dm thin metadata: fix __udivdi3 undefined on 32-bit
[linux/fpc-iii.git] / drivers / spi / spi.c
blob04fd651f9e3e33b6664cfb185cbb4309e7122374
1 /*
2 * SPI init/core code
4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/of_gpio.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/pm_domain.h>
34 #include <linux/export.h>
35 #include <linux/sched/rt.h>
36 #include <linux/delay.h>
37 #include <linux/kthread.h>
38 #include <linux/ioport.h>
39 #include <linux/acpi.h>
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/spi.h>
44 static void spidev_release(struct device *dev)
46 struct spi_device *spi = to_spi_device(dev);
48 /* spi masters may cleanup for released devices */
49 if (spi->master->cleanup)
50 spi->master->cleanup(spi);
52 spi_master_put(spi->master);
53 kfree(spi);
56 static ssize_t
57 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59 const struct spi_device *spi = to_spi_device(dev);
60 int len;
62 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
63 if (len != -ENODEV)
64 return len;
66 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
68 static DEVICE_ATTR_RO(modalias);
70 #define SPI_STATISTICS_ATTRS(field, file) \
71 static ssize_t spi_master_##field##_show(struct device *dev, \
72 struct device_attribute *attr, \
73 char *buf) \
74 { \
75 struct spi_master *master = container_of(dev, \
76 struct spi_master, dev); \
77 return spi_statistics_##field##_show(&master->statistics, buf); \
78 } \
79 static struct device_attribute dev_attr_spi_master_##field = { \
80 .attr = { .name = file, .mode = S_IRUGO }, \
81 .show = spi_master_##field##_show, \
82 }; \
83 static ssize_t spi_device_##field##_show(struct device *dev, \
84 struct device_attribute *attr, \
85 char *buf) \
86 { \
87 struct spi_device *spi = container_of(dev, \
88 struct spi_device, dev); \
89 return spi_statistics_##field##_show(&spi->statistics, buf); \
90 } \
91 static struct device_attribute dev_attr_spi_device_##field = { \
92 .attr = { .name = file, .mode = S_IRUGO }, \
93 .show = spi_device_##field##_show, \
96 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
97 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
98 char *buf) \
99 { \
100 unsigned long flags; \
101 ssize_t len; \
102 spin_lock_irqsave(&stat->lock, flags); \
103 len = sprintf(buf, format_string, stat->field); \
104 spin_unlock_irqrestore(&stat->lock, flags); \
105 return len; \
107 SPI_STATISTICS_ATTRS(name, file)
109 #define SPI_STATISTICS_SHOW(field, format_string) \
110 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
111 field, format_string)
113 SPI_STATISTICS_SHOW(messages, "%lu");
114 SPI_STATISTICS_SHOW(transfers, "%lu");
115 SPI_STATISTICS_SHOW(errors, "%lu");
116 SPI_STATISTICS_SHOW(timedout, "%lu");
118 SPI_STATISTICS_SHOW(spi_sync, "%lu");
119 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
120 SPI_STATISTICS_SHOW(spi_async, "%lu");
122 SPI_STATISTICS_SHOW(bytes, "%llu");
123 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
124 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
126 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
127 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
128 "transfer_bytes_histo_" number, \
129 transfer_bytes_histo[index], "%lu")
130 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
131 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
132 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
133 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
134 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
135 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
136 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
137 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
138 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
146 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
148 static struct attribute *spi_dev_attrs[] = {
149 &dev_attr_modalias.attr,
150 NULL,
153 static const struct attribute_group spi_dev_group = {
154 .attrs = spi_dev_attrs,
157 static struct attribute *spi_device_statistics_attrs[] = {
158 &dev_attr_spi_device_messages.attr,
159 &dev_attr_spi_device_transfers.attr,
160 &dev_attr_spi_device_errors.attr,
161 &dev_attr_spi_device_timedout.attr,
162 &dev_attr_spi_device_spi_sync.attr,
163 &dev_attr_spi_device_spi_sync_immediate.attr,
164 &dev_attr_spi_device_spi_async.attr,
165 &dev_attr_spi_device_bytes.attr,
166 &dev_attr_spi_device_bytes_rx.attr,
167 &dev_attr_spi_device_bytes_tx.attr,
168 &dev_attr_spi_device_transfer_bytes_histo0.attr,
169 &dev_attr_spi_device_transfer_bytes_histo1.attr,
170 &dev_attr_spi_device_transfer_bytes_histo2.attr,
171 &dev_attr_spi_device_transfer_bytes_histo3.attr,
172 &dev_attr_spi_device_transfer_bytes_histo4.attr,
173 &dev_attr_spi_device_transfer_bytes_histo5.attr,
174 &dev_attr_spi_device_transfer_bytes_histo6.attr,
175 &dev_attr_spi_device_transfer_bytes_histo7.attr,
176 &dev_attr_spi_device_transfer_bytes_histo8.attr,
177 &dev_attr_spi_device_transfer_bytes_histo9.attr,
178 &dev_attr_spi_device_transfer_bytes_histo10.attr,
179 &dev_attr_spi_device_transfer_bytes_histo11.attr,
180 &dev_attr_spi_device_transfer_bytes_histo12.attr,
181 &dev_attr_spi_device_transfer_bytes_histo13.attr,
182 &dev_attr_spi_device_transfer_bytes_histo14.attr,
183 &dev_attr_spi_device_transfer_bytes_histo15.attr,
184 &dev_attr_spi_device_transfer_bytes_histo16.attr,
185 NULL,
188 static const struct attribute_group spi_device_statistics_group = {
189 .name = "statistics",
190 .attrs = spi_device_statistics_attrs,
193 static const struct attribute_group *spi_dev_groups[] = {
194 &spi_dev_group,
195 &spi_device_statistics_group,
196 NULL,
199 static struct attribute *spi_master_statistics_attrs[] = {
200 &dev_attr_spi_master_messages.attr,
201 &dev_attr_spi_master_transfers.attr,
202 &dev_attr_spi_master_errors.attr,
203 &dev_attr_spi_master_timedout.attr,
204 &dev_attr_spi_master_spi_sync.attr,
205 &dev_attr_spi_master_spi_sync_immediate.attr,
206 &dev_attr_spi_master_spi_async.attr,
207 &dev_attr_spi_master_bytes.attr,
208 &dev_attr_spi_master_bytes_rx.attr,
209 &dev_attr_spi_master_bytes_tx.attr,
210 &dev_attr_spi_master_transfer_bytes_histo0.attr,
211 &dev_attr_spi_master_transfer_bytes_histo1.attr,
212 &dev_attr_spi_master_transfer_bytes_histo2.attr,
213 &dev_attr_spi_master_transfer_bytes_histo3.attr,
214 &dev_attr_spi_master_transfer_bytes_histo4.attr,
215 &dev_attr_spi_master_transfer_bytes_histo5.attr,
216 &dev_attr_spi_master_transfer_bytes_histo6.attr,
217 &dev_attr_spi_master_transfer_bytes_histo7.attr,
218 &dev_attr_spi_master_transfer_bytes_histo8.attr,
219 &dev_attr_spi_master_transfer_bytes_histo9.attr,
220 &dev_attr_spi_master_transfer_bytes_histo10.attr,
221 &dev_attr_spi_master_transfer_bytes_histo11.attr,
222 &dev_attr_spi_master_transfer_bytes_histo12.attr,
223 &dev_attr_spi_master_transfer_bytes_histo13.attr,
224 &dev_attr_spi_master_transfer_bytes_histo14.attr,
225 &dev_attr_spi_master_transfer_bytes_histo15.attr,
226 &dev_attr_spi_master_transfer_bytes_histo16.attr,
227 NULL,
230 static const struct attribute_group spi_master_statistics_group = {
231 .name = "statistics",
232 .attrs = spi_master_statistics_attrs,
235 static const struct attribute_group *spi_master_groups[] = {
236 &spi_master_statistics_group,
237 NULL,
240 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
241 struct spi_transfer *xfer,
242 struct spi_master *master)
244 unsigned long flags;
245 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
247 if (l2len < 0)
248 l2len = 0;
250 spin_lock_irqsave(&stats->lock, flags);
252 stats->transfers++;
253 stats->transfer_bytes_histo[l2len]++;
255 stats->bytes += xfer->len;
256 if ((xfer->tx_buf) &&
257 (xfer->tx_buf != master->dummy_tx))
258 stats->bytes_tx += xfer->len;
259 if ((xfer->rx_buf) &&
260 (xfer->rx_buf != master->dummy_rx))
261 stats->bytes_rx += xfer->len;
263 spin_unlock_irqrestore(&stats->lock, flags);
265 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
267 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
268 * and the sysfs version makes coldplug work too.
271 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
272 const struct spi_device *sdev)
274 while (id->name[0]) {
275 if (!strcmp(sdev->modalias, id->name))
276 return id;
277 id++;
279 return NULL;
282 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
284 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
286 return spi_match_id(sdrv->id_table, sdev);
288 EXPORT_SYMBOL_GPL(spi_get_device_id);
290 static int spi_match_device(struct device *dev, struct device_driver *drv)
292 const struct spi_device *spi = to_spi_device(dev);
293 const struct spi_driver *sdrv = to_spi_driver(drv);
295 /* Attempt an OF style match */
296 if (of_driver_match_device(dev, drv))
297 return 1;
299 /* Then try ACPI */
300 if (acpi_driver_match_device(dev, drv))
301 return 1;
303 if (sdrv->id_table)
304 return !!spi_match_id(sdrv->id_table, spi);
306 return strcmp(spi->modalias, drv->name) == 0;
309 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
311 const struct spi_device *spi = to_spi_device(dev);
312 int rc;
314 rc = acpi_device_uevent_modalias(dev, env);
315 if (rc != -ENODEV)
316 return rc;
318 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
319 return 0;
322 struct bus_type spi_bus_type = {
323 .name = "spi",
324 .dev_groups = spi_dev_groups,
325 .match = spi_match_device,
326 .uevent = spi_uevent,
328 EXPORT_SYMBOL_GPL(spi_bus_type);
331 static int spi_drv_probe(struct device *dev)
333 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
334 struct spi_device *spi = to_spi_device(dev);
335 int ret;
337 ret = of_clk_set_defaults(dev->of_node, false);
338 if (ret)
339 return ret;
341 if (dev->of_node) {
342 spi->irq = of_irq_get(dev->of_node, 0);
343 if (spi->irq == -EPROBE_DEFER)
344 return -EPROBE_DEFER;
345 if (spi->irq < 0)
346 spi->irq = 0;
349 ret = dev_pm_domain_attach(dev, true);
350 if (ret != -EPROBE_DEFER) {
351 ret = sdrv->probe(spi);
352 if (ret)
353 dev_pm_domain_detach(dev, true);
356 return ret;
359 static int spi_drv_remove(struct device *dev)
361 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
362 int ret;
364 ret = sdrv->remove(to_spi_device(dev));
365 dev_pm_domain_detach(dev, true);
367 return ret;
370 static void spi_drv_shutdown(struct device *dev)
372 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
374 sdrv->shutdown(to_spi_device(dev));
378 * __spi_register_driver - register a SPI driver
379 * @owner: owner module of the driver to register
380 * @sdrv: the driver to register
381 * Context: can sleep
383 * Return: zero on success, else a negative error code.
385 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
387 sdrv->driver.owner = owner;
388 sdrv->driver.bus = &spi_bus_type;
389 if (sdrv->probe)
390 sdrv->driver.probe = spi_drv_probe;
391 if (sdrv->remove)
392 sdrv->driver.remove = spi_drv_remove;
393 if (sdrv->shutdown)
394 sdrv->driver.shutdown = spi_drv_shutdown;
395 return driver_register(&sdrv->driver);
397 EXPORT_SYMBOL_GPL(__spi_register_driver);
399 /*-------------------------------------------------------------------------*/
401 /* SPI devices should normally not be created by SPI device drivers; that
402 * would make them board-specific. Similarly with SPI master drivers.
403 * Device registration normally goes into like arch/.../mach.../board-YYY.c
404 * with other readonly (flashable) information about mainboard devices.
407 struct boardinfo {
408 struct list_head list;
409 struct spi_board_info board_info;
412 static LIST_HEAD(board_list);
413 static LIST_HEAD(spi_master_list);
416 * Used to protect add/del opertion for board_info list and
417 * spi_master list, and their matching process
419 static DEFINE_MUTEX(board_lock);
422 * spi_alloc_device - Allocate a new SPI device
423 * @master: Controller to which device is connected
424 * Context: can sleep
426 * Allows a driver to allocate and initialize a spi_device without
427 * registering it immediately. This allows a driver to directly
428 * fill the spi_device with device parameters before calling
429 * spi_add_device() on it.
431 * Caller is responsible to call spi_add_device() on the returned
432 * spi_device structure to add it to the SPI master. If the caller
433 * needs to discard the spi_device without adding it, then it should
434 * call spi_dev_put() on it.
436 * Return: a pointer to the new device, or NULL.
438 struct spi_device *spi_alloc_device(struct spi_master *master)
440 struct spi_device *spi;
442 if (!spi_master_get(master))
443 return NULL;
445 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
446 if (!spi) {
447 spi_master_put(master);
448 return NULL;
451 spi->master = master;
452 spi->dev.parent = &master->dev;
453 spi->dev.bus = &spi_bus_type;
454 spi->dev.release = spidev_release;
455 spi->cs_gpio = -ENOENT;
457 spin_lock_init(&spi->statistics.lock);
459 device_initialize(&spi->dev);
460 return spi;
462 EXPORT_SYMBOL_GPL(spi_alloc_device);
464 static void spi_dev_set_name(struct spi_device *spi)
466 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
468 if (adev) {
469 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
470 return;
473 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
474 spi->chip_select);
477 static int spi_dev_check(struct device *dev, void *data)
479 struct spi_device *spi = to_spi_device(dev);
480 struct spi_device *new_spi = data;
482 if (spi->master == new_spi->master &&
483 spi->chip_select == new_spi->chip_select)
484 return -EBUSY;
485 return 0;
489 * spi_add_device - Add spi_device allocated with spi_alloc_device
490 * @spi: spi_device to register
492 * Companion function to spi_alloc_device. Devices allocated with
493 * spi_alloc_device can be added onto the spi bus with this function.
495 * Return: 0 on success; negative errno on failure
497 int spi_add_device(struct spi_device *spi)
499 static DEFINE_MUTEX(spi_add_lock);
500 struct spi_master *master = spi->master;
501 struct device *dev = master->dev.parent;
502 int status;
504 /* Chipselects are numbered 0..max; validate. */
505 if (spi->chip_select >= master->num_chipselect) {
506 dev_err(dev, "cs%d >= max %d\n",
507 spi->chip_select,
508 master->num_chipselect);
509 return -EINVAL;
512 /* Set the bus ID string */
513 spi_dev_set_name(spi);
515 /* We need to make sure there's no other device with this
516 * chipselect **BEFORE** we call setup(), else we'll trash
517 * its configuration. Lock against concurrent add() calls.
519 mutex_lock(&spi_add_lock);
521 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
522 if (status) {
523 dev_err(dev, "chipselect %d already in use\n",
524 spi->chip_select);
525 goto done;
528 if (master->cs_gpios)
529 spi->cs_gpio = master->cs_gpios[spi->chip_select];
531 /* Drivers may modify this initial i/o setup, but will
532 * normally rely on the device being setup. Devices
533 * using SPI_CS_HIGH can't coexist well otherwise...
535 status = spi_setup(spi);
536 if (status < 0) {
537 dev_err(dev, "can't setup %s, status %d\n",
538 dev_name(&spi->dev), status);
539 goto done;
542 /* Device may be bound to an active driver when this returns */
543 status = device_add(&spi->dev);
544 if (status < 0)
545 dev_err(dev, "can't add %s, status %d\n",
546 dev_name(&spi->dev), status);
547 else
548 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
550 done:
551 mutex_unlock(&spi_add_lock);
552 return status;
554 EXPORT_SYMBOL_GPL(spi_add_device);
557 * spi_new_device - instantiate one new SPI device
558 * @master: Controller to which device is connected
559 * @chip: Describes the SPI device
560 * Context: can sleep
562 * On typical mainboards, this is purely internal; and it's not needed
563 * after board init creates the hard-wired devices. Some development
564 * platforms may not be able to use spi_register_board_info though, and
565 * this is exported so that for example a USB or parport based adapter
566 * driver could add devices (which it would learn about out-of-band).
568 * Return: the new device, or NULL.
570 struct spi_device *spi_new_device(struct spi_master *master,
571 struct spi_board_info *chip)
573 struct spi_device *proxy;
574 int status;
576 /* NOTE: caller did any chip->bus_num checks necessary.
578 * Also, unless we change the return value convention to use
579 * error-or-pointer (not NULL-or-pointer), troubleshootability
580 * suggests syslogged diagnostics are best here (ugh).
583 proxy = spi_alloc_device(master);
584 if (!proxy)
585 return NULL;
587 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
589 proxy->chip_select = chip->chip_select;
590 proxy->max_speed_hz = chip->max_speed_hz;
591 proxy->mode = chip->mode;
592 proxy->irq = chip->irq;
593 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
594 proxy->dev.platform_data = (void *) chip->platform_data;
595 proxy->controller_data = chip->controller_data;
596 proxy->controller_state = NULL;
598 status = spi_add_device(proxy);
599 if (status < 0) {
600 spi_dev_put(proxy);
601 return NULL;
604 return proxy;
606 EXPORT_SYMBOL_GPL(spi_new_device);
608 static void spi_match_master_to_boardinfo(struct spi_master *master,
609 struct spi_board_info *bi)
611 struct spi_device *dev;
613 if (master->bus_num != bi->bus_num)
614 return;
616 dev = spi_new_device(master, bi);
617 if (!dev)
618 dev_err(master->dev.parent, "can't create new device for %s\n",
619 bi->modalias);
623 * spi_register_board_info - register SPI devices for a given board
624 * @info: array of chip descriptors
625 * @n: how many descriptors are provided
626 * Context: can sleep
628 * Board-specific early init code calls this (probably during arch_initcall)
629 * with segments of the SPI device table. Any device nodes are created later,
630 * after the relevant parent SPI controller (bus_num) is defined. We keep
631 * this table of devices forever, so that reloading a controller driver will
632 * not make Linux forget about these hard-wired devices.
634 * Other code can also call this, e.g. a particular add-on board might provide
635 * SPI devices through its expansion connector, so code initializing that board
636 * would naturally declare its SPI devices.
638 * The board info passed can safely be __initdata ... but be careful of
639 * any embedded pointers (platform_data, etc), they're copied as-is.
641 * Return: zero on success, else a negative error code.
643 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
645 struct boardinfo *bi;
646 int i;
648 if (!n)
649 return -EINVAL;
651 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
652 if (!bi)
653 return -ENOMEM;
655 for (i = 0; i < n; i++, bi++, info++) {
656 struct spi_master *master;
658 memcpy(&bi->board_info, info, sizeof(*info));
659 mutex_lock(&board_lock);
660 list_add_tail(&bi->list, &board_list);
661 list_for_each_entry(master, &spi_master_list, list)
662 spi_match_master_to_boardinfo(master, &bi->board_info);
663 mutex_unlock(&board_lock);
666 return 0;
669 /*-------------------------------------------------------------------------*/
671 static void spi_set_cs(struct spi_device *spi, bool enable)
673 if (spi->mode & SPI_CS_HIGH)
674 enable = !enable;
676 if (gpio_is_valid(spi->cs_gpio))
677 gpio_set_value(spi->cs_gpio, !enable);
678 else if (spi->master->set_cs)
679 spi->master->set_cs(spi, !enable);
682 #ifdef CONFIG_HAS_DMA
683 static int spi_map_buf(struct spi_master *master, struct device *dev,
684 struct sg_table *sgt, void *buf, size_t len,
685 enum dma_data_direction dir)
687 const bool vmalloced_buf = is_vmalloc_addr(buf);
688 int desc_len;
689 int sgs;
690 struct page *vm_page;
691 void *sg_buf;
692 size_t min;
693 int i, ret;
695 if (vmalloced_buf) {
696 desc_len = PAGE_SIZE;
697 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
698 } else {
699 desc_len = master->max_dma_len;
700 sgs = DIV_ROUND_UP(len, desc_len);
703 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
704 if (ret != 0)
705 return ret;
707 for (i = 0; i < sgs; i++) {
709 if (vmalloced_buf) {
711 * Next scatterlist entry size is the minimum between
712 * the desc_len and the remaining buffer length that
713 * fits in a page.
715 min = min_t(size_t, desc_len,
716 min_t(size_t, len,
717 PAGE_SIZE - offset_in_page(buf)));
718 vm_page = vmalloc_to_page(buf);
719 if (!vm_page) {
720 sg_free_table(sgt);
721 return -ENOMEM;
723 sg_set_page(&sgt->sgl[i], vm_page,
724 min, offset_in_page(buf));
725 } else {
726 min = min_t(size_t, len, desc_len);
727 sg_buf = buf;
728 sg_set_buf(&sgt->sgl[i], sg_buf, min);
732 buf += min;
733 len -= min;
736 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
737 if (!ret)
738 ret = -ENOMEM;
739 if (ret < 0) {
740 sg_free_table(sgt);
741 return ret;
744 sgt->nents = ret;
746 return 0;
749 static void spi_unmap_buf(struct spi_master *master, struct device *dev,
750 struct sg_table *sgt, enum dma_data_direction dir)
752 if (sgt->orig_nents) {
753 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
754 sg_free_table(sgt);
758 static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
760 struct device *tx_dev, *rx_dev;
761 struct spi_transfer *xfer;
762 int ret;
764 if (!master->can_dma)
765 return 0;
767 if (master->dma_tx)
768 tx_dev = master->dma_tx->device->dev;
769 else
770 tx_dev = &master->dev;
772 if (master->dma_rx)
773 rx_dev = master->dma_rx->device->dev;
774 else
775 rx_dev = &master->dev;
777 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
778 if (!master->can_dma(master, msg->spi, xfer))
779 continue;
781 if (xfer->tx_buf != NULL) {
782 ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
783 (void *)xfer->tx_buf, xfer->len,
784 DMA_TO_DEVICE);
785 if (ret != 0)
786 return ret;
789 if (xfer->rx_buf != NULL) {
790 ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
791 xfer->rx_buf, xfer->len,
792 DMA_FROM_DEVICE);
793 if (ret != 0) {
794 spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
795 DMA_TO_DEVICE);
796 return ret;
801 master->cur_msg_mapped = true;
803 return 0;
806 static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
808 struct spi_transfer *xfer;
809 struct device *tx_dev, *rx_dev;
811 if (!master->cur_msg_mapped || !master->can_dma)
812 return 0;
814 if (master->dma_tx)
815 tx_dev = master->dma_tx->device->dev;
816 else
817 tx_dev = &master->dev;
819 if (master->dma_rx)
820 rx_dev = master->dma_rx->device->dev;
821 else
822 rx_dev = &master->dev;
824 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
825 if (!master->can_dma(master, msg->spi, xfer))
826 continue;
828 spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
829 spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
832 return 0;
834 #else /* !CONFIG_HAS_DMA */
835 static inline int __spi_map_msg(struct spi_master *master,
836 struct spi_message *msg)
838 return 0;
841 static inline int __spi_unmap_msg(struct spi_master *master,
842 struct spi_message *msg)
844 return 0;
846 #endif /* !CONFIG_HAS_DMA */
848 static inline int spi_unmap_msg(struct spi_master *master,
849 struct spi_message *msg)
851 struct spi_transfer *xfer;
853 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
855 * Restore the original value of tx_buf or rx_buf if they are
856 * NULL.
858 if (xfer->tx_buf == master->dummy_tx)
859 xfer->tx_buf = NULL;
860 if (xfer->rx_buf == master->dummy_rx)
861 xfer->rx_buf = NULL;
864 return __spi_unmap_msg(master, msg);
867 static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
869 struct spi_transfer *xfer;
870 void *tmp;
871 unsigned int max_tx, max_rx;
873 if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
874 max_tx = 0;
875 max_rx = 0;
877 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
878 if ((master->flags & SPI_MASTER_MUST_TX) &&
879 !xfer->tx_buf)
880 max_tx = max(xfer->len, max_tx);
881 if ((master->flags & SPI_MASTER_MUST_RX) &&
882 !xfer->rx_buf)
883 max_rx = max(xfer->len, max_rx);
886 if (max_tx) {
887 tmp = krealloc(master->dummy_tx, max_tx,
888 GFP_KERNEL | GFP_DMA);
889 if (!tmp)
890 return -ENOMEM;
891 master->dummy_tx = tmp;
892 memset(tmp, 0, max_tx);
895 if (max_rx) {
896 tmp = krealloc(master->dummy_rx, max_rx,
897 GFP_KERNEL | GFP_DMA);
898 if (!tmp)
899 return -ENOMEM;
900 master->dummy_rx = tmp;
903 if (max_tx || max_rx) {
904 list_for_each_entry(xfer, &msg->transfers,
905 transfer_list) {
906 if (!xfer->tx_buf)
907 xfer->tx_buf = master->dummy_tx;
908 if (!xfer->rx_buf)
909 xfer->rx_buf = master->dummy_rx;
914 return __spi_map_msg(master, msg);
918 * spi_transfer_one_message - Default implementation of transfer_one_message()
920 * This is a standard implementation of transfer_one_message() for
921 * drivers which impelment a transfer_one() operation. It provides
922 * standard handling of delays and chip select management.
924 static int spi_transfer_one_message(struct spi_master *master,
925 struct spi_message *msg)
927 struct spi_transfer *xfer;
928 bool keep_cs = false;
929 int ret = 0;
930 unsigned long ms = 1;
931 struct spi_statistics *statm = &master->statistics;
932 struct spi_statistics *stats = &msg->spi->statistics;
934 spi_set_cs(msg->spi, true);
936 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
937 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
939 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
940 trace_spi_transfer_start(msg, xfer);
942 spi_statistics_add_transfer_stats(statm, xfer, master);
943 spi_statistics_add_transfer_stats(stats, xfer, master);
945 if (xfer->tx_buf || xfer->rx_buf) {
946 reinit_completion(&master->xfer_completion);
948 ret = master->transfer_one(master, msg->spi, xfer);
949 if (ret < 0) {
950 SPI_STATISTICS_INCREMENT_FIELD(statm,
951 errors);
952 SPI_STATISTICS_INCREMENT_FIELD(stats,
953 errors);
954 dev_err(&msg->spi->dev,
955 "SPI transfer failed: %d\n", ret);
956 goto out;
959 if (ret > 0) {
960 ret = 0;
961 ms = xfer->len * 8 * 1000 / xfer->speed_hz;
962 ms += ms + 100; /* some tolerance */
964 ms = wait_for_completion_timeout(&master->xfer_completion,
965 msecs_to_jiffies(ms));
968 if (ms == 0) {
969 SPI_STATISTICS_INCREMENT_FIELD(statm,
970 timedout);
971 SPI_STATISTICS_INCREMENT_FIELD(stats,
972 timedout);
973 dev_err(&msg->spi->dev,
974 "SPI transfer timed out\n");
975 msg->status = -ETIMEDOUT;
977 } else {
978 if (xfer->len)
979 dev_err(&msg->spi->dev,
980 "Bufferless transfer has length %u\n",
981 xfer->len);
984 trace_spi_transfer_stop(msg, xfer);
986 if (msg->status != -EINPROGRESS)
987 goto out;
989 if (xfer->delay_usecs)
990 udelay(xfer->delay_usecs);
992 if (xfer->cs_change) {
993 if (list_is_last(&xfer->transfer_list,
994 &msg->transfers)) {
995 keep_cs = true;
996 } else {
997 spi_set_cs(msg->spi, false);
998 udelay(10);
999 spi_set_cs(msg->spi, true);
1003 msg->actual_length += xfer->len;
1006 out:
1007 if (ret != 0 || !keep_cs)
1008 spi_set_cs(msg->spi, false);
1010 if (msg->status == -EINPROGRESS)
1011 msg->status = ret;
1013 if (msg->status && master->handle_err)
1014 master->handle_err(master, msg);
1016 spi_finalize_current_message(master);
1018 return ret;
1022 * spi_finalize_current_transfer - report completion of a transfer
1023 * @master: the master reporting completion
1025 * Called by SPI drivers using the core transfer_one_message()
1026 * implementation to notify it that the current interrupt driven
1027 * transfer has finished and the next one may be scheduled.
1029 void spi_finalize_current_transfer(struct spi_master *master)
1031 complete(&master->xfer_completion);
1033 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1036 * __spi_pump_messages - function which processes spi message queue
1037 * @master: master to process queue for
1038 * @in_kthread: true if we are in the context of the message pump thread
1040 * This function checks if there is any spi message in the queue that
1041 * needs processing and if so call out to the driver to initialize hardware
1042 * and transfer each message.
1044 * Note that it is called both from the kthread itself and also from
1045 * inside spi_sync(); the queue extraction handling at the top of the
1046 * function should deal with this safely.
1048 static void __spi_pump_messages(struct spi_master *master, bool in_kthread)
1050 unsigned long flags;
1051 bool was_busy = false;
1052 int ret;
1054 /* Lock queue */
1055 spin_lock_irqsave(&master->queue_lock, flags);
1057 /* Make sure we are not already running a message */
1058 if (master->cur_msg) {
1059 spin_unlock_irqrestore(&master->queue_lock, flags);
1060 return;
1063 /* If another context is idling the device then defer */
1064 if (master->idling) {
1065 queue_kthread_work(&master->kworker, &master->pump_messages);
1066 spin_unlock_irqrestore(&master->queue_lock, flags);
1067 return;
1070 /* Check if the queue is idle */
1071 if (list_empty(&master->queue) || !master->running) {
1072 if (!master->busy) {
1073 spin_unlock_irqrestore(&master->queue_lock, flags);
1074 return;
1077 /* Only do teardown in the thread */
1078 if (!in_kthread) {
1079 queue_kthread_work(&master->kworker,
1080 &master->pump_messages);
1081 spin_unlock_irqrestore(&master->queue_lock, flags);
1082 return;
1085 master->busy = false;
1086 master->idling = true;
1087 spin_unlock_irqrestore(&master->queue_lock, flags);
1089 kfree(master->dummy_rx);
1090 master->dummy_rx = NULL;
1091 kfree(master->dummy_tx);
1092 master->dummy_tx = NULL;
1093 if (master->unprepare_transfer_hardware &&
1094 master->unprepare_transfer_hardware(master))
1095 dev_err(&master->dev,
1096 "failed to unprepare transfer hardware\n");
1097 if (master->auto_runtime_pm) {
1098 pm_runtime_mark_last_busy(master->dev.parent);
1099 pm_runtime_put_autosuspend(master->dev.parent);
1101 trace_spi_master_idle(master);
1103 spin_lock_irqsave(&master->queue_lock, flags);
1104 master->idling = false;
1105 spin_unlock_irqrestore(&master->queue_lock, flags);
1106 return;
1109 /* Extract head of queue */
1110 master->cur_msg =
1111 list_first_entry(&master->queue, struct spi_message, queue);
1113 list_del_init(&master->cur_msg->queue);
1114 if (master->busy)
1115 was_busy = true;
1116 else
1117 master->busy = true;
1118 spin_unlock_irqrestore(&master->queue_lock, flags);
1120 if (!was_busy && master->auto_runtime_pm) {
1121 ret = pm_runtime_get_sync(master->dev.parent);
1122 if (ret < 0) {
1123 dev_err(&master->dev, "Failed to power device: %d\n",
1124 ret);
1125 return;
1129 if (!was_busy)
1130 trace_spi_master_busy(master);
1132 if (!was_busy && master->prepare_transfer_hardware) {
1133 ret = master->prepare_transfer_hardware(master);
1134 if (ret) {
1135 dev_err(&master->dev,
1136 "failed to prepare transfer hardware\n");
1138 if (master->auto_runtime_pm)
1139 pm_runtime_put(master->dev.parent);
1140 return;
1144 trace_spi_message_start(master->cur_msg);
1146 if (master->prepare_message) {
1147 ret = master->prepare_message(master, master->cur_msg);
1148 if (ret) {
1149 dev_err(&master->dev,
1150 "failed to prepare message: %d\n", ret);
1151 master->cur_msg->status = ret;
1152 spi_finalize_current_message(master);
1153 return;
1155 master->cur_msg_prepared = true;
1158 ret = spi_map_msg(master, master->cur_msg);
1159 if (ret) {
1160 master->cur_msg->status = ret;
1161 spi_finalize_current_message(master);
1162 return;
1165 ret = master->transfer_one_message(master, master->cur_msg);
1166 if (ret) {
1167 dev_err(&master->dev,
1168 "failed to transfer one message from queue\n");
1169 return;
1174 * spi_pump_messages - kthread work function which processes spi message queue
1175 * @work: pointer to kthread work struct contained in the master struct
1177 static void spi_pump_messages(struct kthread_work *work)
1179 struct spi_master *master =
1180 container_of(work, struct spi_master, pump_messages);
1182 __spi_pump_messages(master, true);
1185 static int spi_init_queue(struct spi_master *master)
1187 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1189 master->running = false;
1190 master->busy = false;
1192 init_kthread_worker(&master->kworker);
1193 master->kworker_task = kthread_run(kthread_worker_fn,
1194 &master->kworker, "%s",
1195 dev_name(&master->dev));
1196 if (IS_ERR(master->kworker_task)) {
1197 dev_err(&master->dev, "failed to create message pump task\n");
1198 return PTR_ERR(master->kworker_task);
1200 init_kthread_work(&master->pump_messages, spi_pump_messages);
1203 * Master config will indicate if this controller should run the
1204 * message pump with high (realtime) priority to reduce the transfer
1205 * latency on the bus by minimising the delay between a transfer
1206 * request and the scheduling of the message pump thread. Without this
1207 * setting the message pump thread will remain at default priority.
1209 if (master->rt) {
1210 dev_info(&master->dev,
1211 "will run message pump with realtime priority\n");
1212 sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
1215 return 0;
1219 * spi_get_next_queued_message() - called by driver to check for queued
1220 * messages
1221 * @master: the master to check for queued messages
1223 * If there are more messages in the queue, the next message is returned from
1224 * this call.
1226 * Return: the next message in the queue, else NULL if the queue is empty.
1228 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1230 struct spi_message *next;
1231 unsigned long flags;
1233 /* get a pointer to the next message, if any */
1234 spin_lock_irqsave(&master->queue_lock, flags);
1235 next = list_first_entry_or_null(&master->queue, struct spi_message,
1236 queue);
1237 spin_unlock_irqrestore(&master->queue_lock, flags);
1239 return next;
1241 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1244 * spi_finalize_current_message() - the current message is complete
1245 * @master: the master to return the message to
1247 * Called by the driver to notify the core that the message in the front of the
1248 * queue is complete and can be removed from the queue.
1250 void spi_finalize_current_message(struct spi_master *master)
1252 struct spi_message *mesg;
1253 unsigned long flags;
1254 int ret;
1256 spin_lock_irqsave(&master->queue_lock, flags);
1257 mesg = master->cur_msg;
1258 spin_unlock_irqrestore(&master->queue_lock, flags);
1260 spi_unmap_msg(master, mesg);
1262 if (master->cur_msg_prepared && master->unprepare_message) {
1263 ret = master->unprepare_message(master, mesg);
1264 if (ret) {
1265 dev_err(&master->dev,
1266 "failed to unprepare message: %d\n", ret);
1270 spin_lock_irqsave(&master->queue_lock, flags);
1271 master->cur_msg = NULL;
1272 master->cur_msg_prepared = false;
1273 queue_kthread_work(&master->kworker, &master->pump_messages);
1274 spin_unlock_irqrestore(&master->queue_lock, flags);
1276 trace_spi_message_done(mesg);
1278 mesg->state = NULL;
1279 if (mesg->complete)
1280 mesg->complete(mesg->context);
1282 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1284 static int spi_start_queue(struct spi_master *master)
1286 unsigned long flags;
1288 spin_lock_irqsave(&master->queue_lock, flags);
1290 if (master->running || master->busy) {
1291 spin_unlock_irqrestore(&master->queue_lock, flags);
1292 return -EBUSY;
1295 master->running = true;
1296 master->cur_msg = NULL;
1297 spin_unlock_irqrestore(&master->queue_lock, flags);
1299 queue_kthread_work(&master->kworker, &master->pump_messages);
1301 return 0;
1304 static int spi_stop_queue(struct spi_master *master)
1306 unsigned long flags;
1307 unsigned limit = 500;
1308 int ret = 0;
1310 spin_lock_irqsave(&master->queue_lock, flags);
1313 * This is a bit lame, but is optimized for the common execution path.
1314 * A wait_queue on the master->busy could be used, but then the common
1315 * execution path (pump_messages) would be required to call wake_up or
1316 * friends on every SPI message. Do this instead.
1318 while ((!list_empty(&master->queue) || master->busy) && limit--) {
1319 spin_unlock_irqrestore(&master->queue_lock, flags);
1320 usleep_range(10000, 11000);
1321 spin_lock_irqsave(&master->queue_lock, flags);
1324 if (!list_empty(&master->queue) || master->busy)
1325 ret = -EBUSY;
1326 else
1327 master->running = false;
1329 spin_unlock_irqrestore(&master->queue_lock, flags);
1331 if (ret) {
1332 dev_warn(&master->dev,
1333 "could not stop message queue\n");
1334 return ret;
1336 return ret;
1339 static int spi_destroy_queue(struct spi_master *master)
1341 int ret;
1343 ret = spi_stop_queue(master);
1346 * flush_kthread_worker will block until all work is done.
1347 * If the reason that stop_queue timed out is that the work will never
1348 * finish, then it does no good to call flush/stop thread, so
1349 * return anyway.
1351 if (ret) {
1352 dev_err(&master->dev, "problem destroying queue\n");
1353 return ret;
1356 flush_kthread_worker(&master->kworker);
1357 kthread_stop(master->kworker_task);
1359 return 0;
1362 static int __spi_queued_transfer(struct spi_device *spi,
1363 struct spi_message *msg,
1364 bool need_pump)
1366 struct spi_master *master = spi->master;
1367 unsigned long flags;
1369 spin_lock_irqsave(&master->queue_lock, flags);
1371 if (!master->running) {
1372 spin_unlock_irqrestore(&master->queue_lock, flags);
1373 return -ESHUTDOWN;
1375 msg->actual_length = 0;
1376 msg->status = -EINPROGRESS;
1378 list_add_tail(&msg->queue, &master->queue);
1379 if (!master->busy && need_pump)
1380 queue_kthread_work(&master->kworker, &master->pump_messages);
1382 spin_unlock_irqrestore(&master->queue_lock, flags);
1383 return 0;
1387 * spi_queued_transfer - transfer function for queued transfers
1388 * @spi: spi device which is requesting transfer
1389 * @msg: spi message which is to handled is queued to driver queue
1391 * Return: zero on success, else a negative error code.
1393 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1395 return __spi_queued_transfer(spi, msg, true);
1398 static int spi_master_initialize_queue(struct spi_master *master)
1400 int ret;
1402 master->transfer = spi_queued_transfer;
1403 if (!master->transfer_one_message)
1404 master->transfer_one_message = spi_transfer_one_message;
1406 /* Initialize and start queue */
1407 ret = spi_init_queue(master);
1408 if (ret) {
1409 dev_err(&master->dev, "problem initializing queue\n");
1410 goto err_init_queue;
1412 master->queued = true;
1413 ret = spi_start_queue(master);
1414 if (ret) {
1415 dev_err(&master->dev, "problem starting queue\n");
1416 goto err_start_queue;
1419 return 0;
1421 err_start_queue:
1422 spi_destroy_queue(master);
1423 err_init_queue:
1424 return ret;
1427 /*-------------------------------------------------------------------------*/
1429 #if defined(CONFIG_OF)
1430 static struct spi_device *
1431 of_register_spi_device(struct spi_master *master, struct device_node *nc)
1433 struct spi_device *spi;
1434 int rc;
1435 u32 value;
1437 /* Alloc an spi_device */
1438 spi = spi_alloc_device(master);
1439 if (!spi) {
1440 dev_err(&master->dev, "spi_device alloc error for %s\n",
1441 nc->full_name);
1442 rc = -ENOMEM;
1443 goto err_out;
1446 /* Select device driver */
1447 rc = of_modalias_node(nc, spi->modalias,
1448 sizeof(spi->modalias));
1449 if (rc < 0) {
1450 dev_err(&master->dev, "cannot find modalias for %s\n",
1451 nc->full_name);
1452 goto err_out;
1455 /* Device address */
1456 rc = of_property_read_u32(nc, "reg", &value);
1457 if (rc) {
1458 dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1459 nc->full_name, rc);
1460 goto err_out;
1462 spi->chip_select = value;
1464 /* Mode (clock phase/polarity/etc.) */
1465 if (of_find_property(nc, "spi-cpha", NULL))
1466 spi->mode |= SPI_CPHA;
1467 if (of_find_property(nc, "spi-cpol", NULL))
1468 spi->mode |= SPI_CPOL;
1469 if (of_find_property(nc, "spi-cs-high", NULL))
1470 spi->mode |= SPI_CS_HIGH;
1471 if (of_find_property(nc, "spi-3wire", NULL))
1472 spi->mode |= SPI_3WIRE;
1473 if (of_find_property(nc, "spi-lsb-first", NULL))
1474 spi->mode |= SPI_LSB_FIRST;
1476 /* Device DUAL/QUAD mode */
1477 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1478 switch (value) {
1479 case 1:
1480 break;
1481 case 2:
1482 spi->mode |= SPI_TX_DUAL;
1483 break;
1484 case 4:
1485 spi->mode |= SPI_TX_QUAD;
1486 break;
1487 default:
1488 dev_warn(&master->dev,
1489 "spi-tx-bus-width %d not supported\n",
1490 value);
1491 break;
1495 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1496 switch (value) {
1497 case 1:
1498 break;
1499 case 2:
1500 spi->mode |= SPI_RX_DUAL;
1501 break;
1502 case 4:
1503 spi->mode |= SPI_RX_QUAD;
1504 break;
1505 default:
1506 dev_warn(&master->dev,
1507 "spi-rx-bus-width %d not supported\n",
1508 value);
1509 break;
1513 /* Device speed */
1514 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1515 if (rc) {
1516 dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1517 nc->full_name, rc);
1518 goto err_out;
1520 spi->max_speed_hz = value;
1522 /* Store a pointer to the node in the device structure */
1523 of_node_get(nc);
1524 spi->dev.of_node = nc;
1526 /* Register the new device */
1527 rc = spi_add_device(spi);
1528 if (rc) {
1529 dev_err(&master->dev, "spi_device register error %s\n",
1530 nc->full_name);
1531 goto err_out;
1534 return spi;
1536 err_out:
1537 spi_dev_put(spi);
1538 return ERR_PTR(rc);
1542 * of_register_spi_devices() - Register child devices onto the SPI bus
1543 * @master: Pointer to spi_master device
1545 * Registers an spi_device for each child node of master node which has a 'reg'
1546 * property.
1548 static void of_register_spi_devices(struct spi_master *master)
1550 struct spi_device *spi;
1551 struct device_node *nc;
1553 if (!master->dev.of_node)
1554 return;
1556 for_each_available_child_of_node(master->dev.of_node, nc) {
1557 spi = of_register_spi_device(master, nc);
1558 if (IS_ERR(spi))
1559 dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1560 nc->full_name);
1563 #else
1564 static void of_register_spi_devices(struct spi_master *master) { }
1565 #endif
1567 #ifdef CONFIG_ACPI
1568 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1570 struct spi_device *spi = data;
1572 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1573 struct acpi_resource_spi_serialbus *sb;
1575 sb = &ares->data.spi_serial_bus;
1576 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1577 spi->chip_select = sb->device_selection;
1578 spi->max_speed_hz = sb->connection_speed;
1580 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1581 spi->mode |= SPI_CPHA;
1582 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1583 spi->mode |= SPI_CPOL;
1584 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1585 spi->mode |= SPI_CS_HIGH;
1587 } else if (spi->irq < 0) {
1588 struct resource r;
1590 if (acpi_dev_resource_interrupt(ares, 0, &r))
1591 spi->irq = r.start;
1594 /* Always tell the ACPI core to skip this resource */
1595 return 1;
1598 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1599 void *data, void **return_value)
1601 struct spi_master *master = data;
1602 struct list_head resource_list;
1603 struct acpi_device *adev;
1604 struct spi_device *spi;
1605 int ret;
1607 if (acpi_bus_get_device(handle, &adev))
1608 return AE_OK;
1609 if (acpi_bus_get_status(adev) || !adev->status.present)
1610 return AE_OK;
1612 spi = spi_alloc_device(master);
1613 if (!spi) {
1614 dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1615 dev_name(&adev->dev));
1616 return AE_NO_MEMORY;
1619 ACPI_COMPANION_SET(&spi->dev, adev);
1620 spi->irq = -1;
1622 INIT_LIST_HEAD(&resource_list);
1623 ret = acpi_dev_get_resources(adev, &resource_list,
1624 acpi_spi_add_resource, spi);
1625 acpi_dev_free_resource_list(&resource_list);
1627 if (ret < 0 || !spi->max_speed_hz) {
1628 spi_dev_put(spi);
1629 return AE_OK;
1632 adev->power.flags.ignore_parent = true;
1633 strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1634 if (spi_add_device(spi)) {
1635 adev->power.flags.ignore_parent = false;
1636 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1637 dev_name(&adev->dev));
1638 spi_dev_put(spi);
1641 return AE_OK;
1644 static void acpi_register_spi_devices(struct spi_master *master)
1646 acpi_status status;
1647 acpi_handle handle;
1649 handle = ACPI_HANDLE(master->dev.parent);
1650 if (!handle)
1651 return;
1653 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1654 acpi_spi_add_device, NULL,
1655 master, NULL);
1656 if (ACPI_FAILURE(status))
1657 dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1659 #else
1660 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1661 #endif /* CONFIG_ACPI */
1663 static void spi_master_release(struct device *dev)
1665 struct spi_master *master;
1667 master = container_of(dev, struct spi_master, dev);
1668 kfree(master);
1671 static struct class spi_master_class = {
1672 .name = "spi_master",
1673 .owner = THIS_MODULE,
1674 .dev_release = spi_master_release,
1675 .dev_groups = spi_master_groups,
1680 * spi_alloc_master - allocate SPI master controller
1681 * @dev: the controller, possibly using the platform_bus
1682 * @size: how much zeroed driver-private data to allocate; the pointer to this
1683 * memory is in the driver_data field of the returned device,
1684 * accessible with spi_master_get_devdata().
1685 * Context: can sleep
1687 * This call is used only by SPI master controller drivers, which are the
1688 * only ones directly touching chip registers. It's how they allocate
1689 * an spi_master structure, prior to calling spi_register_master().
1691 * This must be called from context that can sleep.
1693 * The caller is responsible for assigning the bus number and initializing
1694 * the master's methods before calling spi_register_master(); and (after errors
1695 * adding the device) calling spi_master_put() to prevent a memory leak.
1697 * Return: the SPI master structure on success, else NULL.
1699 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1701 struct spi_master *master;
1703 if (!dev)
1704 return NULL;
1706 master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1707 if (!master)
1708 return NULL;
1710 device_initialize(&master->dev);
1711 master->bus_num = -1;
1712 master->num_chipselect = 1;
1713 master->dev.class = &spi_master_class;
1714 master->dev.parent = dev;
1715 spi_master_set_devdata(master, &master[1]);
1717 return master;
1719 EXPORT_SYMBOL_GPL(spi_alloc_master);
1721 #ifdef CONFIG_OF
1722 static int of_spi_register_master(struct spi_master *master)
1724 int nb, i, *cs;
1725 struct device_node *np = master->dev.of_node;
1727 if (!np)
1728 return 0;
1730 nb = of_gpio_named_count(np, "cs-gpios");
1731 master->num_chipselect = max_t(int, nb, master->num_chipselect);
1733 /* Return error only for an incorrectly formed cs-gpios property */
1734 if (nb == 0 || nb == -ENOENT)
1735 return 0;
1736 else if (nb < 0)
1737 return nb;
1739 cs = devm_kzalloc(&master->dev,
1740 sizeof(int) * master->num_chipselect,
1741 GFP_KERNEL);
1742 master->cs_gpios = cs;
1744 if (!master->cs_gpios)
1745 return -ENOMEM;
1747 for (i = 0; i < master->num_chipselect; i++)
1748 cs[i] = -ENOENT;
1750 for (i = 0; i < nb; i++)
1751 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1753 return 0;
1755 #else
1756 static int of_spi_register_master(struct spi_master *master)
1758 return 0;
1760 #endif
1763 * spi_register_master - register SPI master controller
1764 * @master: initialized master, originally from spi_alloc_master()
1765 * Context: can sleep
1767 * SPI master controllers connect to their drivers using some non-SPI bus,
1768 * such as the platform bus. The final stage of probe() in that code
1769 * includes calling spi_register_master() to hook up to this SPI bus glue.
1771 * SPI controllers use board specific (often SOC specific) bus numbers,
1772 * and board-specific addressing for SPI devices combines those numbers
1773 * with chip select numbers. Since SPI does not directly support dynamic
1774 * device identification, boards need configuration tables telling which
1775 * chip is at which address.
1777 * This must be called from context that can sleep. It returns zero on
1778 * success, else a negative error code (dropping the master's refcount).
1779 * After a successful return, the caller is responsible for calling
1780 * spi_unregister_master().
1782 * Return: zero on success, else a negative error code.
1784 int spi_register_master(struct spi_master *master)
1786 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1787 struct device *dev = master->dev.parent;
1788 struct boardinfo *bi;
1789 int status = -ENODEV;
1790 int dynamic = 0;
1792 if (!dev)
1793 return -ENODEV;
1795 status = of_spi_register_master(master);
1796 if (status)
1797 return status;
1799 /* even if it's just one always-selected device, there must
1800 * be at least one chipselect
1802 if (master->num_chipselect == 0)
1803 return -EINVAL;
1805 if ((master->bus_num < 0) && master->dev.of_node)
1806 master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1808 /* convention: dynamically assigned bus IDs count down from the max */
1809 if (master->bus_num < 0) {
1810 /* FIXME switch to an IDR based scheme, something like
1811 * I2C now uses, so we can't run out of "dynamic" IDs
1813 master->bus_num = atomic_dec_return(&dyn_bus_id);
1814 dynamic = 1;
1817 INIT_LIST_HEAD(&master->queue);
1818 spin_lock_init(&master->queue_lock);
1819 spin_lock_init(&master->bus_lock_spinlock);
1820 mutex_init(&master->bus_lock_mutex);
1821 master->bus_lock_flag = 0;
1822 init_completion(&master->xfer_completion);
1823 if (!master->max_dma_len)
1824 master->max_dma_len = INT_MAX;
1826 /* register the device, then userspace will see it.
1827 * registration fails if the bus ID is in use.
1829 dev_set_name(&master->dev, "spi%u", master->bus_num);
1830 status = device_add(&master->dev);
1831 if (status < 0)
1832 goto done;
1833 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1834 dynamic ? " (dynamic)" : "");
1836 /* If we're using a queued driver, start the queue */
1837 if (master->transfer)
1838 dev_info(dev, "master is unqueued, this is deprecated\n");
1839 else {
1840 status = spi_master_initialize_queue(master);
1841 if (status) {
1842 device_del(&master->dev);
1843 goto done;
1846 /* add statistics */
1847 spin_lock_init(&master->statistics.lock);
1849 mutex_lock(&board_lock);
1850 list_add_tail(&master->list, &spi_master_list);
1851 list_for_each_entry(bi, &board_list, list)
1852 spi_match_master_to_boardinfo(master, &bi->board_info);
1853 mutex_unlock(&board_lock);
1855 /* Register devices from the device tree and ACPI */
1856 of_register_spi_devices(master);
1857 acpi_register_spi_devices(master);
1858 done:
1859 return status;
1861 EXPORT_SYMBOL_GPL(spi_register_master);
1863 static void devm_spi_unregister(struct device *dev, void *res)
1865 spi_unregister_master(*(struct spi_master **)res);
1869 * dev_spi_register_master - register managed SPI master controller
1870 * @dev: device managing SPI master
1871 * @master: initialized master, originally from spi_alloc_master()
1872 * Context: can sleep
1874 * Register a SPI device as with spi_register_master() which will
1875 * automatically be unregister
1877 * Return: zero on success, else a negative error code.
1879 int devm_spi_register_master(struct device *dev, struct spi_master *master)
1881 struct spi_master **ptr;
1882 int ret;
1884 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1885 if (!ptr)
1886 return -ENOMEM;
1888 ret = spi_register_master(master);
1889 if (!ret) {
1890 *ptr = master;
1891 devres_add(dev, ptr);
1892 } else {
1893 devres_free(ptr);
1896 return ret;
1898 EXPORT_SYMBOL_GPL(devm_spi_register_master);
1900 static int __unregister(struct device *dev, void *null)
1902 spi_unregister_device(to_spi_device(dev));
1903 return 0;
1907 * spi_unregister_master - unregister SPI master controller
1908 * @master: the master being unregistered
1909 * Context: can sleep
1911 * This call is used only by SPI master controller drivers, which are the
1912 * only ones directly touching chip registers.
1914 * This must be called from context that can sleep.
1916 void spi_unregister_master(struct spi_master *master)
1918 int dummy;
1920 if (master->queued) {
1921 if (spi_destroy_queue(master))
1922 dev_err(&master->dev, "queue remove failed\n");
1925 mutex_lock(&board_lock);
1926 list_del(&master->list);
1927 mutex_unlock(&board_lock);
1929 dummy = device_for_each_child(&master->dev, NULL, __unregister);
1930 device_unregister(&master->dev);
1932 EXPORT_SYMBOL_GPL(spi_unregister_master);
1934 int spi_master_suspend(struct spi_master *master)
1936 int ret;
1938 /* Basically no-ops for non-queued masters */
1939 if (!master->queued)
1940 return 0;
1942 ret = spi_stop_queue(master);
1943 if (ret)
1944 dev_err(&master->dev, "queue stop failed\n");
1946 return ret;
1948 EXPORT_SYMBOL_GPL(spi_master_suspend);
1950 int spi_master_resume(struct spi_master *master)
1952 int ret;
1954 if (!master->queued)
1955 return 0;
1957 ret = spi_start_queue(master);
1958 if (ret)
1959 dev_err(&master->dev, "queue restart failed\n");
1961 return ret;
1963 EXPORT_SYMBOL_GPL(spi_master_resume);
1965 static int __spi_master_match(struct device *dev, const void *data)
1967 struct spi_master *m;
1968 const u16 *bus_num = data;
1970 m = container_of(dev, struct spi_master, dev);
1971 return m->bus_num == *bus_num;
1975 * spi_busnum_to_master - look up master associated with bus_num
1976 * @bus_num: the master's bus number
1977 * Context: can sleep
1979 * This call may be used with devices that are registered after
1980 * arch init time. It returns a refcounted pointer to the relevant
1981 * spi_master (which the caller must release), or NULL if there is
1982 * no such master registered.
1984 * Return: the SPI master structure on success, else NULL.
1986 struct spi_master *spi_busnum_to_master(u16 bus_num)
1988 struct device *dev;
1989 struct spi_master *master = NULL;
1991 dev = class_find_device(&spi_master_class, NULL, &bus_num,
1992 __spi_master_match);
1993 if (dev)
1994 master = container_of(dev, struct spi_master, dev);
1995 /* reference got in class_find_device */
1996 return master;
1998 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2001 /*-------------------------------------------------------------------------*/
2003 /* Core methods for SPI master protocol drivers. Some of the
2004 * other core methods are currently defined as inline functions.
2007 static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word)
2009 if (master->bits_per_word_mask) {
2010 /* Only 32 bits fit in the mask */
2011 if (bits_per_word > 32)
2012 return -EINVAL;
2013 if (!(master->bits_per_word_mask &
2014 SPI_BPW_MASK(bits_per_word)))
2015 return -EINVAL;
2018 return 0;
2022 * spi_setup - setup SPI mode and clock rate
2023 * @spi: the device whose settings are being modified
2024 * Context: can sleep, and no requests are queued to the device
2026 * SPI protocol drivers may need to update the transfer mode if the
2027 * device doesn't work with its default. They may likewise need
2028 * to update clock rates or word sizes from initial values. This function
2029 * changes those settings, and must be called from a context that can sleep.
2030 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2031 * effect the next time the device is selected and data is transferred to
2032 * or from it. When this function returns, the spi device is deselected.
2034 * Note that this call will fail if the protocol driver specifies an option
2035 * that the underlying controller or its driver does not support. For
2036 * example, not all hardware supports wire transfers using nine bit words,
2037 * LSB-first wire encoding, or active-high chipselects.
2039 * Return: zero on success, else a negative error code.
2041 int spi_setup(struct spi_device *spi)
2043 unsigned bad_bits, ugly_bits;
2044 int status;
2046 /* check mode to prevent that DUAL and QUAD set at the same time
2048 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2049 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2050 dev_err(&spi->dev,
2051 "setup: can not select dual and quad at the same time\n");
2052 return -EINVAL;
2054 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2056 if ((spi->mode & SPI_3WIRE) && (spi->mode &
2057 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2058 return -EINVAL;
2059 /* help drivers fail *cleanly* when they need options
2060 * that aren't supported with their current master
2062 bad_bits = spi->mode & ~spi->master->mode_bits;
2063 ugly_bits = bad_bits &
2064 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2065 if (ugly_bits) {
2066 dev_warn(&spi->dev,
2067 "setup: ignoring unsupported mode bits %x\n",
2068 ugly_bits);
2069 spi->mode &= ~ugly_bits;
2070 bad_bits &= ~ugly_bits;
2072 if (bad_bits) {
2073 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2074 bad_bits);
2075 return -EINVAL;
2078 if (!spi->bits_per_word)
2079 spi->bits_per_word = 8;
2081 status = __spi_validate_bits_per_word(spi->master, spi->bits_per_word);
2082 if (status)
2083 return status;
2085 if (!spi->max_speed_hz)
2086 spi->max_speed_hz = spi->master->max_speed_hz;
2088 if (spi->master->setup)
2089 status = spi->master->setup(spi);
2091 spi_set_cs(spi, false);
2093 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2094 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2095 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2096 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2097 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
2098 (spi->mode & SPI_LOOP) ? "loopback, " : "",
2099 spi->bits_per_word, spi->max_speed_hz,
2100 status);
2102 return status;
2104 EXPORT_SYMBOL_GPL(spi_setup);
2106 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2108 struct spi_master *master = spi->master;
2109 struct spi_transfer *xfer;
2110 int w_size;
2112 if (list_empty(&message->transfers))
2113 return -EINVAL;
2115 /* Half-duplex links include original MicroWire, and ones with
2116 * only one data pin like SPI_3WIRE (switches direction) or where
2117 * either MOSI or MISO is missing. They can also be caused by
2118 * software limitations.
2120 if ((master->flags & SPI_MASTER_HALF_DUPLEX)
2121 || (spi->mode & SPI_3WIRE)) {
2122 unsigned flags = master->flags;
2124 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2125 if (xfer->rx_buf && xfer->tx_buf)
2126 return -EINVAL;
2127 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
2128 return -EINVAL;
2129 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
2130 return -EINVAL;
2135 * Set transfer bits_per_word and max speed as spi device default if
2136 * it is not set for this transfer.
2137 * Set transfer tx_nbits and rx_nbits as single transfer default
2138 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2140 message->frame_length = 0;
2141 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2142 message->frame_length += xfer->len;
2143 if (!xfer->bits_per_word)
2144 xfer->bits_per_word = spi->bits_per_word;
2146 if (!xfer->speed_hz)
2147 xfer->speed_hz = spi->max_speed_hz;
2148 if (!xfer->speed_hz)
2149 xfer->speed_hz = master->max_speed_hz;
2151 if (master->max_speed_hz &&
2152 xfer->speed_hz > master->max_speed_hz)
2153 xfer->speed_hz = master->max_speed_hz;
2155 if (__spi_validate_bits_per_word(master, xfer->bits_per_word))
2156 return -EINVAL;
2159 * SPI transfer length should be multiple of SPI word size
2160 * where SPI word size should be power-of-two multiple
2162 if (xfer->bits_per_word <= 8)
2163 w_size = 1;
2164 else if (xfer->bits_per_word <= 16)
2165 w_size = 2;
2166 else
2167 w_size = 4;
2169 /* No partial transfers accepted */
2170 if (xfer->len % w_size)
2171 return -EINVAL;
2173 if (xfer->speed_hz && master->min_speed_hz &&
2174 xfer->speed_hz < master->min_speed_hz)
2175 return -EINVAL;
2177 if (xfer->tx_buf && !xfer->tx_nbits)
2178 xfer->tx_nbits = SPI_NBITS_SINGLE;
2179 if (xfer->rx_buf && !xfer->rx_nbits)
2180 xfer->rx_nbits = SPI_NBITS_SINGLE;
2181 /* check transfer tx/rx_nbits:
2182 * 1. check the value matches one of single, dual and quad
2183 * 2. check tx/rx_nbits match the mode in spi_device
2185 if (xfer->tx_buf) {
2186 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2187 xfer->tx_nbits != SPI_NBITS_DUAL &&
2188 xfer->tx_nbits != SPI_NBITS_QUAD)
2189 return -EINVAL;
2190 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2191 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2192 return -EINVAL;
2193 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2194 !(spi->mode & SPI_TX_QUAD))
2195 return -EINVAL;
2197 /* check transfer rx_nbits */
2198 if (xfer->rx_buf) {
2199 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2200 xfer->rx_nbits != SPI_NBITS_DUAL &&
2201 xfer->rx_nbits != SPI_NBITS_QUAD)
2202 return -EINVAL;
2203 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2204 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2205 return -EINVAL;
2206 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2207 !(spi->mode & SPI_RX_QUAD))
2208 return -EINVAL;
2212 message->status = -EINPROGRESS;
2214 return 0;
2217 static int __spi_async(struct spi_device *spi, struct spi_message *message)
2219 struct spi_master *master = spi->master;
2221 message->spi = spi;
2223 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async);
2224 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2226 trace_spi_message_submit(message);
2228 return master->transfer(spi, message);
2232 * spi_async - asynchronous SPI transfer
2233 * @spi: device with which data will be exchanged
2234 * @message: describes the data transfers, including completion callback
2235 * Context: any (irqs may be blocked, etc)
2237 * This call may be used in_irq and other contexts which can't sleep,
2238 * as well as from task contexts which can sleep.
2240 * The completion callback is invoked in a context which can't sleep.
2241 * Before that invocation, the value of message->status is undefined.
2242 * When the callback is issued, message->status holds either zero (to
2243 * indicate complete success) or a negative error code. After that
2244 * callback returns, the driver which issued the transfer request may
2245 * deallocate the associated memory; it's no longer in use by any SPI
2246 * core or controller driver code.
2248 * Note that although all messages to a spi_device are handled in
2249 * FIFO order, messages may go to different devices in other orders.
2250 * Some device might be higher priority, or have various "hard" access
2251 * time requirements, for example.
2253 * On detection of any fault during the transfer, processing of
2254 * the entire message is aborted, and the device is deselected.
2255 * Until returning from the associated message completion callback,
2256 * no other spi_message queued to that device will be processed.
2257 * (This rule applies equally to all the synchronous transfer calls,
2258 * which are wrappers around this core asynchronous primitive.)
2260 * Return: zero on success, else a negative error code.
2262 int spi_async(struct spi_device *spi, struct spi_message *message)
2264 struct spi_master *master = spi->master;
2265 int ret;
2266 unsigned long flags;
2268 ret = __spi_validate(spi, message);
2269 if (ret != 0)
2270 return ret;
2272 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2274 if (master->bus_lock_flag)
2275 ret = -EBUSY;
2276 else
2277 ret = __spi_async(spi, message);
2279 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2281 return ret;
2283 EXPORT_SYMBOL_GPL(spi_async);
2286 * spi_async_locked - version of spi_async with exclusive bus usage
2287 * @spi: device with which data will be exchanged
2288 * @message: describes the data transfers, including completion callback
2289 * Context: any (irqs may be blocked, etc)
2291 * This call may be used in_irq and other contexts which can't sleep,
2292 * as well as from task contexts which can sleep.
2294 * The completion callback is invoked in a context which can't sleep.
2295 * Before that invocation, the value of message->status is undefined.
2296 * When the callback is issued, message->status holds either zero (to
2297 * indicate complete success) or a negative error code. After that
2298 * callback returns, the driver which issued the transfer request may
2299 * deallocate the associated memory; it's no longer in use by any SPI
2300 * core or controller driver code.
2302 * Note that although all messages to a spi_device are handled in
2303 * FIFO order, messages may go to different devices in other orders.
2304 * Some device might be higher priority, or have various "hard" access
2305 * time requirements, for example.
2307 * On detection of any fault during the transfer, processing of
2308 * the entire message is aborted, and the device is deselected.
2309 * Until returning from the associated message completion callback,
2310 * no other spi_message queued to that device will be processed.
2311 * (This rule applies equally to all the synchronous transfer calls,
2312 * which are wrappers around this core asynchronous primitive.)
2314 * Return: zero on success, else a negative error code.
2316 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2318 struct spi_master *master = spi->master;
2319 int ret;
2320 unsigned long flags;
2322 ret = __spi_validate(spi, message);
2323 if (ret != 0)
2324 return ret;
2326 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2328 ret = __spi_async(spi, message);
2330 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2332 return ret;
2335 EXPORT_SYMBOL_GPL(spi_async_locked);
2338 /*-------------------------------------------------------------------------*/
2340 /* Utility methods for SPI master protocol drivers, layered on
2341 * top of the core. Some other utility methods are defined as
2342 * inline functions.
2345 static void spi_complete(void *arg)
2347 complete(arg);
2350 static int __spi_sync(struct spi_device *spi, struct spi_message *message,
2351 int bus_locked)
2353 DECLARE_COMPLETION_ONSTACK(done);
2354 int status;
2355 struct spi_master *master = spi->master;
2356 unsigned long flags;
2358 status = __spi_validate(spi, message);
2359 if (status != 0)
2360 return status;
2362 message->complete = spi_complete;
2363 message->context = &done;
2364 message->spi = spi;
2366 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync);
2367 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
2369 if (!bus_locked)
2370 mutex_lock(&master->bus_lock_mutex);
2372 /* If we're not using the legacy transfer method then we will
2373 * try to transfer in the calling context so special case.
2374 * This code would be less tricky if we could remove the
2375 * support for driver implemented message queues.
2377 if (master->transfer == spi_queued_transfer) {
2378 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2380 trace_spi_message_submit(message);
2382 status = __spi_queued_transfer(spi, message, false);
2384 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2385 } else {
2386 status = spi_async_locked(spi, message);
2389 if (!bus_locked)
2390 mutex_unlock(&master->bus_lock_mutex);
2392 if (status == 0) {
2393 /* Push out the messages in the calling context if we
2394 * can.
2396 if (master->transfer == spi_queued_transfer) {
2397 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2398 spi_sync_immediate);
2399 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
2400 spi_sync_immediate);
2401 __spi_pump_messages(master, false);
2404 wait_for_completion(&done);
2405 status = message->status;
2407 message->context = NULL;
2408 return status;
2412 * spi_sync - blocking/synchronous SPI data transfers
2413 * @spi: device with which data will be exchanged
2414 * @message: describes the data transfers
2415 * Context: can sleep
2417 * This call may only be used from a context that may sleep. The sleep
2418 * is non-interruptible, and has no timeout. Low-overhead controller
2419 * drivers may DMA directly into and out of the message buffers.
2421 * Note that the SPI device's chip select is active during the message,
2422 * and then is normally disabled between messages. Drivers for some
2423 * frequently-used devices may want to minimize costs of selecting a chip,
2424 * by leaving it selected in anticipation that the next message will go
2425 * to the same chip. (That may increase power usage.)
2427 * Also, the caller is guaranteeing that the memory associated with the
2428 * message will not be freed before this call returns.
2430 * Return: zero on success, else a negative error code.
2432 int spi_sync(struct spi_device *spi, struct spi_message *message)
2434 return __spi_sync(spi, message, 0);
2436 EXPORT_SYMBOL_GPL(spi_sync);
2439 * spi_sync_locked - version of spi_sync with exclusive bus usage
2440 * @spi: device with which data will be exchanged
2441 * @message: describes the data transfers
2442 * Context: can sleep
2444 * This call may only be used from a context that may sleep. The sleep
2445 * is non-interruptible, and has no timeout. Low-overhead controller
2446 * drivers may DMA directly into and out of the message buffers.
2448 * This call should be used by drivers that require exclusive access to the
2449 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2450 * be released by a spi_bus_unlock call when the exclusive access is over.
2452 * Return: zero on success, else a negative error code.
2454 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2456 return __spi_sync(spi, message, 1);
2458 EXPORT_SYMBOL_GPL(spi_sync_locked);
2461 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2462 * @master: SPI bus master that should be locked for exclusive bus access
2463 * Context: can sleep
2465 * This call may only be used from a context that may sleep. The sleep
2466 * is non-interruptible, and has no timeout.
2468 * This call should be used by drivers that require exclusive access to the
2469 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2470 * exclusive access is over. Data transfer must be done by spi_sync_locked
2471 * and spi_async_locked calls when the SPI bus lock is held.
2473 * Return: always zero.
2475 int spi_bus_lock(struct spi_master *master)
2477 unsigned long flags;
2479 mutex_lock(&master->bus_lock_mutex);
2481 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2482 master->bus_lock_flag = 1;
2483 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2485 /* mutex remains locked until spi_bus_unlock is called */
2487 return 0;
2489 EXPORT_SYMBOL_GPL(spi_bus_lock);
2492 * spi_bus_unlock - release the lock for exclusive SPI bus usage
2493 * @master: SPI bus master that was locked for exclusive bus access
2494 * Context: can sleep
2496 * This call may only be used from a context that may sleep. The sleep
2497 * is non-interruptible, and has no timeout.
2499 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2500 * call.
2502 * Return: always zero.
2504 int spi_bus_unlock(struct spi_master *master)
2506 master->bus_lock_flag = 0;
2508 mutex_unlock(&master->bus_lock_mutex);
2510 return 0;
2512 EXPORT_SYMBOL_GPL(spi_bus_unlock);
2514 /* portable code must never pass more than 32 bytes */
2515 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
2517 static u8 *buf;
2520 * spi_write_then_read - SPI synchronous write followed by read
2521 * @spi: device with which data will be exchanged
2522 * @txbuf: data to be written (need not be dma-safe)
2523 * @n_tx: size of txbuf, in bytes
2524 * @rxbuf: buffer into which data will be read (need not be dma-safe)
2525 * @n_rx: size of rxbuf, in bytes
2526 * Context: can sleep
2528 * This performs a half duplex MicroWire style transaction with the
2529 * device, sending txbuf and then reading rxbuf. The return value
2530 * is zero for success, else a negative errno status code.
2531 * This call may only be used from a context that may sleep.
2533 * Parameters to this routine are always copied using a small buffer;
2534 * portable code should never use this for more than 32 bytes.
2535 * Performance-sensitive or bulk transfer code should instead use
2536 * spi_{async,sync}() calls with dma-safe buffers.
2538 * Return: zero on success, else a negative error code.
2540 int spi_write_then_read(struct spi_device *spi,
2541 const void *txbuf, unsigned n_tx,
2542 void *rxbuf, unsigned n_rx)
2544 static DEFINE_MUTEX(lock);
2546 int status;
2547 struct spi_message message;
2548 struct spi_transfer x[2];
2549 u8 *local_buf;
2551 /* Use preallocated DMA-safe buffer if we can. We can't avoid
2552 * copying here, (as a pure convenience thing), but we can
2553 * keep heap costs out of the hot path unless someone else is
2554 * using the pre-allocated buffer or the transfer is too large.
2556 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2557 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2558 GFP_KERNEL | GFP_DMA);
2559 if (!local_buf)
2560 return -ENOMEM;
2561 } else {
2562 local_buf = buf;
2565 spi_message_init(&message);
2566 memset(x, 0, sizeof(x));
2567 if (n_tx) {
2568 x[0].len = n_tx;
2569 spi_message_add_tail(&x[0], &message);
2571 if (n_rx) {
2572 x[1].len = n_rx;
2573 spi_message_add_tail(&x[1], &message);
2576 memcpy(local_buf, txbuf, n_tx);
2577 x[0].tx_buf = local_buf;
2578 x[1].rx_buf = local_buf + n_tx;
2580 /* do the i/o */
2581 status = spi_sync(spi, &message);
2582 if (status == 0)
2583 memcpy(rxbuf, x[1].rx_buf, n_rx);
2585 if (x[0].tx_buf == buf)
2586 mutex_unlock(&lock);
2587 else
2588 kfree(local_buf);
2590 return status;
2592 EXPORT_SYMBOL_GPL(spi_write_then_read);
2594 /*-------------------------------------------------------------------------*/
2596 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
2597 static int __spi_of_device_match(struct device *dev, void *data)
2599 return dev->of_node == data;
2602 /* must call put_device() when done with returned spi_device device */
2603 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
2605 struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
2606 __spi_of_device_match);
2607 return dev ? to_spi_device(dev) : NULL;
2610 static int __spi_of_master_match(struct device *dev, const void *data)
2612 return dev->of_node == data;
2615 /* the spi masters are not using spi_bus, so we find it with another way */
2616 static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
2618 struct device *dev;
2620 dev = class_find_device(&spi_master_class, NULL, node,
2621 __spi_of_master_match);
2622 if (!dev)
2623 return NULL;
2625 /* reference got in class_find_device */
2626 return container_of(dev, struct spi_master, dev);
2629 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
2630 void *arg)
2632 struct of_reconfig_data *rd = arg;
2633 struct spi_master *master;
2634 struct spi_device *spi;
2636 switch (of_reconfig_get_state_change(action, arg)) {
2637 case OF_RECONFIG_CHANGE_ADD:
2638 master = of_find_spi_master_by_node(rd->dn->parent);
2639 if (master == NULL)
2640 return NOTIFY_OK; /* not for us */
2642 spi = of_register_spi_device(master, rd->dn);
2643 put_device(&master->dev);
2645 if (IS_ERR(spi)) {
2646 pr_err("%s: failed to create for '%s'\n",
2647 __func__, rd->dn->full_name);
2648 return notifier_from_errno(PTR_ERR(spi));
2650 break;
2652 case OF_RECONFIG_CHANGE_REMOVE:
2653 /* find our device by node */
2654 spi = of_find_spi_device_by_node(rd->dn);
2655 if (spi == NULL)
2656 return NOTIFY_OK; /* no? not meant for us */
2658 /* unregister takes one ref away */
2659 spi_unregister_device(spi);
2661 /* and put the reference of the find */
2662 put_device(&spi->dev);
2663 break;
2666 return NOTIFY_OK;
2669 static struct notifier_block spi_of_notifier = {
2670 .notifier_call = of_spi_notify,
2672 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2673 extern struct notifier_block spi_of_notifier;
2674 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2676 static int __init spi_init(void)
2678 int status;
2680 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
2681 if (!buf) {
2682 status = -ENOMEM;
2683 goto err0;
2686 status = bus_register(&spi_bus_type);
2687 if (status < 0)
2688 goto err1;
2690 status = class_register(&spi_master_class);
2691 if (status < 0)
2692 goto err2;
2694 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
2695 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
2697 return 0;
2699 err2:
2700 bus_unregister(&spi_bus_type);
2701 err1:
2702 kfree(buf);
2703 buf = NULL;
2704 err0:
2705 return status;
2708 /* board_info is normally registered in arch_initcall(),
2709 * but even essential drivers wait till later
2711 * REVISIT only boardinfo really needs static linking. the rest (device and
2712 * driver registration) _could_ be dynamically linked (modular) ... costs
2713 * include needing to have boardinfo data structures be much more public.
2715 postcore_initcall(spi_init);