2 * Copyright (C) 1999 Eric Youngdale
3 * Copyright (C) 2014 Christoph Hellwig
5 * SCSI queueing library.
6 * Initial versions: Eric Youngdale (eric@andante.org).
7 * Based upon conversations with large numbers
8 * of people at Linux Expo.
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/init.h>
20 #include <linux/pci.h>
21 #include <linux/delay.h>
22 #include <linux/hardirq.h>
23 #include <linux/scatterlist.h>
24 #include <linux/blk-mq.h>
25 #include <linux/ratelimit.h>
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_cmnd.h>
29 #include <scsi/scsi_dbg.h>
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_driver.h>
32 #include <scsi/scsi_eh.h>
33 #include <scsi/scsi_host.h>
34 #include <scsi/scsi_dh.h>
36 #include <trace/events/scsi.h>
38 #include "scsi_priv.h"
39 #include "scsi_logging.h"
42 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
43 #define SG_MEMPOOL_SIZE 2
45 struct scsi_host_sg_pool
{
48 struct kmem_cache
*slab
;
52 #define SP(x) { .size = x, "sgpool-" __stringify(x) }
53 #if (SCSI_MAX_SG_SEGMENTS < 32)
54 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
56 static struct scsi_host_sg_pool scsi_sg_pools
[] = {
59 #if (SCSI_MAX_SG_SEGMENTS > 32)
61 #if (SCSI_MAX_SG_SEGMENTS > 64)
63 #if (SCSI_MAX_SG_SEGMENTS > 128)
65 #if (SCSI_MAX_SG_SEGMENTS > 256)
66 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
71 SP(SCSI_MAX_SG_SEGMENTS
)
75 struct kmem_cache
*scsi_sdb_cache
;
78 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
79 * not change behaviour from the previous unplug mechanism, experimentation
80 * may prove this needs changing.
82 #define SCSI_QUEUE_DELAY 3
85 scsi_set_blocked(struct scsi_cmnd
*cmd
, int reason
)
87 struct Scsi_Host
*host
= cmd
->device
->host
;
88 struct scsi_device
*device
= cmd
->device
;
89 struct scsi_target
*starget
= scsi_target(device
);
92 * Set the appropriate busy bit for the device/host.
94 * If the host/device isn't busy, assume that something actually
95 * completed, and that we should be able to queue a command now.
97 * Note that the prior mid-layer assumption that any host could
98 * always queue at least one command is now broken. The mid-layer
99 * will implement a user specifiable stall (see
100 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
101 * if a command is requeued with no other commands outstanding
102 * either for the device or for the host.
105 case SCSI_MLQUEUE_HOST_BUSY
:
106 atomic_set(&host
->host_blocked
, host
->max_host_blocked
);
108 case SCSI_MLQUEUE_DEVICE_BUSY
:
109 case SCSI_MLQUEUE_EH_RETRY
:
110 atomic_set(&device
->device_blocked
,
111 device
->max_device_blocked
);
113 case SCSI_MLQUEUE_TARGET_BUSY
:
114 atomic_set(&starget
->target_blocked
,
115 starget
->max_target_blocked
);
120 static void scsi_mq_requeue_cmd(struct scsi_cmnd
*cmd
)
122 struct scsi_device
*sdev
= cmd
->device
;
123 struct request_queue
*q
= cmd
->request
->q
;
125 blk_mq_requeue_request(cmd
->request
);
126 blk_mq_kick_requeue_list(q
);
127 put_device(&sdev
->sdev_gendev
);
131 * __scsi_queue_insert - private queue insertion
132 * @cmd: The SCSI command being requeued
133 * @reason: The reason for the requeue
134 * @unbusy: Whether the queue should be unbusied
136 * This is a private queue insertion. The public interface
137 * scsi_queue_insert() always assumes the queue should be unbusied
138 * because it's always called before the completion. This function is
139 * for a requeue after completion, which should only occur in this
142 static void __scsi_queue_insert(struct scsi_cmnd
*cmd
, int reason
, int unbusy
)
144 struct scsi_device
*device
= cmd
->device
;
145 struct request_queue
*q
= device
->request_queue
;
148 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO
, cmd
,
149 "Inserting command %p into mlqueue\n", cmd
));
151 scsi_set_blocked(cmd
, reason
);
154 * Decrement the counters, since these commands are no longer
155 * active on the host/device.
158 scsi_device_unbusy(device
);
161 * Requeue this command. It will go before all other commands
162 * that are already in the queue. Schedule requeue work under
163 * lock such that the kblockd_schedule_work() call happens
164 * before blk_cleanup_queue() finishes.
168 scsi_mq_requeue_cmd(cmd
);
171 spin_lock_irqsave(q
->queue_lock
, flags
);
172 blk_requeue_request(q
, cmd
->request
);
173 kblockd_schedule_work(&device
->requeue_work
);
174 spin_unlock_irqrestore(q
->queue_lock
, flags
);
178 * Function: scsi_queue_insert()
180 * Purpose: Insert a command in the midlevel queue.
182 * Arguments: cmd - command that we are adding to queue.
183 * reason - why we are inserting command to queue.
185 * Lock status: Assumed that lock is not held upon entry.
189 * Notes: We do this for one of two cases. Either the host is busy
190 * and it cannot accept any more commands for the time being,
191 * or the device returned QUEUE_FULL and can accept no more
193 * Notes: This could be called either from an interrupt context or a
194 * normal process context.
196 void scsi_queue_insert(struct scsi_cmnd
*cmd
, int reason
)
198 __scsi_queue_insert(cmd
, reason
, 1);
201 * scsi_execute - insert request and wait for the result
204 * @data_direction: data direction
205 * @buffer: data buffer
206 * @bufflen: len of buffer
207 * @sense: optional sense buffer
208 * @timeout: request timeout in seconds
209 * @retries: number of times to retry request
210 * @flags: or into request flags;
211 * @resid: optional residual length
213 * returns the req->errors value which is the scsi_cmnd result
216 int scsi_execute(struct scsi_device
*sdev
, const unsigned char *cmd
,
217 int data_direction
, void *buffer
, unsigned bufflen
,
218 unsigned char *sense
, int timeout
, int retries
, u64 flags
,
222 int write
= (data_direction
== DMA_TO_DEVICE
);
223 int ret
= DRIVER_ERROR
<< 24;
225 req
= blk_get_request(sdev
->request_queue
, write
, __GFP_RECLAIM
);
228 blk_rq_set_block_pc(req
);
230 if (bufflen
&& blk_rq_map_kern(sdev
->request_queue
, req
,
231 buffer
, bufflen
, __GFP_RECLAIM
))
234 req
->cmd_len
= COMMAND_SIZE(cmd
[0]);
235 memcpy(req
->cmd
, cmd
, req
->cmd_len
);
238 req
->retries
= retries
;
239 req
->timeout
= timeout
;
240 req
->cmd_flags
|= flags
| REQ_QUIET
| REQ_PREEMPT
;
243 * head injection *required* here otherwise quiesce won't work
245 blk_execute_rq(req
->q
, NULL
, req
, 1);
248 * Some devices (USB mass-storage in particular) may transfer
249 * garbage data together with a residue indicating that the data
250 * is invalid. Prevent the garbage from being misinterpreted
251 * and prevent security leaks by zeroing out the excess data.
253 if (unlikely(req
->resid_len
> 0 && req
->resid_len
<= bufflen
))
254 memset(buffer
+ (bufflen
- req
->resid_len
), 0, req
->resid_len
);
257 *resid
= req
->resid_len
;
260 blk_put_request(req
);
264 EXPORT_SYMBOL(scsi_execute
);
266 int scsi_execute_req_flags(struct scsi_device
*sdev
, const unsigned char *cmd
,
267 int data_direction
, void *buffer
, unsigned bufflen
,
268 struct scsi_sense_hdr
*sshdr
, int timeout
, int retries
,
269 int *resid
, u64 flags
)
275 sense
= kzalloc(SCSI_SENSE_BUFFERSIZE
, GFP_NOIO
);
277 return DRIVER_ERROR
<< 24;
279 result
= scsi_execute(sdev
, cmd
, data_direction
, buffer
, bufflen
,
280 sense
, timeout
, retries
, flags
, resid
);
282 scsi_normalize_sense(sense
, SCSI_SENSE_BUFFERSIZE
, sshdr
);
287 EXPORT_SYMBOL(scsi_execute_req_flags
);
290 * Function: scsi_init_cmd_errh()
292 * Purpose: Initialize cmd fields related to error handling.
294 * Arguments: cmd - command that is ready to be queued.
296 * Notes: This function has the job of initializing a number of
297 * fields related to error handling. Typically this will
298 * be called once for each command, as required.
300 static void scsi_init_cmd_errh(struct scsi_cmnd
*cmd
)
302 cmd
->serial_number
= 0;
303 scsi_set_resid(cmd
, 0);
304 memset(cmd
->sense_buffer
, 0, SCSI_SENSE_BUFFERSIZE
);
305 if (cmd
->cmd_len
== 0)
306 cmd
->cmd_len
= scsi_command_size(cmd
->cmnd
);
309 void scsi_device_unbusy(struct scsi_device
*sdev
)
311 struct Scsi_Host
*shost
= sdev
->host
;
312 struct scsi_target
*starget
= scsi_target(sdev
);
315 atomic_dec(&shost
->host_busy
);
316 if (starget
->can_queue
> 0)
317 atomic_dec(&starget
->target_busy
);
319 if (unlikely(scsi_host_in_recovery(shost
) &&
320 (shost
->host_failed
|| shost
->host_eh_scheduled
))) {
321 spin_lock_irqsave(shost
->host_lock
, flags
);
322 scsi_eh_wakeup(shost
);
323 spin_unlock_irqrestore(shost
->host_lock
, flags
);
326 atomic_dec(&sdev
->device_busy
);
329 static void scsi_kick_queue(struct request_queue
*q
)
332 blk_mq_start_hw_queues(q
);
338 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
339 * and call blk_run_queue for all the scsi_devices on the target -
340 * including current_sdev first.
342 * Called with *no* scsi locks held.
344 static void scsi_single_lun_run(struct scsi_device
*current_sdev
)
346 struct Scsi_Host
*shost
= current_sdev
->host
;
347 struct scsi_device
*sdev
, *tmp
;
348 struct scsi_target
*starget
= scsi_target(current_sdev
);
351 spin_lock_irqsave(shost
->host_lock
, flags
);
352 starget
->starget_sdev_user
= NULL
;
353 spin_unlock_irqrestore(shost
->host_lock
, flags
);
356 * Call blk_run_queue for all LUNs on the target, starting with
357 * current_sdev. We race with others (to set starget_sdev_user),
358 * but in most cases, we will be first. Ideally, each LU on the
359 * target would get some limited time or requests on the target.
361 scsi_kick_queue(current_sdev
->request_queue
);
363 spin_lock_irqsave(shost
->host_lock
, flags
);
364 if (starget
->starget_sdev_user
)
366 list_for_each_entry_safe(sdev
, tmp
, &starget
->devices
,
367 same_target_siblings
) {
368 if (sdev
== current_sdev
)
370 if (scsi_device_get(sdev
))
373 spin_unlock_irqrestore(shost
->host_lock
, flags
);
374 scsi_kick_queue(sdev
->request_queue
);
375 spin_lock_irqsave(shost
->host_lock
, flags
);
377 scsi_device_put(sdev
);
380 spin_unlock_irqrestore(shost
->host_lock
, flags
);
383 static inline bool scsi_device_is_busy(struct scsi_device
*sdev
)
385 if (atomic_read(&sdev
->device_busy
) >= sdev
->queue_depth
)
387 if (atomic_read(&sdev
->device_blocked
) > 0)
392 static inline bool scsi_target_is_busy(struct scsi_target
*starget
)
394 if (starget
->can_queue
> 0) {
395 if (atomic_read(&starget
->target_busy
) >= starget
->can_queue
)
397 if (atomic_read(&starget
->target_blocked
) > 0)
403 static inline bool scsi_host_is_busy(struct Scsi_Host
*shost
)
405 if (shost
->can_queue
> 0 &&
406 atomic_read(&shost
->host_busy
) >= shost
->can_queue
)
408 if (atomic_read(&shost
->host_blocked
) > 0)
410 if (shost
->host_self_blocked
)
415 static void scsi_starved_list_run(struct Scsi_Host
*shost
)
417 LIST_HEAD(starved_list
);
418 struct scsi_device
*sdev
;
421 spin_lock_irqsave(shost
->host_lock
, flags
);
422 list_splice_init(&shost
->starved_list
, &starved_list
);
424 while (!list_empty(&starved_list
)) {
425 struct request_queue
*slq
;
428 * As long as shost is accepting commands and we have
429 * starved queues, call blk_run_queue. scsi_request_fn
430 * drops the queue_lock and can add us back to the
433 * host_lock protects the starved_list and starved_entry.
434 * scsi_request_fn must get the host_lock before checking
435 * or modifying starved_list or starved_entry.
437 if (scsi_host_is_busy(shost
))
440 sdev
= list_entry(starved_list
.next
,
441 struct scsi_device
, starved_entry
);
442 list_del_init(&sdev
->starved_entry
);
443 if (scsi_target_is_busy(scsi_target(sdev
))) {
444 list_move_tail(&sdev
->starved_entry
,
445 &shost
->starved_list
);
450 * Once we drop the host lock, a racing scsi_remove_device()
451 * call may remove the sdev from the starved list and destroy
452 * it and the queue. Mitigate by taking a reference to the
453 * queue and never touching the sdev again after we drop the
454 * host lock. Note: if __scsi_remove_device() invokes
455 * blk_cleanup_queue() before the queue is run from this
456 * function then blk_run_queue() will return immediately since
457 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
459 slq
= sdev
->request_queue
;
460 if (!blk_get_queue(slq
))
462 spin_unlock_irqrestore(shost
->host_lock
, flags
);
464 scsi_kick_queue(slq
);
467 spin_lock_irqsave(shost
->host_lock
, flags
);
469 /* put any unprocessed entries back */
470 list_splice(&starved_list
, &shost
->starved_list
);
471 spin_unlock_irqrestore(shost
->host_lock
, flags
);
475 * Function: scsi_run_queue()
477 * Purpose: Select a proper request queue to serve next
479 * Arguments: q - last request's queue
483 * Notes: The previous command was completely finished, start
484 * a new one if possible.
486 static void scsi_run_queue(struct request_queue
*q
)
488 struct scsi_device
*sdev
= q
->queuedata
;
490 if (scsi_target(sdev
)->single_lun
)
491 scsi_single_lun_run(sdev
);
492 if (!list_empty(&sdev
->host
->starved_list
))
493 scsi_starved_list_run(sdev
->host
);
496 blk_mq_start_stopped_hw_queues(q
, false);
501 void scsi_requeue_run_queue(struct work_struct
*work
)
503 struct scsi_device
*sdev
;
504 struct request_queue
*q
;
506 sdev
= container_of(work
, struct scsi_device
, requeue_work
);
507 q
= sdev
->request_queue
;
512 * Function: scsi_requeue_command()
514 * Purpose: Handle post-processing of completed commands.
516 * Arguments: q - queue to operate on
517 * cmd - command that may need to be requeued.
521 * Notes: After command completion, there may be blocks left
522 * over which weren't finished by the previous command
523 * this can be for a number of reasons - the main one is
524 * I/O errors in the middle of the request, in which case
525 * we need to request the blocks that come after the bad
527 * Notes: Upon return, cmd is a stale pointer.
529 static void scsi_requeue_command(struct request_queue
*q
, struct scsi_cmnd
*cmd
)
531 struct scsi_device
*sdev
= cmd
->device
;
532 struct request
*req
= cmd
->request
;
535 spin_lock_irqsave(q
->queue_lock
, flags
);
536 blk_unprep_request(req
);
538 scsi_put_command(cmd
);
539 blk_requeue_request(q
, req
);
540 spin_unlock_irqrestore(q
->queue_lock
, flags
);
544 put_device(&sdev
->sdev_gendev
);
547 void scsi_run_host_queues(struct Scsi_Host
*shost
)
549 struct scsi_device
*sdev
;
551 shost_for_each_device(sdev
, shost
)
552 scsi_run_queue(sdev
->request_queue
);
555 static inline unsigned int scsi_sgtable_index(unsigned short nents
)
559 BUG_ON(nents
> SCSI_MAX_SG_SEGMENTS
);
564 index
= get_count_order(nents
) - 3;
569 static void scsi_sg_free(struct scatterlist
*sgl
, unsigned int nents
)
571 struct scsi_host_sg_pool
*sgp
;
573 sgp
= scsi_sg_pools
+ scsi_sgtable_index(nents
);
574 mempool_free(sgl
, sgp
->pool
);
577 static struct scatterlist
*scsi_sg_alloc(unsigned int nents
, gfp_t gfp_mask
)
579 struct scsi_host_sg_pool
*sgp
;
581 sgp
= scsi_sg_pools
+ scsi_sgtable_index(nents
);
582 return mempool_alloc(sgp
->pool
, gfp_mask
);
585 static void scsi_free_sgtable(struct scsi_data_buffer
*sdb
, bool mq
)
587 if (mq
&& sdb
->table
.orig_nents
<= SCSI_MAX_SG_SEGMENTS
)
589 __sg_free_table(&sdb
->table
, SCSI_MAX_SG_SEGMENTS
, mq
, scsi_sg_free
);
592 static int scsi_alloc_sgtable(struct scsi_data_buffer
*sdb
, int nents
, bool mq
)
594 struct scatterlist
*first_chunk
= NULL
;
600 if (nents
<= SCSI_MAX_SG_SEGMENTS
) {
601 sdb
->table
.nents
= sdb
->table
.orig_nents
= nents
;
602 sg_init_table(sdb
->table
.sgl
, nents
);
605 first_chunk
= sdb
->table
.sgl
;
608 ret
= __sg_alloc_table(&sdb
->table
, nents
, SCSI_MAX_SG_SEGMENTS
,
609 first_chunk
, GFP_ATOMIC
, scsi_sg_alloc
);
611 scsi_free_sgtable(sdb
, mq
);
615 static void scsi_uninit_cmd(struct scsi_cmnd
*cmd
)
617 if (cmd
->request
->cmd_type
== REQ_TYPE_FS
) {
618 struct scsi_driver
*drv
= scsi_cmd_to_driver(cmd
);
620 if (drv
->uninit_command
)
621 drv
->uninit_command(cmd
);
625 static void scsi_mq_free_sgtables(struct scsi_cmnd
*cmd
)
627 if (cmd
->sdb
.table
.nents
)
628 scsi_free_sgtable(&cmd
->sdb
, true);
629 if (cmd
->request
->next_rq
&& cmd
->request
->next_rq
->special
)
630 scsi_free_sgtable(cmd
->request
->next_rq
->special
, true);
631 if (scsi_prot_sg_count(cmd
))
632 scsi_free_sgtable(cmd
->prot_sdb
, true);
635 static void scsi_mq_uninit_cmd(struct scsi_cmnd
*cmd
)
637 struct scsi_device
*sdev
= cmd
->device
;
638 struct Scsi_Host
*shost
= sdev
->host
;
641 scsi_mq_free_sgtables(cmd
);
642 scsi_uninit_cmd(cmd
);
644 if (shost
->use_cmd_list
) {
645 BUG_ON(list_empty(&cmd
->list
));
646 spin_lock_irqsave(&sdev
->list_lock
, flags
);
647 list_del_init(&cmd
->list
);
648 spin_unlock_irqrestore(&sdev
->list_lock
, flags
);
653 * Function: scsi_release_buffers()
655 * Purpose: Free resources allocate for a scsi_command.
657 * Arguments: cmd - command that we are bailing.
659 * Lock status: Assumed that no lock is held upon entry.
663 * Notes: In the event that an upper level driver rejects a
664 * command, we must release resources allocated during
665 * the __init_io() function. Primarily this would involve
666 * the scatter-gather table.
668 static void scsi_release_buffers(struct scsi_cmnd
*cmd
)
670 if (cmd
->sdb
.table
.nents
)
671 scsi_free_sgtable(&cmd
->sdb
, false);
673 memset(&cmd
->sdb
, 0, sizeof(cmd
->sdb
));
675 if (scsi_prot_sg_count(cmd
))
676 scsi_free_sgtable(cmd
->prot_sdb
, false);
679 static void scsi_release_bidi_buffers(struct scsi_cmnd
*cmd
)
681 struct scsi_data_buffer
*bidi_sdb
= cmd
->request
->next_rq
->special
;
683 scsi_free_sgtable(bidi_sdb
, false);
684 kmem_cache_free(scsi_sdb_cache
, bidi_sdb
);
685 cmd
->request
->next_rq
->special
= NULL
;
688 static bool scsi_end_request(struct request
*req
, int error
,
689 unsigned int bytes
, unsigned int bidi_bytes
)
691 struct scsi_cmnd
*cmd
= req
->special
;
692 struct scsi_device
*sdev
= cmd
->device
;
693 struct request_queue
*q
= sdev
->request_queue
;
695 if (blk_update_request(req
, error
, bytes
))
698 /* Bidi request must be completed as a whole */
699 if (unlikely(bidi_bytes
) &&
700 blk_update_request(req
->next_rq
, error
, bidi_bytes
))
703 if (blk_queue_add_random(q
))
704 add_disk_randomness(req
->rq_disk
);
708 * In the MQ case the command gets freed by __blk_mq_end_request,
709 * so we have to do all cleanup that depends on it earlier.
711 * We also can't kick the queues from irq context, so we
712 * will have to defer it to a workqueue.
714 scsi_mq_uninit_cmd(cmd
);
716 __blk_mq_end_request(req
, error
);
718 if (scsi_target(sdev
)->single_lun
||
719 !list_empty(&sdev
->host
->starved_list
))
720 kblockd_schedule_work(&sdev
->requeue_work
);
722 blk_mq_start_stopped_hw_queues(q
, true);
727 scsi_release_bidi_buffers(cmd
);
729 spin_lock_irqsave(q
->queue_lock
, flags
);
730 blk_finish_request(req
, error
);
731 spin_unlock_irqrestore(q
->queue_lock
, flags
);
733 scsi_release_buffers(cmd
);
735 scsi_put_command(cmd
);
739 put_device(&sdev
->sdev_gendev
);
744 * __scsi_error_from_host_byte - translate SCSI error code into errno
745 * @cmd: SCSI command (unused)
746 * @result: scsi error code
748 * Translate SCSI error code into standard UNIX errno.
750 * -ENOLINK temporary transport failure
751 * -EREMOTEIO permanent target failure, do not retry
752 * -EBADE permanent nexus failure, retry on other path
753 * -ENOSPC No write space available
754 * -ENODATA Medium error
755 * -EIO unspecified I/O error
757 static int __scsi_error_from_host_byte(struct scsi_cmnd
*cmd
, int result
)
761 switch(host_byte(result
)) {
762 case DID_TRANSPORT_FAILFAST
:
765 case DID_TARGET_FAILURE
:
766 set_host_byte(cmd
, DID_OK
);
769 case DID_NEXUS_FAILURE
:
770 set_host_byte(cmd
, DID_OK
);
773 case DID_ALLOC_FAILURE
:
774 set_host_byte(cmd
, DID_OK
);
777 case DID_MEDIUM_ERROR
:
778 set_host_byte(cmd
, DID_OK
);
790 * Function: scsi_io_completion()
792 * Purpose: Completion processing for block device I/O requests.
794 * Arguments: cmd - command that is finished.
796 * Lock status: Assumed that no lock is held upon entry.
800 * Notes: We will finish off the specified number of sectors. If we
801 * are done, the command block will be released and the queue
802 * function will be goosed. If we are not done then we have to
803 * figure out what to do next:
805 * a) We can call scsi_requeue_command(). The request
806 * will be unprepared and put back on the queue. Then
807 * a new command will be created for it. This should
808 * be used if we made forward progress, or if we want
809 * to switch from READ(10) to READ(6) for example.
811 * b) We can call __scsi_queue_insert(). The request will
812 * be put back on the queue and retried using the same
813 * command as before, possibly after a delay.
815 * c) We can call scsi_end_request() with -EIO to fail
816 * the remainder of the request.
818 void scsi_io_completion(struct scsi_cmnd
*cmd
, unsigned int good_bytes
)
820 int result
= cmd
->result
;
821 struct request_queue
*q
= cmd
->device
->request_queue
;
822 struct request
*req
= cmd
->request
;
824 struct scsi_sense_hdr sshdr
;
825 bool sense_valid
= false;
826 int sense_deferred
= 0, level
= 0;
827 enum {ACTION_FAIL
, ACTION_REPREP
, ACTION_RETRY
,
828 ACTION_DELAYED_RETRY
} action
;
829 unsigned long wait_for
= (cmd
->allowed
+ 1) * req
->timeout
;
832 sense_valid
= scsi_command_normalize_sense(cmd
, &sshdr
);
834 sense_deferred
= scsi_sense_is_deferred(&sshdr
);
837 if (req
->cmd_type
== REQ_TYPE_BLOCK_PC
) { /* SG_IO ioctl from block level */
839 if (sense_valid
&& req
->sense
) {
841 * SG_IO wants current and deferred errors
843 int len
= 8 + cmd
->sense_buffer
[7];
845 if (len
> SCSI_SENSE_BUFFERSIZE
)
846 len
= SCSI_SENSE_BUFFERSIZE
;
847 memcpy(req
->sense
, cmd
->sense_buffer
, len
);
848 req
->sense_len
= len
;
851 error
= __scsi_error_from_host_byte(cmd
, result
);
854 * __scsi_error_from_host_byte may have reset the host_byte
856 req
->errors
= cmd
->result
;
858 req
->resid_len
= scsi_get_resid(cmd
);
860 if (scsi_bidi_cmnd(cmd
)) {
862 * Bidi commands Must be complete as a whole,
863 * both sides at once.
865 req
->next_rq
->resid_len
= scsi_in(cmd
)->resid
;
866 if (scsi_end_request(req
, 0, blk_rq_bytes(req
),
867 blk_rq_bytes(req
->next_rq
)))
871 } else if (blk_rq_bytes(req
) == 0 && result
&& !sense_deferred
) {
873 * Certain non BLOCK_PC requests are commands that don't
874 * actually transfer anything (FLUSH), so cannot use
875 * good_bytes != blk_rq_bytes(req) as the signal for an error.
876 * This sets the error explicitly for the problem case.
878 error
= __scsi_error_from_host_byte(cmd
, result
);
881 /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
882 BUG_ON(blk_bidi_rq(req
));
885 * Next deal with any sectors which we were able to correctly
888 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO
, cmd
,
889 "%u sectors total, %d bytes done.\n",
890 blk_rq_sectors(req
), good_bytes
));
893 * Recovered errors need reporting, but they're always treated
894 * as success, so fiddle the result code here. For BLOCK_PC
895 * we already took a copy of the original into rq->errors which
896 * is what gets returned to the user
898 if (sense_valid
&& (sshdr
.sense_key
== RECOVERED_ERROR
)) {
899 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
900 * print since caller wants ATA registers. Only occurs on
901 * SCSI ATA PASS_THROUGH commands when CK_COND=1
903 if ((sshdr
.asc
== 0x0) && (sshdr
.ascq
== 0x1d))
905 else if (!(req
->cmd_flags
& REQ_QUIET
))
906 scsi_print_sense(cmd
);
908 /* BLOCK_PC may have set error */
913 * special case: failed zero length commands always need to
914 * drop down into the retry code. Otherwise, if we finished
915 * all bytes in the request we are done now.
917 if (!(blk_rq_bytes(req
) == 0 && error
) &&
918 !scsi_end_request(req
, error
, good_bytes
, 0))
922 * Kill remainder if no retrys.
924 if (error
&& scsi_noretry_cmd(cmd
)) {
925 if (scsi_end_request(req
, error
, blk_rq_bytes(req
), 0))
931 * If there had been no error, but we have leftover bytes in the
932 * requeues just queue the command up again.
937 error
= __scsi_error_from_host_byte(cmd
, result
);
939 if (host_byte(result
) == DID_RESET
) {
940 /* Third party bus reset or reset for error recovery
941 * reasons. Just retry the command and see what
944 action
= ACTION_RETRY
;
945 } else if (sense_valid
&& !sense_deferred
) {
946 switch (sshdr
.sense_key
) {
948 if (cmd
->device
->removable
) {
949 /* Detected disc change. Set a bit
950 * and quietly refuse further access.
952 cmd
->device
->changed
= 1;
953 action
= ACTION_FAIL
;
955 /* Must have been a power glitch, or a
956 * bus reset. Could not have been a
957 * media change, so we just retry the
958 * command and see what happens.
960 action
= ACTION_RETRY
;
963 case ILLEGAL_REQUEST
:
964 /* If we had an ILLEGAL REQUEST returned, then
965 * we may have performed an unsupported
966 * command. The only thing this should be
967 * would be a ten byte read where only a six
968 * byte read was supported. Also, on a system
969 * where READ CAPACITY failed, we may have
970 * read past the end of the disk.
972 if ((cmd
->device
->use_10_for_rw
&&
973 sshdr
.asc
== 0x20 && sshdr
.ascq
== 0x00) &&
974 (cmd
->cmnd
[0] == READ_10
||
975 cmd
->cmnd
[0] == WRITE_10
)) {
976 /* This will issue a new 6-byte command. */
977 cmd
->device
->use_10_for_rw
= 0;
978 action
= ACTION_REPREP
;
979 } else if (sshdr
.asc
== 0x10) /* DIX */ {
980 action
= ACTION_FAIL
;
982 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
983 } else if (sshdr
.asc
== 0x20 || sshdr
.asc
== 0x24) {
984 action
= ACTION_FAIL
;
987 action
= ACTION_FAIL
;
989 case ABORTED_COMMAND
:
990 action
= ACTION_FAIL
;
991 if (sshdr
.asc
== 0x10) /* DIF */
995 /* If the device is in the process of becoming
996 * ready, or has a temporary blockage, retry.
998 if (sshdr
.asc
== 0x04) {
999 switch (sshdr
.ascq
) {
1000 case 0x01: /* becoming ready */
1001 case 0x04: /* format in progress */
1002 case 0x05: /* rebuild in progress */
1003 case 0x06: /* recalculation in progress */
1004 case 0x07: /* operation in progress */
1005 case 0x08: /* Long write in progress */
1006 case 0x09: /* self test in progress */
1007 case 0x14: /* space allocation in progress */
1008 action
= ACTION_DELAYED_RETRY
;
1011 action
= ACTION_FAIL
;
1015 action
= ACTION_FAIL
;
1017 case VOLUME_OVERFLOW
:
1018 /* See SSC3rXX or current. */
1019 action
= ACTION_FAIL
;
1022 action
= ACTION_FAIL
;
1026 action
= ACTION_FAIL
;
1028 if (action
!= ACTION_FAIL
&&
1029 time_before(cmd
->jiffies_at_alloc
+ wait_for
, jiffies
))
1030 action
= ACTION_FAIL
;
1034 /* Give up and fail the remainder of the request */
1035 if (!(req
->cmd_flags
& REQ_QUIET
)) {
1036 static DEFINE_RATELIMIT_STATE(_rs
,
1037 DEFAULT_RATELIMIT_INTERVAL
,
1038 DEFAULT_RATELIMIT_BURST
);
1040 if (unlikely(scsi_logging_level
))
1041 level
= SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT
,
1042 SCSI_LOG_MLCOMPLETE_BITS
);
1045 * if logging is enabled the failure will be printed
1046 * in scsi_log_completion(), so avoid duplicate messages
1048 if (!level
&& __ratelimit(&_rs
)) {
1049 scsi_print_result(cmd
, NULL
, FAILED
);
1050 if (driver_byte(result
) & DRIVER_SENSE
)
1051 scsi_print_sense(cmd
);
1052 scsi_print_command(cmd
);
1055 if (!scsi_end_request(req
, error
, blk_rq_err_bytes(req
), 0))
1060 /* Unprep the request and put it back at the head of the queue.
1061 * A new command will be prepared and issued.
1064 cmd
->request
->cmd_flags
&= ~REQ_DONTPREP
;
1065 scsi_mq_uninit_cmd(cmd
);
1066 scsi_mq_requeue_cmd(cmd
);
1068 scsi_release_buffers(cmd
);
1069 scsi_requeue_command(q
, cmd
);
1073 /* Retry the same command immediately */
1074 __scsi_queue_insert(cmd
, SCSI_MLQUEUE_EH_RETRY
, 0);
1076 case ACTION_DELAYED_RETRY
:
1077 /* Retry the same command after a delay */
1078 __scsi_queue_insert(cmd
, SCSI_MLQUEUE_DEVICE_BUSY
, 0);
1083 static int scsi_init_sgtable(struct request
*req
, struct scsi_data_buffer
*sdb
)
1088 * If sg table allocation fails, requeue request later.
1090 if (unlikely(scsi_alloc_sgtable(sdb
, req
->nr_phys_segments
,
1091 req
->mq_ctx
!= NULL
)))
1092 return BLKPREP_DEFER
;
1095 * Next, walk the list, and fill in the addresses and sizes of
1098 count
= blk_rq_map_sg(req
->q
, req
, sdb
->table
.sgl
);
1099 BUG_ON(count
> sdb
->table
.nents
);
1100 sdb
->table
.nents
= count
;
1101 sdb
->length
= blk_rq_bytes(req
);
1106 * Function: scsi_init_io()
1108 * Purpose: SCSI I/O initialize function.
1110 * Arguments: cmd - Command descriptor we wish to initialize
1112 * Returns: 0 on success
1113 * BLKPREP_DEFER if the failure is retryable
1114 * BLKPREP_KILL if the failure is fatal
1116 int scsi_init_io(struct scsi_cmnd
*cmd
)
1118 struct scsi_device
*sdev
= cmd
->device
;
1119 struct request
*rq
= cmd
->request
;
1120 bool is_mq
= (rq
->mq_ctx
!= NULL
);
1123 if (WARN_ON_ONCE(!rq
->nr_phys_segments
))
1126 error
= scsi_init_sgtable(rq
, &cmd
->sdb
);
1130 if (blk_bidi_rq(rq
)) {
1131 if (!rq
->q
->mq_ops
) {
1132 struct scsi_data_buffer
*bidi_sdb
=
1133 kmem_cache_zalloc(scsi_sdb_cache
, GFP_ATOMIC
);
1135 error
= BLKPREP_DEFER
;
1139 rq
->next_rq
->special
= bidi_sdb
;
1142 error
= scsi_init_sgtable(rq
->next_rq
, rq
->next_rq
->special
);
1147 if (blk_integrity_rq(rq
)) {
1148 struct scsi_data_buffer
*prot_sdb
= cmd
->prot_sdb
;
1151 if (prot_sdb
== NULL
) {
1153 * This can happen if someone (e.g. multipath)
1154 * queues a command to a device on an adapter
1155 * that does not support DIX.
1158 error
= BLKPREP_KILL
;
1162 ivecs
= blk_rq_count_integrity_sg(rq
->q
, rq
->bio
);
1164 if (scsi_alloc_sgtable(prot_sdb
, ivecs
, is_mq
)) {
1165 error
= BLKPREP_DEFER
;
1169 count
= blk_rq_map_integrity_sg(rq
->q
, rq
->bio
,
1170 prot_sdb
->table
.sgl
);
1171 BUG_ON(unlikely(count
> ivecs
));
1172 BUG_ON(unlikely(count
> queue_max_integrity_segments(rq
->q
)));
1174 cmd
->prot_sdb
= prot_sdb
;
1175 cmd
->prot_sdb
->table
.nents
= count
;
1181 scsi_mq_free_sgtables(cmd
);
1183 scsi_release_buffers(cmd
);
1184 cmd
->request
->special
= NULL
;
1185 scsi_put_command(cmd
);
1186 put_device(&sdev
->sdev_gendev
);
1190 EXPORT_SYMBOL(scsi_init_io
);
1192 static struct scsi_cmnd
*scsi_get_cmd_from_req(struct scsi_device
*sdev
,
1193 struct request
*req
)
1195 struct scsi_cmnd
*cmd
;
1197 if (!req
->special
) {
1198 /* Bail if we can't get a reference to the device */
1199 if (!get_device(&sdev
->sdev_gendev
))
1202 cmd
= scsi_get_command(sdev
, GFP_ATOMIC
);
1203 if (unlikely(!cmd
)) {
1204 put_device(&sdev
->sdev_gendev
);
1212 /* pull a tag out of the request if we have one */
1213 cmd
->tag
= req
->tag
;
1216 cmd
->cmnd
= req
->cmd
;
1217 cmd
->prot_op
= SCSI_PROT_NORMAL
;
1222 static int scsi_setup_blk_pc_cmnd(struct scsi_device
*sdev
, struct request
*req
)
1224 struct scsi_cmnd
*cmd
= req
->special
;
1227 * BLOCK_PC requests may transfer data, in which case they must
1228 * a bio attached to them. Or they might contain a SCSI command
1229 * that does not transfer data, in which case they may optionally
1230 * submit a request without an attached bio.
1233 int ret
= scsi_init_io(cmd
);
1237 BUG_ON(blk_rq_bytes(req
));
1239 memset(&cmd
->sdb
, 0, sizeof(cmd
->sdb
));
1242 cmd
->cmd_len
= req
->cmd_len
;
1243 cmd
->transfersize
= blk_rq_bytes(req
);
1244 cmd
->allowed
= req
->retries
;
1249 * Setup a REQ_TYPE_FS command. These are simple request from filesystems
1250 * that still need to be translated to SCSI CDBs from the ULD.
1252 static int scsi_setup_fs_cmnd(struct scsi_device
*sdev
, struct request
*req
)
1254 struct scsi_cmnd
*cmd
= req
->special
;
1256 if (unlikely(sdev
->handler
&& sdev
->handler
->prep_fn
)) {
1257 int ret
= sdev
->handler
->prep_fn(sdev
, req
);
1258 if (ret
!= BLKPREP_OK
)
1262 memset(cmd
->cmnd
, 0, BLK_MAX_CDB
);
1263 return scsi_cmd_to_driver(cmd
)->init_command(cmd
);
1266 static int scsi_setup_cmnd(struct scsi_device
*sdev
, struct request
*req
)
1268 struct scsi_cmnd
*cmd
= req
->special
;
1270 if (!blk_rq_bytes(req
))
1271 cmd
->sc_data_direction
= DMA_NONE
;
1272 else if (rq_data_dir(req
) == WRITE
)
1273 cmd
->sc_data_direction
= DMA_TO_DEVICE
;
1275 cmd
->sc_data_direction
= DMA_FROM_DEVICE
;
1277 switch (req
->cmd_type
) {
1279 return scsi_setup_fs_cmnd(sdev
, req
);
1280 case REQ_TYPE_BLOCK_PC
:
1281 return scsi_setup_blk_pc_cmnd(sdev
, req
);
1283 return BLKPREP_KILL
;
1288 scsi_prep_state_check(struct scsi_device
*sdev
, struct request
*req
)
1290 int ret
= BLKPREP_OK
;
1293 * If the device is not in running state we will reject some
1296 if (unlikely(sdev
->sdev_state
!= SDEV_RUNNING
)) {
1297 switch (sdev
->sdev_state
) {
1299 case SDEV_TRANSPORT_OFFLINE
:
1301 * If the device is offline we refuse to process any
1302 * commands. The device must be brought online
1303 * before trying any recovery commands.
1305 sdev_printk(KERN_ERR
, sdev
,
1306 "rejecting I/O to offline device\n");
1311 * If the device is fully deleted, we refuse to
1312 * process any commands as well.
1314 sdev_printk(KERN_ERR
, sdev
,
1315 "rejecting I/O to dead device\n");
1319 case SDEV_CREATED_BLOCK
:
1320 ret
= BLKPREP_DEFER
;
1324 * If the devices is blocked we defer normal commands.
1326 if (!(req
->cmd_flags
& REQ_PREEMPT
))
1327 ret
= BLKPREP_DEFER
;
1331 * For any other not fully online state we only allow
1332 * special commands. In particular any user initiated
1333 * command is not allowed.
1335 if (!(req
->cmd_flags
& REQ_PREEMPT
))
1344 scsi_prep_return(struct request_queue
*q
, struct request
*req
, int ret
)
1346 struct scsi_device
*sdev
= q
->queuedata
;
1350 req
->errors
= DID_NO_CONNECT
<< 16;
1351 /* release the command and kill it */
1353 struct scsi_cmnd
*cmd
= req
->special
;
1354 scsi_release_buffers(cmd
);
1355 scsi_put_command(cmd
);
1356 put_device(&sdev
->sdev_gendev
);
1357 req
->special
= NULL
;
1362 * If we defer, the blk_peek_request() returns NULL, but the
1363 * queue must be restarted, so we schedule a callback to happen
1366 if (atomic_read(&sdev
->device_busy
) == 0)
1367 blk_delay_queue(q
, SCSI_QUEUE_DELAY
);
1370 req
->cmd_flags
|= REQ_DONTPREP
;
1376 static int scsi_prep_fn(struct request_queue
*q
, struct request
*req
)
1378 struct scsi_device
*sdev
= q
->queuedata
;
1379 struct scsi_cmnd
*cmd
;
1382 ret
= scsi_prep_state_check(sdev
, req
);
1383 if (ret
!= BLKPREP_OK
)
1386 cmd
= scsi_get_cmd_from_req(sdev
, req
);
1387 if (unlikely(!cmd
)) {
1388 ret
= BLKPREP_DEFER
;
1392 ret
= scsi_setup_cmnd(sdev
, req
);
1394 return scsi_prep_return(q
, req
, ret
);
1397 static void scsi_unprep_fn(struct request_queue
*q
, struct request
*req
)
1399 scsi_uninit_cmd(req
->special
);
1403 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1406 * Called with the queue_lock held.
1408 static inline int scsi_dev_queue_ready(struct request_queue
*q
,
1409 struct scsi_device
*sdev
)
1413 busy
= atomic_inc_return(&sdev
->device_busy
) - 1;
1414 if (atomic_read(&sdev
->device_blocked
)) {
1419 * unblock after device_blocked iterates to zero
1421 if (atomic_dec_return(&sdev
->device_blocked
) > 0) {
1423 * For the MQ case we take care of this in the caller.
1426 blk_delay_queue(q
, SCSI_QUEUE_DELAY
);
1429 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO
, sdev
,
1430 "unblocking device at zero depth\n"));
1433 if (busy
>= sdev
->queue_depth
)
1438 atomic_dec(&sdev
->device_busy
);
1443 * scsi_target_queue_ready: checks if there we can send commands to target
1444 * @sdev: scsi device on starget to check.
1446 static inline int scsi_target_queue_ready(struct Scsi_Host
*shost
,
1447 struct scsi_device
*sdev
)
1449 struct scsi_target
*starget
= scsi_target(sdev
);
1452 if (starget
->single_lun
) {
1453 spin_lock_irq(shost
->host_lock
);
1454 if (starget
->starget_sdev_user
&&
1455 starget
->starget_sdev_user
!= sdev
) {
1456 spin_unlock_irq(shost
->host_lock
);
1459 starget
->starget_sdev_user
= sdev
;
1460 spin_unlock_irq(shost
->host_lock
);
1463 if (starget
->can_queue
<= 0)
1466 busy
= atomic_inc_return(&starget
->target_busy
) - 1;
1467 if (atomic_read(&starget
->target_blocked
) > 0) {
1472 * unblock after target_blocked iterates to zero
1474 if (atomic_dec_return(&starget
->target_blocked
) > 0)
1477 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO
, starget
,
1478 "unblocking target at zero depth\n"));
1481 if (busy
>= starget
->can_queue
)
1487 spin_lock_irq(shost
->host_lock
);
1488 list_move_tail(&sdev
->starved_entry
, &shost
->starved_list
);
1489 spin_unlock_irq(shost
->host_lock
);
1491 if (starget
->can_queue
> 0)
1492 atomic_dec(&starget
->target_busy
);
1497 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1498 * return 0. We must end up running the queue again whenever 0 is
1499 * returned, else IO can hang.
1501 static inline int scsi_host_queue_ready(struct request_queue
*q
,
1502 struct Scsi_Host
*shost
,
1503 struct scsi_device
*sdev
)
1507 if (scsi_host_in_recovery(shost
))
1510 busy
= atomic_inc_return(&shost
->host_busy
) - 1;
1511 if (atomic_read(&shost
->host_blocked
) > 0) {
1516 * unblock after host_blocked iterates to zero
1518 if (atomic_dec_return(&shost
->host_blocked
) > 0)
1522 shost_printk(KERN_INFO
, shost
,
1523 "unblocking host at zero depth\n"));
1526 if (shost
->can_queue
> 0 && busy
>= shost
->can_queue
)
1528 if (shost
->host_self_blocked
)
1531 /* We're OK to process the command, so we can't be starved */
1532 if (!list_empty(&sdev
->starved_entry
)) {
1533 spin_lock_irq(shost
->host_lock
);
1534 if (!list_empty(&sdev
->starved_entry
))
1535 list_del_init(&sdev
->starved_entry
);
1536 spin_unlock_irq(shost
->host_lock
);
1542 spin_lock_irq(shost
->host_lock
);
1543 if (list_empty(&sdev
->starved_entry
))
1544 list_add_tail(&sdev
->starved_entry
, &shost
->starved_list
);
1545 spin_unlock_irq(shost
->host_lock
);
1547 atomic_dec(&shost
->host_busy
);
1552 * Busy state exporting function for request stacking drivers.
1554 * For efficiency, no lock is taken to check the busy state of
1555 * shost/starget/sdev, since the returned value is not guaranteed and
1556 * may be changed after request stacking drivers call the function,
1557 * regardless of taking lock or not.
1559 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1560 * needs to return 'not busy'. Otherwise, request stacking drivers
1561 * may hold requests forever.
1563 static int scsi_lld_busy(struct request_queue
*q
)
1565 struct scsi_device
*sdev
= q
->queuedata
;
1566 struct Scsi_Host
*shost
;
1568 if (blk_queue_dying(q
))
1574 * Ignore host/starget busy state.
1575 * Since block layer does not have a concept of fairness across
1576 * multiple queues, congestion of host/starget needs to be handled
1579 if (scsi_host_in_recovery(shost
) || scsi_device_is_busy(sdev
))
1586 * Kill a request for a dead device
1588 static void scsi_kill_request(struct request
*req
, struct request_queue
*q
)
1590 struct scsi_cmnd
*cmd
= req
->special
;
1591 struct scsi_device
*sdev
;
1592 struct scsi_target
*starget
;
1593 struct Scsi_Host
*shost
;
1595 blk_start_request(req
);
1597 scmd_printk(KERN_INFO
, cmd
, "killing request\n");
1600 starget
= scsi_target(sdev
);
1602 scsi_init_cmd_errh(cmd
);
1603 cmd
->result
= DID_NO_CONNECT
<< 16;
1604 atomic_inc(&cmd
->device
->iorequest_cnt
);
1607 * SCSI request completion path will do scsi_device_unbusy(),
1608 * bump busy counts. To bump the counters, we need to dance
1609 * with the locks as normal issue path does.
1611 atomic_inc(&sdev
->device_busy
);
1612 atomic_inc(&shost
->host_busy
);
1613 if (starget
->can_queue
> 0)
1614 atomic_inc(&starget
->target_busy
);
1616 blk_complete_request(req
);
1619 static void scsi_softirq_done(struct request
*rq
)
1621 struct scsi_cmnd
*cmd
= rq
->special
;
1622 unsigned long wait_for
= (cmd
->allowed
+ 1) * rq
->timeout
;
1625 INIT_LIST_HEAD(&cmd
->eh_entry
);
1627 atomic_inc(&cmd
->device
->iodone_cnt
);
1629 atomic_inc(&cmd
->device
->ioerr_cnt
);
1631 disposition
= scsi_decide_disposition(cmd
);
1632 if (disposition
!= SUCCESS
&&
1633 time_before(cmd
->jiffies_at_alloc
+ wait_for
, jiffies
)) {
1634 sdev_printk(KERN_ERR
, cmd
->device
,
1635 "timing out command, waited %lus\n",
1637 disposition
= SUCCESS
;
1640 scsi_log_completion(cmd
, disposition
);
1642 switch (disposition
) {
1644 scsi_finish_command(cmd
);
1647 scsi_queue_insert(cmd
, SCSI_MLQUEUE_EH_RETRY
);
1649 case ADD_TO_MLQUEUE
:
1650 scsi_queue_insert(cmd
, SCSI_MLQUEUE_DEVICE_BUSY
);
1653 if (!scsi_eh_scmd_add(cmd
, 0))
1654 scsi_finish_command(cmd
);
1659 * scsi_dispatch_command - Dispatch a command to the low-level driver.
1660 * @cmd: command block we are dispatching.
1662 * Return: nonzero return request was rejected and device's queue needs to be
1665 static int scsi_dispatch_cmd(struct scsi_cmnd
*cmd
)
1667 struct Scsi_Host
*host
= cmd
->device
->host
;
1670 atomic_inc(&cmd
->device
->iorequest_cnt
);
1672 /* check if the device is still usable */
1673 if (unlikely(cmd
->device
->sdev_state
== SDEV_DEL
)) {
1674 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1675 * returns an immediate error upwards, and signals
1676 * that the device is no longer present */
1677 cmd
->result
= DID_NO_CONNECT
<< 16;
1681 /* Check to see if the scsi lld made this device blocked. */
1682 if (unlikely(scsi_device_blocked(cmd
->device
))) {
1684 * in blocked state, the command is just put back on
1685 * the device queue. The suspend state has already
1686 * blocked the queue so future requests should not
1687 * occur until the device transitions out of the
1690 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO
, cmd
,
1691 "queuecommand : device blocked\n"));
1692 return SCSI_MLQUEUE_DEVICE_BUSY
;
1695 /* Store the LUN value in cmnd, if needed. */
1696 if (cmd
->device
->lun_in_cdb
)
1697 cmd
->cmnd
[1] = (cmd
->cmnd
[1] & 0x1f) |
1698 (cmd
->device
->lun
<< 5 & 0xe0);
1703 * Before we queue this command, check if the command
1704 * length exceeds what the host adapter can handle.
1706 if (cmd
->cmd_len
> cmd
->device
->host
->max_cmd_len
) {
1707 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO
, cmd
,
1708 "queuecommand : command too long. "
1709 "cdb_size=%d host->max_cmd_len=%d\n",
1710 cmd
->cmd_len
, cmd
->device
->host
->max_cmd_len
));
1711 cmd
->result
= (DID_ABORT
<< 16);
1715 if (unlikely(host
->shost_state
== SHOST_DEL
)) {
1716 cmd
->result
= (DID_NO_CONNECT
<< 16);
1721 trace_scsi_dispatch_cmd_start(cmd
);
1722 rtn
= host
->hostt
->queuecommand(host
, cmd
);
1724 trace_scsi_dispatch_cmd_error(cmd
, rtn
);
1725 if (rtn
!= SCSI_MLQUEUE_DEVICE_BUSY
&&
1726 rtn
!= SCSI_MLQUEUE_TARGET_BUSY
)
1727 rtn
= SCSI_MLQUEUE_HOST_BUSY
;
1729 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO
, cmd
,
1730 "queuecommand : request rejected\n"));
1735 cmd
->scsi_done(cmd
);
1740 * scsi_done - Invoke completion on finished SCSI command.
1741 * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1742 * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1744 * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1745 * which regains ownership of the SCSI command (de facto) from a LLDD, and
1746 * calls blk_complete_request() for further processing.
1748 * This function is interrupt context safe.
1750 static void scsi_done(struct scsi_cmnd
*cmd
)
1752 trace_scsi_dispatch_cmd_done(cmd
);
1753 blk_complete_request(cmd
->request
);
1757 * Function: scsi_request_fn()
1759 * Purpose: Main strategy routine for SCSI.
1761 * Arguments: q - Pointer to actual queue.
1765 * Lock status: IO request lock assumed to be held when called.
1767 static void scsi_request_fn(struct request_queue
*q
)
1768 __releases(q
->queue_lock
)
1769 __acquires(q
->queue_lock
)
1771 struct scsi_device
*sdev
= q
->queuedata
;
1772 struct Scsi_Host
*shost
;
1773 struct scsi_cmnd
*cmd
;
1774 struct request
*req
;
1777 * To start with, we keep looping until the queue is empty, or until
1778 * the host is no longer able to accept any more requests.
1784 * get next queueable request. We do this early to make sure
1785 * that the request is fully prepared even if we cannot
1788 req
= blk_peek_request(q
);
1792 if (unlikely(!scsi_device_online(sdev
))) {
1793 sdev_printk(KERN_ERR
, sdev
,
1794 "rejecting I/O to offline device\n");
1795 scsi_kill_request(req
, q
);
1799 if (!scsi_dev_queue_ready(q
, sdev
))
1803 * Remove the request from the request list.
1805 if (!(blk_queue_tagged(q
) && !blk_queue_start_tag(q
, req
)))
1806 blk_start_request(req
);
1808 spin_unlock_irq(q
->queue_lock
);
1810 if (unlikely(cmd
== NULL
)) {
1811 printk(KERN_CRIT
"impossible request in %s.\n"
1812 "please mail a stack trace to "
1813 "linux-scsi@vger.kernel.org\n",
1815 blk_dump_rq_flags(req
, "foo");
1820 * We hit this when the driver is using a host wide
1821 * tag map. For device level tag maps the queue_depth check
1822 * in the device ready fn would prevent us from trying
1823 * to allocate a tag. Since the map is a shared host resource
1824 * we add the dev to the starved list so it eventually gets
1825 * a run when a tag is freed.
1827 if (blk_queue_tagged(q
) && !(req
->cmd_flags
& REQ_QUEUED
)) {
1828 spin_lock_irq(shost
->host_lock
);
1829 if (list_empty(&sdev
->starved_entry
))
1830 list_add_tail(&sdev
->starved_entry
,
1831 &shost
->starved_list
);
1832 spin_unlock_irq(shost
->host_lock
);
1836 if (!scsi_target_queue_ready(shost
, sdev
))
1839 if (!scsi_host_queue_ready(q
, shost
, sdev
))
1840 goto host_not_ready
;
1842 if (sdev
->simple_tags
)
1843 cmd
->flags
|= SCMD_TAGGED
;
1845 cmd
->flags
&= ~SCMD_TAGGED
;
1848 * Finally, initialize any error handling parameters, and set up
1849 * the timers for timeouts.
1851 scsi_init_cmd_errh(cmd
);
1854 * Dispatch the command to the low-level driver.
1856 cmd
->scsi_done
= scsi_done
;
1857 rtn
= scsi_dispatch_cmd(cmd
);
1859 scsi_queue_insert(cmd
, rtn
);
1860 spin_lock_irq(q
->queue_lock
);
1863 spin_lock_irq(q
->queue_lock
);
1869 if (scsi_target(sdev
)->can_queue
> 0)
1870 atomic_dec(&scsi_target(sdev
)->target_busy
);
1873 * lock q, handle tag, requeue req, and decrement device_busy. We
1874 * must return with queue_lock held.
1876 * Decrementing device_busy without checking it is OK, as all such
1877 * cases (host limits or settings) should run the queue at some
1880 spin_lock_irq(q
->queue_lock
);
1881 blk_requeue_request(q
, req
);
1882 atomic_dec(&sdev
->device_busy
);
1884 if (!atomic_read(&sdev
->device_busy
) && !scsi_device_blocked(sdev
))
1885 blk_delay_queue(q
, SCSI_QUEUE_DELAY
);
1888 static inline int prep_to_mq(int ret
)
1894 return BLK_MQ_RQ_QUEUE_BUSY
;
1896 return BLK_MQ_RQ_QUEUE_ERROR
;
1900 static int scsi_mq_prep_fn(struct request
*req
)
1902 struct scsi_cmnd
*cmd
= blk_mq_rq_to_pdu(req
);
1903 struct scsi_device
*sdev
= req
->q
->queuedata
;
1904 struct Scsi_Host
*shost
= sdev
->host
;
1905 unsigned char *sense_buf
= cmd
->sense_buffer
;
1906 struct scatterlist
*sg
;
1908 memset(cmd
, 0, sizeof(struct scsi_cmnd
));
1914 cmd
->sense_buffer
= sense_buf
;
1916 cmd
->tag
= req
->tag
;
1918 cmd
->cmnd
= req
->cmd
;
1919 cmd
->prot_op
= SCSI_PROT_NORMAL
;
1921 INIT_LIST_HEAD(&cmd
->list
);
1922 INIT_DELAYED_WORK(&cmd
->abort_work
, scmd_eh_abort_handler
);
1923 cmd
->jiffies_at_alloc
= jiffies
;
1925 if (shost
->use_cmd_list
) {
1926 spin_lock_irq(&sdev
->list_lock
);
1927 list_add_tail(&cmd
->list
, &sdev
->cmd_list
);
1928 spin_unlock_irq(&sdev
->list_lock
);
1931 sg
= (void *)cmd
+ sizeof(struct scsi_cmnd
) + shost
->hostt
->cmd_size
;
1932 cmd
->sdb
.table
.sgl
= sg
;
1934 if (scsi_host_get_prot(shost
)) {
1935 cmd
->prot_sdb
= (void *)sg
+
1937 shost
->sg_tablesize
, SCSI_MAX_SG_SEGMENTS
) *
1938 sizeof(struct scatterlist
);
1939 memset(cmd
->prot_sdb
, 0, sizeof(struct scsi_data_buffer
));
1941 cmd
->prot_sdb
->table
.sgl
=
1942 (struct scatterlist
*)(cmd
->prot_sdb
+ 1);
1945 if (blk_bidi_rq(req
)) {
1946 struct request
*next_rq
= req
->next_rq
;
1947 struct scsi_data_buffer
*bidi_sdb
= blk_mq_rq_to_pdu(next_rq
);
1949 memset(bidi_sdb
, 0, sizeof(struct scsi_data_buffer
));
1950 bidi_sdb
->table
.sgl
=
1951 (struct scatterlist
*)(bidi_sdb
+ 1);
1953 next_rq
->special
= bidi_sdb
;
1956 blk_mq_start_request(req
);
1958 return scsi_setup_cmnd(sdev
, req
);
1961 static void scsi_mq_done(struct scsi_cmnd
*cmd
)
1963 trace_scsi_dispatch_cmd_done(cmd
);
1964 blk_mq_complete_request(cmd
->request
, cmd
->request
->errors
);
1967 static int scsi_queue_rq(struct blk_mq_hw_ctx
*hctx
,
1968 const struct blk_mq_queue_data
*bd
)
1970 struct request
*req
= bd
->rq
;
1971 struct request_queue
*q
= req
->q
;
1972 struct scsi_device
*sdev
= q
->queuedata
;
1973 struct Scsi_Host
*shost
= sdev
->host
;
1974 struct scsi_cmnd
*cmd
= blk_mq_rq_to_pdu(req
);
1978 ret
= prep_to_mq(scsi_prep_state_check(sdev
, req
));
1982 ret
= BLK_MQ_RQ_QUEUE_BUSY
;
1983 if (!get_device(&sdev
->sdev_gendev
))
1986 if (!scsi_dev_queue_ready(q
, sdev
))
1987 goto out_put_device
;
1988 if (!scsi_target_queue_ready(shost
, sdev
))
1989 goto out_dec_device_busy
;
1990 if (!scsi_host_queue_ready(q
, shost
, sdev
))
1991 goto out_dec_target_busy
;
1994 if (!(req
->cmd_flags
& REQ_DONTPREP
)) {
1995 ret
= prep_to_mq(scsi_mq_prep_fn(req
));
1997 goto out_dec_host_busy
;
1998 req
->cmd_flags
|= REQ_DONTPREP
;
2000 blk_mq_start_request(req
);
2003 if (sdev
->simple_tags
)
2004 cmd
->flags
|= SCMD_TAGGED
;
2006 cmd
->flags
&= ~SCMD_TAGGED
;
2008 scsi_init_cmd_errh(cmd
);
2009 cmd
->scsi_done
= scsi_mq_done
;
2011 reason
= scsi_dispatch_cmd(cmd
);
2013 scsi_set_blocked(cmd
, reason
);
2014 ret
= BLK_MQ_RQ_QUEUE_BUSY
;
2015 goto out_dec_host_busy
;
2018 return BLK_MQ_RQ_QUEUE_OK
;
2021 atomic_dec(&shost
->host_busy
);
2022 out_dec_target_busy
:
2023 if (scsi_target(sdev
)->can_queue
> 0)
2024 atomic_dec(&scsi_target(sdev
)->target_busy
);
2025 out_dec_device_busy
:
2026 atomic_dec(&sdev
->device_busy
);
2028 put_device(&sdev
->sdev_gendev
);
2031 case BLK_MQ_RQ_QUEUE_BUSY
:
2032 blk_mq_stop_hw_queue(hctx
);
2033 if (atomic_read(&sdev
->device_busy
) == 0 &&
2034 !scsi_device_blocked(sdev
))
2035 blk_mq_delay_queue(hctx
, SCSI_QUEUE_DELAY
);
2037 case BLK_MQ_RQ_QUEUE_ERROR
:
2039 * Make sure to release all allocated ressources when
2040 * we hit an error, as we will never see this command
2043 if (req
->cmd_flags
& REQ_DONTPREP
)
2044 scsi_mq_uninit_cmd(cmd
);
2052 static enum blk_eh_timer_return
scsi_timeout(struct request
*req
,
2056 return BLK_EH_RESET_TIMER
;
2057 return scsi_times_out(req
);
2060 static int scsi_init_request(void *data
, struct request
*rq
,
2061 unsigned int hctx_idx
, unsigned int request_idx
,
2062 unsigned int numa_node
)
2064 struct scsi_cmnd
*cmd
= blk_mq_rq_to_pdu(rq
);
2066 cmd
->sense_buffer
= kzalloc_node(SCSI_SENSE_BUFFERSIZE
, GFP_KERNEL
,
2068 if (!cmd
->sense_buffer
)
2073 static void scsi_exit_request(void *data
, struct request
*rq
,
2074 unsigned int hctx_idx
, unsigned int request_idx
)
2076 struct scsi_cmnd
*cmd
= blk_mq_rq_to_pdu(rq
);
2078 kfree(cmd
->sense_buffer
);
2081 static u64
scsi_calculate_bounce_limit(struct Scsi_Host
*shost
)
2083 struct device
*host_dev
;
2084 u64 bounce_limit
= 0xffffffff;
2086 if (shost
->unchecked_isa_dma
)
2087 return BLK_BOUNCE_ISA
;
2089 * Platforms with virtual-DMA translation
2090 * hardware have no practical limit.
2092 if (!PCI_DMA_BUS_IS_PHYS
)
2093 return BLK_BOUNCE_ANY
;
2095 host_dev
= scsi_get_device(shost
);
2096 if (host_dev
&& host_dev
->dma_mask
)
2097 bounce_limit
= (u64
)dma_max_pfn(host_dev
) << PAGE_SHIFT
;
2099 return bounce_limit
;
2102 static void __scsi_init_queue(struct Scsi_Host
*shost
, struct request_queue
*q
)
2104 struct device
*dev
= shost
->dma_dev
;
2107 * this limit is imposed by hardware restrictions
2109 blk_queue_max_segments(q
, min_t(unsigned short, shost
->sg_tablesize
,
2110 SCSI_MAX_SG_CHAIN_SEGMENTS
));
2112 if (scsi_host_prot_dma(shost
)) {
2113 shost
->sg_prot_tablesize
=
2114 min_not_zero(shost
->sg_prot_tablesize
,
2115 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS
);
2116 BUG_ON(shost
->sg_prot_tablesize
< shost
->sg_tablesize
);
2117 blk_queue_max_integrity_segments(q
, shost
->sg_prot_tablesize
);
2120 blk_queue_max_hw_sectors(q
, shost
->max_sectors
);
2121 blk_queue_bounce_limit(q
, scsi_calculate_bounce_limit(shost
));
2122 blk_queue_segment_boundary(q
, shost
->dma_boundary
);
2123 dma_set_seg_boundary(dev
, shost
->dma_boundary
);
2125 blk_queue_max_segment_size(q
, dma_get_max_seg_size(dev
));
2127 if (!shost
->use_clustering
)
2128 q
->limits
.cluster
= 0;
2131 * set a reasonable default alignment on word boundaries: the
2132 * host and device may alter it using
2133 * blk_queue_update_dma_alignment() later.
2135 blk_queue_dma_alignment(q
, 0x03);
2138 struct request_queue
*__scsi_alloc_queue(struct Scsi_Host
*shost
,
2139 request_fn_proc
*request_fn
)
2141 struct request_queue
*q
;
2143 q
= blk_init_queue(request_fn
, NULL
);
2146 __scsi_init_queue(shost
, q
);
2149 EXPORT_SYMBOL(__scsi_alloc_queue
);
2151 struct request_queue
*scsi_alloc_queue(struct scsi_device
*sdev
)
2153 struct request_queue
*q
;
2155 q
= __scsi_alloc_queue(sdev
->host
, scsi_request_fn
);
2159 blk_queue_prep_rq(q
, scsi_prep_fn
);
2160 blk_queue_unprep_rq(q
, scsi_unprep_fn
);
2161 blk_queue_softirq_done(q
, scsi_softirq_done
);
2162 blk_queue_rq_timed_out(q
, scsi_times_out
);
2163 blk_queue_lld_busy(q
, scsi_lld_busy
);
2167 static struct blk_mq_ops scsi_mq_ops
= {
2168 .map_queue
= blk_mq_map_queue
,
2169 .queue_rq
= scsi_queue_rq
,
2170 .complete
= scsi_softirq_done
,
2171 .timeout
= scsi_timeout
,
2172 .init_request
= scsi_init_request
,
2173 .exit_request
= scsi_exit_request
,
2176 struct request_queue
*scsi_mq_alloc_queue(struct scsi_device
*sdev
)
2178 sdev
->request_queue
= blk_mq_init_queue(&sdev
->host
->tag_set
);
2179 if (IS_ERR(sdev
->request_queue
))
2182 sdev
->request_queue
->queuedata
= sdev
;
2183 __scsi_init_queue(sdev
->host
, sdev
->request_queue
);
2184 return sdev
->request_queue
;
2187 int scsi_mq_setup_tags(struct Scsi_Host
*shost
)
2189 unsigned int cmd_size
, sgl_size
, tbl_size
;
2191 tbl_size
= shost
->sg_tablesize
;
2192 if (tbl_size
> SCSI_MAX_SG_SEGMENTS
)
2193 tbl_size
= SCSI_MAX_SG_SEGMENTS
;
2194 sgl_size
= tbl_size
* sizeof(struct scatterlist
);
2195 cmd_size
= sizeof(struct scsi_cmnd
) + shost
->hostt
->cmd_size
+ sgl_size
;
2196 if (scsi_host_get_prot(shost
))
2197 cmd_size
+= sizeof(struct scsi_data_buffer
) + sgl_size
;
2199 memset(&shost
->tag_set
, 0, sizeof(shost
->tag_set
));
2200 shost
->tag_set
.ops
= &scsi_mq_ops
;
2201 shost
->tag_set
.nr_hw_queues
= shost
->nr_hw_queues
? : 1;
2202 shost
->tag_set
.queue_depth
= shost
->can_queue
;
2203 shost
->tag_set
.cmd_size
= cmd_size
;
2204 shost
->tag_set
.numa_node
= NUMA_NO_NODE
;
2205 shost
->tag_set
.flags
= BLK_MQ_F_SHOULD_MERGE
| BLK_MQ_F_SG_MERGE
;
2206 shost
->tag_set
.flags
|=
2207 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost
->hostt
->tag_alloc_policy
);
2208 shost
->tag_set
.driver_data
= shost
;
2210 return blk_mq_alloc_tag_set(&shost
->tag_set
);
2213 void scsi_mq_destroy_tags(struct Scsi_Host
*shost
)
2215 blk_mq_free_tag_set(&shost
->tag_set
);
2219 * scsi_device_from_queue - return sdev associated with a request_queue
2220 * @q: The request queue to return the sdev from
2222 * Return the sdev associated with a request queue or NULL if the
2223 * request_queue does not reference a SCSI device.
2225 struct scsi_device
*scsi_device_from_queue(struct request_queue
*q
)
2227 struct scsi_device
*sdev
= NULL
;
2230 if (q
->mq_ops
== &scsi_mq_ops
)
2231 sdev
= q
->queuedata
;
2232 } else if (q
->request_fn
== scsi_request_fn
)
2233 sdev
= q
->queuedata
;
2234 if (!sdev
|| !get_device(&sdev
->sdev_gendev
))
2239 EXPORT_SYMBOL_GPL(scsi_device_from_queue
);
2242 * Function: scsi_block_requests()
2244 * Purpose: Utility function used by low-level drivers to prevent further
2245 * commands from being queued to the device.
2247 * Arguments: shost - Host in question
2251 * Lock status: No locks are assumed held.
2253 * Notes: There is no timer nor any other means by which the requests
2254 * get unblocked other than the low-level driver calling
2255 * scsi_unblock_requests().
2257 void scsi_block_requests(struct Scsi_Host
*shost
)
2259 shost
->host_self_blocked
= 1;
2261 EXPORT_SYMBOL(scsi_block_requests
);
2264 * Function: scsi_unblock_requests()
2266 * Purpose: Utility function used by low-level drivers to allow further
2267 * commands from being queued to the device.
2269 * Arguments: shost - Host in question
2273 * Lock status: No locks are assumed held.
2275 * Notes: There is no timer nor any other means by which the requests
2276 * get unblocked other than the low-level driver calling
2277 * scsi_unblock_requests().
2279 * This is done as an API function so that changes to the
2280 * internals of the scsi mid-layer won't require wholesale
2281 * changes to drivers that use this feature.
2283 void scsi_unblock_requests(struct Scsi_Host
*shost
)
2285 shost
->host_self_blocked
= 0;
2286 scsi_run_host_queues(shost
);
2288 EXPORT_SYMBOL(scsi_unblock_requests
);
2290 int __init
scsi_init_queue(void)
2294 scsi_sdb_cache
= kmem_cache_create("scsi_data_buffer",
2295 sizeof(struct scsi_data_buffer
),
2297 if (!scsi_sdb_cache
) {
2298 printk(KERN_ERR
"SCSI: can't init scsi sdb cache\n");
2302 for (i
= 0; i
< SG_MEMPOOL_NR
; i
++) {
2303 struct scsi_host_sg_pool
*sgp
= scsi_sg_pools
+ i
;
2304 int size
= sgp
->size
* sizeof(struct scatterlist
);
2306 sgp
->slab
= kmem_cache_create(sgp
->name
, size
, 0,
2307 SLAB_HWCACHE_ALIGN
, NULL
);
2309 printk(KERN_ERR
"SCSI: can't init sg slab %s\n",
2314 sgp
->pool
= mempool_create_slab_pool(SG_MEMPOOL_SIZE
,
2317 printk(KERN_ERR
"SCSI: can't init sg mempool %s\n",
2326 for (i
= 0; i
< SG_MEMPOOL_NR
; i
++) {
2327 struct scsi_host_sg_pool
*sgp
= scsi_sg_pools
+ i
;
2329 mempool_destroy(sgp
->pool
);
2331 kmem_cache_destroy(sgp
->slab
);
2333 kmem_cache_destroy(scsi_sdb_cache
);
2338 void scsi_exit_queue(void)
2342 kmem_cache_destroy(scsi_sdb_cache
);
2344 for (i
= 0; i
< SG_MEMPOOL_NR
; i
++) {
2345 struct scsi_host_sg_pool
*sgp
= scsi_sg_pools
+ i
;
2346 mempool_destroy(sgp
->pool
);
2347 kmem_cache_destroy(sgp
->slab
);
2352 * scsi_mode_select - issue a mode select
2353 * @sdev: SCSI device to be queried
2354 * @pf: Page format bit (1 == standard, 0 == vendor specific)
2355 * @sp: Save page bit (0 == don't save, 1 == save)
2356 * @modepage: mode page being requested
2357 * @buffer: request buffer (may not be smaller than eight bytes)
2358 * @len: length of request buffer.
2359 * @timeout: command timeout
2360 * @retries: number of retries before failing
2361 * @data: returns a structure abstracting the mode header data
2362 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2363 * must be SCSI_SENSE_BUFFERSIZE big.
2365 * Returns zero if successful; negative error number or scsi
2370 scsi_mode_select(struct scsi_device
*sdev
, int pf
, int sp
, int modepage
,
2371 unsigned char *buffer
, int len
, int timeout
, int retries
,
2372 struct scsi_mode_data
*data
, struct scsi_sense_hdr
*sshdr
)
2374 unsigned char cmd
[10];
2375 unsigned char *real_buffer
;
2378 memset(cmd
, 0, sizeof(cmd
));
2379 cmd
[1] = (pf
? 0x10 : 0) | (sp
? 0x01 : 0);
2381 if (sdev
->use_10_for_ms
) {
2384 real_buffer
= kmalloc(8 + len
, GFP_KERNEL
);
2387 memcpy(real_buffer
+ 8, buffer
, len
);
2391 real_buffer
[2] = data
->medium_type
;
2392 real_buffer
[3] = data
->device_specific
;
2393 real_buffer
[4] = data
->longlba
? 0x01 : 0;
2395 real_buffer
[6] = data
->block_descriptor_length
>> 8;
2396 real_buffer
[7] = data
->block_descriptor_length
;
2398 cmd
[0] = MODE_SELECT_10
;
2402 if (len
> 255 || data
->block_descriptor_length
> 255 ||
2406 real_buffer
= kmalloc(4 + len
, GFP_KERNEL
);
2409 memcpy(real_buffer
+ 4, buffer
, len
);
2412 real_buffer
[1] = data
->medium_type
;
2413 real_buffer
[2] = data
->device_specific
;
2414 real_buffer
[3] = data
->block_descriptor_length
;
2417 cmd
[0] = MODE_SELECT
;
2421 ret
= scsi_execute_req(sdev
, cmd
, DMA_TO_DEVICE
, real_buffer
, len
,
2422 sshdr
, timeout
, retries
, NULL
);
2426 EXPORT_SYMBOL_GPL(scsi_mode_select
);
2429 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2430 * @sdev: SCSI device to be queried
2431 * @dbd: set if mode sense will allow block descriptors to be returned
2432 * @modepage: mode page being requested
2433 * @buffer: request buffer (may not be smaller than eight bytes)
2434 * @len: length of request buffer.
2435 * @timeout: command timeout
2436 * @retries: number of retries before failing
2437 * @data: returns a structure abstracting the mode header data
2438 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2439 * must be SCSI_SENSE_BUFFERSIZE big.
2441 * Returns zero if unsuccessful, or the header offset (either 4
2442 * or 8 depending on whether a six or ten byte command was
2443 * issued) if successful.
2446 scsi_mode_sense(struct scsi_device
*sdev
, int dbd
, int modepage
,
2447 unsigned char *buffer
, int len
, int timeout
, int retries
,
2448 struct scsi_mode_data
*data
, struct scsi_sense_hdr
*sshdr
)
2450 unsigned char cmd
[12];
2453 int result
, retry_count
= retries
;
2454 struct scsi_sense_hdr my_sshdr
;
2456 memset(data
, 0, sizeof(*data
));
2457 memset(&cmd
[0], 0, 12);
2458 cmd
[1] = dbd
& 0x18; /* allows DBD and LLBA bits */
2461 /* caller might not be interested in sense, but we need it */
2466 use_10_for_ms
= sdev
->use_10_for_ms
;
2468 if (use_10_for_ms
) {
2472 cmd
[0] = MODE_SENSE_10
;
2479 cmd
[0] = MODE_SENSE
;
2484 memset(buffer
, 0, len
);
2486 result
= scsi_execute_req(sdev
, cmd
, DMA_FROM_DEVICE
, buffer
, len
,
2487 sshdr
, timeout
, retries
, NULL
);
2489 /* This code looks awful: what it's doing is making sure an
2490 * ILLEGAL REQUEST sense return identifies the actual command
2491 * byte as the problem. MODE_SENSE commands can return
2492 * ILLEGAL REQUEST if the code page isn't supported */
2494 if (use_10_for_ms
&& !scsi_status_is_good(result
) &&
2495 (driver_byte(result
) & DRIVER_SENSE
)) {
2496 if (scsi_sense_valid(sshdr
)) {
2497 if ((sshdr
->sense_key
== ILLEGAL_REQUEST
) &&
2498 (sshdr
->asc
== 0x20) && (sshdr
->ascq
== 0)) {
2500 * Invalid command operation code
2502 sdev
->use_10_for_ms
= 0;
2508 if(scsi_status_is_good(result
)) {
2509 if (unlikely(buffer
[0] == 0x86 && buffer
[1] == 0x0b &&
2510 (modepage
== 6 || modepage
== 8))) {
2511 /* Initio breakage? */
2514 data
->medium_type
= 0;
2515 data
->device_specific
= 0;
2517 data
->block_descriptor_length
= 0;
2518 } else if(use_10_for_ms
) {
2519 data
->length
= buffer
[0]*256 + buffer
[1] + 2;
2520 data
->medium_type
= buffer
[2];
2521 data
->device_specific
= buffer
[3];
2522 data
->longlba
= buffer
[4] & 0x01;
2523 data
->block_descriptor_length
= buffer
[6]*256
2526 data
->length
= buffer
[0] + 1;
2527 data
->medium_type
= buffer
[1];
2528 data
->device_specific
= buffer
[2];
2529 data
->block_descriptor_length
= buffer
[3];
2531 data
->header_length
= header_length
;
2532 } else if ((status_byte(result
) == CHECK_CONDITION
) &&
2533 scsi_sense_valid(sshdr
) &&
2534 sshdr
->sense_key
== UNIT_ATTENTION
&& retry_count
) {
2541 EXPORT_SYMBOL(scsi_mode_sense
);
2544 * scsi_test_unit_ready - test if unit is ready
2545 * @sdev: scsi device to change the state of.
2546 * @timeout: command timeout
2547 * @retries: number of retries before failing
2548 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2549 * returning sense. Make sure that this is cleared before passing
2552 * Returns zero if unsuccessful or an error if TUR failed. For
2553 * removable media, UNIT_ATTENTION sets ->changed flag.
2556 scsi_test_unit_ready(struct scsi_device
*sdev
, int timeout
, int retries
,
2557 struct scsi_sense_hdr
*sshdr_external
)
2560 TEST_UNIT_READY
, 0, 0, 0, 0, 0,
2562 struct scsi_sense_hdr
*sshdr
;
2565 if (!sshdr_external
)
2566 sshdr
= kzalloc(sizeof(*sshdr
), GFP_KERNEL
);
2568 sshdr
= sshdr_external
;
2570 /* try to eat the UNIT_ATTENTION if there are enough retries */
2572 result
= scsi_execute_req(sdev
, cmd
, DMA_NONE
, NULL
, 0, sshdr
,
2573 timeout
, retries
, NULL
);
2574 if (sdev
->removable
&& scsi_sense_valid(sshdr
) &&
2575 sshdr
->sense_key
== UNIT_ATTENTION
)
2577 } while (scsi_sense_valid(sshdr
) &&
2578 sshdr
->sense_key
== UNIT_ATTENTION
&& --retries
);
2580 if (!sshdr_external
)
2584 EXPORT_SYMBOL(scsi_test_unit_ready
);
2587 * scsi_device_set_state - Take the given device through the device state model.
2588 * @sdev: scsi device to change the state of.
2589 * @state: state to change to.
2591 * Returns zero if unsuccessful or an error if the requested
2592 * transition is illegal.
2595 scsi_device_set_state(struct scsi_device
*sdev
, enum scsi_device_state state
)
2597 enum scsi_device_state oldstate
= sdev
->sdev_state
;
2599 if (state
== oldstate
)
2605 case SDEV_CREATED_BLOCK
:
2616 case SDEV_TRANSPORT_OFFLINE
:
2629 case SDEV_TRANSPORT_OFFLINE
:
2637 case SDEV_TRANSPORT_OFFLINE
:
2652 case SDEV_CREATED_BLOCK
:
2659 case SDEV_CREATED_BLOCK
:
2674 case SDEV_TRANSPORT_OFFLINE
:
2687 case SDEV_TRANSPORT_OFFLINE
:
2689 case SDEV_CREATED_BLOCK
:
2697 sdev
->sdev_state
= state
;
2701 SCSI_LOG_ERROR_RECOVERY(1,
2702 sdev_printk(KERN_ERR
, sdev
,
2703 "Illegal state transition %s->%s",
2704 scsi_device_state_name(oldstate
),
2705 scsi_device_state_name(state
))
2709 EXPORT_SYMBOL(scsi_device_set_state
);
2712 * sdev_evt_emit - emit a single SCSI device uevent
2713 * @sdev: associated SCSI device
2714 * @evt: event to emit
2716 * Send a single uevent (scsi_event) to the associated scsi_device.
2718 static void scsi_evt_emit(struct scsi_device
*sdev
, struct scsi_event
*evt
)
2723 switch (evt
->evt_type
) {
2724 case SDEV_EVT_MEDIA_CHANGE
:
2725 envp
[idx
++] = "SDEV_MEDIA_CHANGE=1";
2727 case SDEV_EVT_INQUIRY_CHANGE_REPORTED
:
2728 envp
[idx
++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2730 case SDEV_EVT_CAPACITY_CHANGE_REPORTED
:
2731 envp
[idx
++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2733 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED
:
2734 envp
[idx
++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2736 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED
:
2737 envp
[idx
++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2739 case SDEV_EVT_LUN_CHANGE_REPORTED
:
2740 envp
[idx
++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2742 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED
:
2743 envp
[idx
++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2752 kobject_uevent_env(&sdev
->sdev_gendev
.kobj
, KOBJ_CHANGE
, envp
);
2756 * sdev_evt_thread - send a uevent for each scsi event
2757 * @work: work struct for scsi_device
2759 * Dispatch queued events to their associated scsi_device kobjects
2762 void scsi_evt_thread(struct work_struct
*work
)
2764 struct scsi_device
*sdev
;
2765 enum scsi_device_event evt_type
;
2766 LIST_HEAD(event_list
);
2768 sdev
= container_of(work
, struct scsi_device
, event_work
);
2770 for (evt_type
= SDEV_EVT_FIRST
; evt_type
<= SDEV_EVT_LAST
; evt_type
++)
2771 if (test_and_clear_bit(evt_type
, sdev
->pending_events
))
2772 sdev_evt_send_simple(sdev
, evt_type
, GFP_KERNEL
);
2775 struct scsi_event
*evt
;
2776 struct list_head
*this, *tmp
;
2777 unsigned long flags
;
2779 spin_lock_irqsave(&sdev
->list_lock
, flags
);
2780 list_splice_init(&sdev
->event_list
, &event_list
);
2781 spin_unlock_irqrestore(&sdev
->list_lock
, flags
);
2783 if (list_empty(&event_list
))
2786 list_for_each_safe(this, tmp
, &event_list
) {
2787 evt
= list_entry(this, struct scsi_event
, node
);
2788 list_del(&evt
->node
);
2789 scsi_evt_emit(sdev
, evt
);
2796 * sdev_evt_send - send asserted event to uevent thread
2797 * @sdev: scsi_device event occurred on
2798 * @evt: event to send
2800 * Assert scsi device event asynchronously.
2802 void sdev_evt_send(struct scsi_device
*sdev
, struct scsi_event
*evt
)
2804 unsigned long flags
;
2807 /* FIXME: currently this check eliminates all media change events
2808 * for polled devices. Need to update to discriminate between AN
2809 * and polled events */
2810 if (!test_bit(evt
->evt_type
, sdev
->supported_events
)) {
2816 spin_lock_irqsave(&sdev
->list_lock
, flags
);
2817 list_add_tail(&evt
->node
, &sdev
->event_list
);
2818 schedule_work(&sdev
->event_work
);
2819 spin_unlock_irqrestore(&sdev
->list_lock
, flags
);
2821 EXPORT_SYMBOL_GPL(sdev_evt_send
);
2824 * sdev_evt_alloc - allocate a new scsi event
2825 * @evt_type: type of event to allocate
2826 * @gfpflags: GFP flags for allocation
2828 * Allocates and returns a new scsi_event.
2830 struct scsi_event
*sdev_evt_alloc(enum scsi_device_event evt_type
,
2833 struct scsi_event
*evt
= kzalloc(sizeof(struct scsi_event
), gfpflags
);
2837 evt
->evt_type
= evt_type
;
2838 INIT_LIST_HEAD(&evt
->node
);
2840 /* evt_type-specific initialization, if any */
2842 case SDEV_EVT_MEDIA_CHANGE
:
2843 case SDEV_EVT_INQUIRY_CHANGE_REPORTED
:
2844 case SDEV_EVT_CAPACITY_CHANGE_REPORTED
:
2845 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED
:
2846 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED
:
2847 case SDEV_EVT_LUN_CHANGE_REPORTED
:
2848 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED
:
2856 EXPORT_SYMBOL_GPL(sdev_evt_alloc
);
2859 * sdev_evt_send_simple - send asserted event to uevent thread
2860 * @sdev: scsi_device event occurred on
2861 * @evt_type: type of event to send
2862 * @gfpflags: GFP flags for allocation
2864 * Assert scsi device event asynchronously, given an event type.
2866 void sdev_evt_send_simple(struct scsi_device
*sdev
,
2867 enum scsi_device_event evt_type
, gfp_t gfpflags
)
2869 struct scsi_event
*evt
= sdev_evt_alloc(evt_type
, gfpflags
);
2871 sdev_printk(KERN_ERR
, sdev
, "event %d eaten due to OOM\n",
2876 sdev_evt_send(sdev
, evt
);
2878 EXPORT_SYMBOL_GPL(sdev_evt_send_simple
);
2881 * scsi_device_quiesce - Block user issued commands.
2882 * @sdev: scsi device to quiesce.
2884 * This works by trying to transition to the SDEV_QUIESCE state
2885 * (which must be a legal transition). When the device is in this
2886 * state, only special requests will be accepted, all others will
2887 * be deferred. Since special requests may also be requeued requests,
2888 * a successful return doesn't guarantee the device will be
2889 * totally quiescent.
2891 * Must be called with user context, may sleep.
2893 * Returns zero if unsuccessful or an error if not.
2896 scsi_device_quiesce(struct scsi_device
*sdev
)
2898 int err
= scsi_device_set_state(sdev
, SDEV_QUIESCE
);
2902 scsi_run_queue(sdev
->request_queue
);
2903 while (atomic_read(&sdev
->device_busy
)) {
2904 msleep_interruptible(200);
2905 scsi_run_queue(sdev
->request_queue
);
2909 EXPORT_SYMBOL(scsi_device_quiesce
);
2912 * scsi_device_resume - Restart user issued commands to a quiesced device.
2913 * @sdev: scsi device to resume.
2915 * Moves the device from quiesced back to running and restarts the
2918 * Must be called with user context, may sleep.
2920 void scsi_device_resume(struct scsi_device
*sdev
)
2922 /* check if the device state was mutated prior to resume, and if
2923 * so assume the state is being managed elsewhere (for example
2924 * device deleted during suspend)
2926 if (sdev
->sdev_state
!= SDEV_QUIESCE
||
2927 scsi_device_set_state(sdev
, SDEV_RUNNING
))
2929 scsi_run_queue(sdev
->request_queue
);
2931 EXPORT_SYMBOL(scsi_device_resume
);
2934 device_quiesce_fn(struct scsi_device
*sdev
, void *data
)
2936 scsi_device_quiesce(sdev
);
2940 scsi_target_quiesce(struct scsi_target
*starget
)
2942 starget_for_each_device(starget
, NULL
, device_quiesce_fn
);
2944 EXPORT_SYMBOL(scsi_target_quiesce
);
2947 device_resume_fn(struct scsi_device
*sdev
, void *data
)
2949 scsi_device_resume(sdev
);
2953 scsi_target_resume(struct scsi_target
*starget
)
2955 starget_for_each_device(starget
, NULL
, device_resume_fn
);
2957 EXPORT_SYMBOL(scsi_target_resume
);
2960 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2961 * @sdev: device to block
2963 * Block request made by scsi lld's to temporarily stop all
2964 * scsi commands on the specified device. Called from interrupt
2965 * or normal process context.
2967 * Returns zero if successful or error if not
2970 * This routine transitions the device to the SDEV_BLOCK state
2971 * (which must be a legal transition). When the device is in this
2972 * state, all commands are deferred until the scsi lld reenables
2973 * the device with scsi_device_unblock or device_block_tmo fires.
2976 scsi_internal_device_block(struct scsi_device
*sdev
)
2978 struct request_queue
*q
= sdev
->request_queue
;
2979 unsigned long flags
;
2982 err
= scsi_device_set_state(sdev
, SDEV_BLOCK
);
2984 err
= scsi_device_set_state(sdev
, SDEV_CREATED_BLOCK
);
2991 * The device has transitioned to SDEV_BLOCK. Stop the
2992 * block layer from calling the midlayer with this device's
2996 blk_mq_stop_hw_queues(q
);
2998 spin_lock_irqsave(q
->queue_lock
, flags
);
3000 spin_unlock_irqrestore(q
->queue_lock
, flags
);
3005 EXPORT_SYMBOL_GPL(scsi_internal_device_block
);
3008 * scsi_internal_device_unblock - resume a device after a block request
3009 * @sdev: device to resume
3010 * @new_state: state to set devices to after unblocking
3012 * Called by scsi lld's or the midlayer to restart the device queue
3013 * for the previously suspended scsi device. Called from interrupt or
3014 * normal process context.
3016 * Returns zero if successful or error if not.
3019 * This routine transitions the device to the SDEV_RUNNING state
3020 * or to one of the offline states (which must be a legal transition)
3021 * allowing the midlayer to goose the queue for this device.
3024 scsi_internal_device_unblock(struct scsi_device
*sdev
,
3025 enum scsi_device_state new_state
)
3027 struct request_queue
*q
= sdev
->request_queue
;
3028 unsigned long flags
;
3031 * Try to transition the scsi device to SDEV_RUNNING or one of the
3032 * offlined states and goose the device queue if successful.
3034 if ((sdev
->sdev_state
== SDEV_BLOCK
) ||
3035 (sdev
->sdev_state
== SDEV_TRANSPORT_OFFLINE
))
3036 sdev
->sdev_state
= new_state
;
3037 else if (sdev
->sdev_state
== SDEV_CREATED_BLOCK
) {
3038 if (new_state
== SDEV_TRANSPORT_OFFLINE
||
3039 new_state
== SDEV_OFFLINE
)
3040 sdev
->sdev_state
= new_state
;
3042 sdev
->sdev_state
= SDEV_CREATED
;
3043 } else if (sdev
->sdev_state
!= SDEV_CANCEL
&&
3044 sdev
->sdev_state
!= SDEV_OFFLINE
)
3048 blk_mq_start_stopped_hw_queues(q
, false);
3050 spin_lock_irqsave(q
->queue_lock
, flags
);
3052 spin_unlock_irqrestore(q
->queue_lock
, flags
);
3057 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock
);
3060 device_block(struct scsi_device
*sdev
, void *data
)
3062 scsi_internal_device_block(sdev
);
3066 target_block(struct device
*dev
, void *data
)
3068 if (scsi_is_target_device(dev
))
3069 starget_for_each_device(to_scsi_target(dev
), NULL
,
3075 scsi_target_block(struct device
*dev
)
3077 if (scsi_is_target_device(dev
))
3078 starget_for_each_device(to_scsi_target(dev
), NULL
,
3081 device_for_each_child(dev
, NULL
, target_block
);
3083 EXPORT_SYMBOL_GPL(scsi_target_block
);
3086 device_unblock(struct scsi_device
*sdev
, void *data
)
3088 scsi_internal_device_unblock(sdev
, *(enum scsi_device_state
*)data
);
3092 target_unblock(struct device
*dev
, void *data
)
3094 if (scsi_is_target_device(dev
))
3095 starget_for_each_device(to_scsi_target(dev
), data
,
3101 scsi_target_unblock(struct device
*dev
, enum scsi_device_state new_state
)
3103 if (scsi_is_target_device(dev
))
3104 starget_for_each_device(to_scsi_target(dev
), &new_state
,
3107 device_for_each_child(dev
, &new_state
, target_unblock
);
3109 EXPORT_SYMBOL_GPL(scsi_target_unblock
);
3112 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3113 * @sgl: scatter-gather list
3114 * @sg_count: number of segments in sg
3115 * @offset: offset in bytes into sg, on return offset into the mapped area
3116 * @len: bytes to map, on return number of bytes mapped
3118 * Returns virtual address of the start of the mapped page
3120 void *scsi_kmap_atomic_sg(struct scatterlist
*sgl
, int sg_count
,
3121 size_t *offset
, size_t *len
)
3124 size_t sg_len
= 0, len_complete
= 0;
3125 struct scatterlist
*sg
;
3128 WARN_ON(!irqs_disabled());
3130 for_each_sg(sgl
, sg
, sg_count
, i
) {
3131 len_complete
= sg_len
; /* Complete sg-entries */
3132 sg_len
+= sg
->length
;
3133 if (sg_len
> *offset
)
3137 if (unlikely(i
== sg_count
)) {
3138 printk(KERN_ERR
"%s: Bytes in sg: %zu, requested offset %zu, "
3140 __func__
, sg_len
, *offset
, sg_count
);
3145 /* Offset starting from the beginning of first page in this sg-entry */
3146 *offset
= *offset
- len_complete
+ sg
->offset
;
3148 /* Assumption: contiguous pages can be accessed as "page + i" */
3149 page
= nth_page(sg_page(sg
), (*offset
>> PAGE_SHIFT
));
3150 *offset
&= ~PAGE_MASK
;
3152 /* Bytes in this sg-entry from *offset to the end of the page */
3153 sg_len
= PAGE_SIZE
- *offset
;
3157 return kmap_atomic(page
);
3159 EXPORT_SYMBOL(scsi_kmap_atomic_sg
);
3162 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3163 * @virt: virtual address to be unmapped
3165 void scsi_kunmap_atomic_sg(void *virt
)
3167 kunmap_atomic(virt
);
3169 EXPORT_SYMBOL(scsi_kunmap_atomic_sg
);
3171 void sdev_disable_disk_events(struct scsi_device
*sdev
)
3173 atomic_inc(&sdev
->disk_events_disable_depth
);
3175 EXPORT_SYMBOL(sdev_disable_disk_events
);
3177 void sdev_enable_disk_events(struct scsi_device
*sdev
)
3179 if (WARN_ON_ONCE(atomic_read(&sdev
->disk_events_disable_depth
) <= 0))
3181 atomic_dec(&sdev
->disk_events_disable_depth
);
3183 EXPORT_SYMBOL(sdev_enable_disk_events
);