU_REG10, &val);
883 val = CMU_REG10_VREG_REFSEL_SET(val, 0x1);
884 cmu_wr(ctx, cmu_type, CMU_REG10, val);
888 cmu_rd(ctx, cmu_type, CMU_REG16, &val);
889 val = CMU_REG16_CALIBRATION_DONE_OVERRIDE_SET(val, 0x1);
890 val = CMU_REG16_BYPASS_PLL_LOCK_SET(val, 0x1);
891 if (cmu_type == REF_CMU || preA3Chip)
892 val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x4);
893 else
894 val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x7);
895 cmu_wr(ctx, cmu_type, CMU_REG16, val);
897 /* Configure for SATA */
898 cmu_rd(ctx, cmu_type, CMU_REG30, &val);
899 val = CMU_REG30_PCIE_MODE_SET(val, 0x0);
900 val = CMU_REG30_LOCK_COUNT_SET(val, 0x3);
901 cmu_wr(ctx, cmu_type, CMU_REG30, val);
903 /* Disable state machine bypass */
904 cmu_wr(ctx, cmu_type, CMU_REG31, 0xF);
906 cmu_rd(ctx, cmu_type, CMU_REG32, &val);
907 val = CMU_REG32_PVT_CAL_WAIT_SEL_SET(val, 0x3);
908 if (cmu_type == REF_CMU || preA3Chip)
909 val = CMU_REG32_IREF_ADJ_SET(val, 0x3);
910 else
911 val = CMU_REG32_IREF_ADJ_SET(val, 0x1);
912 cmu_wr(ctx, cmu_type, CMU_REG32, val);
914 /* Set VCO calibration threshold */
915 if (cmu_type != REF_CMU && preA3Chip)
916 cmu_wr(ctx, cmu_type, CMU_REG34, 0x8d27);
917 else
918 cmu_wr(ctx, cmu_type, CMU_REG34, 0x873c);
920 /* Set CTLE Override and override waiting from state machine */
921 cmu_wr(ctx, cmu_type, CMU_REG37, 0xF00F);
924 static void xgene_phy_ssc_enable(struct xgene_phy_ctx *ctx,
925 enum cmu_type_t cmu_type)
927 u32 val;
929 /* Set SSC modulation value */
930 cmu_rd(ctx, cmu_type, CMU_REG35, &val);
931 val = CMU_REG35_PLL_SSC_MOD_SET(val, 98);
932 cmu_wr(ctx, cmu_type, CMU_REG35, val);
934 /* Enable SSC, set vertical step and DSM value */
935 cmu_rd(ctx, cmu_type, CMU_REG36, &val);
936 val = CMU_REG36_PLL_SSC_VSTEP_SET(val, 30);
937 val = CMU_REG36_PLL_SSC_EN_SET(val, 1);
938 val = CMU_REG36_PLL_SSC_DSMSEL_SET(val, 1);
939 cmu_wr(ctx, cmu_type, CMU_REG36, val);
941 /* Reset the PLL */
942 cmu_clrbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
943 cmu_setbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
945 /* Force VCO calibration to restart */
946 cmu_toggle1to0(ctx, cmu_type, CMU_REG32,
947 CMU_REG32_FORCE_VCOCAL_START_MASK);
950 static void xgene_phy_sata_cfg_lanes(struct xgene_phy_ctx *ctx)
952 u32 val;
953 u32 reg;
954 int i;
955 int lane;
957 for (lane = 0; lane < MAX_LANE; lane++) {
958 serdes_wr(ctx, lane, RXTX_REG147, 0x6);
960 /* Set boost control for quarter, half, and full rate */
961 serdes_rd(ctx, lane, RXTX_REG0, &val);
962 val = RXTX_REG0_CTLE_EQ_HR_SET(val, 0x10);
963 val = RXTX_REG0_CTLE_EQ_QR_SET(val, 0x10);
964 val = RXTX_REG0_CTLE_EQ_FR_SET(val, 0x10);
965 serdes_wr(ctx, lane, RXTX_REG0, val);
967 /* Set boost control value */
968 serdes_rd(ctx, lane, RXTX_REG1, &val);
969 val = RXTX_REG1_RXACVCM_SET(val, 0x7);
970 val = RXTX_REG1_CTLE_EQ_SET(val,
971 ctx->sata_param.txboostgain[lane * 3 +
972 ctx->sata_param.speed[lane]]);
973 serdes_wr(ctx, lane, RXTX_REG1, val);
975 /* Latch VTT value based on the termination to ground and
976 enable TX FIFO */
977 serdes_rd(ctx, lane, RXTX_REG2, &val);
978 val = RXTX_REG2_VTT_ENA_SET(val, 0x1);
979 val = RXTX_REG2_VTT_SEL_SET(val, 0x1);
980 val = RXTX_REG2_TX_FIFO_ENA_SET(val, 0x1);
981 serdes_wr(ctx, lane, RXTX_REG2, val);
983 /* Configure Tx for 20-bits */
984 serdes_rd(ctx, lane, RXTX_REG4, &val);
985 val = RXTX_REG4_TX_WORD_MODE_SET(val, CMU_REG9_WORD_LEN_20BIT);
986 serdes_wr(ctx, lane, RXTX_REG4, val);
988 if (!preA3Chip) {
989 serdes_rd(ctx, lane, RXTX_REG1, &val);
990 val = RXTX_REG1_RXVREG1_SET(val, 0x2);
991 val = RXTX_REG1_RXIREF_ADJ_SET(val, 0x2);
992 serdes_wr(ctx, lane, RXTX_REG1, val);
995 /* Set pre-emphasis first 1 and 2, and post-emphasis values */
996 serdes_rd(ctx, lane, RXTX_REG5, &val);
997 val = RXTX_REG5_TX_CN1_SET(val,
998 ctx->sata_param.txprecursor_cn1[lane * 3 +
999 ctx->sata_param.speed[lane]]);
1000 val = RXTX_REG5_TX_CP1_SET(val,
1001 ctx->sata_param.txpostcursor_cp1[lane * 3 +
1002 ctx->sata_param.speed[lane]]);
1003 val = RXTX_REG5_TX_CN2_SET(val,
1004 ctx->sata_param.txprecursor_cn2[lane * 3 +
1005 ctx->sata_param.speed[lane]]);
1006 serdes_wr(ctx, lane, RXTX_REG5, val);
1008 /* Set TX amplitude value */
1009 serdes_rd(ctx, lane, RXTX_REG6, &val);
1010 val = RXTX_REG6_TXAMP_CNTL_SET(val,
1011 ctx->sata_param.txamplitude[lane * 3 +
1012 ctx->sata_param.speed[lane]]);
1013 val = RXTX_REG6_TXAMP_ENA_SET(val, 0x1);
1014 val = RXTX_REG6_TX_IDLE_SET(val, 0x0);
1015 val = RXTX_REG6_RX_BIST_RESYNC_SET(val, 0x0);
1016 val = RXTX_REG6_RX_BIST_ERRCNT_RD_SET(val, 0x0);
1017 serdes_wr(ctx, lane, RXTX_REG6, val);
1019 /* Configure Rx for 20-bits */
1020 serdes_rd(ctx, lane, RXTX_REG7, &val);
1021 val = RXTX_REG7_BIST_ENA_RX_SET(val, 0x0);
1022 val = RXTX_REG7_RX_WORD_MODE_SET(val, CMU_REG9_WORD_LEN_20BIT);
1023 serdes_wr(ctx, lane, RXTX_REG7, val);
1025 /* Set CDR and LOS values and enable Rx SSC */
1026 serdes_rd(ctx, lane, RXTX_REG8, &val);
1027 val = RXTX_REG8_CDR_LOOP_ENA_SET(val, 0x1);
1028 val = RXTX_REG8_CDR_BYPASS_RXLOS_SET(val, 0x0);
1029 val = RXTX_REG8_SSC_ENABLE_SET(val, 0x1);
1030 val = RXTX_REG8_SD_DISABLE_SET(val, 0x0);
1031 val = RXTX_REG8_SD_VREF_SET(val, 0x4);
1032 serdes_wr(ctx, lane, RXTX_REG8, val);
1034 /* Set phase adjust upper/lower limits */
1035 serdes_rd(ctx, lane, RXTX_REG11, &val);
1036 val = RXTX_REG11_PHASE_ADJUST_LIMIT_SET(val, 0x0);
1037 serdes_wr(ctx, lane, RXTX_REG11, val);
1039 /* Enable Latch Off; disable SUMOS and Tx termination */
1040 serdes_rd(ctx, lane, RXTX_REG12, &val);
1041 val = RXTX_REG12_LATCH_OFF_ENA_SET(val, 0x1);
1042 val = RXTX_REG12_SUMOS_ENABLE_SET(val, 0x0);
1043 val = RXTX_REG12_RX_DET_TERM_ENABLE_SET(val, 0x0);
1044 serdes_wr(ctx, lane, RXTX_REG12, val);
1046 /* Set period error latch to 512T and enable BWL */
1047 serdes_rd(ctx, lane, RXTX_REG26, &val);
1048 val = RXTX_REG26_PERIOD_ERROR_LATCH_SET(val, 0x0);
1049 val = RXTX_REG26_BLWC_ENA_SET(val, 0x1);
1050 serdes_wr(ctx, lane, RXTX_REG26, val);
1052 serdes_wr(ctx, lane, RXTX_REG28, 0x0);
1054 /* Set DFE loop preset value */
1055 serdes_wr(ctx, lane, RXTX_REG31, 0x0);
1057 /* Set Eye Monitor counter width to 12-bit */
1058 serdes_rd(ctx, lane, RXTX_REG61, &val);
1059 val = RXTX_REG61_ISCAN_INBERT_SET(val, 0x1);
1060 val = RXTX_REG61_LOADFREQ_SHIFT_SET(val, 0x0);
1061 val = RXTX_REG61_EYE_COUNT_WIDTH_SEL_SET(val, 0x0);
1062 serdes_wr(ctx, lane, RXTX_REG61, val);
1064 serdes_rd(ctx, lane, RXTX_REG62, &val);
1065 val = RXTX_REG62_PERIOD_H1_QLATCH_SET(val, 0x0);
1066 serdes_wr(ctx, lane, RXTX_REG62, val);
1068 /* Set BW select tap X for DFE loop */
1069 for (i = 0; i < 9; i++) {
1070 reg = RXTX_REG81 + i * 2;
1071 serdes_rd(ctx, lane, reg, &val);
1072 val = RXTX_REG89_MU_TH7_SET(val, 0xe);
1073 val = RXTX_REG89_MU_TH8_SET(val, 0xe);
1074 val = RXTX_REG89_MU_TH9_SET(val, 0xe);
1075 serdes_wr(ctx, lane, reg, val);
1078 /* Set BW select tap X for frequency adjust loop */
1079 for (i = 0; i < 3; i++) {
1080 reg = RXTX_REG96 + i * 2;
1081 serdes_rd(ctx, lane, reg, &val);
1082 val = RXTX_REG96_MU_FREQ1_SET(val, 0x10);
1083 val = RXTX_REG96_MU_FREQ2_SET(val, 0x10);
1084 val = RXTX_REG96_MU_FREQ3_SET(val, 0x10);
1085 serdes_wr(ctx, lane, reg, val);
1088 /* Set BW select tap X for phase adjust loop */
1089 for (i = 0; i < 3; i++) {
1090 reg = RXTX_REG99 + i * 2;
1091 serdes_rd(ctx, lane, reg, &val);
1092 val = RXTX_REG99_MU_PHASE1_SET(val, 0x7);
1093 val = RXTX_REG99_MU_PHASE2_SET(val, 0x7);
1094 val = RXTX_REG99_MU_PHASE3_SET(val, 0x7);
1095 serdes_wr(ctx, lane, reg, val);
1098 serdes_rd(ctx, lane, RXTX_REG102, &val);
1099 val = RXTX_REG102_FREQLOOP_LIMIT_SET(val, 0x0);
1100 serdes_wr(ctx, lane, RXTX_REG102, val);
1102 serdes_wr(ctx, lane, RXTX_REG114, 0xffe0);
1104 serdes_rd(ctx, lane, RXTX_REG125, &val);
1105 val = RXTX_REG125_SIGN_PQ_SET(val,
1106 ctx->sata_param.txeyedirection[lane * 3 +
1107 ctx->sata_param.speed[lane]]);
1108 val = RXTX_REG125_PQ_REG_SET(val,
1109 ctx->sata_param.txeyetuning[lane * 3 +
1110 ctx->sata_param.speed[lane]]);
1111 val = RXTX_REG125_PHZ_MANUAL_SET(val, 0x1);
1112 serdes_wr(ctx, lane, RXTX_REG125, val);
1114 serdes_rd(ctx, lane, RXTX_REG127, &val);
1115 val = RXTX_REG127_LATCH_MAN_CAL_ENA_SET(val, 0x0);
1116 serdes_wr(ctx, lane, RXTX_REG127, val);
1118 serdes_rd(ctx, lane, RXTX_REG128, &val);
1119 val = RXTX_REG128_LATCH_CAL_WAIT_SEL_SET(val, 0x3);
1120 serdes_wr(ctx, lane, RXTX_REG128, val);
1122 serdes_rd(ctx, lane, RXTX_REG145, &val);
1123 val = RXTX_REG145_RXDFE_CONFIG_SET(val, 0x3);
1124 val = RXTX_REG145_TX_IDLE_SATA_SET(val, 0x0);
1125 if (preA3Chip) {
1126 val = RXTX_REG145_RXES_ENA_SET(val, 0x1);
1127 val = RXTX_REG145_RXVWES_LATENA_SET(val, 0x1);
1128 } else {
1129 val = RXTX_REG145_RXES_ENA_SET(val, 0x0);
1130 val = RXTX_REG145_RXVWES_LATENA_SET(val, 0x0);
1132 serdes_wr(ctx, lane, RXTX_REG145, val);
1135 * Set Rx LOS filter clock rate, sample rate, and threshold
1136 * windows
1138 for (i = 0; i < 4; i++) {
1139 reg = RXTX_REG148 + i * 2;
1140 serdes_wr(ctx, lane, reg, 0xFFFF);
1145 static int xgene_phy_cal_rdy_chk(struct xgene_phy_ctx *ctx,
1146 enum cmu_type_t cmu_type,
1147 enum clk_type_t clk_type)
1149 void __iomem *csr_serdes = ctx->sds_base;
1150 int loop;
1151 u32 val;
1153 /* Release PHY main reset */
1154 writel(0xdf, csr_serdes + SATA_ENET_SDS_RST_CTL);
1155 readl(csr_serdes + SATA_ENET_SDS_RST_CTL); /* Force a barrier */
1157 if (cmu_type != REF_CMU) {
1158 cmu_setbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
1160 * As per PHY design spec, the PLL reset requires a minimum
1161 * of 800us.
1163 usleep_range(800, 1000);
1165 cmu_rd(ctx, cmu_type, CMU_REG1, &val);
1166 val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x0);
1167 cmu_wr(ctx, cmu_type, CMU_REG1, val);
1169 * As per PHY design spec, the PLL auto calibration requires
1170 * a minimum of 800us.
1172 usleep_range(800, 1000);
1174 cmu_toggle1to0(ctx, cmu_type, CMU_REG32,
1175 CMU_REG32_FORCE_VCOCAL_START_MASK);
1177 * As per PHY design spec, the PLL requires a minimum of
1178 * 800us to settle.
1180 usleep_range(800, 1000);
1183 if (!preA3Chip)
1184 goto skip_manual_cal;
1187 * Configure the termination resister calibration
1188 * The serial receive pins, RXP/RXN, have TERMination resistor
1189 * that is required to be calibrated.
1191 cmu_rd(ctx, cmu_type, CMU_REG17, &val);
1192 val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x12);
1193 val = CMU_REG17_RESERVED_7_SET(val, 0x0);
1194 cmu_wr(ctx, cmu_type, CMU_REG17, val);
1195 cmu_toggle1to0(ctx, cmu_type, CMU_REG17,
1196 CMU_REG17_PVT_TERM_MAN_ENA_MASK);
1198 * The serial transmit pins, TXP/TXN, have Pull-UP and Pull-DOWN
1199 * resistors that are required to the calibrated.
1200 * Configure the pull DOWN calibration
1202 cmu_rd(ctx, cmu_type, CMU_REG17, &val);
1203 val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x29);
1204 val = CMU_REG17_RESERVED_7_SET(val, 0x0);
1205 cmu_wr(ctx, cmu_type, CMU_REG17, val);
1206 cmu_toggle1to0(ctx, cmu_type, CMU_REG16,
1207 CMU_REG16_PVT_DN_MAN_ENA_MASK);
1208 /* Configure the pull UP calibration */
1209 cmu_rd(ctx, cmu_type, CMU_REG17, &val);
1210 val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x28);
1211 val = CMU_REG17_RESERVED_7_SET(val, 0x0);
1212 cmu_wr(ctx, cmu_type, CMU_REG17, val);
1213 cmu_toggle1to0(ctx, cmu_type, CMU_REG16,
1214 CMU_REG16_PVT_UP_MAN_ENA_MASK);
1216 skip_manual_cal:
1217 /* Poll the PLL calibration completion status for at least 1 ms */
1218 loop = 100;
1219 do {
1220 cmu_rd(ctx, cmu_type, CMU_REG7, &val);
1221 if (CMU_REG7_PLL_CALIB_DONE_RD(val))
1222 break;
1224 * As per PHY design spec, PLL calibration status requires
1225 * a minimum of 10us to be updated.
1227 usleep_range(10, 100);
1228 } while (--loop > 0);
1230 cmu_rd(ctx, cmu_type, CMU_REG7, &val);
1231 dev_dbg(ctx->dev, "PLL calibration %s\n",
1232 CMU_REG7_PLL_CALIB_DONE_RD(val) ? "done" : "failed");
1233 if (CMU_REG7_VCO_CAL_FAIL_RD(val)) {
1234 dev_err(ctx->dev,
1235 "PLL calibration failed due to VCO failure\n");
1236 return -1;
1238 dev_dbg(ctx->dev, "PLL calibration successful\n");
1240 cmu_rd(ctx, cmu_type, CMU_REG15, &val);
1241 dev_dbg(ctx->dev, "PHY Tx is %sready\n", val & 0x300 ? "" : "not ");
1242 return 0;
1245 static void xgene_phy_pdwn_force_vco(struct xgene_phy_ctx *ctx,
1246 enum cmu_type_t cmu_type,
1247 enum clk_type_t clk_type)
1249 u32 val;
1251 dev_dbg(ctx->dev, "Reset VCO and re-start again\n");
1252 if (cmu_type == PHY_CMU) {
1253 cmu_rd(ctx, cmu_type, CMU_REG16, &val);
1254 val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x7);
1255 cmu_wr(ctx, cmu_type, CMU_REG16, val);
1258 cmu_toggle1to0(ctx, cmu_type, CMU_REG0, CMU_REG0_PDOWN_MASK);
1259 cmu_toggle1to0(ctx, cmu_type, CMU_REG32,
1260 CMU_REG32_FORCE_VCOCAL_START_MASK);
1263 static int xgene_phy_hw_init_sata(struct xgene_phy_ctx *ctx,
1264 enum clk_type_t clk_type, int ssc_enable)
1266 void __iomem *sds_base = ctx->sds_base;
1267 u32 val;
1268 int i;
1270 /* Configure the PHY for operation */
1271 dev_dbg(ctx->dev, "Reset PHY\n");
1272 /* Place PHY into reset */
1273 writel(0x0, sds_base + SATA_ENET_SDS_RST_CTL);
1274 val = readl(sds_base + SATA_ENET_SDS_RST_CTL); /* Force a barrier */
1275 /* Release PHY lane from reset (active high) */
1276 writel(0x20, sds_base + SATA_ENET_SDS_RST_CTL);
1277 readl(sds_base + SATA_ENET_SDS_RST_CTL); /* Force a barrier */
1278 /* Release all PHY module out of reset except PHY main reset */
1279 writel(0xde, sds_base + SATA_ENET_SDS_RST_CTL);
1280 readl(sds_base + SATA_ENET_SDS_RST_CTL); /* Force a barrier */
1282 /* Set the operation speed */
1283 val = readl(sds_base + SATA_ENET_SDS_CTL1);
1284 val = CFG_I_SPD_SEL_CDR_OVR1_SET(val,
1285 ctx->sata_param.txspeed[ctx->sata_param.speed[0]]);
1286 writel(val, sds_base + SATA_ENET_SDS_CTL1);
1288 dev_dbg(ctx->dev, "Set the customer pin mode to SATA\n");
1289 val = readl(sds_base + SATA_ENET_SDS_CTL0);
1290 val = REGSPEC_CFG_I_CUSTOMER_PIN_MODE0_SET(val, 0x4421);
1291 writel(val, sds_base + SATA_ENET_SDS_CTL0);
1293 /* Configure the clock macro unit (CMU) clock type */
1294 xgene_phy_cfg_cmu_clk_type(ctx, PHY_CMU, clk_type);
1296 /* Configure the clock macro */
1297 xgene_phy_sata_cfg_cmu_core(ctx, PHY_CMU, clk_type);
1299 /* Enable SSC if enabled */
1300 if (ssc_enable)
1301 xgene_phy_ssc_enable(ctx, PHY_CMU);
1303 /* Configure PHY lanes */
1304 xgene_phy_sata_cfg_lanes(ctx);
1306 /* Set Rx/Tx 20-bit */
1307 val = readl(sds_base + SATA_ENET_SDS_PCS_CTL0);
1308 val = REGSPEC_CFG_I_RX_WORDMODE0_SET(val, 0x3);
1309 val = REGSPEC_CFG_I_TX_WORDMODE0_SET(val, 0x3);
1310 writel(val, sds_base + SATA_ENET_SDS_PCS_CTL0);
1312 /* Start PLL calibration and try for three times */
1313 i = 10;
1314 do {
1315 if (!xgene_phy_cal_rdy_chk(ctx, PHY_CMU, clk_type))
1316 break;
1317 /* If failed, toggle the VCO power signal and start again */
1318 xgene_phy_pdwn_force_vco(ctx, PHY_CMU, clk_type);
1319 } while (--i > 0);
1320 /* Even on failure, allow to continue any way */
1321 if (i <= 0)
1322 dev_err(ctx->dev, "PLL calibration failed\n");
1324 return 0;
1327 static int xgene_phy_hw_initialize(struct xgene_phy_ctx *ctx,
1328 enum clk_type_t clk_type,
1329 int ssc_enable)
1331 int rc;
1333 dev_dbg(ctx->dev, "PHY init clk type %d\n", clk_type);
1335 if (ctx->mode == MODE_SATA) {
1336 rc = xgene_phy_hw_init_sata(ctx, clk_type, ssc_enable);
1337 if (rc)
1338 return rc;
1339 } else {
1340 dev_err(ctx->dev, "Un-supported customer pin mode %d\n",
1341 ctx->mode);
1342 return -ENODEV;
1345 return 0;
1349 * Receiver Offset Calibration:
1351 * Calibrate the receiver signal path offset in two steps - summar and
1352 * latch calibrations
1354 static void xgene_phy_force_lat_summer_cal(struct xgene_phy_ctx *ctx, int lane)
1356 int i;
1357 struct {
1358 u32 reg;
1359 u32 val;
1360 } serdes_reg[] = {
1361 {RXTX_REG38, 0x0},
1362 {RXTX_REG39, 0xff00},
1363 {RXTX_REG40, 0xffff},
1364 {RXTX_REG41, 0xffff},
1365 {RXTX_REG42, 0xffff},
1366 {RXTX_REG43, 0xffff},
1367 {RXTX_REG44, 0xffff},
1368 {RXTX_REG45, 0xffff},
1369 {RXTX_REG46, 0xffff},
1370 {RXTX_REG47, 0xfffc},
1371 {RXTX_REG48, 0x0},
1372 {RXTX_REG49, 0x0},
1373 {RXTX_REG50, 0x0},
1374 {RXTX_REG51, 0x0},
1375 {RXTX_REG52, 0x0},
1376 {RXTX_REG53, 0x0},
1377 {RXTX_REG54, 0x0},
1378 {RXTX_REG55, 0x0},
1381 /* Start SUMMER calibration */
1382 serdes_setbits(ctx, lane, RXTX_REG127,
1383 RXTX_REG127_FORCE_SUM_CAL_START_MASK);
1385 * As per PHY design spec, the Summer calibration requires a minimum
1386 * of 100us to complete.
1388 usleep_range(100, 500);
1389 serdes_clrbits(ctx, lane, RXTX_REG127,
1390 RXTX_REG127_FORCE_SUM_CAL_START_MASK);
1392 * As per PHY design spec, the auto calibration requires a minimum
1393 * of 100us to complete.
1395 usleep_range(100, 500);
1397 /* Start latch calibration */
1398 serdes_setbits(ctx, lane, RXTX_REG127,
1399 RXTX_REG127_FORCE_LAT_CAL_START_MASK);
1401 * As per PHY design spec, the latch calibration requires a minimum
1402 * of 100us to complete.
1404 usleep_range(100, 500);
1405 serdes_clrbits(ctx, lane, RXTX_REG127,
1406 RXTX_REG127_FORCE_LAT_CAL_START_MASK);
1408 /* Configure the PHY lane for calibration */
1409 serdes_wr(ctx, lane, RXTX_REG28, 0x7);
1410 serdes_wr(ctx, lane, RXTX_REG31, 0x7e00);
1411 serdes_clrbits(ctx, lane, RXTX_REG4,
1412 RXTX_REG4_TX_LOOPBACK_BUF_EN_MASK);
1413 serdes_clrbits(ctx, lane, RXTX_REG7,
1414 RXTX_REG7_LOOP_BACK_ENA_CTLE_MASK);
1415 for (i = 0; i < ARRAY_SIZE(serdes_reg); i++)
1416 serdes_wr(ctx, lane, serdes_reg[i].reg,
1417 serdes_reg[i].val);
1420 static void xgene_phy_reset_rxd(struct xgene_phy_ctx *ctx, int lane)
1422 /* Reset digital Rx */
1423 serdes_clrbits(ctx, lane, RXTX_REG7, RXTX_REG7_RESETB_RXD_MASK);
1424 /* As per PHY design spec, the reset requires a minimum of 100us. */
1425 usleep_range(100, 150);
1426 serdes_setbits(ctx, lane, RXTX_REG7, RXTX_REG7_RESETB_RXD_MASK);
1429 static int xgene_phy_get_avg(int accum, int samples)
1431 return (accum + (samples / 2)) / samples;
1434 static void xgene_phy_gen_avg_val(struct xgene_phy_ctx *ctx, int lane)
1436 int max_loop = 10;
1437 int avg_loop = 0;
1438 int lat_do = 0, lat_xo = 0, lat_eo = 0, lat_so = 0;
1439 int lat_de = 0, lat_xe = 0, lat_ee = 0, lat_se = 0;
1440 int sum_cal = 0;
1441 int lat_do_itr, lat_xo_itr, lat_eo_itr, lat_so_itr;
1442 int lat_de_itr, lat_xe_itr, lat_ee_itr, lat_se_itr;
1443 int sum_cal_itr;
1444 int fail_even;
1445 int fail_odd;
1446 u32 val;
1448 dev_dbg(ctx->dev, "Generating avg calibration value for lane %d\n",
1449 lane);
1451 /* Enable RX Hi-Z termination */
1452 serdes_setbits(ctx, lane, RXTX_REG12,
1453 RXTX_REG12_RX_DET_TERM_ENABLE_MASK);
1454 /* Turn off DFE */
1455 serdes_wr(ctx, lane, RXTX_REG28, 0x0000);
1456 /* DFE Presets to zero */
1457 serdes_wr(ctx, lane, RXTX_REG31, 0x0000);
1460 * Receiver Offset Calibration:
1461 * Calibrate the receiver signal path offset in two steps - summar
1462 * and latch calibration.
1463 * Runs the "Receiver Offset Calibration multiple times to determine
1464 * the average value to use.
1466 while (avg_loop < max_loop) {
1467 /* Start the calibration */
1468 xgene_phy_force_lat_summer_cal(ctx, lane);
1470 serdes_rd(ctx, lane, RXTX_REG21, &val);
1471 lat_do_itr = RXTX_REG21_DO_LATCH_CALOUT_RD(val);
1472 lat_xo_itr = RXTX_REG21_XO_LATCH_CALOUT_RD(val);
1473 fail_odd = RXTX_REG21_LATCH_CAL_FAIL_ODD_RD(val);
1475 serdes_rd(ctx, lane, RXTX_REG22, &val);
1476 lat_eo_itr = RXTX_REG22_EO_LATCH_CALOUT_RD(val);
1477 lat_so_itr = RXTX_REG22_SO_LATCH_CALOUT_RD(val);
1478 fail_even = RXTX_REG22_LATCH_CAL_FAIL_EVEN_RD(val);
1480 serdes_rd(ctx, lane, RXTX_REG23, &val);
1481 lat_de_itr = RXTX_REG23_DE_LATCH_CALOUT_RD(val);
1482 lat_xe_itr = RXTX_REG23_XE_LATCH_CALOUT_RD(val);
1484 serdes_rd(ctx, lane, RXTX_REG24, &val);
1485 lat_ee_itr = RXTX_REG24_EE_LATCH_CALOUT_RD(val);
1486 lat_se_itr = RXTX_REG24_SE_LATCH_CALOUT_RD(val);
1488 serdes_rd(ctx, lane, RXTX_REG121, &val);
1489 sum_cal_itr = RXTX_REG121_SUMOS_CAL_CODE_RD(val);
1491 /* Check for failure. If passed, sum them for averaging */
1492 if ((fail_even == 0 || fail_even == 1) &&
1493 (fail_odd == 0 || fail_odd == 1)) {
1494 lat_do += lat_do_itr;
1495 lat_xo += lat_xo_itr;
1496 lat_eo += lat_eo_itr;
1497 lat_so += lat_so_itr;
1498 lat_de += lat_de_itr;
1499 lat_xe += lat_xe_itr;
1500 lat_ee += lat_ee_itr;
1501 lat_se += lat_se_itr;
1502 sum_cal += sum_cal_itr;
1504 dev_dbg(ctx->dev, "Iteration %d:\n", avg_loop);
1505 dev_dbg(ctx->dev, "DO 0x%x XO 0x%x EO 0x%x SO 0x%x\n",
1506 lat_do_itr, lat_xo_itr, lat_eo_itr,
1507 lat_so_itr);
1508 dev_dbg(ctx->dev, "DE 0x%x XE 0x%x EE 0x%x SE 0x%x\n",
1509 lat_de_itr, lat_xe_itr, lat_ee_itr,
1510 lat_se_itr);
1511 dev_dbg(ctx->dev, "SUM 0x%x\n", sum_cal_itr);
1512 ++avg_loop;
1513 } else {
1514 dev_err(ctx->dev,
1515 "Receiver calibration failed at %d loop\n",
1516 avg_loop);
1518 xgene_phy_reset_rxd(ctx, lane);
1521 /* Update latch manual calibration with average value */
1522 serdes_rd(ctx, lane, RXTX_REG127, &val);
1523 val = RXTX_REG127_DO_LATCH_MANCAL_SET(val,
1524 xgene_phy_get_avg(lat_do, max_loop));
1525 val = RXTX_REG127_XO_LATCH_MANCAL_SET(val,
1526 xgene_phy_get_avg(lat_xo, max_loop));
1527 serdes_wr(ctx, lane, RXTX_REG127, val);
1529 serdes_rd(ctx, lane, RXTX_REG128, &val);
1530 val = RXTX_REG128_EO_LATCH_MANCAL_SET(val,
1531 xgene_phy_get_avg(lat_eo, max_loop));
1532 val = RXTX_REG128_SO_LATCH_MANCAL_SET(val,
1533 xgene_phy_get_avg(lat_so, max_loop));
1534 serdes_wr(ctx, lane, RXTX_REG128, val);
1536 serdes_rd(ctx, lane, RXTX_REG129, &val);
1537 val = RXTX_REG129_DE_LATCH_MANCAL_SET(val,
1538 xgene_phy_get_avg(lat_de, max_loop));
1539 val = RXTX_REG129_XE_LATCH_MANCAL_SET(val,
1540 xgene_phy_get_avg(lat_xe, max_loop));
1541 serdes_wr(ctx, lane, RXTX_REG129, val);
1543 serdes_rd(ctx, lane, RXTX_REG130, &val);
1544 val = RXTX_REG130_EE_LATCH_MANCAL_SET(val,
1545 xgene_phy_get_avg(lat_ee, max_loop));
1546 val = RXTX_REG130_SE_LATCH_MANCAL_SET(val,
1547 xgene_phy_get_avg(lat_se, max_loop));
1548 serdes_wr(ctx, lane, RXTX_REG130, val);
1550 /* Update SUMMER calibration with average value */
1551 serdes_rd(ctx, lane, RXTX_REG14, &val);
1552 val = RXTX_REG14_CLTE_LATCAL_MAN_PROG_SET(val,
1553 xgene_phy_get_avg(sum_cal, max_loop));
1554 serdes_wr(ctx, lane, RXTX_REG14, val);
1556 dev_dbg(ctx->dev, "Average Value:\n");
1557 dev_dbg(ctx->dev, "DO 0x%x XO 0x%x EO 0x%x SO 0x%x\n",
1558 xgene_phy_get_avg(lat_do, max_loop),
1559 xgene_phy_get_avg(lat_xo, max_loop),
1560 xgene_phy_get_avg(lat_eo, max_loop),
1561 xgene_phy_get_avg(lat_so, max_loop));
1562 dev_dbg(ctx->dev, "DE 0x%x XE 0x%x EE 0x%x SE 0x%x\n",
1563 xgene_phy_get_avg(lat_de, max_loop),
1564 xgene_phy_get_avg(lat_xe, max_loop),
1565 xgene_phy_get_avg(lat_ee, max_loop),
1566 xgene_phy_get_avg(lat_se, max_loop));
1567 dev_dbg(ctx->dev, "SUM 0x%x\n",
1568 xgene_phy_get_avg(sum_cal, max_loop));
1570 serdes_rd(ctx, lane, RXTX_REG14, &val);
1571 val = RXTX_REG14_CTLE_LATCAL_MAN_ENA_SET(val, 0x1);
1572 serdes_wr(ctx, lane, RXTX_REG14, val);
1573 dev_dbg(ctx->dev, "Enable Manual Summer calibration\n");
1575 serdes_rd(ctx, lane, RXTX_REG127, &val);
1576 val = RXTX_REG127_LATCH_MAN_CAL_ENA_SET(val, 0x1);
1577 dev_dbg(ctx->dev, "Enable Manual Latch calibration\n");
1578 serdes_wr(ctx, lane, RXTX_REG127, val);
1580 /* Disable RX Hi-Z termination */
1581 serdes_rd(ctx, lane, RXTX_REG12, &val);
1582 val = RXTX_REG12_RX_DET_TERM_ENABLE_SET(val, 0);
1583 serdes_wr(ctx, lane, RXTX_REG12, val);
1584 /* Turn on DFE */
1585 serdes_wr(ctx, lane, RXTX_REG28, 0x0007);
1586 /* Set DFE preset */
1587 serdes_wr(ctx, lane, RXTX_REG31, 0x7e00);
1590 static int xgene_phy_hw_init(struct phy *phy)
1592 struct xgene_phy_ctx *ctx = phy_get_drvdata(phy);
1593 int rc;
1594 int i;
1596 rc = xgene_phy_hw_initialize(ctx, CLK_EXT_DIFF, SSC_DISABLE);
1597 if (rc) {
1598 dev_err(ctx->dev, "PHY initialize failed %d\n", rc);
1599 return rc;
1602 /* Setup clock properly after PHY configuration */
1603 if (!IS_ERR(ctx->clk)) {
1604 /* HW requires an toggle of the clock */
1605 clk_prepare_enable(ctx->clk);
1606 clk_disable_unprepare(ctx->clk);
1607 clk_prepare_enable(ctx->clk);
1610 /* Compute average value */
1611 for (i = 0; i < MAX_LANE; i++)
1612 xgene_phy_gen_avg_val(ctx, i);
1614 dev_dbg(ctx->dev, "PHY initialized\n");
1615 return 0;
1618 static const struct phy_ops xgene_phy_ops = {
1619 .init = xgene_phy_hw_init,
1620 .owner = THIS_MODULE,
1623 static struct phy *xgene_phy_xlate(struct device *dev,
1624 struct of_phandle_args *args)
1626 struct xgene_phy_ctx *ctx = dev_get_drvdata(dev);
1628 if (args->args_count <= 0)
1629 return ERR_PTR(-EINVAL);
1630 if (args->args[0] < MODE_SATA || args->args[0] >= MODE_MAX)
1631 return ERR_PTR(-EINVAL);
1633 ctx->mode = args->args[0];
1634 return ctx->phy;
1637 static void xgene_phy_get_param(struct platform_device *pdev,
1638 const char *name, u32 *buffer,
1639 int count, u32 *default_val,
1640 u32 conv_factor)
1642 int i;
1644 if (!of_property_read_u32_array(pdev->dev.of_node, name, buffer,
1645 count)) {
1646 for (i = 0; i < count; i++)
1647 buffer[i] /= conv_factor;
1648 return;
1650 /* Does not exist, load default */
1651 for (i = 0; i < count; i++)
1652 buffer[i] = default_val[i % 3];
1655 static int xgene_phy_probe(struct platform_device *pdev)
1657 struct phy_provider *phy_provider;
1658 struct xgene_phy_ctx *ctx;
1659 struct resource *res;
1660 u32 default_spd[] = DEFAULT_SATA_SPD_SEL;
1661 u32 default_txboost_gain[] = DEFAULT_SATA_TXBOOST_GAIN;
1662 u32 default_txeye_direction[] = DEFAULT_SATA_TXEYEDIRECTION;
1663 u32 default_txeye_tuning[] = DEFAULT_SATA_TXEYETUNING;
1664 u32 default_txamp[] = DEFAULT_SATA_TXAMP;
1665 u32 default_txcn1[] = DEFAULT_SATA_TXCN1;
1666 u32 default_txcn2[] = DEFAULT_SATA_TXCN2;
1667 u32 default_txcp1[] = DEFAULT_SATA_TXCP1;
1668 int i;
1670 ctx = devm_kzalloc(&pdev->dev, sizeof(*ctx), GFP_KERNEL);
1671 if (!ctx)
1672 return -ENOMEM;
1674 ctx->dev = &pdev->dev;
1676 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1677 ctx->sds_base = devm_ioremap_resource(&pdev->dev, res);
1678 if (IS_ERR(ctx->sds_base))
1679 return PTR_ERR(ctx->sds_base);
1681 /* Retrieve optional clock */
1682 ctx->clk = clk_get(&pdev->dev, NULL);
1684 /* Load override paramaters */
1685 xgene_phy_get_param(pdev, "apm,tx-eye-tuning",
1686 ctx->sata_param.txeyetuning, 6, default_txeye_tuning, 1);
1687 xgene_phy_get_param(pdev, "apm,tx-eye-direction",
1688 ctx->sata_param.txeyedirection, 6, default_txeye_direction, 1);
1689 xgene_phy_get_param(pdev, "apm,tx-boost-gain",
1690 ctx->sata_param.txboostgain, 6, default_txboost_gain, 1);
1691 xgene_phy_get_param(pdev, "apm,tx-amplitude",
1692 ctx->sata_param.txamplitude, 6, default_txamp, 13300);
1693 xgene_phy_get_param(pdev, "apm,tx-pre-cursor1",
1694 ctx->sata_param.txprecursor_cn1, 6, default_txcn1, 18200);
1695 xgene_phy_get_param(pdev, "apm,tx-pre-cursor2",
1696 ctx->sata_param.txprecursor_cn2, 6, default_txcn2, 18200);
1697 xgene_phy_get_param(pdev, "apm,tx-post-cursor",
1698 ctx->sata_param.txpostcursor_cp1, 6, default_txcp1, 18200);
1699 xgene_phy_get_param(pdev, "apm,tx-speed",
1700 ctx->sata_param.txspeed, 3, default_spd, 1);
1701 for (i = 0; i < MAX_LANE; i++)
1702 ctx->sata_param.speed[i] = 2; /* Default to Gen3 */
1704 platform_set_drvdata(pdev, ctx);
1706 ctx->phy = devm_phy_create(ctx->dev, NULL, &xgene_phy_ops);
1707 if (IS_ERR(ctx->phy)) {
1708 dev_dbg(&pdev->dev, "Failed to create PHY\n");
1709 return PTR_ERR(ctx->phy);
1711 phy_set_drvdata(ctx->phy, ctx);
1713 phy_provider = devm_of_phy_provider_register(ctx->dev, xgene_phy_xlate);
1714 return PTR_ERR_OR_ZERO(phy_provider);
1717 static const struct of_device_id xgene_phy_of_match[] = {
1718 {.compatible = "apm,xgene-phy",},
1721 MODULE_DEVICE_TABLE(of, xgene_phy_of_match);
1723 static struct platform_driver xgene_phy_driver = {
1724 .probe = xgene_phy_probe,
1725 .driver = {
1726 .name = "xgene-phy",
1727 .of_match_table = xgene_phy_of_match,
1730 module_platform_driver(xgene_phy_driver);
1732 MODULE_DESCRIPTION("APM X-Gene Multi-Purpose PHY driver");
1733 MODULE_AUTHOR("Loc Ho <lho@apm.com>");
1734 MODULE_LICENSE("GPL v2");
1735 MODULE_VERSION("0.1");