dm thin metadata: fix __udivdi3 undefined on 32-bit
[linux/fpc-iii.git] / drivers / scsi / scsi_lib.c
blob887045ae5d10a04a0af81ea53e54b53d05ebf8c6
1 /*
2 * Copyright (C) 1999 Eric Youngdale
3 * Copyright (C) 2014 Christoph Hellwig
5 * SCSI queueing library.
6 * Initial versions: Eric Youngdale (eric@andante.org).
7 * Based upon conversations with large numbers
8 * of people at Linux Expo.
9 */
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/init.h>
20 #include <linux/pci.h>
21 #include <linux/delay.h>
22 #include <linux/hardirq.h>
23 #include <linux/scatterlist.h>
24 #include <linux/blk-mq.h>
25 #include <linux/ratelimit.h>
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_cmnd.h>
29 #include <scsi/scsi_dbg.h>
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_driver.h>
32 #include <scsi/scsi_eh.h>
33 #include <scsi/scsi_host.h>
34 #include <scsi/scsi_dh.h>
36 #include <trace/events/scsi.h>
38 #include "scsi_priv.h"
39 #include "scsi_logging.h"
42 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
43 #define SG_MEMPOOL_SIZE 2
45 struct scsi_host_sg_pool {
46 size_t size;
47 char *name;
48 struct kmem_cache *slab;
49 mempool_t *pool;
52 #define SP(x) { .size = x, "sgpool-" __stringify(x) }
53 #if (SCSI_MAX_SG_SEGMENTS < 32)
54 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
55 #endif
56 static struct scsi_host_sg_pool scsi_sg_pools[] = {
57 SP(8),
58 SP(16),
59 #if (SCSI_MAX_SG_SEGMENTS > 32)
60 SP(32),
61 #if (SCSI_MAX_SG_SEGMENTS > 64)
62 SP(64),
63 #if (SCSI_MAX_SG_SEGMENTS > 128)
64 SP(128),
65 #if (SCSI_MAX_SG_SEGMENTS > 256)
66 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
67 #endif
68 #endif
69 #endif
70 #endif
71 SP(SCSI_MAX_SG_SEGMENTS)
73 #undef SP
75 struct kmem_cache *scsi_sdb_cache;
78 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
79 * not change behaviour from the previous unplug mechanism, experimentation
80 * may prove this needs changing.
82 #define SCSI_QUEUE_DELAY 3
84 static void
85 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
87 struct Scsi_Host *host = cmd->device->host;
88 struct scsi_device *device = cmd->device;
89 struct scsi_target *starget = scsi_target(device);
92 * Set the appropriate busy bit for the device/host.
94 * If the host/device isn't busy, assume that something actually
95 * completed, and that we should be able to queue a command now.
97 * Note that the prior mid-layer assumption that any host could
98 * always queue at least one command is now broken. The mid-layer
99 * will implement a user specifiable stall (see
100 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
101 * if a command is requeued with no other commands outstanding
102 * either for the device or for the host.
104 switch (reason) {
105 case SCSI_MLQUEUE_HOST_BUSY:
106 atomic_set(&host->host_blocked, host->max_host_blocked);
107 break;
108 case SCSI_MLQUEUE_DEVICE_BUSY:
109 case SCSI_MLQUEUE_EH_RETRY:
110 atomic_set(&device->device_blocked,
111 device->max_device_blocked);
112 break;
113 case SCSI_MLQUEUE_TARGET_BUSY:
114 atomic_set(&starget->target_blocked,
115 starget->max_target_blocked);
116 break;
120 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
122 struct scsi_device *sdev = cmd->device;
123 struct request_queue *q = cmd->request->q;
125 blk_mq_requeue_request(cmd->request);
126 blk_mq_kick_requeue_list(q);
127 put_device(&sdev->sdev_gendev);
131 * __scsi_queue_insert - private queue insertion
132 * @cmd: The SCSI command being requeued
133 * @reason: The reason for the requeue
134 * @unbusy: Whether the queue should be unbusied
136 * This is a private queue insertion. The public interface
137 * scsi_queue_insert() always assumes the queue should be unbusied
138 * because it's always called before the completion. This function is
139 * for a requeue after completion, which should only occur in this
140 * file.
142 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
144 struct scsi_device *device = cmd->device;
145 struct request_queue *q = device->request_queue;
146 unsigned long flags;
148 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
149 "Inserting command %p into mlqueue\n", cmd));
151 scsi_set_blocked(cmd, reason);
154 * Decrement the counters, since these commands are no longer
155 * active on the host/device.
157 if (unbusy)
158 scsi_device_unbusy(device);
161 * Requeue this command. It will go before all other commands
162 * that are already in the queue. Schedule requeue work under
163 * lock such that the kblockd_schedule_work() call happens
164 * before blk_cleanup_queue() finishes.
166 cmd->result = 0;
167 if (q->mq_ops) {
168 scsi_mq_requeue_cmd(cmd);
169 return;
171 spin_lock_irqsave(q->queue_lock, flags);
172 blk_requeue_request(q, cmd->request);
173 kblockd_schedule_work(&device->requeue_work);
174 spin_unlock_irqrestore(q->queue_lock, flags);
178 * Function: scsi_queue_insert()
180 * Purpose: Insert a command in the midlevel queue.
182 * Arguments: cmd - command that we are adding to queue.
183 * reason - why we are inserting command to queue.
185 * Lock status: Assumed that lock is not held upon entry.
187 * Returns: Nothing.
189 * Notes: We do this for one of two cases. Either the host is busy
190 * and it cannot accept any more commands for the time being,
191 * or the device returned QUEUE_FULL and can accept no more
192 * commands.
193 * Notes: This could be called either from an interrupt context or a
194 * normal process context.
196 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
198 __scsi_queue_insert(cmd, reason, 1);
201 * scsi_execute - insert request and wait for the result
202 * @sdev: scsi device
203 * @cmd: scsi command
204 * @data_direction: data direction
205 * @buffer: data buffer
206 * @bufflen: len of buffer
207 * @sense: optional sense buffer
208 * @timeout: request timeout in seconds
209 * @retries: number of times to retry request
210 * @flags: or into request flags;
211 * @resid: optional residual length
213 * returns the req->errors value which is the scsi_cmnd result
214 * field.
216 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
217 int data_direction, void *buffer, unsigned bufflen,
218 unsigned char *sense, int timeout, int retries, u64 flags,
219 int *resid)
221 struct request *req;
222 int write = (data_direction == DMA_TO_DEVICE);
223 int ret = DRIVER_ERROR << 24;
225 req = blk_get_request(sdev->request_queue, write, __GFP_RECLAIM);
226 if (IS_ERR(req))
227 return ret;
228 blk_rq_set_block_pc(req);
230 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
231 buffer, bufflen, __GFP_RECLAIM))
232 goto out;
234 req->cmd_len = COMMAND_SIZE(cmd[0]);
235 memcpy(req->cmd, cmd, req->cmd_len);
236 req->sense = sense;
237 req->sense_len = 0;
238 req->retries = retries;
239 req->timeout = timeout;
240 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
243 * head injection *required* here otherwise quiesce won't work
245 blk_execute_rq(req->q, NULL, req, 1);
248 * Some devices (USB mass-storage in particular) may transfer
249 * garbage data together with a residue indicating that the data
250 * is invalid. Prevent the garbage from being misinterpreted
251 * and prevent security leaks by zeroing out the excess data.
253 if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
254 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
256 if (resid)
257 *resid = req->resid_len;
258 ret = req->errors;
259 out:
260 blk_put_request(req);
262 return ret;
264 EXPORT_SYMBOL(scsi_execute);
266 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
267 int data_direction, void *buffer, unsigned bufflen,
268 struct scsi_sense_hdr *sshdr, int timeout, int retries,
269 int *resid, u64 flags)
271 char *sense = NULL;
272 int result;
274 if (sshdr) {
275 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
276 if (!sense)
277 return DRIVER_ERROR << 24;
279 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
280 sense, timeout, retries, flags, resid);
281 if (sshdr)
282 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
284 kfree(sense);
285 return result;
287 EXPORT_SYMBOL(scsi_execute_req_flags);
290 * Function: scsi_init_cmd_errh()
292 * Purpose: Initialize cmd fields related to error handling.
294 * Arguments: cmd - command that is ready to be queued.
296 * Notes: This function has the job of initializing a number of
297 * fields related to error handling. Typically this will
298 * be called once for each command, as required.
300 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
302 cmd->serial_number = 0;
303 scsi_set_resid(cmd, 0);
304 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
305 if (cmd->cmd_len == 0)
306 cmd->cmd_len = scsi_command_size(cmd->cmnd);
309 void scsi_device_unbusy(struct scsi_device *sdev)
311 struct Scsi_Host *shost = sdev->host;
312 struct scsi_target *starget = scsi_target(sdev);
313 unsigned long flags;
315 atomic_dec(&shost->host_busy);
316 if (starget->can_queue > 0)
317 atomic_dec(&starget->target_busy);
319 if (unlikely(scsi_host_in_recovery(shost) &&
320 (shost->host_failed || shost->host_eh_scheduled))) {
321 spin_lock_irqsave(shost->host_lock, flags);
322 scsi_eh_wakeup(shost);
323 spin_unlock_irqrestore(shost->host_lock, flags);
326 atomic_dec(&sdev->device_busy);
329 static void scsi_kick_queue(struct request_queue *q)
331 if (q->mq_ops)
332 blk_mq_start_hw_queues(q);
333 else
334 blk_run_queue(q);
338 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
339 * and call blk_run_queue for all the scsi_devices on the target -
340 * including current_sdev first.
342 * Called with *no* scsi locks held.
344 static void scsi_single_lun_run(struct scsi_device *current_sdev)
346 struct Scsi_Host *shost = current_sdev->host;
347 struct scsi_device *sdev, *tmp;
348 struct scsi_target *starget = scsi_target(current_sdev);
349 unsigned long flags;
351 spin_lock_irqsave(shost->host_lock, flags);
352 starget->starget_sdev_user = NULL;
353 spin_unlock_irqrestore(shost->host_lock, flags);
356 * Call blk_run_queue for all LUNs on the target, starting with
357 * current_sdev. We race with others (to set starget_sdev_user),
358 * but in most cases, we will be first. Ideally, each LU on the
359 * target would get some limited time or requests on the target.
361 scsi_kick_queue(current_sdev->request_queue);
363 spin_lock_irqsave(shost->host_lock, flags);
364 if (starget->starget_sdev_user)
365 goto out;
366 list_for_each_entry_safe(sdev, tmp, &starget->devices,
367 same_target_siblings) {
368 if (sdev == current_sdev)
369 continue;
370 if (scsi_device_get(sdev))
371 continue;
373 spin_unlock_irqrestore(shost->host_lock, flags);
374 scsi_kick_queue(sdev->request_queue);
375 spin_lock_irqsave(shost->host_lock, flags);
377 scsi_device_put(sdev);
379 out:
380 spin_unlock_irqrestore(shost->host_lock, flags);
383 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
385 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
386 return true;
387 if (atomic_read(&sdev->device_blocked) > 0)
388 return true;
389 return false;
392 static inline bool scsi_target_is_busy(struct scsi_target *starget)
394 if (starget->can_queue > 0) {
395 if (atomic_read(&starget->target_busy) >= starget->can_queue)
396 return true;
397 if (atomic_read(&starget->target_blocked) > 0)
398 return true;
400 return false;
403 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
405 if (shost->can_queue > 0 &&
406 atomic_read(&shost->host_busy) >= shost->can_queue)
407 return true;
408 if (atomic_read(&shost->host_blocked) > 0)
409 return true;
410 if (shost->host_self_blocked)
411 return true;
412 return false;
415 static void scsi_starved_list_run(struct Scsi_Host *shost)
417 LIST_HEAD(starved_list);
418 struct scsi_device *sdev;
419 unsigned long flags;
421 spin_lock_irqsave(shost->host_lock, flags);
422 list_splice_init(&shost->starved_list, &starved_list);
424 while (!list_empty(&starved_list)) {
425 struct request_queue *slq;
428 * As long as shost is accepting commands and we have
429 * starved queues, call blk_run_queue. scsi_request_fn
430 * drops the queue_lock and can add us back to the
431 * starved_list.
433 * host_lock protects the starved_list and starved_entry.
434 * scsi_request_fn must get the host_lock before checking
435 * or modifying starved_list or starved_entry.
437 if (scsi_host_is_busy(shost))
438 break;
440 sdev = list_entry(starved_list.next,
441 struct scsi_device, starved_entry);
442 list_del_init(&sdev->starved_entry);
443 if (scsi_target_is_busy(scsi_target(sdev))) {
444 list_move_tail(&sdev->starved_entry,
445 &shost->starved_list);
446 continue;
450 * Once we drop the host lock, a racing scsi_remove_device()
451 * call may remove the sdev from the starved list and destroy
452 * it and the queue. Mitigate by taking a reference to the
453 * queue and never touching the sdev again after we drop the
454 * host lock. Note: if __scsi_remove_device() invokes
455 * blk_cleanup_queue() before the queue is run from this
456 * function then blk_run_queue() will return immediately since
457 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
459 slq = sdev->request_queue;
460 if (!blk_get_queue(slq))
461 continue;
462 spin_unlock_irqrestore(shost->host_lock, flags);
464 scsi_kick_queue(slq);
465 blk_put_queue(slq);
467 spin_lock_irqsave(shost->host_lock, flags);
469 /* put any unprocessed entries back */
470 list_splice(&starved_list, &shost->starved_list);
471 spin_unlock_irqrestore(shost->host_lock, flags);
475 * Function: scsi_run_queue()
477 * Purpose: Select a proper request queue to serve next
479 * Arguments: q - last request's queue
481 * Returns: Nothing
483 * Notes: The previous command was completely finished, start
484 * a new one if possible.
486 static void scsi_run_queue(struct request_queue *q)
488 struct scsi_device *sdev = q->queuedata;
490 if (scsi_target(sdev)->single_lun)
491 scsi_single_lun_run(sdev);
492 if (!list_empty(&sdev->host->starved_list))
493 scsi_starved_list_run(sdev->host);
495 if (q->mq_ops)
496 blk_mq_start_stopped_hw_queues(q, false);
497 else
498 blk_run_queue(q);
501 void scsi_requeue_run_queue(struct work_struct *work)
503 struct scsi_device *sdev;
504 struct request_queue *q;
506 sdev = container_of(work, struct scsi_device, requeue_work);
507 q = sdev->request_queue;
508 scsi_run_queue(q);
512 * Function: scsi_requeue_command()
514 * Purpose: Handle post-processing of completed commands.
516 * Arguments: q - queue to operate on
517 * cmd - command that may need to be requeued.
519 * Returns: Nothing
521 * Notes: After command completion, there may be blocks left
522 * over which weren't finished by the previous command
523 * this can be for a number of reasons - the main one is
524 * I/O errors in the middle of the request, in which case
525 * we need to request the blocks that come after the bad
526 * sector.
527 * Notes: Upon return, cmd is a stale pointer.
529 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
531 struct scsi_device *sdev = cmd->device;
532 struct request *req = cmd->request;
533 unsigned long flags;
535 spin_lock_irqsave(q->queue_lock, flags);
536 blk_unprep_request(req);
537 req->special = NULL;
538 scsi_put_command(cmd);
539 blk_requeue_request(q, req);
540 spin_unlock_irqrestore(q->queue_lock, flags);
542 scsi_run_queue(q);
544 put_device(&sdev->sdev_gendev);
547 void scsi_run_host_queues(struct Scsi_Host *shost)
549 struct scsi_device *sdev;
551 shost_for_each_device(sdev, shost)
552 scsi_run_queue(sdev->request_queue);
555 static inline unsigned int scsi_sgtable_index(unsigned short nents)
557 unsigned int index;
559 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
561 if (nents <= 8)
562 index = 0;
563 else
564 index = get_count_order(nents) - 3;
566 return index;
569 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
571 struct scsi_host_sg_pool *sgp;
573 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
574 mempool_free(sgl, sgp->pool);
577 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
579 struct scsi_host_sg_pool *sgp;
581 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
582 return mempool_alloc(sgp->pool, gfp_mask);
585 static void scsi_free_sgtable(struct scsi_data_buffer *sdb, bool mq)
587 if (mq && sdb->table.orig_nents <= SCSI_MAX_SG_SEGMENTS)
588 return;
589 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, mq, scsi_sg_free);
592 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents, bool mq)
594 struct scatterlist *first_chunk = NULL;
595 int ret;
597 BUG_ON(!nents);
599 if (mq) {
600 if (nents <= SCSI_MAX_SG_SEGMENTS) {
601 sdb->table.nents = sdb->table.orig_nents = nents;
602 sg_init_table(sdb->table.sgl, nents);
603 return 0;
605 first_chunk = sdb->table.sgl;
608 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
609 first_chunk, GFP_ATOMIC, scsi_sg_alloc);
610 if (unlikely(ret))
611 scsi_free_sgtable(sdb, mq);
612 return ret;
615 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
617 if (cmd->request->cmd_type == REQ_TYPE_FS) {
618 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
620 if (drv->uninit_command)
621 drv->uninit_command(cmd);
625 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
627 if (cmd->sdb.table.nents)
628 scsi_free_sgtable(&cmd->sdb, true);
629 if (cmd->request->next_rq && cmd->request->next_rq->special)
630 scsi_free_sgtable(cmd->request->next_rq->special, true);
631 if (scsi_prot_sg_count(cmd))
632 scsi_free_sgtable(cmd->prot_sdb, true);
635 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
637 struct scsi_device *sdev = cmd->device;
638 struct Scsi_Host *shost = sdev->host;
639 unsigned long flags;
641 scsi_mq_free_sgtables(cmd);
642 scsi_uninit_cmd(cmd);
644 if (shost->use_cmd_list) {
645 BUG_ON(list_empty(&cmd->list));
646 spin_lock_irqsave(&sdev->list_lock, flags);
647 list_del_init(&cmd->list);
648 spin_unlock_irqrestore(&sdev->list_lock, flags);
653 * Function: scsi_release_buffers()
655 * Purpose: Free resources allocate for a scsi_command.
657 * Arguments: cmd - command that we are bailing.
659 * Lock status: Assumed that no lock is held upon entry.
661 * Returns: Nothing
663 * Notes: In the event that an upper level driver rejects a
664 * command, we must release resources allocated during
665 * the __init_io() function. Primarily this would involve
666 * the scatter-gather table.
668 static void scsi_release_buffers(struct scsi_cmnd *cmd)
670 if (cmd->sdb.table.nents)
671 scsi_free_sgtable(&cmd->sdb, false);
673 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
675 if (scsi_prot_sg_count(cmd))
676 scsi_free_sgtable(cmd->prot_sdb, false);
679 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
681 struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
683 scsi_free_sgtable(bidi_sdb, false);
684 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
685 cmd->request->next_rq->special = NULL;
688 static bool scsi_end_request(struct request *req, int error,
689 unsigned int bytes, unsigned int bidi_bytes)
691 struct scsi_cmnd *cmd = req->special;
692 struct scsi_device *sdev = cmd->device;
693 struct request_queue *q = sdev->request_queue;
695 if (blk_update_request(req, error, bytes))
696 return true;
698 /* Bidi request must be completed as a whole */
699 if (unlikely(bidi_bytes) &&
700 blk_update_request(req->next_rq, error, bidi_bytes))
701 return true;
703 if (blk_queue_add_random(q))
704 add_disk_randomness(req->rq_disk);
706 if (req->mq_ctx) {
708 * In the MQ case the command gets freed by __blk_mq_end_request,
709 * so we have to do all cleanup that depends on it earlier.
711 * We also can't kick the queues from irq context, so we
712 * will have to defer it to a workqueue.
714 scsi_mq_uninit_cmd(cmd);
716 __blk_mq_end_request(req, error);
718 if (scsi_target(sdev)->single_lun ||
719 !list_empty(&sdev->host->starved_list))
720 kblockd_schedule_work(&sdev->requeue_work);
721 else
722 blk_mq_start_stopped_hw_queues(q, true);
723 } else {
724 unsigned long flags;
726 if (bidi_bytes)
727 scsi_release_bidi_buffers(cmd);
729 spin_lock_irqsave(q->queue_lock, flags);
730 blk_finish_request(req, error);
731 spin_unlock_irqrestore(q->queue_lock, flags);
733 scsi_release_buffers(cmd);
735 scsi_put_command(cmd);
736 scsi_run_queue(q);
739 put_device(&sdev->sdev_gendev);
740 return false;
744 * __scsi_error_from_host_byte - translate SCSI error code into errno
745 * @cmd: SCSI command (unused)
746 * @result: scsi error code
748 * Translate SCSI error code into standard UNIX errno.
749 * Return values:
750 * -ENOLINK temporary transport failure
751 * -EREMOTEIO permanent target failure, do not retry
752 * -EBADE permanent nexus failure, retry on other path
753 * -ENOSPC No write space available
754 * -ENODATA Medium error
755 * -EIO unspecified I/O error
757 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
759 int error = 0;
761 switch(host_byte(result)) {
762 case DID_TRANSPORT_FAILFAST:
763 error = -ENOLINK;
764 break;
765 case DID_TARGET_FAILURE:
766 set_host_byte(cmd, DID_OK);
767 error = -EREMOTEIO;
768 break;
769 case DID_NEXUS_FAILURE:
770 set_host_byte(cmd, DID_OK);
771 error = -EBADE;
772 break;
773 case DID_ALLOC_FAILURE:
774 set_host_byte(cmd, DID_OK);
775 error = -ENOSPC;
776 break;
777 case DID_MEDIUM_ERROR:
778 set_host_byte(cmd, DID_OK);
779 error = -ENODATA;
780 break;
781 default:
782 error = -EIO;
783 break;
786 return error;
790 * Function: scsi_io_completion()
792 * Purpose: Completion processing for block device I/O requests.
794 * Arguments: cmd - command that is finished.
796 * Lock status: Assumed that no lock is held upon entry.
798 * Returns: Nothing
800 * Notes: We will finish off the specified number of sectors. If we
801 * are done, the command block will be released and the queue
802 * function will be goosed. If we are not done then we have to
803 * figure out what to do next:
805 * a) We can call scsi_requeue_command(). The request
806 * will be unprepared and put back on the queue. Then
807 * a new command will be created for it. This should
808 * be used if we made forward progress, or if we want
809 * to switch from READ(10) to READ(6) for example.
811 * b) We can call __scsi_queue_insert(). The request will
812 * be put back on the queue and retried using the same
813 * command as before, possibly after a delay.
815 * c) We can call scsi_end_request() with -EIO to fail
816 * the remainder of the request.
818 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
820 int result = cmd->result;
821 struct request_queue *q = cmd->device->request_queue;
822 struct request *req = cmd->request;
823 int error = 0;
824 struct scsi_sense_hdr sshdr;
825 bool sense_valid = false;
826 int sense_deferred = 0, level = 0;
827 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
828 ACTION_DELAYED_RETRY} action;
829 unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
831 if (result) {
832 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
833 if (sense_valid)
834 sense_deferred = scsi_sense_is_deferred(&sshdr);
837 if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
838 if (result) {
839 if (sense_valid && req->sense) {
841 * SG_IO wants current and deferred errors
843 int len = 8 + cmd->sense_buffer[7];
845 if (len > SCSI_SENSE_BUFFERSIZE)
846 len = SCSI_SENSE_BUFFERSIZE;
847 memcpy(req->sense, cmd->sense_buffer, len);
848 req->sense_len = len;
850 if (!sense_deferred)
851 error = __scsi_error_from_host_byte(cmd, result);
854 * __scsi_error_from_host_byte may have reset the host_byte
856 req->errors = cmd->result;
858 req->resid_len = scsi_get_resid(cmd);
860 if (scsi_bidi_cmnd(cmd)) {
862 * Bidi commands Must be complete as a whole,
863 * both sides at once.
865 req->next_rq->resid_len = scsi_in(cmd)->resid;
866 if (scsi_end_request(req, 0, blk_rq_bytes(req),
867 blk_rq_bytes(req->next_rq)))
868 BUG();
869 return;
871 } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
873 * Certain non BLOCK_PC requests are commands that don't
874 * actually transfer anything (FLUSH), so cannot use
875 * good_bytes != blk_rq_bytes(req) as the signal for an error.
876 * This sets the error explicitly for the problem case.
878 error = __scsi_error_from_host_byte(cmd, result);
881 /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
882 BUG_ON(blk_bidi_rq(req));
885 * Next deal with any sectors which we were able to correctly
886 * handle.
888 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
889 "%u sectors total, %d bytes done.\n",
890 blk_rq_sectors(req), good_bytes));
893 * Recovered errors need reporting, but they're always treated
894 * as success, so fiddle the result code here. For BLOCK_PC
895 * we already took a copy of the original into rq->errors which
896 * is what gets returned to the user
898 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
899 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
900 * print since caller wants ATA registers. Only occurs on
901 * SCSI ATA PASS_THROUGH commands when CK_COND=1
903 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
905 else if (!(req->cmd_flags & REQ_QUIET))
906 scsi_print_sense(cmd);
907 result = 0;
908 /* BLOCK_PC may have set error */
909 error = 0;
913 * special case: failed zero length commands always need to
914 * drop down into the retry code. Otherwise, if we finished
915 * all bytes in the request we are done now.
917 if (!(blk_rq_bytes(req) == 0 && error) &&
918 !scsi_end_request(req, error, good_bytes, 0))
919 return;
922 * Kill remainder if no retrys.
924 if (error && scsi_noretry_cmd(cmd)) {
925 if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
926 BUG();
927 return;
931 * If there had been no error, but we have leftover bytes in the
932 * requeues just queue the command up again.
934 if (result == 0)
935 goto requeue;
937 error = __scsi_error_from_host_byte(cmd, result);
939 if (host_byte(result) == DID_RESET) {
940 /* Third party bus reset or reset for error recovery
941 * reasons. Just retry the command and see what
942 * happens.
944 action = ACTION_RETRY;
945 } else if (sense_valid && !sense_deferred) {
946 switch (sshdr.sense_key) {
947 case UNIT_ATTENTION:
948 if (cmd->device->removable) {
949 /* Detected disc change. Set a bit
950 * and quietly refuse further access.
952 cmd->device->changed = 1;
953 action = ACTION_FAIL;
954 } else {
955 /* Must have been a power glitch, or a
956 * bus reset. Could not have been a
957 * media change, so we just retry the
958 * command and see what happens.
960 action = ACTION_RETRY;
962 break;
963 case ILLEGAL_REQUEST:
964 /* If we had an ILLEGAL REQUEST returned, then
965 * we may have performed an unsupported
966 * command. The only thing this should be
967 * would be a ten byte read where only a six
968 * byte read was supported. Also, on a system
969 * where READ CAPACITY failed, we may have
970 * read past the end of the disk.
972 if ((cmd->device->use_10_for_rw &&
973 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
974 (cmd->cmnd[0] == READ_10 ||
975 cmd->cmnd[0] == WRITE_10)) {
976 /* This will issue a new 6-byte command. */
977 cmd->device->use_10_for_rw = 0;
978 action = ACTION_REPREP;
979 } else if (sshdr.asc == 0x10) /* DIX */ {
980 action = ACTION_FAIL;
981 error = -EILSEQ;
982 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
983 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
984 action = ACTION_FAIL;
985 error = -EREMOTEIO;
986 } else
987 action = ACTION_FAIL;
988 break;
989 case ABORTED_COMMAND:
990 action = ACTION_FAIL;
991 if (sshdr.asc == 0x10) /* DIF */
992 error = -EILSEQ;
993 break;
994 case NOT_READY:
995 /* If the device is in the process of becoming
996 * ready, or has a temporary blockage, retry.
998 if (sshdr.asc == 0x04) {
999 switch (sshdr.ascq) {
1000 case 0x01: /* becoming ready */
1001 case 0x04: /* format in progress */
1002 case 0x05: /* rebuild in progress */
1003 case 0x06: /* recalculation in progress */
1004 case 0x07: /* operation in progress */
1005 case 0x08: /* Long write in progress */
1006 case 0x09: /* self test in progress */
1007 case 0x14: /* space allocation in progress */
1008 action = ACTION_DELAYED_RETRY;
1009 break;
1010 default:
1011 action = ACTION_FAIL;
1012 break;
1014 } else
1015 action = ACTION_FAIL;
1016 break;
1017 case VOLUME_OVERFLOW:
1018 /* See SSC3rXX or current. */
1019 action = ACTION_FAIL;
1020 break;
1021 default:
1022 action = ACTION_FAIL;
1023 break;
1025 } else
1026 action = ACTION_FAIL;
1028 if (action != ACTION_FAIL &&
1029 time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
1030 action = ACTION_FAIL;
1032 switch (action) {
1033 case ACTION_FAIL:
1034 /* Give up and fail the remainder of the request */
1035 if (!(req->cmd_flags & REQ_QUIET)) {
1036 static DEFINE_RATELIMIT_STATE(_rs,
1037 DEFAULT_RATELIMIT_INTERVAL,
1038 DEFAULT_RATELIMIT_BURST);
1040 if (unlikely(scsi_logging_level))
1041 level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
1042 SCSI_LOG_MLCOMPLETE_BITS);
1045 * if logging is enabled the failure will be printed
1046 * in scsi_log_completion(), so avoid duplicate messages
1048 if (!level && __ratelimit(&_rs)) {
1049 scsi_print_result(cmd, NULL, FAILED);
1050 if (driver_byte(result) & DRIVER_SENSE)
1051 scsi_print_sense(cmd);
1052 scsi_print_command(cmd);
1055 if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
1056 return;
1057 /*FALLTHRU*/
1058 case ACTION_REPREP:
1059 requeue:
1060 /* Unprep the request and put it back at the head of the queue.
1061 * A new command will be prepared and issued.
1063 if (q->mq_ops) {
1064 cmd->request->cmd_flags &= ~REQ_DONTPREP;
1065 scsi_mq_uninit_cmd(cmd);
1066 scsi_mq_requeue_cmd(cmd);
1067 } else {
1068 scsi_release_buffers(cmd);
1069 scsi_requeue_command(q, cmd);
1071 break;
1072 case ACTION_RETRY:
1073 /* Retry the same command immediately */
1074 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1075 break;
1076 case ACTION_DELAYED_RETRY:
1077 /* Retry the same command after a delay */
1078 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1079 break;
1083 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1085 int count;
1088 * If sg table allocation fails, requeue request later.
1090 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1091 req->mq_ctx != NULL)))
1092 return BLKPREP_DEFER;
1095 * Next, walk the list, and fill in the addresses and sizes of
1096 * each segment.
1098 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1099 BUG_ON(count > sdb->table.nents);
1100 sdb->table.nents = count;
1101 sdb->length = blk_rq_bytes(req);
1102 return BLKPREP_OK;
1106 * Function: scsi_init_io()
1108 * Purpose: SCSI I/O initialize function.
1110 * Arguments: cmd - Command descriptor we wish to initialize
1112 * Returns: 0 on success
1113 * BLKPREP_DEFER if the failure is retryable
1114 * BLKPREP_KILL if the failure is fatal
1116 int scsi_init_io(struct scsi_cmnd *cmd)
1118 struct scsi_device *sdev = cmd->device;
1119 struct request *rq = cmd->request;
1120 bool is_mq = (rq->mq_ctx != NULL);
1121 int error;
1123 if (WARN_ON_ONCE(!rq->nr_phys_segments))
1124 return -EINVAL;
1126 error = scsi_init_sgtable(rq, &cmd->sdb);
1127 if (error)
1128 goto err_exit;
1130 if (blk_bidi_rq(rq)) {
1131 if (!rq->q->mq_ops) {
1132 struct scsi_data_buffer *bidi_sdb =
1133 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1134 if (!bidi_sdb) {
1135 error = BLKPREP_DEFER;
1136 goto err_exit;
1139 rq->next_rq->special = bidi_sdb;
1142 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1143 if (error)
1144 goto err_exit;
1147 if (blk_integrity_rq(rq)) {
1148 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1149 int ivecs, count;
1151 if (prot_sdb == NULL) {
1153 * This can happen if someone (e.g. multipath)
1154 * queues a command to a device on an adapter
1155 * that does not support DIX.
1157 WARN_ON_ONCE(1);
1158 error = BLKPREP_KILL;
1159 goto err_exit;
1162 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1164 if (scsi_alloc_sgtable(prot_sdb, ivecs, is_mq)) {
1165 error = BLKPREP_DEFER;
1166 goto err_exit;
1169 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1170 prot_sdb->table.sgl);
1171 BUG_ON(unlikely(count > ivecs));
1172 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1174 cmd->prot_sdb = prot_sdb;
1175 cmd->prot_sdb->table.nents = count;
1178 return BLKPREP_OK;
1179 err_exit:
1180 if (is_mq) {
1181 scsi_mq_free_sgtables(cmd);
1182 } else {
1183 scsi_release_buffers(cmd);
1184 cmd->request->special = NULL;
1185 scsi_put_command(cmd);
1186 put_device(&sdev->sdev_gendev);
1188 return error;
1190 EXPORT_SYMBOL(scsi_init_io);
1192 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1193 struct request *req)
1195 struct scsi_cmnd *cmd;
1197 if (!req->special) {
1198 /* Bail if we can't get a reference to the device */
1199 if (!get_device(&sdev->sdev_gendev))
1200 return NULL;
1202 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1203 if (unlikely(!cmd)) {
1204 put_device(&sdev->sdev_gendev);
1205 return NULL;
1207 req->special = cmd;
1208 } else {
1209 cmd = req->special;
1212 /* pull a tag out of the request if we have one */
1213 cmd->tag = req->tag;
1214 cmd->request = req;
1216 cmd->cmnd = req->cmd;
1217 cmd->prot_op = SCSI_PROT_NORMAL;
1219 return cmd;
1222 static int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1224 struct scsi_cmnd *cmd = req->special;
1227 * BLOCK_PC requests may transfer data, in which case they must
1228 * a bio attached to them. Or they might contain a SCSI command
1229 * that does not transfer data, in which case they may optionally
1230 * submit a request without an attached bio.
1232 if (req->bio) {
1233 int ret = scsi_init_io(cmd);
1234 if (unlikely(ret))
1235 return ret;
1236 } else {
1237 BUG_ON(blk_rq_bytes(req));
1239 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1242 cmd->cmd_len = req->cmd_len;
1243 cmd->transfersize = blk_rq_bytes(req);
1244 cmd->allowed = req->retries;
1245 return BLKPREP_OK;
1249 * Setup a REQ_TYPE_FS command. These are simple request from filesystems
1250 * that still need to be translated to SCSI CDBs from the ULD.
1252 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1254 struct scsi_cmnd *cmd = req->special;
1256 if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1257 int ret = sdev->handler->prep_fn(sdev, req);
1258 if (ret != BLKPREP_OK)
1259 return ret;
1262 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1263 return scsi_cmd_to_driver(cmd)->init_command(cmd);
1266 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1268 struct scsi_cmnd *cmd = req->special;
1270 if (!blk_rq_bytes(req))
1271 cmd->sc_data_direction = DMA_NONE;
1272 else if (rq_data_dir(req) == WRITE)
1273 cmd->sc_data_direction = DMA_TO_DEVICE;
1274 else
1275 cmd->sc_data_direction = DMA_FROM_DEVICE;
1277 switch (req->cmd_type) {
1278 case REQ_TYPE_FS:
1279 return scsi_setup_fs_cmnd(sdev, req);
1280 case REQ_TYPE_BLOCK_PC:
1281 return scsi_setup_blk_pc_cmnd(sdev, req);
1282 default:
1283 return BLKPREP_KILL;
1287 static int
1288 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1290 int ret = BLKPREP_OK;
1293 * If the device is not in running state we will reject some
1294 * or all commands.
1296 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1297 switch (sdev->sdev_state) {
1298 case SDEV_OFFLINE:
1299 case SDEV_TRANSPORT_OFFLINE:
1301 * If the device is offline we refuse to process any
1302 * commands. The device must be brought online
1303 * before trying any recovery commands.
1305 sdev_printk(KERN_ERR, sdev,
1306 "rejecting I/O to offline device\n");
1307 ret = BLKPREP_KILL;
1308 break;
1309 case SDEV_DEL:
1311 * If the device is fully deleted, we refuse to
1312 * process any commands as well.
1314 sdev_printk(KERN_ERR, sdev,
1315 "rejecting I/O to dead device\n");
1316 ret = BLKPREP_KILL;
1317 break;
1318 case SDEV_BLOCK:
1319 case SDEV_CREATED_BLOCK:
1320 ret = BLKPREP_DEFER;
1321 break;
1322 case SDEV_QUIESCE:
1324 * If the devices is blocked we defer normal commands.
1326 if (!(req->cmd_flags & REQ_PREEMPT))
1327 ret = BLKPREP_DEFER;
1328 break;
1329 default:
1331 * For any other not fully online state we only allow
1332 * special commands. In particular any user initiated
1333 * command is not allowed.
1335 if (!(req->cmd_flags & REQ_PREEMPT))
1336 ret = BLKPREP_KILL;
1337 break;
1340 return ret;
1343 static int
1344 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1346 struct scsi_device *sdev = q->queuedata;
1348 switch (ret) {
1349 case BLKPREP_KILL:
1350 req->errors = DID_NO_CONNECT << 16;
1351 /* release the command and kill it */
1352 if (req->special) {
1353 struct scsi_cmnd *cmd = req->special;
1354 scsi_release_buffers(cmd);
1355 scsi_put_command(cmd);
1356 put_device(&sdev->sdev_gendev);
1357 req->special = NULL;
1359 break;
1360 case BLKPREP_DEFER:
1362 * If we defer, the blk_peek_request() returns NULL, but the
1363 * queue must be restarted, so we schedule a callback to happen
1364 * shortly.
1366 if (atomic_read(&sdev->device_busy) == 0)
1367 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1368 break;
1369 default:
1370 req->cmd_flags |= REQ_DONTPREP;
1373 return ret;
1376 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1378 struct scsi_device *sdev = q->queuedata;
1379 struct scsi_cmnd *cmd;
1380 int ret;
1382 ret = scsi_prep_state_check(sdev, req);
1383 if (ret != BLKPREP_OK)
1384 goto out;
1386 cmd = scsi_get_cmd_from_req(sdev, req);
1387 if (unlikely(!cmd)) {
1388 ret = BLKPREP_DEFER;
1389 goto out;
1392 ret = scsi_setup_cmnd(sdev, req);
1393 out:
1394 return scsi_prep_return(q, req, ret);
1397 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1399 scsi_uninit_cmd(req->special);
1403 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1404 * return 0.
1406 * Called with the queue_lock held.
1408 static inline int scsi_dev_queue_ready(struct request_queue *q,
1409 struct scsi_device *sdev)
1411 unsigned int busy;
1413 busy = atomic_inc_return(&sdev->device_busy) - 1;
1414 if (atomic_read(&sdev->device_blocked)) {
1415 if (busy)
1416 goto out_dec;
1419 * unblock after device_blocked iterates to zero
1421 if (atomic_dec_return(&sdev->device_blocked) > 0) {
1423 * For the MQ case we take care of this in the caller.
1425 if (!q->mq_ops)
1426 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1427 goto out_dec;
1429 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1430 "unblocking device at zero depth\n"));
1433 if (busy >= sdev->queue_depth)
1434 goto out_dec;
1436 return 1;
1437 out_dec:
1438 atomic_dec(&sdev->device_busy);
1439 return 0;
1443 * scsi_target_queue_ready: checks if there we can send commands to target
1444 * @sdev: scsi device on starget to check.
1446 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1447 struct scsi_device *sdev)
1449 struct scsi_target *starget = scsi_target(sdev);
1450 unsigned int busy;
1452 if (starget->single_lun) {
1453 spin_lock_irq(shost->host_lock);
1454 if (starget->starget_sdev_user &&
1455 starget->starget_sdev_user != sdev) {
1456 spin_unlock_irq(shost->host_lock);
1457 return 0;
1459 starget->starget_sdev_user = sdev;
1460 spin_unlock_irq(shost->host_lock);
1463 if (starget->can_queue <= 0)
1464 return 1;
1466 busy = atomic_inc_return(&starget->target_busy) - 1;
1467 if (atomic_read(&starget->target_blocked) > 0) {
1468 if (busy)
1469 goto starved;
1472 * unblock after target_blocked iterates to zero
1474 if (atomic_dec_return(&starget->target_blocked) > 0)
1475 goto out_dec;
1477 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1478 "unblocking target at zero depth\n"));
1481 if (busy >= starget->can_queue)
1482 goto starved;
1484 return 1;
1486 starved:
1487 spin_lock_irq(shost->host_lock);
1488 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1489 spin_unlock_irq(shost->host_lock);
1490 out_dec:
1491 if (starget->can_queue > 0)
1492 atomic_dec(&starget->target_busy);
1493 return 0;
1497 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1498 * return 0. We must end up running the queue again whenever 0 is
1499 * returned, else IO can hang.
1501 static inline int scsi_host_queue_ready(struct request_queue *q,
1502 struct Scsi_Host *shost,
1503 struct scsi_device *sdev)
1505 unsigned int busy;
1507 if (scsi_host_in_recovery(shost))
1508 return 0;
1510 busy = atomic_inc_return(&shost->host_busy) - 1;
1511 if (atomic_read(&shost->host_blocked) > 0) {
1512 if (busy)
1513 goto starved;
1516 * unblock after host_blocked iterates to zero
1518 if (atomic_dec_return(&shost->host_blocked) > 0)
1519 goto out_dec;
1521 SCSI_LOG_MLQUEUE(3,
1522 shost_printk(KERN_INFO, shost,
1523 "unblocking host at zero depth\n"));
1526 if (shost->can_queue > 0 && busy >= shost->can_queue)
1527 goto starved;
1528 if (shost->host_self_blocked)
1529 goto starved;
1531 /* We're OK to process the command, so we can't be starved */
1532 if (!list_empty(&sdev->starved_entry)) {
1533 spin_lock_irq(shost->host_lock);
1534 if (!list_empty(&sdev->starved_entry))
1535 list_del_init(&sdev->starved_entry);
1536 spin_unlock_irq(shost->host_lock);
1539 return 1;
1541 starved:
1542 spin_lock_irq(shost->host_lock);
1543 if (list_empty(&sdev->starved_entry))
1544 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1545 spin_unlock_irq(shost->host_lock);
1546 out_dec:
1547 atomic_dec(&shost->host_busy);
1548 return 0;
1552 * Busy state exporting function for request stacking drivers.
1554 * For efficiency, no lock is taken to check the busy state of
1555 * shost/starget/sdev, since the returned value is not guaranteed and
1556 * may be changed after request stacking drivers call the function,
1557 * regardless of taking lock or not.
1559 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1560 * needs to return 'not busy'. Otherwise, request stacking drivers
1561 * may hold requests forever.
1563 static int scsi_lld_busy(struct request_queue *q)
1565 struct scsi_device *sdev = q->queuedata;
1566 struct Scsi_Host *shost;
1568 if (blk_queue_dying(q))
1569 return 0;
1571 shost = sdev->host;
1574 * Ignore host/starget busy state.
1575 * Since block layer does not have a concept of fairness across
1576 * multiple queues, congestion of host/starget needs to be handled
1577 * in SCSI layer.
1579 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1580 return 1;
1582 return 0;
1586 * Kill a request for a dead device
1588 static void scsi_kill_request(struct request *req, struct request_queue *q)
1590 struct scsi_cmnd *cmd = req->special;
1591 struct scsi_device *sdev;
1592 struct scsi_target *starget;
1593 struct Scsi_Host *shost;
1595 blk_start_request(req);
1597 scmd_printk(KERN_INFO, cmd, "killing request\n");
1599 sdev = cmd->device;
1600 starget = scsi_target(sdev);
1601 shost = sdev->host;
1602 scsi_init_cmd_errh(cmd);
1603 cmd->result = DID_NO_CONNECT << 16;
1604 atomic_inc(&cmd->device->iorequest_cnt);
1607 * SCSI request completion path will do scsi_device_unbusy(),
1608 * bump busy counts. To bump the counters, we need to dance
1609 * with the locks as normal issue path does.
1611 atomic_inc(&sdev->device_busy);
1612 atomic_inc(&shost->host_busy);
1613 if (starget->can_queue > 0)
1614 atomic_inc(&starget->target_busy);
1616 blk_complete_request(req);
1619 static void scsi_softirq_done(struct request *rq)
1621 struct scsi_cmnd *cmd = rq->special;
1622 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1623 int disposition;
1625 INIT_LIST_HEAD(&cmd->eh_entry);
1627 atomic_inc(&cmd->device->iodone_cnt);
1628 if (cmd->result)
1629 atomic_inc(&cmd->device->ioerr_cnt);
1631 disposition = scsi_decide_disposition(cmd);
1632 if (disposition != SUCCESS &&
1633 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1634 sdev_printk(KERN_ERR, cmd->device,
1635 "timing out command, waited %lus\n",
1636 wait_for/HZ);
1637 disposition = SUCCESS;
1640 scsi_log_completion(cmd, disposition);
1642 switch (disposition) {
1643 case SUCCESS:
1644 scsi_finish_command(cmd);
1645 break;
1646 case NEEDS_RETRY:
1647 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1648 break;
1649 case ADD_TO_MLQUEUE:
1650 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1651 break;
1652 default:
1653 if (!scsi_eh_scmd_add(cmd, 0))
1654 scsi_finish_command(cmd);
1659 * scsi_dispatch_command - Dispatch a command to the low-level driver.
1660 * @cmd: command block we are dispatching.
1662 * Return: nonzero return request was rejected and device's queue needs to be
1663 * plugged.
1665 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1667 struct Scsi_Host *host = cmd->device->host;
1668 int rtn = 0;
1670 atomic_inc(&cmd->device->iorequest_cnt);
1672 /* check if the device is still usable */
1673 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1674 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1675 * returns an immediate error upwards, and signals
1676 * that the device is no longer present */
1677 cmd->result = DID_NO_CONNECT << 16;
1678 goto done;
1681 /* Check to see if the scsi lld made this device blocked. */
1682 if (unlikely(scsi_device_blocked(cmd->device))) {
1684 * in blocked state, the command is just put back on
1685 * the device queue. The suspend state has already
1686 * blocked the queue so future requests should not
1687 * occur until the device transitions out of the
1688 * suspend state.
1690 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1691 "queuecommand : device blocked\n"));
1692 return SCSI_MLQUEUE_DEVICE_BUSY;
1695 /* Store the LUN value in cmnd, if needed. */
1696 if (cmd->device->lun_in_cdb)
1697 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1698 (cmd->device->lun << 5 & 0xe0);
1700 scsi_log_send(cmd);
1703 * Before we queue this command, check if the command
1704 * length exceeds what the host adapter can handle.
1706 if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1707 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1708 "queuecommand : command too long. "
1709 "cdb_size=%d host->max_cmd_len=%d\n",
1710 cmd->cmd_len, cmd->device->host->max_cmd_len));
1711 cmd->result = (DID_ABORT << 16);
1712 goto done;
1715 if (unlikely(host->shost_state == SHOST_DEL)) {
1716 cmd->result = (DID_NO_CONNECT << 16);
1717 goto done;
1721 trace_scsi_dispatch_cmd_start(cmd);
1722 rtn = host->hostt->queuecommand(host, cmd);
1723 if (rtn) {
1724 trace_scsi_dispatch_cmd_error(cmd, rtn);
1725 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1726 rtn != SCSI_MLQUEUE_TARGET_BUSY)
1727 rtn = SCSI_MLQUEUE_HOST_BUSY;
1729 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1730 "queuecommand : request rejected\n"));
1733 return rtn;
1734 done:
1735 cmd->scsi_done(cmd);
1736 return 0;
1740 * scsi_done - Invoke completion on finished SCSI command.
1741 * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1742 * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1744 * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1745 * which regains ownership of the SCSI command (de facto) from a LLDD, and
1746 * calls blk_complete_request() for further processing.
1748 * This function is interrupt context safe.
1750 static void scsi_done(struct scsi_cmnd *cmd)
1752 trace_scsi_dispatch_cmd_done(cmd);
1753 blk_complete_request(cmd->request);
1757 * Function: scsi_request_fn()
1759 * Purpose: Main strategy routine for SCSI.
1761 * Arguments: q - Pointer to actual queue.
1763 * Returns: Nothing
1765 * Lock status: IO request lock assumed to be held when called.
1767 static void scsi_request_fn(struct request_queue *q)
1768 __releases(q->queue_lock)
1769 __acquires(q->queue_lock)
1771 struct scsi_device *sdev = q->queuedata;
1772 struct Scsi_Host *shost;
1773 struct scsi_cmnd *cmd;
1774 struct request *req;
1777 * To start with, we keep looping until the queue is empty, or until
1778 * the host is no longer able to accept any more requests.
1780 shost = sdev->host;
1781 for (;;) {
1782 int rtn;
1784 * get next queueable request. We do this early to make sure
1785 * that the request is fully prepared even if we cannot
1786 * accept it.
1788 req = blk_peek_request(q);
1789 if (!req)
1790 break;
1792 if (unlikely(!scsi_device_online(sdev))) {
1793 sdev_printk(KERN_ERR, sdev,
1794 "rejecting I/O to offline device\n");
1795 scsi_kill_request(req, q);
1796 continue;
1799 if (!scsi_dev_queue_ready(q, sdev))
1800 break;
1803 * Remove the request from the request list.
1805 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1806 blk_start_request(req);
1808 spin_unlock_irq(q->queue_lock);
1809 cmd = req->special;
1810 if (unlikely(cmd == NULL)) {
1811 printk(KERN_CRIT "impossible request in %s.\n"
1812 "please mail a stack trace to "
1813 "linux-scsi@vger.kernel.org\n",
1814 __func__);
1815 blk_dump_rq_flags(req, "foo");
1816 BUG();
1820 * We hit this when the driver is using a host wide
1821 * tag map. For device level tag maps the queue_depth check
1822 * in the device ready fn would prevent us from trying
1823 * to allocate a tag. Since the map is a shared host resource
1824 * we add the dev to the starved list so it eventually gets
1825 * a run when a tag is freed.
1827 if (blk_queue_tagged(q) && !(req->cmd_flags & REQ_QUEUED)) {
1828 spin_lock_irq(shost->host_lock);
1829 if (list_empty(&sdev->starved_entry))
1830 list_add_tail(&sdev->starved_entry,
1831 &shost->starved_list);
1832 spin_unlock_irq(shost->host_lock);
1833 goto not_ready;
1836 if (!scsi_target_queue_ready(shost, sdev))
1837 goto not_ready;
1839 if (!scsi_host_queue_ready(q, shost, sdev))
1840 goto host_not_ready;
1842 if (sdev->simple_tags)
1843 cmd->flags |= SCMD_TAGGED;
1844 else
1845 cmd->flags &= ~SCMD_TAGGED;
1848 * Finally, initialize any error handling parameters, and set up
1849 * the timers for timeouts.
1851 scsi_init_cmd_errh(cmd);
1854 * Dispatch the command to the low-level driver.
1856 cmd->scsi_done = scsi_done;
1857 rtn = scsi_dispatch_cmd(cmd);
1858 if (rtn) {
1859 scsi_queue_insert(cmd, rtn);
1860 spin_lock_irq(q->queue_lock);
1861 goto out_delay;
1863 spin_lock_irq(q->queue_lock);
1866 return;
1868 host_not_ready:
1869 if (scsi_target(sdev)->can_queue > 0)
1870 atomic_dec(&scsi_target(sdev)->target_busy);
1871 not_ready:
1873 * lock q, handle tag, requeue req, and decrement device_busy. We
1874 * must return with queue_lock held.
1876 * Decrementing device_busy without checking it is OK, as all such
1877 * cases (host limits or settings) should run the queue at some
1878 * later time.
1880 spin_lock_irq(q->queue_lock);
1881 blk_requeue_request(q, req);
1882 atomic_dec(&sdev->device_busy);
1883 out_delay:
1884 if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1885 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1888 static inline int prep_to_mq(int ret)
1890 switch (ret) {
1891 case BLKPREP_OK:
1892 return 0;
1893 case BLKPREP_DEFER:
1894 return BLK_MQ_RQ_QUEUE_BUSY;
1895 default:
1896 return BLK_MQ_RQ_QUEUE_ERROR;
1900 static int scsi_mq_prep_fn(struct request *req)
1902 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1903 struct scsi_device *sdev = req->q->queuedata;
1904 struct Scsi_Host *shost = sdev->host;
1905 unsigned char *sense_buf = cmd->sense_buffer;
1906 struct scatterlist *sg;
1908 memset(cmd, 0, sizeof(struct scsi_cmnd));
1910 req->special = cmd;
1912 cmd->request = req;
1913 cmd->device = sdev;
1914 cmd->sense_buffer = sense_buf;
1916 cmd->tag = req->tag;
1918 cmd->cmnd = req->cmd;
1919 cmd->prot_op = SCSI_PROT_NORMAL;
1921 INIT_LIST_HEAD(&cmd->list);
1922 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1923 cmd->jiffies_at_alloc = jiffies;
1925 if (shost->use_cmd_list) {
1926 spin_lock_irq(&sdev->list_lock);
1927 list_add_tail(&cmd->list, &sdev->cmd_list);
1928 spin_unlock_irq(&sdev->list_lock);
1931 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1932 cmd->sdb.table.sgl = sg;
1934 if (scsi_host_get_prot(shost)) {
1935 cmd->prot_sdb = (void *)sg +
1936 min_t(unsigned int,
1937 shost->sg_tablesize, SCSI_MAX_SG_SEGMENTS) *
1938 sizeof(struct scatterlist);
1939 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1941 cmd->prot_sdb->table.sgl =
1942 (struct scatterlist *)(cmd->prot_sdb + 1);
1945 if (blk_bidi_rq(req)) {
1946 struct request *next_rq = req->next_rq;
1947 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1949 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1950 bidi_sdb->table.sgl =
1951 (struct scatterlist *)(bidi_sdb + 1);
1953 next_rq->special = bidi_sdb;
1956 blk_mq_start_request(req);
1958 return scsi_setup_cmnd(sdev, req);
1961 static void scsi_mq_done(struct scsi_cmnd *cmd)
1963 trace_scsi_dispatch_cmd_done(cmd);
1964 blk_mq_complete_request(cmd->request, cmd->request->errors);
1967 static int scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1968 const struct blk_mq_queue_data *bd)
1970 struct request *req = bd->rq;
1971 struct request_queue *q = req->q;
1972 struct scsi_device *sdev = q->queuedata;
1973 struct Scsi_Host *shost = sdev->host;
1974 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1975 int ret;
1976 int reason;
1978 ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1979 if (ret)
1980 goto out;
1982 ret = BLK_MQ_RQ_QUEUE_BUSY;
1983 if (!get_device(&sdev->sdev_gendev))
1984 goto out;
1986 if (!scsi_dev_queue_ready(q, sdev))
1987 goto out_put_device;
1988 if (!scsi_target_queue_ready(shost, sdev))
1989 goto out_dec_device_busy;
1990 if (!scsi_host_queue_ready(q, shost, sdev))
1991 goto out_dec_target_busy;
1994 if (!(req->cmd_flags & REQ_DONTPREP)) {
1995 ret = prep_to_mq(scsi_mq_prep_fn(req));
1996 if (ret)
1997 goto out_dec_host_busy;
1998 req->cmd_flags |= REQ_DONTPREP;
1999 } else {
2000 blk_mq_start_request(req);
2003 if (sdev->simple_tags)
2004 cmd->flags |= SCMD_TAGGED;
2005 else
2006 cmd->flags &= ~SCMD_TAGGED;
2008 scsi_init_cmd_errh(cmd);
2009 cmd->scsi_done = scsi_mq_done;
2011 reason = scsi_dispatch_cmd(cmd);
2012 if (reason) {
2013 scsi_set_blocked(cmd, reason);
2014 ret = BLK_MQ_RQ_QUEUE_BUSY;
2015 goto out_dec_host_busy;
2018 return BLK_MQ_RQ_QUEUE_OK;
2020 out_dec_host_busy:
2021 atomic_dec(&shost->host_busy);
2022 out_dec_target_busy:
2023 if (scsi_target(sdev)->can_queue > 0)
2024 atomic_dec(&scsi_target(sdev)->target_busy);
2025 out_dec_device_busy:
2026 atomic_dec(&sdev->device_busy);
2027 out_put_device:
2028 put_device(&sdev->sdev_gendev);
2029 out:
2030 switch (ret) {
2031 case BLK_MQ_RQ_QUEUE_BUSY:
2032 blk_mq_stop_hw_queue(hctx);
2033 if (atomic_read(&sdev->device_busy) == 0 &&
2034 !scsi_device_blocked(sdev))
2035 blk_mq_delay_queue(hctx, SCSI_QUEUE_DELAY);
2036 break;
2037 case BLK_MQ_RQ_QUEUE_ERROR:
2039 * Make sure to release all allocated ressources when
2040 * we hit an error, as we will never see this command
2041 * again.
2043 if (req->cmd_flags & REQ_DONTPREP)
2044 scsi_mq_uninit_cmd(cmd);
2045 break;
2046 default:
2047 break;
2049 return ret;
2052 static enum blk_eh_timer_return scsi_timeout(struct request *req,
2053 bool reserved)
2055 if (reserved)
2056 return BLK_EH_RESET_TIMER;
2057 return scsi_times_out(req);
2060 static int scsi_init_request(void *data, struct request *rq,
2061 unsigned int hctx_idx, unsigned int request_idx,
2062 unsigned int numa_node)
2064 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2066 cmd->sense_buffer = kzalloc_node(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL,
2067 numa_node);
2068 if (!cmd->sense_buffer)
2069 return -ENOMEM;
2070 return 0;
2073 static void scsi_exit_request(void *data, struct request *rq,
2074 unsigned int hctx_idx, unsigned int request_idx)
2076 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2078 kfree(cmd->sense_buffer);
2081 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
2083 struct device *host_dev;
2084 u64 bounce_limit = 0xffffffff;
2086 if (shost->unchecked_isa_dma)
2087 return BLK_BOUNCE_ISA;
2089 * Platforms with virtual-DMA translation
2090 * hardware have no practical limit.
2092 if (!PCI_DMA_BUS_IS_PHYS)
2093 return BLK_BOUNCE_ANY;
2095 host_dev = scsi_get_device(shost);
2096 if (host_dev && host_dev->dma_mask)
2097 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2099 return bounce_limit;
2102 static void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2104 struct device *dev = shost->dma_dev;
2107 * this limit is imposed by hardware restrictions
2109 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2110 SCSI_MAX_SG_CHAIN_SEGMENTS));
2112 if (scsi_host_prot_dma(shost)) {
2113 shost->sg_prot_tablesize =
2114 min_not_zero(shost->sg_prot_tablesize,
2115 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2116 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2117 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2120 blk_queue_max_hw_sectors(q, shost->max_sectors);
2121 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2122 blk_queue_segment_boundary(q, shost->dma_boundary);
2123 dma_set_seg_boundary(dev, shost->dma_boundary);
2125 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2127 if (!shost->use_clustering)
2128 q->limits.cluster = 0;
2131 * set a reasonable default alignment on word boundaries: the
2132 * host and device may alter it using
2133 * blk_queue_update_dma_alignment() later.
2135 blk_queue_dma_alignment(q, 0x03);
2138 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
2139 request_fn_proc *request_fn)
2141 struct request_queue *q;
2143 q = blk_init_queue(request_fn, NULL);
2144 if (!q)
2145 return NULL;
2146 __scsi_init_queue(shost, q);
2147 return q;
2149 EXPORT_SYMBOL(__scsi_alloc_queue);
2151 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
2153 struct request_queue *q;
2155 q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
2156 if (!q)
2157 return NULL;
2159 blk_queue_prep_rq(q, scsi_prep_fn);
2160 blk_queue_unprep_rq(q, scsi_unprep_fn);
2161 blk_queue_softirq_done(q, scsi_softirq_done);
2162 blk_queue_rq_timed_out(q, scsi_times_out);
2163 blk_queue_lld_busy(q, scsi_lld_busy);
2164 return q;
2167 static struct blk_mq_ops scsi_mq_ops = {
2168 .map_queue = blk_mq_map_queue,
2169 .queue_rq = scsi_queue_rq,
2170 .complete = scsi_softirq_done,
2171 .timeout = scsi_timeout,
2172 .init_request = scsi_init_request,
2173 .exit_request = scsi_exit_request,
2176 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2178 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2179 if (IS_ERR(sdev->request_queue))
2180 return NULL;
2182 sdev->request_queue->queuedata = sdev;
2183 __scsi_init_queue(sdev->host, sdev->request_queue);
2184 return sdev->request_queue;
2187 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2189 unsigned int cmd_size, sgl_size, tbl_size;
2191 tbl_size = shost->sg_tablesize;
2192 if (tbl_size > SCSI_MAX_SG_SEGMENTS)
2193 tbl_size = SCSI_MAX_SG_SEGMENTS;
2194 sgl_size = tbl_size * sizeof(struct scatterlist);
2195 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2196 if (scsi_host_get_prot(shost))
2197 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2199 memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2200 shost->tag_set.ops = &scsi_mq_ops;
2201 shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2202 shost->tag_set.queue_depth = shost->can_queue;
2203 shost->tag_set.cmd_size = cmd_size;
2204 shost->tag_set.numa_node = NUMA_NO_NODE;
2205 shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2206 shost->tag_set.flags |=
2207 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2208 shost->tag_set.driver_data = shost;
2210 return blk_mq_alloc_tag_set(&shost->tag_set);
2213 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2215 blk_mq_free_tag_set(&shost->tag_set);
2219 * scsi_device_from_queue - return sdev associated with a request_queue
2220 * @q: The request queue to return the sdev from
2222 * Return the sdev associated with a request queue or NULL if the
2223 * request_queue does not reference a SCSI device.
2225 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2227 struct scsi_device *sdev = NULL;
2229 if (q->mq_ops) {
2230 if (q->mq_ops == &scsi_mq_ops)
2231 sdev = q->queuedata;
2232 } else if (q->request_fn == scsi_request_fn)
2233 sdev = q->queuedata;
2234 if (!sdev || !get_device(&sdev->sdev_gendev))
2235 sdev = NULL;
2237 return sdev;
2239 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2242 * Function: scsi_block_requests()
2244 * Purpose: Utility function used by low-level drivers to prevent further
2245 * commands from being queued to the device.
2247 * Arguments: shost - Host in question
2249 * Returns: Nothing
2251 * Lock status: No locks are assumed held.
2253 * Notes: There is no timer nor any other means by which the requests
2254 * get unblocked other than the low-level driver calling
2255 * scsi_unblock_requests().
2257 void scsi_block_requests(struct Scsi_Host *shost)
2259 shost->host_self_blocked = 1;
2261 EXPORT_SYMBOL(scsi_block_requests);
2264 * Function: scsi_unblock_requests()
2266 * Purpose: Utility function used by low-level drivers to allow further
2267 * commands from being queued to the device.
2269 * Arguments: shost - Host in question
2271 * Returns: Nothing
2273 * Lock status: No locks are assumed held.
2275 * Notes: There is no timer nor any other means by which the requests
2276 * get unblocked other than the low-level driver calling
2277 * scsi_unblock_requests().
2279 * This is done as an API function so that changes to the
2280 * internals of the scsi mid-layer won't require wholesale
2281 * changes to drivers that use this feature.
2283 void scsi_unblock_requests(struct Scsi_Host *shost)
2285 shost->host_self_blocked = 0;
2286 scsi_run_host_queues(shost);
2288 EXPORT_SYMBOL(scsi_unblock_requests);
2290 int __init scsi_init_queue(void)
2292 int i;
2294 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2295 sizeof(struct scsi_data_buffer),
2296 0, 0, NULL);
2297 if (!scsi_sdb_cache) {
2298 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2299 return -ENOMEM;
2302 for (i = 0; i < SG_MEMPOOL_NR; i++) {
2303 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2304 int size = sgp->size * sizeof(struct scatterlist);
2306 sgp->slab = kmem_cache_create(sgp->name, size, 0,
2307 SLAB_HWCACHE_ALIGN, NULL);
2308 if (!sgp->slab) {
2309 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
2310 sgp->name);
2311 goto cleanup_sdb;
2314 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
2315 sgp->slab);
2316 if (!sgp->pool) {
2317 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
2318 sgp->name);
2319 goto cleanup_sdb;
2323 return 0;
2325 cleanup_sdb:
2326 for (i = 0; i < SG_MEMPOOL_NR; i++) {
2327 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2328 if (sgp->pool)
2329 mempool_destroy(sgp->pool);
2330 if (sgp->slab)
2331 kmem_cache_destroy(sgp->slab);
2333 kmem_cache_destroy(scsi_sdb_cache);
2335 return -ENOMEM;
2338 void scsi_exit_queue(void)
2340 int i;
2342 kmem_cache_destroy(scsi_sdb_cache);
2344 for (i = 0; i < SG_MEMPOOL_NR; i++) {
2345 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2346 mempool_destroy(sgp->pool);
2347 kmem_cache_destroy(sgp->slab);
2352 * scsi_mode_select - issue a mode select
2353 * @sdev: SCSI device to be queried
2354 * @pf: Page format bit (1 == standard, 0 == vendor specific)
2355 * @sp: Save page bit (0 == don't save, 1 == save)
2356 * @modepage: mode page being requested
2357 * @buffer: request buffer (may not be smaller than eight bytes)
2358 * @len: length of request buffer.
2359 * @timeout: command timeout
2360 * @retries: number of retries before failing
2361 * @data: returns a structure abstracting the mode header data
2362 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2363 * must be SCSI_SENSE_BUFFERSIZE big.
2365 * Returns zero if successful; negative error number or scsi
2366 * status on error
2370 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2371 unsigned char *buffer, int len, int timeout, int retries,
2372 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2374 unsigned char cmd[10];
2375 unsigned char *real_buffer;
2376 int ret;
2378 memset(cmd, 0, sizeof(cmd));
2379 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2381 if (sdev->use_10_for_ms) {
2382 if (len > 65535)
2383 return -EINVAL;
2384 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2385 if (!real_buffer)
2386 return -ENOMEM;
2387 memcpy(real_buffer + 8, buffer, len);
2388 len += 8;
2389 real_buffer[0] = 0;
2390 real_buffer[1] = 0;
2391 real_buffer[2] = data->medium_type;
2392 real_buffer[3] = data->device_specific;
2393 real_buffer[4] = data->longlba ? 0x01 : 0;
2394 real_buffer[5] = 0;
2395 real_buffer[6] = data->block_descriptor_length >> 8;
2396 real_buffer[7] = data->block_descriptor_length;
2398 cmd[0] = MODE_SELECT_10;
2399 cmd[7] = len >> 8;
2400 cmd[8] = len;
2401 } else {
2402 if (len > 255 || data->block_descriptor_length > 255 ||
2403 data->longlba)
2404 return -EINVAL;
2406 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2407 if (!real_buffer)
2408 return -ENOMEM;
2409 memcpy(real_buffer + 4, buffer, len);
2410 len += 4;
2411 real_buffer[0] = 0;
2412 real_buffer[1] = data->medium_type;
2413 real_buffer[2] = data->device_specific;
2414 real_buffer[3] = data->block_descriptor_length;
2417 cmd[0] = MODE_SELECT;
2418 cmd[4] = len;
2421 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2422 sshdr, timeout, retries, NULL);
2423 kfree(real_buffer);
2424 return ret;
2426 EXPORT_SYMBOL_GPL(scsi_mode_select);
2429 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2430 * @sdev: SCSI device to be queried
2431 * @dbd: set if mode sense will allow block descriptors to be returned
2432 * @modepage: mode page being requested
2433 * @buffer: request buffer (may not be smaller than eight bytes)
2434 * @len: length of request buffer.
2435 * @timeout: command timeout
2436 * @retries: number of retries before failing
2437 * @data: returns a structure abstracting the mode header data
2438 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2439 * must be SCSI_SENSE_BUFFERSIZE big.
2441 * Returns zero if unsuccessful, or the header offset (either 4
2442 * or 8 depending on whether a six or ten byte command was
2443 * issued) if successful.
2446 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2447 unsigned char *buffer, int len, int timeout, int retries,
2448 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2450 unsigned char cmd[12];
2451 int use_10_for_ms;
2452 int header_length;
2453 int result, retry_count = retries;
2454 struct scsi_sense_hdr my_sshdr;
2456 memset(data, 0, sizeof(*data));
2457 memset(&cmd[0], 0, 12);
2458 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
2459 cmd[2] = modepage;
2461 /* caller might not be interested in sense, but we need it */
2462 if (!sshdr)
2463 sshdr = &my_sshdr;
2465 retry:
2466 use_10_for_ms = sdev->use_10_for_ms;
2468 if (use_10_for_ms) {
2469 if (len < 8)
2470 len = 8;
2472 cmd[0] = MODE_SENSE_10;
2473 cmd[8] = len;
2474 header_length = 8;
2475 } else {
2476 if (len < 4)
2477 len = 4;
2479 cmd[0] = MODE_SENSE;
2480 cmd[4] = len;
2481 header_length = 4;
2484 memset(buffer, 0, len);
2486 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2487 sshdr, timeout, retries, NULL);
2489 /* This code looks awful: what it's doing is making sure an
2490 * ILLEGAL REQUEST sense return identifies the actual command
2491 * byte as the problem. MODE_SENSE commands can return
2492 * ILLEGAL REQUEST if the code page isn't supported */
2494 if (use_10_for_ms && !scsi_status_is_good(result) &&
2495 (driver_byte(result) & DRIVER_SENSE)) {
2496 if (scsi_sense_valid(sshdr)) {
2497 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2498 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2500 * Invalid command operation code
2502 sdev->use_10_for_ms = 0;
2503 goto retry;
2508 if(scsi_status_is_good(result)) {
2509 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2510 (modepage == 6 || modepage == 8))) {
2511 /* Initio breakage? */
2512 header_length = 0;
2513 data->length = 13;
2514 data->medium_type = 0;
2515 data->device_specific = 0;
2516 data->longlba = 0;
2517 data->block_descriptor_length = 0;
2518 } else if(use_10_for_ms) {
2519 data->length = buffer[0]*256 + buffer[1] + 2;
2520 data->medium_type = buffer[2];
2521 data->device_specific = buffer[3];
2522 data->longlba = buffer[4] & 0x01;
2523 data->block_descriptor_length = buffer[6]*256
2524 + buffer[7];
2525 } else {
2526 data->length = buffer[0] + 1;
2527 data->medium_type = buffer[1];
2528 data->device_specific = buffer[2];
2529 data->block_descriptor_length = buffer[3];
2531 data->header_length = header_length;
2532 } else if ((status_byte(result) == CHECK_CONDITION) &&
2533 scsi_sense_valid(sshdr) &&
2534 sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2535 retry_count--;
2536 goto retry;
2539 return result;
2541 EXPORT_SYMBOL(scsi_mode_sense);
2544 * scsi_test_unit_ready - test if unit is ready
2545 * @sdev: scsi device to change the state of.
2546 * @timeout: command timeout
2547 * @retries: number of retries before failing
2548 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2549 * returning sense. Make sure that this is cleared before passing
2550 * in.
2552 * Returns zero if unsuccessful or an error if TUR failed. For
2553 * removable media, UNIT_ATTENTION sets ->changed flag.
2556 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2557 struct scsi_sense_hdr *sshdr_external)
2559 char cmd[] = {
2560 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2562 struct scsi_sense_hdr *sshdr;
2563 int result;
2565 if (!sshdr_external)
2566 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2567 else
2568 sshdr = sshdr_external;
2570 /* try to eat the UNIT_ATTENTION if there are enough retries */
2571 do {
2572 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2573 timeout, retries, NULL);
2574 if (sdev->removable && scsi_sense_valid(sshdr) &&
2575 sshdr->sense_key == UNIT_ATTENTION)
2576 sdev->changed = 1;
2577 } while (scsi_sense_valid(sshdr) &&
2578 sshdr->sense_key == UNIT_ATTENTION && --retries);
2580 if (!sshdr_external)
2581 kfree(sshdr);
2582 return result;
2584 EXPORT_SYMBOL(scsi_test_unit_ready);
2587 * scsi_device_set_state - Take the given device through the device state model.
2588 * @sdev: scsi device to change the state of.
2589 * @state: state to change to.
2591 * Returns zero if unsuccessful or an error if the requested
2592 * transition is illegal.
2595 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2597 enum scsi_device_state oldstate = sdev->sdev_state;
2599 if (state == oldstate)
2600 return 0;
2602 switch (state) {
2603 case SDEV_CREATED:
2604 switch (oldstate) {
2605 case SDEV_CREATED_BLOCK:
2606 break;
2607 default:
2608 goto illegal;
2610 break;
2612 case SDEV_RUNNING:
2613 switch (oldstate) {
2614 case SDEV_CREATED:
2615 case SDEV_OFFLINE:
2616 case SDEV_TRANSPORT_OFFLINE:
2617 case SDEV_QUIESCE:
2618 case SDEV_BLOCK:
2619 break;
2620 default:
2621 goto illegal;
2623 break;
2625 case SDEV_QUIESCE:
2626 switch (oldstate) {
2627 case SDEV_RUNNING:
2628 case SDEV_OFFLINE:
2629 case SDEV_TRANSPORT_OFFLINE:
2630 break;
2631 default:
2632 goto illegal;
2634 break;
2636 case SDEV_OFFLINE:
2637 case SDEV_TRANSPORT_OFFLINE:
2638 switch (oldstate) {
2639 case SDEV_CREATED:
2640 case SDEV_RUNNING:
2641 case SDEV_QUIESCE:
2642 case SDEV_BLOCK:
2643 break;
2644 default:
2645 goto illegal;
2647 break;
2649 case SDEV_BLOCK:
2650 switch (oldstate) {
2651 case SDEV_RUNNING:
2652 case SDEV_CREATED_BLOCK:
2653 break;
2654 default:
2655 goto illegal;
2657 break;
2659 case SDEV_CREATED_BLOCK:
2660 switch (oldstate) {
2661 case SDEV_CREATED:
2662 break;
2663 default:
2664 goto illegal;
2666 break;
2668 case SDEV_CANCEL:
2669 switch (oldstate) {
2670 case SDEV_CREATED:
2671 case SDEV_RUNNING:
2672 case SDEV_QUIESCE:
2673 case SDEV_OFFLINE:
2674 case SDEV_TRANSPORT_OFFLINE:
2675 case SDEV_BLOCK:
2676 break;
2677 default:
2678 goto illegal;
2680 break;
2682 case SDEV_DEL:
2683 switch (oldstate) {
2684 case SDEV_CREATED:
2685 case SDEV_RUNNING:
2686 case SDEV_OFFLINE:
2687 case SDEV_TRANSPORT_OFFLINE:
2688 case SDEV_CANCEL:
2689 case SDEV_CREATED_BLOCK:
2690 break;
2691 default:
2692 goto illegal;
2694 break;
2697 sdev->sdev_state = state;
2698 return 0;
2700 illegal:
2701 SCSI_LOG_ERROR_RECOVERY(1,
2702 sdev_printk(KERN_ERR, sdev,
2703 "Illegal state transition %s->%s",
2704 scsi_device_state_name(oldstate),
2705 scsi_device_state_name(state))
2707 return -EINVAL;
2709 EXPORT_SYMBOL(scsi_device_set_state);
2712 * sdev_evt_emit - emit a single SCSI device uevent
2713 * @sdev: associated SCSI device
2714 * @evt: event to emit
2716 * Send a single uevent (scsi_event) to the associated scsi_device.
2718 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2720 int idx = 0;
2721 char *envp[3];
2723 switch (evt->evt_type) {
2724 case SDEV_EVT_MEDIA_CHANGE:
2725 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2726 break;
2727 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2728 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2729 break;
2730 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2731 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2732 break;
2733 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2734 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2735 break;
2736 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2737 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2738 break;
2739 case SDEV_EVT_LUN_CHANGE_REPORTED:
2740 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2741 break;
2742 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2743 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2744 break;
2745 default:
2746 /* do nothing */
2747 break;
2750 envp[idx++] = NULL;
2752 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2756 * sdev_evt_thread - send a uevent for each scsi event
2757 * @work: work struct for scsi_device
2759 * Dispatch queued events to their associated scsi_device kobjects
2760 * as uevents.
2762 void scsi_evt_thread(struct work_struct *work)
2764 struct scsi_device *sdev;
2765 enum scsi_device_event evt_type;
2766 LIST_HEAD(event_list);
2768 sdev = container_of(work, struct scsi_device, event_work);
2770 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2771 if (test_and_clear_bit(evt_type, sdev->pending_events))
2772 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2774 while (1) {
2775 struct scsi_event *evt;
2776 struct list_head *this, *tmp;
2777 unsigned long flags;
2779 spin_lock_irqsave(&sdev->list_lock, flags);
2780 list_splice_init(&sdev->event_list, &event_list);
2781 spin_unlock_irqrestore(&sdev->list_lock, flags);
2783 if (list_empty(&event_list))
2784 break;
2786 list_for_each_safe(this, tmp, &event_list) {
2787 evt = list_entry(this, struct scsi_event, node);
2788 list_del(&evt->node);
2789 scsi_evt_emit(sdev, evt);
2790 kfree(evt);
2796 * sdev_evt_send - send asserted event to uevent thread
2797 * @sdev: scsi_device event occurred on
2798 * @evt: event to send
2800 * Assert scsi device event asynchronously.
2802 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2804 unsigned long flags;
2806 #if 0
2807 /* FIXME: currently this check eliminates all media change events
2808 * for polled devices. Need to update to discriminate between AN
2809 * and polled events */
2810 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2811 kfree(evt);
2812 return;
2814 #endif
2816 spin_lock_irqsave(&sdev->list_lock, flags);
2817 list_add_tail(&evt->node, &sdev->event_list);
2818 schedule_work(&sdev->event_work);
2819 spin_unlock_irqrestore(&sdev->list_lock, flags);
2821 EXPORT_SYMBOL_GPL(sdev_evt_send);
2824 * sdev_evt_alloc - allocate a new scsi event
2825 * @evt_type: type of event to allocate
2826 * @gfpflags: GFP flags for allocation
2828 * Allocates and returns a new scsi_event.
2830 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2831 gfp_t gfpflags)
2833 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2834 if (!evt)
2835 return NULL;
2837 evt->evt_type = evt_type;
2838 INIT_LIST_HEAD(&evt->node);
2840 /* evt_type-specific initialization, if any */
2841 switch (evt_type) {
2842 case SDEV_EVT_MEDIA_CHANGE:
2843 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2844 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2845 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2846 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2847 case SDEV_EVT_LUN_CHANGE_REPORTED:
2848 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2849 default:
2850 /* do nothing */
2851 break;
2854 return evt;
2856 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2859 * sdev_evt_send_simple - send asserted event to uevent thread
2860 * @sdev: scsi_device event occurred on
2861 * @evt_type: type of event to send
2862 * @gfpflags: GFP flags for allocation
2864 * Assert scsi device event asynchronously, given an event type.
2866 void sdev_evt_send_simple(struct scsi_device *sdev,
2867 enum scsi_device_event evt_type, gfp_t gfpflags)
2869 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2870 if (!evt) {
2871 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2872 evt_type);
2873 return;
2876 sdev_evt_send(sdev, evt);
2878 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2881 * scsi_device_quiesce - Block user issued commands.
2882 * @sdev: scsi device to quiesce.
2884 * This works by trying to transition to the SDEV_QUIESCE state
2885 * (which must be a legal transition). When the device is in this
2886 * state, only special requests will be accepted, all others will
2887 * be deferred. Since special requests may also be requeued requests,
2888 * a successful return doesn't guarantee the device will be
2889 * totally quiescent.
2891 * Must be called with user context, may sleep.
2893 * Returns zero if unsuccessful or an error if not.
2896 scsi_device_quiesce(struct scsi_device *sdev)
2898 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2899 if (err)
2900 return err;
2902 scsi_run_queue(sdev->request_queue);
2903 while (atomic_read(&sdev->device_busy)) {
2904 msleep_interruptible(200);
2905 scsi_run_queue(sdev->request_queue);
2907 return 0;
2909 EXPORT_SYMBOL(scsi_device_quiesce);
2912 * scsi_device_resume - Restart user issued commands to a quiesced device.
2913 * @sdev: scsi device to resume.
2915 * Moves the device from quiesced back to running and restarts the
2916 * queues.
2918 * Must be called with user context, may sleep.
2920 void scsi_device_resume(struct scsi_device *sdev)
2922 /* check if the device state was mutated prior to resume, and if
2923 * so assume the state is being managed elsewhere (for example
2924 * device deleted during suspend)
2926 if (sdev->sdev_state != SDEV_QUIESCE ||
2927 scsi_device_set_state(sdev, SDEV_RUNNING))
2928 return;
2929 scsi_run_queue(sdev->request_queue);
2931 EXPORT_SYMBOL(scsi_device_resume);
2933 static void
2934 device_quiesce_fn(struct scsi_device *sdev, void *data)
2936 scsi_device_quiesce(sdev);
2939 void
2940 scsi_target_quiesce(struct scsi_target *starget)
2942 starget_for_each_device(starget, NULL, device_quiesce_fn);
2944 EXPORT_SYMBOL(scsi_target_quiesce);
2946 static void
2947 device_resume_fn(struct scsi_device *sdev, void *data)
2949 scsi_device_resume(sdev);
2952 void
2953 scsi_target_resume(struct scsi_target *starget)
2955 starget_for_each_device(starget, NULL, device_resume_fn);
2957 EXPORT_SYMBOL(scsi_target_resume);
2960 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2961 * @sdev: device to block
2963 * Block request made by scsi lld's to temporarily stop all
2964 * scsi commands on the specified device. Called from interrupt
2965 * or normal process context.
2967 * Returns zero if successful or error if not
2969 * Notes:
2970 * This routine transitions the device to the SDEV_BLOCK state
2971 * (which must be a legal transition). When the device is in this
2972 * state, all commands are deferred until the scsi lld reenables
2973 * the device with scsi_device_unblock or device_block_tmo fires.
2976 scsi_internal_device_block(struct scsi_device *sdev)
2978 struct request_queue *q = sdev->request_queue;
2979 unsigned long flags;
2980 int err = 0;
2982 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2983 if (err) {
2984 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2986 if (err)
2987 return err;
2991 * The device has transitioned to SDEV_BLOCK. Stop the
2992 * block layer from calling the midlayer with this device's
2993 * request queue.
2995 if (q->mq_ops) {
2996 blk_mq_stop_hw_queues(q);
2997 } else {
2998 spin_lock_irqsave(q->queue_lock, flags);
2999 blk_stop_queue(q);
3000 spin_unlock_irqrestore(q->queue_lock, flags);
3003 return 0;
3005 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
3008 * scsi_internal_device_unblock - resume a device after a block request
3009 * @sdev: device to resume
3010 * @new_state: state to set devices to after unblocking
3012 * Called by scsi lld's or the midlayer to restart the device queue
3013 * for the previously suspended scsi device. Called from interrupt or
3014 * normal process context.
3016 * Returns zero if successful or error if not.
3018 * Notes:
3019 * This routine transitions the device to the SDEV_RUNNING state
3020 * or to one of the offline states (which must be a legal transition)
3021 * allowing the midlayer to goose the queue for this device.
3024 scsi_internal_device_unblock(struct scsi_device *sdev,
3025 enum scsi_device_state new_state)
3027 struct request_queue *q = sdev->request_queue;
3028 unsigned long flags;
3031 * Try to transition the scsi device to SDEV_RUNNING or one of the
3032 * offlined states and goose the device queue if successful.
3034 if ((sdev->sdev_state == SDEV_BLOCK) ||
3035 (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
3036 sdev->sdev_state = new_state;
3037 else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
3038 if (new_state == SDEV_TRANSPORT_OFFLINE ||
3039 new_state == SDEV_OFFLINE)
3040 sdev->sdev_state = new_state;
3041 else
3042 sdev->sdev_state = SDEV_CREATED;
3043 } else if (sdev->sdev_state != SDEV_CANCEL &&
3044 sdev->sdev_state != SDEV_OFFLINE)
3045 return -EINVAL;
3047 if (q->mq_ops) {
3048 blk_mq_start_stopped_hw_queues(q, false);
3049 } else {
3050 spin_lock_irqsave(q->queue_lock, flags);
3051 blk_start_queue(q);
3052 spin_unlock_irqrestore(q->queue_lock, flags);
3055 return 0;
3057 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
3059 static void
3060 device_block(struct scsi_device *sdev, void *data)
3062 scsi_internal_device_block(sdev);
3065 static int
3066 target_block(struct device *dev, void *data)
3068 if (scsi_is_target_device(dev))
3069 starget_for_each_device(to_scsi_target(dev), NULL,
3070 device_block);
3071 return 0;
3074 void
3075 scsi_target_block(struct device *dev)
3077 if (scsi_is_target_device(dev))
3078 starget_for_each_device(to_scsi_target(dev), NULL,
3079 device_block);
3080 else
3081 device_for_each_child(dev, NULL, target_block);
3083 EXPORT_SYMBOL_GPL(scsi_target_block);
3085 static void
3086 device_unblock(struct scsi_device *sdev, void *data)
3088 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3091 static int
3092 target_unblock(struct device *dev, void *data)
3094 if (scsi_is_target_device(dev))
3095 starget_for_each_device(to_scsi_target(dev), data,
3096 device_unblock);
3097 return 0;
3100 void
3101 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3103 if (scsi_is_target_device(dev))
3104 starget_for_each_device(to_scsi_target(dev), &new_state,
3105 device_unblock);
3106 else
3107 device_for_each_child(dev, &new_state, target_unblock);
3109 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3112 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3113 * @sgl: scatter-gather list
3114 * @sg_count: number of segments in sg
3115 * @offset: offset in bytes into sg, on return offset into the mapped area
3116 * @len: bytes to map, on return number of bytes mapped
3118 * Returns virtual address of the start of the mapped page
3120 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3121 size_t *offset, size_t *len)
3123 int i;
3124 size_t sg_len = 0, len_complete = 0;
3125 struct scatterlist *sg;
3126 struct page *page;
3128 WARN_ON(!irqs_disabled());
3130 for_each_sg(sgl, sg, sg_count, i) {
3131 len_complete = sg_len; /* Complete sg-entries */
3132 sg_len += sg->length;
3133 if (sg_len > *offset)
3134 break;
3137 if (unlikely(i == sg_count)) {
3138 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3139 "elements %d\n",
3140 __func__, sg_len, *offset, sg_count);
3141 WARN_ON(1);
3142 return NULL;
3145 /* Offset starting from the beginning of first page in this sg-entry */
3146 *offset = *offset - len_complete + sg->offset;
3148 /* Assumption: contiguous pages can be accessed as "page + i" */
3149 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3150 *offset &= ~PAGE_MASK;
3152 /* Bytes in this sg-entry from *offset to the end of the page */
3153 sg_len = PAGE_SIZE - *offset;
3154 if (*len > sg_len)
3155 *len = sg_len;
3157 return kmap_atomic(page);
3159 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3162 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3163 * @virt: virtual address to be unmapped
3165 void scsi_kunmap_atomic_sg(void *virt)
3167 kunmap_atomic(virt);
3169 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3171 void sdev_disable_disk_events(struct scsi_device *sdev)
3173 atomic_inc(&sdev->disk_events_disable_depth);
3175 EXPORT_SYMBOL(sdev_disable_disk_events);
3177 void sdev_enable_disk_events(struct scsi_device *sdev)
3179 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3180 return;
3181 atomic_dec(&sdev->disk_events_disable_depth);
3183 EXPORT_SYMBOL(sdev_enable_disk_events);