4 * Copyright (C) 2012, 2013 Renesas Solutions Corp.
5 * Copyright (C) 2014 Glider bvba
8 * Copyright (C) 2011 Renesas Solutions Corp.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; version 2 of the License.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
20 #include <linux/module.h>
21 #include <linux/kernel.h>
22 #include <linux/sched.h>
23 #include <linux/errno.h>
24 #include <linux/interrupt.h>
25 #include <linux/platform_device.h>
27 #include <linux/clk.h>
28 #include <linux/dmaengine.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/of_device.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/sh_dma.h>
33 #include <linux/spi/spi.h>
34 #include <linux/spi/rspi.h>
36 #define RSPI_SPCR 0x00 /* Control Register */
37 #define RSPI_SSLP 0x01 /* Slave Select Polarity Register */
38 #define RSPI_SPPCR 0x02 /* Pin Control Register */
39 #define RSPI_SPSR 0x03 /* Status Register */
40 #define RSPI_SPDR 0x04 /* Data Register */
41 #define RSPI_SPSCR 0x08 /* Sequence Control Register */
42 #define RSPI_SPSSR 0x09 /* Sequence Status Register */
43 #define RSPI_SPBR 0x0a /* Bit Rate Register */
44 #define RSPI_SPDCR 0x0b /* Data Control Register */
45 #define RSPI_SPCKD 0x0c /* Clock Delay Register */
46 #define RSPI_SSLND 0x0d /* Slave Select Negation Delay Register */
47 #define RSPI_SPND 0x0e /* Next-Access Delay Register */
48 #define RSPI_SPCR2 0x0f /* Control Register 2 (SH only) */
49 #define RSPI_SPCMD0 0x10 /* Command Register 0 */
50 #define RSPI_SPCMD1 0x12 /* Command Register 1 */
51 #define RSPI_SPCMD2 0x14 /* Command Register 2 */
52 #define RSPI_SPCMD3 0x16 /* Command Register 3 */
53 #define RSPI_SPCMD4 0x18 /* Command Register 4 */
54 #define RSPI_SPCMD5 0x1a /* Command Register 5 */
55 #define RSPI_SPCMD6 0x1c /* Command Register 6 */
56 #define RSPI_SPCMD7 0x1e /* Command Register 7 */
57 #define RSPI_SPCMD(i) (RSPI_SPCMD0 + (i) * 2)
58 #define RSPI_NUM_SPCMD 8
59 #define RSPI_RZ_NUM_SPCMD 4
60 #define QSPI_NUM_SPCMD 4
63 #define RSPI_SPBFCR 0x20 /* Buffer Control Register */
64 #define RSPI_SPBFDR 0x22 /* Buffer Data Count Setting Register */
67 #define QSPI_SPBFCR 0x18 /* Buffer Control Register */
68 #define QSPI_SPBDCR 0x1a /* Buffer Data Count Register */
69 #define QSPI_SPBMUL0 0x1c /* Transfer Data Length Multiplier Setting Register 0 */
70 #define QSPI_SPBMUL1 0x20 /* Transfer Data Length Multiplier Setting Register 1 */
71 #define QSPI_SPBMUL2 0x24 /* Transfer Data Length Multiplier Setting Register 2 */
72 #define QSPI_SPBMUL3 0x28 /* Transfer Data Length Multiplier Setting Register 3 */
73 #define QSPI_SPBMUL(i) (QSPI_SPBMUL0 + (i) * 4)
75 /* SPCR - Control Register */
76 #define SPCR_SPRIE 0x80 /* Receive Interrupt Enable */
77 #define SPCR_SPE 0x40 /* Function Enable */
78 #define SPCR_SPTIE 0x20 /* Transmit Interrupt Enable */
79 #define SPCR_SPEIE 0x10 /* Error Interrupt Enable */
80 #define SPCR_MSTR 0x08 /* Master/Slave Mode Select */
81 #define SPCR_MODFEN 0x04 /* Mode Fault Error Detection Enable */
83 #define SPCR_TXMD 0x02 /* TX Only Mode (vs. Full Duplex) */
84 #define SPCR_SPMS 0x01 /* 3-wire Mode (vs. 4-wire) */
85 /* QSPI on R-Car Gen2 only */
86 #define SPCR_WSWAP 0x02 /* Word Swap of read-data for DMAC */
87 #define SPCR_BSWAP 0x01 /* Byte Swap of read-data for DMAC */
89 /* SSLP - Slave Select Polarity Register */
90 #define SSLP_SSL1P 0x02 /* SSL1 Signal Polarity Setting */
91 #define SSLP_SSL0P 0x01 /* SSL0 Signal Polarity Setting */
93 /* SPPCR - Pin Control Register */
94 #define SPPCR_MOIFE 0x20 /* MOSI Idle Value Fixing Enable */
95 #define SPPCR_MOIFV 0x10 /* MOSI Idle Fixed Value */
96 #define SPPCR_SPOM 0x04
97 #define SPPCR_SPLP2 0x02 /* Loopback Mode 2 (non-inverting) */
98 #define SPPCR_SPLP 0x01 /* Loopback Mode (inverting) */
100 #define SPPCR_IO3FV 0x04 /* Single-/Dual-SPI Mode IO3 Output Fixed Value */
101 #define SPPCR_IO2FV 0x04 /* Single-/Dual-SPI Mode IO2 Output Fixed Value */
103 /* SPSR - Status Register */
104 #define SPSR_SPRF 0x80 /* Receive Buffer Full Flag */
105 #define SPSR_TEND 0x40 /* Transmit End */
106 #define SPSR_SPTEF 0x20 /* Transmit Buffer Empty Flag */
107 #define SPSR_PERF 0x08 /* Parity Error Flag */
108 #define SPSR_MODF 0x04 /* Mode Fault Error Flag */
109 #define SPSR_IDLNF 0x02 /* RSPI Idle Flag */
110 #define SPSR_OVRF 0x01 /* Overrun Error Flag (RSPI only) */
112 /* SPSCR - Sequence Control Register */
113 #define SPSCR_SPSLN_MASK 0x07 /* Sequence Length Specification */
115 /* SPSSR - Sequence Status Register */
116 #define SPSSR_SPECM_MASK 0x70 /* Command Error Mask */
117 #define SPSSR_SPCP_MASK 0x07 /* Command Pointer Mask */
119 /* SPDCR - Data Control Register */
120 #define SPDCR_TXDMY 0x80 /* Dummy Data Transmission Enable */
121 #define SPDCR_SPLW1 0x40 /* Access Width Specification (RZ) */
122 #define SPDCR_SPLW0 0x20 /* Access Width Specification (RZ) */
123 #define SPDCR_SPLLWORD (SPDCR_SPLW1 | SPDCR_SPLW0)
124 #define SPDCR_SPLWORD SPDCR_SPLW1
125 #define SPDCR_SPLBYTE SPDCR_SPLW0
126 #define SPDCR_SPLW 0x20 /* Access Width Specification (SH) */
127 #define SPDCR_SPRDTD 0x10 /* Receive Transmit Data Select (SH) */
128 #define SPDCR_SLSEL1 0x08
129 #define SPDCR_SLSEL0 0x04
130 #define SPDCR_SLSEL_MASK 0x0c /* SSL1 Output Select (SH) */
131 #define SPDCR_SPFC1 0x02
132 #define SPDCR_SPFC0 0x01
133 #define SPDCR_SPFC_MASK 0x03 /* Frame Count Setting (1-4) (SH) */
135 /* SPCKD - Clock Delay Register */
136 #define SPCKD_SCKDL_MASK 0x07 /* Clock Delay Setting (1-8) */
138 /* SSLND - Slave Select Negation Delay Register */
139 #define SSLND_SLNDL_MASK 0x07 /* SSL Negation Delay Setting (1-8) */
141 /* SPND - Next-Access Delay Register */
142 #define SPND_SPNDL_MASK 0x07 /* Next-Access Delay Setting (1-8) */
144 /* SPCR2 - Control Register 2 */
145 #define SPCR2_PTE 0x08 /* Parity Self-Test Enable */
146 #define SPCR2_SPIE 0x04 /* Idle Interrupt Enable */
147 #define SPCR2_SPOE 0x02 /* Odd Parity Enable (vs. Even) */
148 #define SPCR2_SPPE 0x01 /* Parity Enable */
150 /* SPCMDn - Command Registers */
151 #define SPCMD_SCKDEN 0x8000 /* Clock Delay Setting Enable */
152 #define SPCMD_SLNDEN 0x4000 /* SSL Negation Delay Setting Enable */
153 #define SPCMD_SPNDEN 0x2000 /* Next-Access Delay Enable */
154 #define SPCMD_LSBF 0x1000 /* LSB First */
155 #define SPCMD_SPB_MASK 0x0f00 /* Data Length Setting */
156 #define SPCMD_SPB_8_TO_16(bit) (((bit - 1) << 8) & SPCMD_SPB_MASK)
157 #define SPCMD_SPB_8BIT 0x0000 /* QSPI only */
158 #define SPCMD_SPB_16BIT 0x0100
159 #define SPCMD_SPB_20BIT 0x0000
160 #define SPCMD_SPB_24BIT 0x0100
161 #define SPCMD_SPB_32BIT 0x0200
162 #define SPCMD_SSLKP 0x0080 /* SSL Signal Level Keeping */
163 #define SPCMD_SPIMOD_MASK 0x0060 /* SPI Operating Mode (QSPI only) */
164 #define SPCMD_SPIMOD1 0x0040
165 #define SPCMD_SPIMOD0 0x0020
166 #define SPCMD_SPIMOD_SINGLE 0
167 #define SPCMD_SPIMOD_DUAL SPCMD_SPIMOD0
168 #define SPCMD_SPIMOD_QUAD SPCMD_SPIMOD1
169 #define SPCMD_SPRW 0x0010 /* SPI Read/Write Access (Dual/Quad) */
170 #define SPCMD_SSLA_MASK 0x0030 /* SSL Assert Signal Setting (RSPI) */
171 #define SPCMD_BRDV_MASK 0x000c /* Bit Rate Division Setting */
172 #define SPCMD_CPOL 0x0002 /* Clock Polarity Setting */
173 #define SPCMD_CPHA 0x0001 /* Clock Phase Setting */
175 /* SPBFCR - Buffer Control Register */
176 #define SPBFCR_TXRST 0x80 /* Transmit Buffer Data Reset */
177 #define SPBFCR_RXRST 0x40 /* Receive Buffer Data Reset */
178 #define SPBFCR_TXTRG_MASK 0x30 /* Transmit Buffer Data Triggering Number */
179 #define SPBFCR_RXTRG_MASK 0x07 /* Receive Buffer Data Triggering Number */
180 /* QSPI on R-Car Gen2 */
181 #define SPBFCR_TXTRG_1B 0x00 /* 31 bytes (1 byte available) */
182 #define SPBFCR_TXTRG_32B 0x30 /* 0 byte (32 bytes available) */
183 #define SPBFCR_RXTRG_1B 0x00 /* 1 byte (31 bytes available) */
184 #define SPBFCR_RXTRG_32B 0x07 /* 32 bytes (0 byte available) */
186 #define QSPI_BUFFER_SIZE 32u
191 struct spi_master
*master
;
192 wait_queue_head_t wait
;
198 const struct spi_ops
*ops
;
200 unsigned dma_callbacked
:1;
201 unsigned byte_access
:1;
204 static void rspi_write8(const struct rspi_data
*rspi
, u8 data
, u16 offset
)
206 iowrite8(data
, rspi
->addr
+ offset
);
209 static void rspi_write16(const struct rspi_data
*rspi
, u16 data
, u16 offset
)
211 iowrite16(data
, rspi
->addr
+ offset
);
214 static void rspi_write32(const struct rspi_data
*rspi
, u32 data
, u16 offset
)
216 iowrite32(data
, rspi
->addr
+ offset
);
219 static u8
rspi_read8(const struct rspi_data
*rspi
, u16 offset
)
221 return ioread8(rspi
->addr
+ offset
);
224 static u16
rspi_read16(const struct rspi_data
*rspi
, u16 offset
)
226 return ioread16(rspi
->addr
+ offset
);
229 static void rspi_write_data(const struct rspi_data
*rspi
, u16 data
)
231 if (rspi
->byte_access
)
232 rspi_write8(rspi
, data
, RSPI_SPDR
);
234 rspi_write16(rspi
, data
, RSPI_SPDR
);
237 static u16
rspi_read_data(const struct rspi_data
*rspi
)
239 if (rspi
->byte_access
)
240 return rspi_read8(rspi
, RSPI_SPDR
);
242 return rspi_read16(rspi
, RSPI_SPDR
);
245 /* optional functions */
247 int (*set_config_register
)(struct rspi_data
*rspi
, int access_size
);
248 int (*transfer_one
)(struct spi_master
*master
, struct spi_device
*spi
,
249 struct spi_transfer
*xfer
);
256 * functions for RSPI on legacy SH
258 static int rspi_set_config_register(struct rspi_data
*rspi
, int access_size
)
262 /* Sets output mode, MOSI signal, and (optionally) loopback */
263 rspi_write8(rspi
, rspi
->sppcr
, RSPI_SPPCR
);
265 /* Sets transfer bit rate */
266 spbr
= DIV_ROUND_UP(clk_get_rate(rspi
->clk
),
267 2 * rspi
->max_speed_hz
) - 1;
268 rspi_write8(rspi
, clamp(spbr
, 0, 255), RSPI_SPBR
);
270 /* Disable dummy transmission, set 16-bit word access, 1 frame */
271 rspi_write8(rspi
, 0, RSPI_SPDCR
);
272 rspi
->byte_access
= 0;
274 /* Sets RSPCK, SSL, next-access delay value */
275 rspi_write8(rspi
, 0x00, RSPI_SPCKD
);
276 rspi_write8(rspi
, 0x00, RSPI_SSLND
);
277 rspi_write8(rspi
, 0x00, RSPI_SPND
);
279 /* Sets parity, interrupt mask */
280 rspi_write8(rspi
, 0x00, RSPI_SPCR2
);
283 rspi
->spcmd
|= SPCMD_SPB_8_TO_16(access_size
);
284 rspi_write16(rspi
, rspi
->spcmd
, RSPI_SPCMD0
);
287 rspi_write8(rspi
, SPCR_MSTR
, RSPI_SPCR
);
293 * functions for RSPI on RZ
295 static int rspi_rz_set_config_register(struct rspi_data
*rspi
, int access_size
)
299 /* Sets output mode, MOSI signal, and (optionally) loopback */
300 rspi_write8(rspi
, rspi
->sppcr
, RSPI_SPPCR
);
302 /* Sets transfer bit rate */
303 spbr
= DIV_ROUND_UP(clk_get_rate(rspi
->clk
),
304 2 * rspi
->max_speed_hz
) - 1;
305 rspi_write8(rspi
, clamp(spbr
, 0, 255), RSPI_SPBR
);
307 /* Disable dummy transmission, set byte access */
308 rspi_write8(rspi
, SPDCR_SPLBYTE
, RSPI_SPDCR
);
309 rspi
->byte_access
= 1;
311 /* Sets RSPCK, SSL, next-access delay value */
312 rspi_write8(rspi
, 0x00, RSPI_SPCKD
);
313 rspi_write8(rspi
, 0x00, RSPI_SSLND
);
314 rspi_write8(rspi
, 0x00, RSPI_SPND
);
317 rspi
->spcmd
|= SPCMD_SPB_8_TO_16(access_size
);
318 rspi_write16(rspi
, rspi
->spcmd
, RSPI_SPCMD0
);
321 rspi_write8(rspi
, SPCR_MSTR
, RSPI_SPCR
);
329 static int qspi_set_config_register(struct rspi_data
*rspi
, int access_size
)
333 /* Sets output mode, MOSI signal, and (optionally) loopback */
334 rspi_write8(rspi
, rspi
->sppcr
, RSPI_SPPCR
);
336 /* Sets transfer bit rate */
337 spbr
= DIV_ROUND_UP(clk_get_rate(rspi
->clk
), 2 * rspi
->max_speed_hz
);
338 rspi_write8(rspi
, clamp(spbr
, 0, 255), RSPI_SPBR
);
340 /* Disable dummy transmission, set byte access */
341 rspi_write8(rspi
, 0, RSPI_SPDCR
);
342 rspi
->byte_access
= 1;
344 /* Sets RSPCK, SSL, next-access delay value */
345 rspi_write8(rspi
, 0x00, RSPI_SPCKD
);
346 rspi_write8(rspi
, 0x00, RSPI_SSLND
);
347 rspi_write8(rspi
, 0x00, RSPI_SPND
);
349 /* Data Length Setting */
350 if (access_size
== 8)
351 rspi
->spcmd
|= SPCMD_SPB_8BIT
;
352 else if (access_size
== 16)
353 rspi
->spcmd
|= SPCMD_SPB_16BIT
;
355 rspi
->spcmd
|= SPCMD_SPB_32BIT
;
357 rspi
->spcmd
|= SPCMD_SCKDEN
| SPCMD_SLNDEN
| SPCMD_SPNDEN
;
359 /* Resets transfer data length */
360 rspi_write32(rspi
, 0, QSPI_SPBMUL0
);
362 /* Resets transmit and receive buffer */
363 rspi_write8(rspi
, SPBFCR_TXRST
| SPBFCR_RXRST
, QSPI_SPBFCR
);
364 /* Sets buffer to allow normal operation */
365 rspi_write8(rspi
, 0x00, QSPI_SPBFCR
);
368 rspi_write16(rspi
, rspi
->spcmd
, RSPI_SPCMD0
);
370 /* Enables SPI function in master mode */
371 rspi_write8(rspi
, SPCR_SPE
| SPCR_MSTR
, RSPI_SPCR
);
376 static void qspi_update(const struct rspi_data
*rspi
, u8 mask
, u8 val
, u8 reg
)
380 data
= rspi_read8(rspi
, reg
);
382 data
|= (val
& mask
);
383 rspi_write8(rspi
, data
, reg
);
386 static unsigned int qspi_set_send_trigger(struct rspi_data
*rspi
,
391 n
= min(len
, QSPI_BUFFER_SIZE
);
393 if (len
>= QSPI_BUFFER_SIZE
) {
394 /* sets triggering number to 32 bytes */
395 qspi_update(rspi
, SPBFCR_TXTRG_MASK
,
396 SPBFCR_TXTRG_32B
, QSPI_SPBFCR
);
398 /* sets triggering number to 1 byte */
399 qspi_update(rspi
, SPBFCR_TXTRG_MASK
,
400 SPBFCR_TXTRG_1B
, QSPI_SPBFCR
);
406 static void qspi_set_receive_trigger(struct rspi_data
*rspi
, unsigned int len
)
410 n
= min(len
, QSPI_BUFFER_SIZE
);
412 if (len
>= QSPI_BUFFER_SIZE
) {
413 /* sets triggering number to 32 bytes */
414 qspi_update(rspi
, SPBFCR_RXTRG_MASK
,
415 SPBFCR_RXTRG_32B
, QSPI_SPBFCR
);
417 /* sets triggering number to 1 byte */
418 qspi_update(rspi
, SPBFCR_RXTRG_MASK
,
419 SPBFCR_RXTRG_1B
, QSPI_SPBFCR
);
423 #define set_config_register(spi, n) spi->ops->set_config_register(spi, n)
425 static void rspi_enable_irq(const struct rspi_data
*rspi
, u8 enable
)
427 rspi_write8(rspi
, rspi_read8(rspi
, RSPI_SPCR
) | enable
, RSPI_SPCR
);
430 static void rspi_disable_irq(const struct rspi_data
*rspi
, u8 disable
)
432 rspi_write8(rspi
, rspi_read8(rspi
, RSPI_SPCR
) & ~disable
, RSPI_SPCR
);
435 static int rspi_wait_for_interrupt(struct rspi_data
*rspi
, u8 wait_mask
,
440 rspi
->spsr
= rspi_read8(rspi
, RSPI_SPSR
);
441 if (rspi
->spsr
& wait_mask
)
444 rspi_enable_irq(rspi
, enable_bit
);
445 ret
= wait_event_timeout(rspi
->wait
, rspi
->spsr
& wait_mask
, HZ
);
446 if (ret
== 0 && !(rspi
->spsr
& wait_mask
))
452 static inline int rspi_wait_for_tx_empty(struct rspi_data
*rspi
)
454 return rspi_wait_for_interrupt(rspi
, SPSR_SPTEF
, SPCR_SPTIE
);
457 static inline int rspi_wait_for_rx_full(struct rspi_data
*rspi
)
459 return rspi_wait_for_interrupt(rspi
, SPSR_SPRF
, SPCR_SPRIE
);
462 static int rspi_data_out(struct rspi_data
*rspi
, u8 data
)
464 int error
= rspi_wait_for_tx_empty(rspi
);
466 dev_err(&rspi
->master
->dev
, "transmit timeout\n");
469 rspi_write_data(rspi
, data
);
473 static int rspi_data_in(struct rspi_data
*rspi
)
478 error
= rspi_wait_for_rx_full(rspi
);
480 dev_err(&rspi
->master
->dev
, "receive timeout\n");
483 data
= rspi_read_data(rspi
);
487 static int rspi_pio_transfer(struct rspi_data
*rspi
, const u8
*tx
, u8
*rx
,
492 int ret
= rspi_data_out(rspi
, *tx
++);
497 int ret
= rspi_data_in(rspi
);
507 static void rspi_dma_complete(void *arg
)
509 struct rspi_data
*rspi
= arg
;
511 rspi
->dma_callbacked
= 1;
512 wake_up_interruptible(&rspi
->wait
);
515 static int rspi_dma_transfer(struct rspi_data
*rspi
, struct sg_table
*tx
,
518 struct dma_async_tx_descriptor
*desc_tx
= NULL
, *desc_rx
= NULL
;
520 unsigned int other_irq
= 0;
524 /* First prepare and submit the DMA request(s), as this may fail */
526 desc_rx
= dmaengine_prep_slave_sg(rspi
->master
->dma_rx
,
527 rx
->sgl
, rx
->nents
, DMA_FROM_DEVICE
,
528 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
534 desc_rx
->callback
= rspi_dma_complete
;
535 desc_rx
->callback_param
= rspi
;
536 cookie
= dmaengine_submit(desc_rx
);
537 if (dma_submit_error(cookie
)) {
542 irq_mask
|= SPCR_SPRIE
;
546 desc_tx
= dmaengine_prep_slave_sg(rspi
->master
->dma_tx
,
547 tx
->sgl
, tx
->nents
, DMA_TO_DEVICE
,
548 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
556 desc_tx
->callback
= NULL
;
558 desc_tx
->callback
= rspi_dma_complete
;
559 desc_tx
->callback_param
= rspi
;
561 cookie
= dmaengine_submit(desc_tx
);
562 if (dma_submit_error(cookie
)) {
567 irq_mask
|= SPCR_SPTIE
;
571 * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be
572 * called. So, this driver disables the IRQ while DMA transfer.
575 disable_irq(other_irq
= rspi
->tx_irq
);
576 if (rx
&& rspi
->rx_irq
!= other_irq
)
577 disable_irq(rspi
->rx_irq
);
579 rspi_enable_irq(rspi
, irq_mask
);
580 rspi
->dma_callbacked
= 0;
584 dma_async_issue_pending(rspi
->master
->dma_rx
);
586 dma_async_issue_pending(rspi
->master
->dma_tx
);
588 ret
= wait_event_interruptible_timeout(rspi
->wait
,
589 rspi
->dma_callbacked
, HZ
);
590 if (ret
> 0 && rspi
->dma_callbacked
) {
594 dev_err(&rspi
->master
->dev
, "DMA timeout\n");
598 dmaengine_terminate_all(rspi
->master
->dma_tx
);
600 dmaengine_terminate_all(rspi
->master
->dma_rx
);
603 rspi_disable_irq(rspi
, irq_mask
);
606 enable_irq(rspi
->tx_irq
);
607 if (rx
&& rspi
->rx_irq
!= other_irq
)
608 enable_irq(rspi
->rx_irq
);
614 dmaengine_terminate_all(rspi
->master
->dma_rx
);
616 if (ret
== -EAGAIN
) {
617 pr_warn_once("%s %s: DMA not available, falling back to PIO\n",
618 dev_driver_string(&rspi
->master
->dev
),
619 dev_name(&rspi
->master
->dev
));
624 static void rspi_receive_init(const struct rspi_data
*rspi
)
628 spsr
= rspi_read8(rspi
, RSPI_SPSR
);
629 if (spsr
& SPSR_SPRF
)
630 rspi_read_data(rspi
); /* dummy read */
631 if (spsr
& SPSR_OVRF
)
632 rspi_write8(rspi
, rspi_read8(rspi
, RSPI_SPSR
) & ~SPSR_OVRF
,
636 static void rspi_rz_receive_init(const struct rspi_data
*rspi
)
638 rspi_receive_init(rspi
);
639 rspi_write8(rspi
, SPBFCR_TXRST
| SPBFCR_RXRST
, RSPI_SPBFCR
);
640 rspi_write8(rspi
, 0, RSPI_SPBFCR
);
643 static void qspi_receive_init(const struct rspi_data
*rspi
)
647 spsr
= rspi_read8(rspi
, RSPI_SPSR
);
648 if (spsr
& SPSR_SPRF
)
649 rspi_read_data(rspi
); /* dummy read */
650 rspi_write8(rspi
, SPBFCR_TXRST
| SPBFCR_RXRST
, QSPI_SPBFCR
);
651 rspi_write8(rspi
, 0, QSPI_SPBFCR
);
654 static bool __rspi_can_dma(const struct rspi_data
*rspi
,
655 const struct spi_transfer
*xfer
)
657 return xfer
->len
> rspi
->ops
->fifo_size
;
660 static bool rspi_can_dma(struct spi_master
*master
, struct spi_device
*spi
,
661 struct spi_transfer
*xfer
)
663 struct rspi_data
*rspi
= spi_master_get_devdata(master
);
665 return __rspi_can_dma(rspi
, xfer
);
668 static int rspi_dma_check_then_transfer(struct rspi_data
*rspi
,
669 struct spi_transfer
*xfer
)
671 if (!rspi
->master
->can_dma
|| !__rspi_can_dma(rspi
, xfer
))
674 /* rx_buf can be NULL on RSPI on SH in TX-only Mode */
675 return rspi_dma_transfer(rspi
, &xfer
->tx_sg
,
676 xfer
->rx_buf
? &xfer
->rx_sg
: NULL
);
679 static int rspi_common_transfer(struct rspi_data
*rspi
,
680 struct spi_transfer
*xfer
)
684 ret
= rspi_dma_check_then_transfer(rspi
, xfer
);
688 ret
= rspi_pio_transfer(rspi
, xfer
->tx_buf
, xfer
->rx_buf
, xfer
->len
);
692 /* Wait for the last transmission */
693 rspi_wait_for_tx_empty(rspi
);
698 static int rspi_transfer_one(struct spi_master
*master
, struct spi_device
*spi
,
699 struct spi_transfer
*xfer
)
701 struct rspi_data
*rspi
= spi_master_get_devdata(master
);
704 spcr
= rspi_read8(rspi
, RSPI_SPCR
);
706 rspi_receive_init(rspi
);
711 rspi_write8(rspi
, spcr
, RSPI_SPCR
);
713 return rspi_common_transfer(rspi
, xfer
);
716 static int rspi_rz_transfer_one(struct spi_master
*master
,
717 struct spi_device
*spi
,
718 struct spi_transfer
*xfer
)
720 struct rspi_data
*rspi
= spi_master_get_devdata(master
);
722 rspi_rz_receive_init(rspi
);
724 return rspi_common_transfer(rspi
, xfer
);
727 static int qspi_trigger_transfer_out_in(struct rspi_data
*rspi
, const u8
*tx
,
728 u8
*rx
, unsigned int len
)
734 n
= qspi_set_send_trigger(rspi
, len
);
735 qspi_set_receive_trigger(rspi
, len
);
736 if (n
== QSPI_BUFFER_SIZE
) {
737 ret
= rspi_wait_for_tx_empty(rspi
);
739 dev_err(&rspi
->master
->dev
, "transmit timeout\n");
742 for (i
= 0; i
< n
; i
++)
743 rspi_write_data(rspi
, *tx
++);
745 ret
= rspi_wait_for_rx_full(rspi
);
747 dev_err(&rspi
->master
->dev
, "receive timeout\n");
750 for (i
= 0; i
< n
; i
++)
751 *rx
++ = rspi_read_data(rspi
);
753 ret
= rspi_pio_transfer(rspi
, tx
, rx
, n
);
763 static int qspi_transfer_out_in(struct rspi_data
*rspi
,
764 struct spi_transfer
*xfer
)
768 qspi_receive_init(rspi
);
770 ret
= rspi_dma_check_then_transfer(rspi
, xfer
);
774 return qspi_trigger_transfer_out_in(rspi
, xfer
->tx_buf
,
775 xfer
->rx_buf
, xfer
->len
);
778 static int qspi_transfer_out(struct rspi_data
*rspi
, struct spi_transfer
*xfer
)
782 if (rspi
->master
->can_dma
&& __rspi_can_dma(rspi
, xfer
)) {
783 ret
= rspi_dma_transfer(rspi
, &xfer
->tx_sg
, NULL
);
788 ret
= rspi_pio_transfer(rspi
, xfer
->tx_buf
, NULL
, xfer
->len
);
792 /* Wait for the last transmission */
793 rspi_wait_for_tx_empty(rspi
);
798 static int qspi_transfer_in(struct rspi_data
*rspi
, struct spi_transfer
*xfer
)
800 if (rspi
->master
->can_dma
&& __rspi_can_dma(rspi
, xfer
)) {
801 int ret
= rspi_dma_transfer(rspi
, NULL
, &xfer
->rx_sg
);
806 return rspi_pio_transfer(rspi
, NULL
, xfer
->rx_buf
, xfer
->len
);
809 static int qspi_transfer_one(struct spi_master
*master
, struct spi_device
*spi
,
810 struct spi_transfer
*xfer
)
812 struct rspi_data
*rspi
= spi_master_get_devdata(master
);
814 if (spi
->mode
& SPI_LOOP
) {
815 return qspi_transfer_out_in(rspi
, xfer
);
816 } else if (xfer
->tx_nbits
> SPI_NBITS_SINGLE
) {
817 /* Quad or Dual SPI Write */
818 return qspi_transfer_out(rspi
, xfer
);
819 } else if (xfer
->rx_nbits
> SPI_NBITS_SINGLE
) {
820 /* Quad or Dual SPI Read */
821 return qspi_transfer_in(rspi
, xfer
);
823 /* Single SPI Transfer */
824 return qspi_transfer_out_in(rspi
, xfer
);
828 static int rspi_setup(struct spi_device
*spi
)
830 struct rspi_data
*rspi
= spi_master_get_devdata(spi
->master
);
832 rspi
->max_speed_hz
= spi
->max_speed_hz
;
834 rspi
->spcmd
= SPCMD_SSLKP
;
835 if (spi
->mode
& SPI_CPOL
)
836 rspi
->spcmd
|= SPCMD_CPOL
;
837 if (spi
->mode
& SPI_CPHA
)
838 rspi
->spcmd
|= SPCMD_CPHA
;
840 /* CMOS output mode and MOSI signal from previous transfer */
842 if (spi
->mode
& SPI_LOOP
)
843 rspi
->sppcr
|= SPPCR_SPLP
;
845 set_config_register(rspi
, 8);
850 static u16
qspi_transfer_mode(const struct spi_transfer
*xfer
)
853 switch (xfer
->tx_nbits
) {
855 return SPCMD_SPIMOD_QUAD
;
857 return SPCMD_SPIMOD_DUAL
;
862 switch (xfer
->rx_nbits
) {
864 return SPCMD_SPIMOD_QUAD
| SPCMD_SPRW
;
866 return SPCMD_SPIMOD_DUAL
| SPCMD_SPRW
;
874 static int qspi_setup_sequencer(struct rspi_data
*rspi
,
875 const struct spi_message
*msg
)
877 const struct spi_transfer
*xfer
;
878 unsigned int i
= 0, len
= 0;
879 u16 current_mode
= 0xffff, mode
;
881 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
882 mode
= qspi_transfer_mode(xfer
);
883 if (mode
== current_mode
) {
888 /* Transfer mode change */
890 /* Set transfer data length of previous transfer */
891 rspi_write32(rspi
, len
, QSPI_SPBMUL(i
- 1));
894 if (i
>= QSPI_NUM_SPCMD
) {
895 dev_err(&msg
->spi
->dev
,
896 "Too many different transfer modes");
900 /* Program transfer mode for this transfer */
901 rspi_write16(rspi
, rspi
->spcmd
| mode
, RSPI_SPCMD(i
));
907 /* Set final transfer data length and sequence length */
908 rspi_write32(rspi
, len
, QSPI_SPBMUL(i
- 1));
909 rspi_write8(rspi
, i
- 1, RSPI_SPSCR
);
915 static int rspi_prepare_message(struct spi_master
*master
,
916 struct spi_message
*msg
)
918 struct rspi_data
*rspi
= spi_master_get_devdata(master
);
922 (SPI_TX_DUAL
| SPI_TX_QUAD
| SPI_RX_DUAL
| SPI_RX_QUAD
)) {
923 /* Setup sequencer for messages with multiple transfer modes */
924 ret
= qspi_setup_sequencer(rspi
, msg
);
929 /* Enable SPI function in master mode */
930 rspi_write8(rspi
, rspi_read8(rspi
, RSPI_SPCR
) | SPCR_SPE
, RSPI_SPCR
);
934 static int rspi_unprepare_message(struct spi_master
*master
,
935 struct spi_message
*msg
)
937 struct rspi_data
*rspi
= spi_master_get_devdata(master
);
939 /* Disable SPI function */
940 rspi_write8(rspi
, rspi_read8(rspi
, RSPI_SPCR
) & ~SPCR_SPE
, RSPI_SPCR
);
942 /* Reset sequencer for Single SPI Transfers */
943 rspi_write16(rspi
, rspi
->spcmd
, RSPI_SPCMD0
);
944 rspi_write8(rspi
, 0, RSPI_SPSCR
);
948 static irqreturn_t
rspi_irq_mux(int irq
, void *_sr
)
950 struct rspi_data
*rspi
= _sr
;
952 irqreturn_t ret
= IRQ_NONE
;
955 rspi
->spsr
= spsr
= rspi_read8(rspi
, RSPI_SPSR
);
956 if (spsr
& SPSR_SPRF
)
957 disable_irq
|= SPCR_SPRIE
;
958 if (spsr
& SPSR_SPTEF
)
959 disable_irq
|= SPCR_SPTIE
;
963 rspi_disable_irq(rspi
, disable_irq
);
964 wake_up(&rspi
->wait
);
970 static irqreturn_t
rspi_irq_rx(int irq
, void *_sr
)
972 struct rspi_data
*rspi
= _sr
;
975 rspi
->spsr
= spsr
= rspi_read8(rspi
, RSPI_SPSR
);
976 if (spsr
& SPSR_SPRF
) {
977 rspi_disable_irq(rspi
, SPCR_SPRIE
);
978 wake_up(&rspi
->wait
);
985 static irqreturn_t
rspi_irq_tx(int irq
, void *_sr
)
987 struct rspi_data
*rspi
= _sr
;
990 rspi
->spsr
= spsr
= rspi_read8(rspi
, RSPI_SPSR
);
991 if (spsr
& SPSR_SPTEF
) {
992 rspi_disable_irq(rspi
, SPCR_SPTIE
);
993 wake_up(&rspi
->wait
);
1000 static struct dma_chan
*rspi_request_dma_chan(struct device
*dev
,
1001 enum dma_transfer_direction dir
,
1003 dma_addr_t port_addr
)
1005 dma_cap_mask_t mask
;
1006 struct dma_chan
*chan
;
1007 struct dma_slave_config cfg
;
1011 dma_cap_set(DMA_SLAVE
, mask
);
1013 chan
= dma_request_slave_channel_compat(mask
, shdma_chan_filter
,
1014 (void *)(unsigned long)id
, dev
,
1015 dir
== DMA_MEM_TO_DEV
? "tx" : "rx");
1017 dev_warn(dev
, "dma_request_slave_channel_compat failed\n");
1021 memset(&cfg
, 0, sizeof(cfg
));
1022 cfg
.direction
= dir
;
1023 if (dir
== DMA_MEM_TO_DEV
) {
1024 cfg
.dst_addr
= port_addr
;
1025 cfg
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
1027 cfg
.src_addr
= port_addr
;
1028 cfg
.src_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
1031 ret
= dmaengine_slave_config(chan
, &cfg
);
1033 dev_warn(dev
, "dmaengine_slave_config failed %d\n", ret
);
1034 dma_release_channel(chan
);
1041 static int rspi_request_dma(struct device
*dev
, struct spi_master
*master
,
1042 const struct resource
*res
)
1044 const struct rspi_plat_data
*rspi_pd
= dev_get_platdata(dev
);
1045 unsigned int dma_tx_id
, dma_rx_id
;
1048 /* In the OF case we will get the slave IDs from the DT */
1051 } else if (rspi_pd
&& rspi_pd
->dma_tx_id
&& rspi_pd
->dma_rx_id
) {
1052 dma_tx_id
= rspi_pd
->dma_tx_id
;
1053 dma_rx_id
= rspi_pd
->dma_rx_id
;
1055 /* The driver assumes no error. */
1059 master
->dma_tx
= rspi_request_dma_chan(dev
, DMA_MEM_TO_DEV
, dma_tx_id
,
1060 res
->start
+ RSPI_SPDR
);
1061 if (!master
->dma_tx
)
1064 master
->dma_rx
= rspi_request_dma_chan(dev
, DMA_DEV_TO_MEM
, dma_rx_id
,
1065 res
->start
+ RSPI_SPDR
);
1066 if (!master
->dma_rx
) {
1067 dma_release_channel(master
->dma_tx
);
1068 master
->dma_tx
= NULL
;
1072 master
->can_dma
= rspi_can_dma
;
1073 dev_info(dev
, "DMA available");
1077 static void rspi_release_dma(struct spi_master
*master
)
1080 dma_release_channel(master
->dma_tx
);
1082 dma_release_channel(master
->dma_rx
);
1085 static int rspi_remove(struct platform_device
*pdev
)
1087 struct rspi_data
*rspi
= platform_get_drvdata(pdev
);
1089 rspi_release_dma(rspi
->master
);
1090 pm_runtime_disable(&pdev
->dev
);
1095 static const struct spi_ops rspi_ops
= {
1096 .set_config_register
= rspi_set_config_register
,
1097 .transfer_one
= rspi_transfer_one
,
1098 .mode_bits
= SPI_CPHA
| SPI_CPOL
| SPI_LOOP
,
1099 .flags
= SPI_MASTER_MUST_TX
,
1103 static const struct spi_ops rspi_rz_ops
= {
1104 .set_config_register
= rspi_rz_set_config_register
,
1105 .transfer_one
= rspi_rz_transfer_one
,
1106 .mode_bits
= SPI_CPHA
| SPI_CPOL
| SPI_LOOP
,
1107 .flags
= SPI_MASTER_MUST_RX
| SPI_MASTER_MUST_TX
,
1108 .fifo_size
= 8, /* 8 for TX, 32 for RX */
1111 static const struct spi_ops qspi_ops
= {
1112 .set_config_register
= qspi_set_config_register
,
1113 .transfer_one
= qspi_transfer_one
,
1114 .mode_bits
= SPI_CPHA
| SPI_CPOL
| SPI_LOOP
|
1115 SPI_TX_DUAL
| SPI_TX_QUAD
|
1116 SPI_RX_DUAL
| SPI_RX_QUAD
,
1117 .flags
= SPI_MASTER_MUST_RX
| SPI_MASTER_MUST_TX
,
1122 static const struct of_device_id rspi_of_match
[] = {
1123 /* RSPI on legacy SH */
1124 { .compatible
= "renesas,rspi", .data
= &rspi_ops
},
1125 /* RSPI on RZ/A1H */
1126 { .compatible
= "renesas,rspi-rz", .data
= &rspi_rz_ops
},
1127 /* QSPI on R-Car Gen2 */
1128 { .compatible
= "renesas,qspi", .data
= &qspi_ops
},
1132 MODULE_DEVICE_TABLE(of
, rspi_of_match
);
1134 static int rspi_parse_dt(struct device
*dev
, struct spi_master
*master
)
1139 /* Parse DT properties */
1140 error
= of_property_read_u32(dev
->of_node
, "num-cs", &num_cs
);
1142 dev_err(dev
, "of_property_read_u32 num-cs failed %d\n", error
);
1146 master
->num_chipselect
= num_cs
;
1150 #define rspi_of_match NULL
1151 static inline int rspi_parse_dt(struct device
*dev
, struct spi_master
*master
)
1155 #endif /* CONFIG_OF */
1157 static int rspi_request_irq(struct device
*dev
, unsigned int irq
,
1158 irq_handler_t handler
, const char *suffix
,
1161 const char *name
= devm_kasprintf(dev
, GFP_KERNEL
, "%s:%s",
1162 dev_name(dev
), suffix
);
1166 return devm_request_irq(dev
, irq
, handler
, 0, name
, dev_id
);
1169 static int rspi_probe(struct platform_device
*pdev
)
1171 struct resource
*res
;
1172 struct spi_master
*master
;
1173 struct rspi_data
*rspi
;
1175 const struct of_device_id
*of_id
;
1176 const struct rspi_plat_data
*rspi_pd
;
1177 const struct spi_ops
*ops
;
1179 master
= spi_alloc_master(&pdev
->dev
, sizeof(struct rspi_data
));
1180 if (master
== NULL
) {
1181 dev_err(&pdev
->dev
, "spi_alloc_master error.\n");
1185 of_id
= of_match_device(rspi_of_match
, &pdev
->dev
);
1188 ret
= rspi_parse_dt(&pdev
->dev
, master
);
1192 ops
= (struct spi_ops
*)pdev
->id_entry
->driver_data
;
1193 rspi_pd
= dev_get_platdata(&pdev
->dev
);
1194 if (rspi_pd
&& rspi_pd
->num_chipselect
)
1195 master
->num_chipselect
= rspi_pd
->num_chipselect
;
1197 master
->num_chipselect
= 2; /* default */
1200 /* ops parameter check */
1201 if (!ops
->set_config_register
) {
1202 dev_err(&pdev
->dev
, "there is no set_config_register\n");
1207 rspi
= spi_master_get_devdata(master
);
1208 platform_set_drvdata(pdev
, rspi
);
1210 rspi
->master
= master
;
1212 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1213 rspi
->addr
= devm_ioremap_resource(&pdev
->dev
, res
);
1214 if (IS_ERR(rspi
->addr
)) {
1215 ret
= PTR_ERR(rspi
->addr
);
1219 rspi
->clk
= devm_clk_get(&pdev
->dev
, NULL
);
1220 if (IS_ERR(rspi
->clk
)) {
1221 dev_err(&pdev
->dev
, "cannot get clock\n");
1222 ret
= PTR_ERR(rspi
->clk
);
1226 pm_runtime_enable(&pdev
->dev
);
1228 init_waitqueue_head(&rspi
->wait
);
1230 master
->bus_num
= pdev
->id
;
1231 master
->setup
= rspi_setup
;
1232 master
->auto_runtime_pm
= true;
1233 master
->transfer_one
= ops
->transfer_one
;
1234 master
->prepare_message
= rspi_prepare_message
;
1235 master
->unprepare_message
= rspi_unprepare_message
;
1236 master
->mode_bits
= ops
->mode_bits
;
1237 master
->flags
= ops
->flags
;
1238 master
->dev
.of_node
= pdev
->dev
.of_node
;
1240 ret
= platform_get_irq_byname(pdev
, "rx");
1242 ret
= platform_get_irq_byname(pdev
, "mux");
1244 ret
= platform_get_irq(pdev
, 0);
1246 rspi
->rx_irq
= rspi
->tx_irq
= ret
;
1249 ret
= platform_get_irq_byname(pdev
, "tx");
1254 dev_err(&pdev
->dev
, "platform_get_irq error\n");
1258 if (rspi
->rx_irq
== rspi
->tx_irq
) {
1259 /* Single multiplexed interrupt */
1260 ret
= rspi_request_irq(&pdev
->dev
, rspi
->rx_irq
, rspi_irq_mux
,
1263 /* Multi-interrupt mode, only SPRI and SPTI are used */
1264 ret
= rspi_request_irq(&pdev
->dev
, rspi
->rx_irq
, rspi_irq_rx
,
1267 ret
= rspi_request_irq(&pdev
->dev
, rspi
->tx_irq
,
1268 rspi_irq_tx
, "tx", rspi
);
1271 dev_err(&pdev
->dev
, "request_irq error\n");
1275 ret
= rspi_request_dma(&pdev
->dev
, master
, res
);
1277 dev_warn(&pdev
->dev
, "DMA not available, using PIO\n");
1279 ret
= devm_spi_register_master(&pdev
->dev
, master
);
1281 dev_err(&pdev
->dev
, "spi_register_master error.\n");
1285 dev_info(&pdev
->dev
, "probed\n");
1290 rspi_release_dma(master
);
1292 pm_runtime_disable(&pdev
->dev
);
1294 spi_master_put(master
);
1299 static const struct platform_device_id spi_driver_ids
[] = {
1300 { "rspi", (kernel_ulong_t
)&rspi_ops
},
1301 { "rspi-rz", (kernel_ulong_t
)&rspi_rz_ops
},
1302 { "qspi", (kernel_ulong_t
)&qspi_ops
},
1306 MODULE_DEVICE_TABLE(platform
, spi_driver_ids
);
1308 #ifdef CONFIG_PM_SLEEP
1309 static int rspi_suspend(struct device
*dev
)
1311 struct platform_device
*pdev
= to_platform_device(dev
);
1312 struct rspi_data
*rspi
= platform_get_drvdata(pdev
);
1314 return spi_master_suspend(rspi
->master
);
1317 static int rspi_resume(struct device
*dev
)
1319 struct platform_device
*pdev
= to_platform_device(dev
);
1320 struct rspi_data
*rspi
= platform_get_drvdata(pdev
);
1322 return spi_master_resume(rspi
->master
);
1325 static SIMPLE_DEV_PM_OPS(rspi_pm_ops
, rspi_suspend
, rspi_resume
);
1326 #define DEV_PM_OPS &rspi_pm_ops
1328 #define DEV_PM_OPS NULL
1329 #endif /* CONFIG_PM_SLEEP */
1331 static struct platform_driver rspi_driver
= {
1332 .probe
= rspi_probe
,
1333 .remove
= rspi_remove
,
1334 .id_table
= spi_driver_ids
,
1336 .name
= "renesas_spi",
1338 .of_match_table
= of_match_ptr(rspi_of_match
),
1341 module_platform_driver(rspi_driver
);
1343 MODULE_DESCRIPTION("Renesas RSPI bus driver");
1344 MODULE_LICENSE("GPL v2");
1345 MODULE_AUTHOR("Yoshihiro Shimoda");
1346 MODULE_ALIAS("platform:rspi");