dm thin metadata: fix __udivdi3 undefined on 32-bit
[linux/fpc-iii.git] / drivers / spi / spi-rspi.c
blob9882d93e7566d72bac91170aa0596c2b5eb1dfb0
1 /*
2 * SH RSPI driver
4 * Copyright (C) 2012, 2013 Renesas Solutions Corp.
5 * Copyright (C) 2014 Glider bvba
7 * Based on spi-sh.c:
8 * Copyright (C) 2011 Renesas Solutions Corp.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; version 2 of the License.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
20 #include <linux/module.h>
21 #include <linux/kernel.h>
22 #include <linux/sched.h>
23 #include <linux/errno.h>
24 #include <linux/interrupt.h>
25 #include <linux/platform_device.h>
26 #include <linux/io.h>
27 #include <linux/clk.h>
28 #include <linux/dmaengine.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/of_device.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/sh_dma.h>
33 #include <linux/spi/spi.h>
34 #include <linux/spi/rspi.h>
36 #define RSPI_SPCR 0x00 /* Control Register */
37 #define RSPI_SSLP 0x01 /* Slave Select Polarity Register */
38 #define RSPI_SPPCR 0x02 /* Pin Control Register */
39 #define RSPI_SPSR 0x03 /* Status Register */
40 #define RSPI_SPDR 0x04 /* Data Register */
41 #define RSPI_SPSCR 0x08 /* Sequence Control Register */
42 #define RSPI_SPSSR 0x09 /* Sequence Status Register */
43 #define RSPI_SPBR 0x0a /* Bit Rate Register */
44 #define RSPI_SPDCR 0x0b /* Data Control Register */
45 #define RSPI_SPCKD 0x0c /* Clock Delay Register */
46 #define RSPI_SSLND 0x0d /* Slave Select Negation Delay Register */
47 #define RSPI_SPND 0x0e /* Next-Access Delay Register */
48 #define RSPI_SPCR2 0x0f /* Control Register 2 (SH only) */
49 #define RSPI_SPCMD0 0x10 /* Command Register 0 */
50 #define RSPI_SPCMD1 0x12 /* Command Register 1 */
51 #define RSPI_SPCMD2 0x14 /* Command Register 2 */
52 #define RSPI_SPCMD3 0x16 /* Command Register 3 */
53 #define RSPI_SPCMD4 0x18 /* Command Register 4 */
54 #define RSPI_SPCMD5 0x1a /* Command Register 5 */
55 #define RSPI_SPCMD6 0x1c /* Command Register 6 */
56 #define RSPI_SPCMD7 0x1e /* Command Register 7 */
57 #define RSPI_SPCMD(i) (RSPI_SPCMD0 + (i) * 2)
58 #define RSPI_NUM_SPCMD 8
59 #define RSPI_RZ_NUM_SPCMD 4
60 #define QSPI_NUM_SPCMD 4
62 /* RSPI on RZ only */
63 #define RSPI_SPBFCR 0x20 /* Buffer Control Register */
64 #define RSPI_SPBFDR 0x22 /* Buffer Data Count Setting Register */
66 /* QSPI only */
67 #define QSPI_SPBFCR 0x18 /* Buffer Control Register */
68 #define QSPI_SPBDCR 0x1a /* Buffer Data Count Register */
69 #define QSPI_SPBMUL0 0x1c /* Transfer Data Length Multiplier Setting Register 0 */
70 #define QSPI_SPBMUL1 0x20 /* Transfer Data Length Multiplier Setting Register 1 */
71 #define QSPI_SPBMUL2 0x24 /* Transfer Data Length Multiplier Setting Register 2 */
72 #define QSPI_SPBMUL3 0x28 /* Transfer Data Length Multiplier Setting Register 3 */
73 #define QSPI_SPBMUL(i) (QSPI_SPBMUL0 + (i) * 4)
75 /* SPCR - Control Register */
76 #define SPCR_SPRIE 0x80 /* Receive Interrupt Enable */
77 #define SPCR_SPE 0x40 /* Function Enable */
78 #define SPCR_SPTIE 0x20 /* Transmit Interrupt Enable */
79 #define SPCR_SPEIE 0x10 /* Error Interrupt Enable */
80 #define SPCR_MSTR 0x08 /* Master/Slave Mode Select */
81 #define SPCR_MODFEN 0x04 /* Mode Fault Error Detection Enable */
82 /* RSPI on SH only */
83 #define SPCR_TXMD 0x02 /* TX Only Mode (vs. Full Duplex) */
84 #define SPCR_SPMS 0x01 /* 3-wire Mode (vs. 4-wire) */
85 /* QSPI on R-Car Gen2 only */
86 #define SPCR_WSWAP 0x02 /* Word Swap of read-data for DMAC */
87 #define SPCR_BSWAP 0x01 /* Byte Swap of read-data for DMAC */
89 /* SSLP - Slave Select Polarity Register */
90 #define SSLP_SSL1P 0x02 /* SSL1 Signal Polarity Setting */
91 #define SSLP_SSL0P 0x01 /* SSL0 Signal Polarity Setting */
93 /* SPPCR - Pin Control Register */
94 #define SPPCR_MOIFE 0x20 /* MOSI Idle Value Fixing Enable */
95 #define SPPCR_MOIFV 0x10 /* MOSI Idle Fixed Value */
96 #define SPPCR_SPOM 0x04
97 #define SPPCR_SPLP2 0x02 /* Loopback Mode 2 (non-inverting) */
98 #define SPPCR_SPLP 0x01 /* Loopback Mode (inverting) */
100 #define SPPCR_IO3FV 0x04 /* Single-/Dual-SPI Mode IO3 Output Fixed Value */
101 #define SPPCR_IO2FV 0x04 /* Single-/Dual-SPI Mode IO2 Output Fixed Value */
103 /* SPSR - Status Register */
104 #define SPSR_SPRF 0x80 /* Receive Buffer Full Flag */
105 #define SPSR_TEND 0x40 /* Transmit End */
106 #define SPSR_SPTEF 0x20 /* Transmit Buffer Empty Flag */
107 #define SPSR_PERF 0x08 /* Parity Error Flag */
108 #define SPSR_MODF 0x04 /* Mode Fault Error Flag */
109 #define SPSR_IDLNF 0x02 /* RSPI Idle Flag */
110 #define SPSR_OVRF 0x01 /* Overrun Error Flag (RSPI only) */
112 /* SPSCR - Sequence Control Register */
113 #define SPSCR_SPSLN_MASK 0x07 /* Sequence Length Specification */
115 /* SPSSR - Sequence Status Register */
116 #define SPSSR_SPECM_MASK 0x70 /* Command Error Mask */
117 #define SPSSR_SPCP_MASK 0x07 /* Command Pointer Mask */
119 /* SPDCR - Data Control Register */
120 #define SPDCR_TXDMY 0x80 /* Dummy Data Transmission Enable */
121 #define SPDCR_SPLW1 0x40 /* Access Width Specification (RZ) */
122 #define SPDCR_SPLW0 0x20 /* Access Width Specification (RZ) */
123 #define SPDCR_SPLLWORD (SPDCR_SPLW1 | SPDCR_SPLW0)
124 #define SPDCR_SPLWORD SPDCR_SPLW1
125 #define SPDCR_SPLBYTE SPDCR_SPLW0
126 #define SPDCR_SPLW 0x20 /* Access Width Specification (SH) */
127 #define SPDCR_SPRDTD 0x10 /* Receive Transmit Data Select (SH) */
128 #define SPDCR_SLSEL1 0x08
129 #define SPDCR_SLSEL0 0x04
130 #define SPDCR_SLSEL_MASK 0x0c /* SSL1 Output Select (SH) */
131 #define SPDCR_SPFC1 0x02
132 #define SPDCR_SPFC0 0x01
133 #define SPDCR_SPFC_MASK 0x03 /* Frame Count Setting (1-4) (SH) */
135 /* SPCKD - Clock Delay Register */
136 #define SPCKD_SCKDL_MASK 0x07 /* Clock Delay Setting (1-8) */
138 /* SSLND - Slave Select Negation Delay Register */
139 #define SSLND_SLNDL_MASK 0x07 /* SSL Negation Delay Setting (1-8) */
141 /* SPND - Next-Access Delay Register */
142 #define SPND_SPNDL_MASK 0x07 /* Next-Access Delay Setting (1-8) */
144 /* SPCR2 - Control Register 2 */
145 #define SPCR2_PTE 0x08 /* Parity Self-Test Enable */
146 #define SPCR2_SPIE 0x04 /* Idle Interrupt Enable */
147 #define SPCR2_SPOE 0x02 /* Odd Parity Enable (vs. Even) */
148 #define SPCR2_SPPE 0x01 /* Parity Enable */
150 /* SPCMDn - Command Registers */
151 #define SPCMD_SCKDEN 0x8000 /* Clock Delay Setting Enable */
152 #define SPCMD_SLNDEN 0x4000 /* SSL Negation Delay Setting Enable */
153 #define SPCMD_SPNDEN 0x2000 /* Next-Access Delay Enable */
154 #define SPCMD_LSBF 0x1000 /* LSB First */
155 #define SPCMD_SPB_MASK 0x0f00 /* Data Length Setting */
156 #define SPCMD_SPB_8_TO_16(bit) (((bit - 1) << 8) & SPCMD_SPB_MASK)
157 #define SPCMD_SPB_8BIT 0x0000 /* QSPI only */
158 #define SPCMD_SPB_16BIT 0x0100
159 #define SPCMD_SPB_20BIT 0x0000
160 #define SPCMD_SPB_24BIT 0x0100
161 #define SPCMD_SPB_32BIT 0x0200
162 #define SPCMD_SSLKP 0x0080 /* SSL Signal Level Keeping */
163 #define SPCMD_SPIMOD_MASK 0x0060 /* SPI Operating Mode (QSPI only) */
164 #define SPCMD_SPIMOD1 0x0040
165 #define SPCMD_SPIMOD0 0x0020
166 #define SPCMD_SPIMOD_SINGLE 0
167 #define SPCMD_SPIMOD_DUAL SPCMD_SPIMOD0
168 #define SPCMD_SPIMOD_QUAD SPCMD_SPIMOD1
169 #define SPCMD_SPRW 0x0010 /* SPI Read/Write Access (Dual/Quad) */
170 #define SPCMD_SSLA_MASK 0x0030 /* SSL Assert Signal Setting (RSPI) */
171 #define SPCMD_BRDV_MASK 0x000c /* Bit Rate Division Setting */
172 #define SPCMD_CPOL 0x0002 /* Clock Polarity Setting */
173 #define SPCMD_CPHA 0x0001 /* Clock Phase Setting */
175 /* SPBFCR - Buffer Control Register */
176 #define SPBFCR_TXRST 0x80 /* Transmit Buffer Data Reset */
177 #define SPBFCR_RXRST 0x40 /* Receive Buffer Data Reset */
178 #define SPBFCR_TXTRG_MASK 0x30 /* Transmit Buffer Data Triggering Number */
179 #define SPBFCR_RXTRG_MASK 0x07 /* Receive Buffer Data Triggering Number */
180 /* QSPI on R-Car Gen2 */
181 #define SPBFCR_TXTRG_1B 0x00 /* 31 bytes (1 byte available) */
182 #define SPBFCR_TXTRG_32B 0x30 /* 0 byte (32 bytes available) */
183 #define SPBFCR_RXTRG_1B 0x00 /* 1 byte (31 bytes available) */
184 #define SPBFCR_RXTRG_32B 0x07 /* 32 bytes (0 byte available) */
186 #define QSPI_BUFFER_SIZE 32u
188 struct rspi_data {
189 void __iomem *addr;
190 u32 max_speed_hz;
191 struct spi_master *master;
192 wait_queue_head_t wait;
193 struct clk *clk;
194 u16 spcmd;
195 u8 spsr;
196 u8 sppcr;
197 int rx_irq, tx_irq;
198 const struct spi_ops *ops;
200 unsigned dma_callbacked:1;
201 unsigned byte_access:1;
204 static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
206 iowrite8(data, rspi->addr + offset);
209 static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
211 iowrite16(data, rspi->addr + offset);
214 static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
216 iowrite32(data, rspi->addr + offset);
219 static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
221 return ioread8(rspi->addr + offset);
224 static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
226 return ioread16(rspi->addr + offset);
229 static void rspi_write_data(const struct rspi_data *rspi, u16 data)
231 if (rspi->byte_access)
232 rspi_write8(rspi, data, RSPI_SPDR);
233 else /* 16 bit */
234 rspi_write16(rspi, data, RSPI_SPDR);
237 static u16 rspi_read_data(const struct rspi_data *rspi)
239 if (rspi->byte_access)
240 return rspi_read8(rspi, RSPI_SPDR);
241 else /* 16 bit */
242 return rspi_read16(rspi, RSPI_SPDR);
245 /* optional functions */
246 struct spi_ops {
247 int (*set_config_register)(struct rspi_data *rspi, int access_size);
248 int (*transfer_one)(struct spi_master *master, struct spi_device *spi,
249 struct spi_transfer *xfer);
250 u16 mode_bits;
251 u16 flags;
252 u16 fifo_size;
256 * functions for RSPI on legacy SH
258 static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
260 int spbr;
262 /* Sets output mode, MOSI signal, and (optionally) loopback */
263 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
265 /* Sets transfer bit rate */
266 spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk),
267 2 * rspi->max_speed_hz) - 1;
268 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
270 /* Disable dummy transmission, set 16-bit word access, 1 frame */
271 rspi_write8(rspi, 0, RSPI_SPDCR);
272 rspi->byte_access = 0;
274 /* Sets RSPCK, SSL, next-access delay value */
275 rspi_write8(rspi, 0x00, RSPI_SPCKD);
276 rspi_write8(rspi, 0x00, RSPI_SSLND);
277 rspi_write8(rspi, 0x00, RSPI_SPND);
279 /* Sets parity, interrupt mask */
280 rspi_write8(rspi, 0x00, RSPI_SPCR2);
282 /* Sets SPCMD */
283 rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
284 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
286 /* Sets RSPI mode */
287 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
289 return 0;
293 * functions for RSPI on RZ
295 static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
297 int spbr;
299 /* Sets output mode, MOSI signal, and (optionally) loopback */
300 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
302 /* Sets transfer bit rate */
303 spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk),
304 2 * rspi->max_speed_hz) - 1;
305 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
307 /* Disable dummy transmission, set byte access */
308 rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
309 rspi->byte_access = 1;
311 /* Sets RSPCK, SSL, next-access delay value */
312 rspi_write8(rspi, 0x00, RSPI_SPCKD);
313 rspi_write8(rspi, 0x00, RSPI_SSLND);
314 rspi_write8(rspi, 0x00, RSPI_SPND);
316 /* Sets SPCMD */
317 rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
318 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
320 /* Sets RSPI mode */
321 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
323 return 0;
327 * functions for QSPI
329 static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
331 int spbr;
333 /* Sets output mode, MOSI signal, and (optionally) loopback */
334 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
336 /* Sets transfer bit rate */
337 spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk), 2 * rspi->max_speed_hz);
338 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
340 /* Disable dummy transmission, set byte access */
341 rspi_write8(rspi, 0, RSPI_SPDCR);
342 rspi->byte_access = 1;
344 /* Sets RSPCK, SSL, next-access delay value */
345 rspi_write8(rspi, 0x00, RSPI_SPCKD);
346 rspi_write8(rspi, 0x00, RSPI_SSLND);
347 rspi_write8(rspi, 0x00, RSPI_SPND);
349 /* Data Length Setting */
350 if (access_size == 8)
351 rspi->spcmd |= SPCMD_SPB_8BIT;
352 else if (access_size == 16)
353 rspi->spcmd |= SPCMD_SPB_16BIT;
354 else
355 rspi->spcmd |= SPCMD_SPB_32BIT;
357 rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;
359 /* Resets transfer data length */
360 rspi_write32(rspi, 0, QSPI_SPBMUL0);
362 /* Resets transmit and receive buffer */
363 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
364 /* Sets buffer to allow normal operation */
365 rspi_write8(rspi, 0x00, QSPI_SPBFCR);
367 /* Sets SPCMD */
368 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
370 /* Enables SPI function in master mode */
371 rspi_write8(rspi, SPCR_SPE | SPCR_MSTR, RSPI_SPCR);
373 return 0;
376 static void qspi_update(const struct rspi_data *rspi, u8 mask, u8 val, u8 reg)
378 u8 data;
380 data = rspi_read8(rspi, reg);
381 data &= ~mask;
382 data |= (val & mask);
383 rspi_write8(rspi, data, reg);
386 static unsigned int qspi_set_send_trigger(struct rspi_data *rspi,
387 unsigned int len)
389 unsigned int n;
391 n = min(len, QSPI_BUFFER_SIZE);
393 if (len >= QSPI_BUFFER_SIZE) {
394 /* sets triggering number to 32 bytes */
395 qspi_update(rspi, SPBFCR_TXTRG_MASK,
396 SPBFCR_TXTRG_32B, QSPI_SPBFCR);
397 } else {
398 /* sets triggering number to 1 byte */
399 qspi_update(rspi, SPBFCR_TXTRG_MASK,
400 SPBFCR_TXTRG_1B, QSPI_SPBFCR);
403 return n;
406 static void qspi_set_receive_trigger(struct rspi_data *rspi, unsigned int len)
408 unsigned int n;
410 n = min(len, QSPI_BUFFER_SIZE);
412 if (len >= QSPI_BUFFER_SIZE) {
413 /* sets triggering number to 32 bytes */
414 qspi_update(rspi, SPBFCR_RXTRG_MASK,
415 SPBFCR_RXTRG_32B, QSPI_SPBFCR);
416 } else {
417 /* sets triggering number to 1 byte */
418 qspi_update(rspi, SPBFCR_RXTRG_MASK,
419 SPBFCR_RXTRG_1B, QSPI_SPBFCR);
423 #define set_config_register(spi, n) spi->ops->set_config_register(spi, n)
425 static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
427 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
430 static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
432 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
435 static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
436 u8 enable_bit)
438 int ret;
440 rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
441 if (rspi->spsr & wait_mask)
442 return 0;
444 rspi_enable_irq(rspi, enable_bit);
445 ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
446 if (ret == 0 && !(rspi->spsr & wait_mask))
447 return -ETIMEDOUT;
449 return 0;
452 static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi)
454 return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
457 static inline int rspi_wait_for_rx_full(struct rspi_data *rspi)
459 return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE);
462 static int rspi_data_out(struct rspi_data *rspi, u8 data)
464 int error = rspi_wait_for_tx_empty(rspi);
465 if (error < 0) {
466 dev_err(&rspi->master->dev, "transmit timeout\n");
467 return error;
469 rspi_write_data(rspi, data);
470 return 0;
473 static int rspi_data_in(struct rspi_data *rspi)
475 int error;
476 u8 data;
478 error = rspi_wait_for_rx_full(rspi);
479 if (error < 0) {
480 dev_err(&rspi->master->dev, "receive timeout\n");
481 return error;
483 data = rspi_read_data(rspi);
484 return data;
487 static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx,
488 unsigned int n)
490 while (n-- > 0) {
491 if (tx) {
492 int ret = rspi_data_out(rspi, *tx++);
493 if (ret < 0)
494 return ret;
496 if (rx) {
497 int ret = rspi_data_in(rspi);
498 if (ret < 0)
499 return ret;
500 *rx++ = ret;
504 return 0;
507 static void rspi_dma_complete(void *arg)
509 struct rspi_data *rspi = arg;
511 rspi->dma_callbacked = 1;
512 wake_up_interruptible(&rspi->wait);
515 static int rspi_dma_transfer(struct rspi_data *rspi, struct sg_table *tx,
516 struct sg_table *rx)
518 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
519 u8 irq_mask = 0;
520 unsigned int other_irq = 0;
521 dma_cookie_t cookie;
522 int ret;
524 /* First prepare and submit the DMA request(s), as this may fail */
525 if (rx) {
526 desc_rx = dmaengine_prep_slave_sg(rspi->master->dma_rx,
527 rx->sgl, rx->nents, DMA_FROM_DEVICE,
528 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
529 if (!desc_rx) {
530 ret = -EAGAIN;
531 goto no_dma_rx;
534 desc_rx->callback = rspi_dma_complete;
535 desc_rx->callback_param = rspi;
536 cookie = dmaengine_submit(desc_rx);
537 if (dma_submit_error(cookie)) {
538 ret = cookie;
539 goto no_dma_rx;
542 irq_mask |= SPCR_SPRIE;
545 if (tx) {
546 desc_tx = dmaengine_prep_slave_sg(rspi->master->dma_tx,
547 tx->sgl, tx->nents, DMA_TO_DEVICE,
548 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
549 if (!desc_tx) {
550 ret = -EAGAIN;
551 goto no_dma_tx;
554 if (rx) {
555 /* No callback */
556 desc_tx->callback = NULL;
557 } else {
558 desc_tx->callback = rspi_dma_complete;
559 desc_tx->callback_param = rspi;
561 cookie = dmaengine_submit(desc_tx);
562 if (dma_submit_error(cookie)) {
563 ret = cookie;
564 goto no_dma_tx;
567 irq_mask |= SPCR_SPTIE;
571 * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be
572 * called. So, this driver disables the IRQ while DMA transfer.
574 if (tx)
575 disable_irq(other_irq = rspi->tx_irq);
576 if (rx && rspi->rx_irq != other_irq)
577 disable_irq(rspi->rx_irq);
579 rspi_enable_irq(rspi, irq_mask);
580 rspi->dma_callbacked = 0;
582 /* Now start DMA */
583 if (rx)
584 dma_async_issue_pending(rspi->master->dma_rx);
585 if (tx)
586 dma_async_issue_pending(rspi->master->dma_tx);
588 ret = wait_event_interruptible_timeout(rspi->wait,
589 rspi->dma_callbacked, HZ);
590 if (ret > 0 && rspi->dma_callbacked) {
591 ret = 0;
592 } else {
593 if (!ret) {
594 dev_err(&rspi->master->dev, "DMA timeout\n");
595 ret = -ETIMEDOUT;
597 if (tx)
598 dmaengine_terminate_all(rspi->master->dma_tx);
599 if (rx)
600 dmaengine_terminate_all(rspi->master->dma_rx);
603 rspi_disable_irq(rspi, irq_mask);
605 if (tx)
606 enable_irq(rspi->tx_irq);
607 if (rx && rspi->rx_irq != other_irq)
608 enable_irq(rspi->rx_irq);
610 return ret;
612 no_dma_tx:
613 if (rx)
614 dmaengine_terminate_all(rspi->master->dma_rx);
615 no_dma_rx:
616 if (ret == -EAGAIN) {
617 pr_warn_once("%s %s: DMA not available, falling back to PIO\n",
618 dev_driver_string(&rspi->master->dev),
619 dev_name(&rspi->master->dev));
621 return ret;
624 static void rspi_receive_init(const struct rspi_data *rspi)
626 u8 spsr;
628 spsr = rspi_read8(rspi, RSPI_SPSR);
629 if (spsr & SPSR_SPRF)
630 rspi_read_data(rspi); /* dummy read */
631 if (spsr & SPSR_OVRF)
632 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
633 RSPI_SPSR);
636 static void rspi_rz_receive_init(const struct rspi_data *rspi)
638 rspi_receive_init(rspi);
639 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
640 rspi_write8(rspi, 0, RSPI_SPBFCR);
643 static void qspi_receive_init(const struct rspi_data *rspi)
645 u8 spsr;
647 spsr = rspi_read8(rspi, RSPI_SPSR);
648 if (spsr & SPSR_SPRF)
649 rspi_read_data(rspi); /* dummy read */
650 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
651 rspi_write8(rspi, 0, QSPI_SPBFCR);
654 static bool __rspi_can_dma(const struct rspi_data *rspi,
655 const struct spi_transfer *xfer)
657 return xfer->len > rspi->ops->fifo_size;
660 static bool rspi_can_dma(struct spi_master *master, struct spi_device *spi,
661 struct spi_transfer *xfer)
663 struct rspi_data *rspi = spi_master_get_devdata(master);
665 return __rspi_can_dma(rspi, xfer);
668 static int rspi_dma_check_then_transfer(struct rspi_data *rspi,
669 struct spi_transfer *xfer)
671 if (!rspi->master->can_dma || !__rspi_can_dma(rspi, xfer))
672 return -EAGAIN;
674 /* rx_buf can be NULL on RSPI on SH in TX-only Mode */
675 return rspi_dma_transfer(rspi, &xfer->tx_sg,
676 xfer->rx_buf ? &xfer->rx_sg : NULL);
679 static int rspi_common_transfer(struct rspi_data *rspi,
680 struct spi_transfer *xfer)
682 int ret;
684 ret = rspi_dma_check_then_transfer(rspi, xfer);
685 if (ret != -EAGAIN)
686 return ret;
688 ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len);
689 if (ret < 0)
690 return ret;
692 /* Wait for the last transmission */
693 rspi_wait_for_tx_empty(rspi);
695 return 0;
698 static int rspi_transfer_one(struct spi_master *master, struct spi_device *spi,
699 struct spi_transfer *xfer)
701 struct rspi_data *rspi = spi_master_get_devdata(master);
702 u8 spcr;
704 spcr = rspi_read8(rspi, RSPI_SPCR);
705 if (xfer->rx_buf) {
706 rspi_receive_init(rspi);
707 spcr &= ~SPCR_TXMD;
708 } else {
709 spcr |= SPCR_TXMD;
711 rspi_write8(rspi, spcr, RSPI_SPCR);
713 return rspi_common_transfer(rspi, xfer);
716 static int rspi_rz_transfer_one(struct spi_master *master,
717 struct spi_device *spi,
718 struct spi_transfer *xfer)
720 struct rspi_data *rspi = spi_master_get_devdata(master);
722 rspi_rz_receive_init(rspi);
724 return rspi_common_transfer(rspi, xfer);
727 static int qspi_trigger_transfer_out_in(struct rspi_data *rspi, const u8 *tx,
728 u8 *rx, unsigned int len)
730 unsigned int i, n;
731 int ret;
733 while (len > 0) {
734 n = qspi_set_send_trigger(rspi, len);
735 qspi_set_receive_trigger(rspi, len);
736 if (n == QSPI_BUFFER_SIZE) {
737 ret = rspi_wait_for_tx_empty(rspi);
738 if (ret < 0) {
739 dev_err(&rspi->master->dev, "transmit timeout\n");
740 return ret;
742 for (i = 0; i < n; i++)
743 rspi_write_data(rspi, *tx++);
745 ret = rspi_wait_for_rx_full(rspi);
746 if (ret < 0) {
747 dev_err(&rspi->master->dev, "receive timeout\n");
748 return ret;
750 for (i = 0; i < n; i++)
751 *rx++ = rspi_read_data(rspi);
752 } else {
753 ret = rspi_pio_transfer(rspi, tx, rx, n);
754 if (ret < 0)
755 return ret;
757 len -= n;
760 return 0;
763 static int qspi_transfer_out_in(struct rspi_data *rspi,
764 struct spi_transfer *xfer)
766 int ret;
768 qspi_receive_init(rspi);
770 ret = rspi_dma_check_then_transfer(rspi, xfer);
771 if (ret != -EAGAIN)
772 return ret;
774 return qspi_trigger_transfer_out_in(rspi, xfer->tx_buf,
775 xfer->rx_buf, xfer->len);
778 static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
780 int ret;
782 if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) {
783 ret = rspi_dma_transfer(rspi, &xfer->tx_sg, NULL);
784 if (ret != -EAGAIN)
785 return ret;
788 ret = rspi_pio_transfer(rspi, xfer->tx_buf, NULL, xfer->len);
789 if (ret < 0)
790 return ret;
792 /* Wait for the last transmission */
793 rspi_wait_for_tx_empty(rspi);
795 return 0;
798 static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
800 if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) {
801 int ret = rspi_dma_transfer(rspi, NULL, &xfer->rx_sg);
802 if (ret != -EAGAIN)
803 return ret;
806 return rspi_pio_transfer(rspi, NULL, xfer->rx_buf, xfer->len);
809 static int qspi_transfer_one(struct spi_master *master, struct spi_device *spi,
810 struct spi_transfer *xfer)
812 struct rspi_data *rspi = spi_master_get_devdata(master);
814 if (spi->mode & SPI_LOOP) {
815 return qspi_transfer_out_in(rspi, xfer);
816 } else if (xfer->tx_nbits > SPI_NBITS_SINGLE) {
817 /* Quad or Dual SPI Write */
818 return qspi_transfer_out(rspi, xfer);
819 } else if (xfer->rx_nbits > SPI_NBITS_SINGLE) {
820 /* Quad or Dual SPI Read */
821 return qspi_transfer_in(rspi, xfer);
822 } else {
823 /* Single SPI Transfer */
824 return qspi_transfer_out_in(rspi, xfer);
828 static int rspi_setup(struct spi_device *spi)
830 struct rspi_data *rspi = spi_master_get_devdata(spi->master);
832 rspi->max_speed_hz = spi->max_speed_hz;
834 rspi->spcmd = SPCMD_SSLKP;
835 if (spi->mode & SPI_CPOL)
836 rspi->spcmd |= SPCMD_CPOL;
837 if (spi->mode & SPI_CPHA)
838 rspi->spcmd |= SPCMD_CPHA;
840 /* CMOS output mode and MOSI signal from previous transfer */
841 rspi->sppcr = 0;
842 if (spi->mode & SPI_LOOP)
843 rspi->sppcr |= SPPCR_SPLP;
845 set_config_register(rspi, 8);
847 return 0;
850 static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
852 if (xfer->tx_buf)
853 switch (xfer->tx_nbits) {
854 case SPI_NBITS_QUAD:
855 return SPCMD_SPIMOD_QUAD;
856 case SPI_NBITS_DUAL:
857 return SPCMD_SPIMOD_DUAL;
858 default:
859 return 0;
861 if (xfer->rx_buf)
862 switch (xfer->rx_nbits) {
863 case SPI_NBITS_QUAD:
864 return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
865 case SPI_NBITS_DUAL:
866 return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
867 default:
868 return 0;
871 return 0;
874 static int qspi_setup_sequencer(struct rspi_data *rspi,
875 const struct spi_message *msg)
877 const struct spi_transfer *xfer;
878 unsigned int i = 0, len = 0;
879 u16 current_mode = 0xffff, mode;
881 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
882 mode = qspi_transfer_mode(xfer);
883 if (mode == current_mode) {
884 len += xfer->len;
885 continue;
888 /* Transfer mode change */
889 if (i) {
890 /* Set transfer data length of previous transfer */
891 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
894 if (i >= QSPI_NUM_SPCMD) {
895 dev_err(&msg->spi->dev,
896 "Too many different transfer modes");
897 return -EINVAL;
900 /* Program transfer mode for this transfer */
901 rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
902 current_mode = mode;
903 len = xfer->len;
904 i++;
906 if (i) {
907 /* Set final transfer data length and sequence length */
908 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
909 rspi_write8(rspi, i - 1, RSPI_SPSCR);
912 return 0;
915 static int rspi_prepare_message(struct spi_master *master,
916 struct spi_message *msg)
918 struct rspi_data *rspi = spi_master_get_devdata(master);
919 int ret;
921 if (msg->spi->mode &
922 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
923 /* Setup sequencer for messages with multiple transfer modes */
924 ret = qspi_setup_sequencer(rspi, msg);
925 if (ret < 0)
926 return ret;
929 /* Enable SPI function in master mode */
930 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
931 return 0;
934 static int rspi_unprepare_message(struct spi_master *master,
935 struct spi_message *msg)
937 struct rspi_data *rspi = spi_master_get_devdata(master);
939 /* Disable SPI function */
940 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
942 /* Reset sequencer for Single SPI Transfers */
943 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
944 rspi_write8(rspi, 0, RSPI_SPSCR);
945 return 0;
948 static irqreturn_t rspi_irq_mux(int irq, void *_sr)
950 struct rspi_data *rspi = _sr;
951 u8 spsr;
952 irqreturn_t ret = IRQ_NONE;
953 u8 disable_irq = 0;
955 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
956 if (spsr & SPSR_SPRF)
957 disable_irq |= SPCR_SPRIE;
958 if (spsr & SPSR_SPTEF)
959 disable_irq |= SPCR_SPTIE;
961 if (disable_irq) {
962 ret = IRQ_HANDLED;
963 rspi_disable_irq(rspi, disable_irq);
964 wake_up(&rspi->wait);
967 return ret;
970 static irqreturn_t rspi_irq_rx(int irq, void *_sr)
972 struct rspi_data *rspi = _sr;
973 u8 spsr;
975 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
976 if (spsr & SPSR_SPRF) {
977 rspi_disable_irq(rspi, SPCR_SPRIE);
978 wake_up(&rspi->wait);
979 return IRQ_HANDLED;
982 return 0;
985 static irqreturn_t rspi_irq_tx(int irq, void *_sr)
987 struct rspi_data *rspi = _sr;
988 u8 spsr;
990 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
991 if (spsr & SPSR_SPTEF) {
992 rspi_disable_irq(rspi, SPCR_SPTIE);
993 wake_up(&rspi->wait);
994 return IRQ_HANDLED;
997 return 0;
1000 static struct dma_chan *rspi_request_dma_chan(struct device *dev,
1001 enum dma_transfer_direction dir,
1002 unsigned int id,
1003 dma_addr_t port_addr)
1005 dma_cap_mask_t mask;
1006 struct dma_chan *chan;
1007 struct dma_slave_config cfg;
1008 int ret;
1010 dma_cap_zero(mask);
1011 dma_cap_set(DMA_SLAVE, mask);
1013 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1014 (void *)(unsigned long)id, dev,
1015 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1016 if (!chan) {
1017 dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1018 return NULL;
1021 memset(&cfg, 0, sizeof(cfg));
1022 cfg.direction = dir;
1023 if (dir == DMA_MEM_TO_DEV) {
1024 cfg.dst_addr = port_addr;
1025 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1026 } else {
1027 cfg.src_addr = port_addr;
1028 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1031 ret = dmaengine_slave_config(chan, &cfg);
1032 if (ret) {
1033 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1034 dma_release_channel(chan);
1035 return NULL;
1038 return chan;
1041 static int rspi_request_dma(struct device *dev, struct spi_master *master,
1042 const struct resource *res)
1044 const struct rspi_plat_data *rspi_pd = dev_get_platdata(dev);
1045 unsigned int dma_tx_id, dma_rx_id;
1047 if (dev->of_node) {
1048 /* In the OF case we will get the slave IDs from the DT */
1049 dma_tx_id = 0;
1050 dma_rx_id = 0;
1051 } else if (rspi_pd && rspi_pd->dma_tx_id && rspi_pd->dma_rx_id) {
1052 dma_tx_id = rspi_pd->dma_tx_id;
1053 dma_rx_id = rspi_pd->dma_rx_id;
1054 } else {
1055 /* The driver assumes no error. */
1056 return 0;
1059 master->dma_tx = rspi_request_dma_chan(dev, DMA_MEM_TO_DEV, dma_tx_id,
1060 res->start + RSPI_SPDR);
1061 if (!master->dma_tx)
1062 return -ENODEV;
1064 master->dma_rx = rspi_request_dma_chan(dev, DMA_DEV_TO_MEM, dma_rx_id,
1065 res->start + RSPI_SPDR);
1066 if (!master->dma_rx) {
1067 dma_release_channel(master->dma_tx);
1068 master->dma_tx = NULL;
1069 return -ENODEV;
1072 master->can_dma = rspi_can_dma;
1073 dev_info(dev, "DMA available");
1074 return 0;
1077 static void rspi_release_dma(struct spi_master *master)
1079 if (master->dma_tx)
1080 dma_release_channel(master->dma_tx);
1081 if (master->dma_rx)
1082 dma_release_channel(master->dma_rx);
1085 static int rspi_remove(struct platform_device *pdev)
1087 struct rspi_data *rspi = platform_get_drvdata(pdev);
1089 rspi_release_dma(rspi->master);
1090 pm_runtime_disable(&pdev->dev);
1092 return 0;
1095 static const struct spi_ops rspi_ops = {
1096 .set_config_register = rspi_set_config_register,
1097 .transfer_one = rspi_transfer_one,
1098 .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP,
1099 .flags = SPI_MASTER_MUST_TX,
1100 .fifo_size = 8,
1103 static const struct spi_ops rspi_rz_ops = {
1104 .set_config_register = rspi_rz_set_config_register,
1105 .transfer_one = rspi_rz_transfer_one,
1106 .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP,
1107 .flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX,
1108 .fifo_size = 8, /* 8 for TX, 32 for RX */
1111 static const struct spi_ops qspi_ops = {
1112 .set_config_register = qspi_set_config_register,
1113 .transfer_one = qspi_transfer_one,
1114 .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP |
1115 SPI_TX_DUAL | SPI_TX_QUAD |
1116 SPI_RX_DUAL | SPI_RX_QUAD,
1117 .flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX,
1118 .fifo_size = 32,
1121 #ifdef CONFIG_OF
1122 static const struct of_device_id rspi_of_match[] = {
1123 /* RSPI on legacy SH */
1124 { .compatible = "renesas,rspi", .data = &rspi_ops },
1125 /* RSPI on RZ/A1H */
1126 { .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
1127 /* QSPI on R-Car Gen2 */
1128 { .compatible = "renesas,qspi", .data = &qspi_ops },
1129 { /* sentinel */ }
1132 MODULE_DEVICE_TABLE(of, rspi_of_match);
1134 static int rspi_parse_dt(struct device *dev, struct spi_master *master)
1136 u32 num_cs;
1137 int error;
1139 /* Parse DT properties */
1140 error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
1141 if (error) {
1142 dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
1143 return error;
1146 master->num_chipselect = num_cs;
1147 return 0;
1149 #else
1150 #define rspi_of_match NULL
1151 static inline int rspi_parse_dt(struct device *dev, struct spi_master *master)
1153 return -EINVAL;
1155 #endif /* CONFIG_OF */
1157 static int rspi_request_irq(struct device *dev, unsigned int irq,
1158 irq_handler_t handler, const char *suffix,
1159 void *dev_id)
1161 const char *name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s",
1162 dev_name(dev), suffix);
1163 if (!name)
1164 return -ENOMEM;
1166 return devm_request_irq(dev, irq, handler, 0, name, dev_id);
1169 static int rspi_probe(struct platform_device *pdev)
1171 struct resource *res;
1172 struct spi_master *master;
1173 struct rspi_data *rspi;
1174 int ret;
1175 const struct of_device_id *of_id;
1176 const struct rspi_plat_data *rspi_pd;
1177 const struct spi_ops *ops;
1179 master = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
1180 if (master == NULL) {
1181 dev_err(&pdev->dev, "spi_alloc_master error.\n");
1182 return -ENOMEM;
1185 of_id = of_match_device(rspi_of_match, &pdev->dev);
1186 if (of_id) {
1187 ops = of_id->data;
1188 ret = rspi_parse_dt(&pdev->dev, master);
1189 if (ret)
1190 goto error1;
1191 } else {
1192 ops = (struct spi_ops *)pdev->id_entry->driver_data;
1193 rspi_pd = dev_get_platdata(&pdev->dev);
1194 if (rspi_pd && rspi_pd->num_chipselect)
1195 master->num_chipselect = rspi_pd->num_chipselect;
1196 else
1197 master->num_chipselect = 2; /* default */
1200 /* ops parameter check */
1201 if (!ops->set_config_register) {
1202 dev_err(&pdev->dev, "there is no set_config_register\n");
1203 ret = -ENODEV;
1204 goto error1;
1207 rspi = spi_master_get_devdata(master);
1208 platform_set_drvdata(pdev, rspi);
1209 rspi->ops = ops;
1210 rspi->master = master;
1212 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1213 rspi->addr = devm_ioremap_resource(&pdev->dev, res);
1214 if (IS_ERR(rspi->addr)) {
1215 ret = PTR_ERR(rspi->addr);
1216 goto error1;
1219 rspi->clk = devm_clk_get(&pdev->dev, NULL);
1220 if (IS_ERR(rspi->clk)) {
1221 dev_err(&pdev->dev, "cannot get clock\n");
1222 ret = PTR_ERR(rspi->clk);
1223 goto error1;
1226 pm_runtime_enable(&pdev->dev);
1228 init_waitqueue_head(&rspi->wait);
1230 master->bus_num = pdev->id;
1231 master->setup = rspi_setup;
1232 master->auto_runtime_pm = true;
1233 master->transfer_one = ops->transfer_one;
1234 master->prepare_message = rspi_prepare_message;
1235 master->unprepare_message = rspi_unprepare_message;
1236 master->mode_bits = ops->mode_bits;
1237 master->flags = ops->flags;
1238 master->dev.of_node = pdev->dev.of_node;
1240 ret = platform_get_irq_byname(pdev, "rx");
1241 if (ret < 0) {
1242 ret = platform_get_irq_byname(pdev, "mux");
1243 if (ret < 0)
1244 ret = platform_get_irq(pdev, 0);
1245 if (ret >= 0)
1246 rspi->rx_irq = rspi->tx_irq = ret;
1247 } else {
1248 rspi->rx_irq = ret;
1249 ret = platform_get_irq_byname(pdev, "tx");
1250 if (ret >= 0)
1251 rspi->tx_irq = ret;
1253 if (ret < 0) {
1254 dev_err(&pdev->dev, "platform_get_irq error\n");
1255 goto error2;
1258 if (rspi->rx_irq == rspi->tx_irq) {
1259 /* Single multiplexed interrupt */
1260 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
1261 "mux", rspi);
1262 } else {
1263 /* Multi-interrupt mode, only SPRI and SPTI are used */
1264 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
1265 "rx", rspi);
1266 if (!ret)
1267 ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
1268 rspi_irq_tx, "tx", rspi);
1270 if (ret < 0) {
1271 dev_err(&pdev->dev, "request_irq error\n");
1272 goto error2;
1275 ret = rspi_request_dma(&pdev->dev, master, res);
1276 if (ret < 0)
1277 dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1279 ret = devm_spi_register_master(&pdev->dev, master);
1280 if (ret < 0) {
1281 dev_err(&pdev->dev, "spi_register_master error.\n");
1282 goto error3;
1285 dev_info(&pdev->dev, "probed\n");
1287 return 0;
1289 error3:
1290 rspi_release_dma(master);
1291 error2:
1292 pm_runtime_disable(&pdev->dev);
1293 error1:
1294 spi_master_put(master);
1296 return ret;
1299 static const struct platform_device_id spi_driver_ids[] = {
1300 { "rspi", (kernel_ulong_t)&rspi_ops },
1301 { "rspi-rz", (kernel_ulong_t)&rspi_rz_ops },
1302 { "qspi", (kernel_ulong_t)&qspi_ops },
1306 MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1308 #ifdef CONFIG_PM_SLEEP
1309 static int rspi_suspend(struct device *dev)
1311 struct platform_device *pdev = to_platform_device(dev);
1312 struct rspi_data *rspi = platform_get_drvdata(pdev);
1314 return spi_master_suspend(rspi->master);
1317 static int rspi_resume(struct device *dev)
1319 struct platform_device *pdev = to_platform_device(dev);
1320 struct rspi_data *rspi = platform_get_drvdata(pdev);
1322 return spi_master_resume(rspi->master);
1325 static SIMPLE_DEV_PM_OPS(rspi_pm_ops, rspi_suspend, rspi_resume);
1326 #define DEV_PM_OPS &rspi_pm_ops
1327 #else
1328 #define DEV_PM_OPS NULL
1329 #endif /* CONFIG_PM_SLEEP */
1331 static struct platform_driver rspi_driver = {
1332 .probe = rspi_probe,
1333 .remove = rspi_remove,
1334 .id_table = spi_driver_ids,
1335 .driver = {
1336 .name = "renesas_spi",
1337 .pm = DEV_PM_OPS,
1338 .of_match_table = of_match_ptr(rspi_of_match),
1341 module_platform_driver(rspi_driver);
1343 MODULE_DESCRIPTION("Renesas RSPI bus driver");
1344 MODULE_LICENSE("GPL v2");
1345 MODULE_AUTHOR("Yoshihiro Shimoda");
1346 MODULE_ALIAS("platform:rspi");