4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/of_gpio.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/pm_domain.h>
34 #include <linux/export.h>
35 #include <linux/sched/rt.h>
36 #include <linux/delay.h>
37 #include <linux/kthread.h>
38 #include <linux/ioport.h>
39 #include <linux/acpi.h>
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/spi.h>
44 static void spidev_release(struct device
*dev
)
46 struct spi_device
*spi
= to_spi_device(dev
);
48 /* spi masters may cleanup for released devices */
49 if (spi
->master
->cleanup
)
50 spi
->master
->cleanup(spi
);
52 spi_master_put(spi
->master
);
57 modalias_show(struct device
*dev
, struct device_attribute
*a
, char *buf
)
59 const struct spi_device
*spi
= to_spi_device(dev
);
62 len
= acpi_device_modalias(dev
, buf
, PAGE_SIZE
- 1);
66 return sprintf(buf
, "%s%s\n", SPI_MODULE_PREFIX
, spi
->modalias
);
68 static DEVICE_ATTR_RO(modalias
);
70 #define SPI_STATISTICS_ATTRS(field, file) \
71 static ssize_t spi_master_##field##_show(struct device *dev, \
72 struct device_attribute *attr, \
75 struct spi_master *master = container_of(dev, \
76 struct spi_master, dev); \
77 return spi_statistics_##field##_show(&master->statistics, buf); \
79 static struct device_attribute dev_attr_spi_master_##field = { \
80 .attr = { .name = file, .mode = S_IRUGO }, \
81 .show = spi_master_##field##_show, \
83 static ssize_t spi_device_##field##_show(struct device *dev, \
84 struct device_attribute *attr, \
87 struct spi_device *spi = container_of(dev, \
88 struct spi_device, dev); \
89 return spi_statistics_##field##_show(&spi->statistics, buf); \
91 static struct device_attribute dev_attr_spi_device_##field = { \
92 .attr = { .name = file, .mode = S_IRUGO }, \
93 .show = spi_device_##field##_show, \
96 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
97 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
100 unsigned long flags; \
102 spin_lock_irqsave(&stat->lock, flags); \
103 len = sprintf(buf, format_string, stat->field); \
104 spin_unlock_irqrestore(&stat->lock, flags); \
107 SPI_STATISTICS_ATTRS(name, file)
109 #define SPI_STATISTICS_SHOW(field, format_string) \
110 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
111 field, format_string)
113 SPI_STATISTICS_SHOW(messages
, "%lu");
114 SPI_STATISTICS_SHOW(transfers
, "%lu");
115 SPI_STATISTICS_SHOW(errors
, "%lu");
116 SPI_STATISTICS_SHOW(timedout
, "%lu");
118 SPI_STATISTICS_SHOW(spi_sync
, "%lu");
119 SPI_STATISTICS_SHOW(spi_sync_immediate
, "%lu");
120 SPI_STATISTICS_SHOW(spi_async
, "%lu");
122 SPI_STATISTICS_SHOW(bytes
, "%llu");
123 SPI_STATISTICS_SHOW(bytes_rx
, "%llu");
124 SPI_STATISTICS_SHOW(bytes_tx
, "%llu");
126 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
127 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
128 "transfer_bytes_histo_" number, \
129 transfer_bytes_histo[index], "%lu")
130 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
131 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
132 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
133 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
134 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
135 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
136 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
137 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
138 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
146 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
148 static struct attribute
*spi_dev_attrs
[] = {
149 &dev_attr_modalias
.attr
,
153 static const struct attribute_group spi_dev_group
= {
154 .attrs
= spi_dev_attrs
,
157 static struct attribute
*spi_device_statistics_attrs
[] = {
158 &dev_attr_spi_device_messages
.attr
,
159 &dev_attr_spi_device_transfers
.attr
,
160 &dev_attr_spi_device_errors
.attr
,
161 &dev_attr_spi_device_timedout
.attr
,
162 &dev_attr_spi_device_spi_sync
.attr
,
163 &dev_attr_spi_device_spi_sync_immediate
.attr
,
164 &dev_attr_spi_device_spi_async
.attr
,
165 &dev_attr_spi_device_bytes
.attr
,
166 &dev_attr_spi_device_bytes_rx
.attr
,
167 &dev_attr_spi_device_bytes_tx
.attr
,
168 &dev_attr_spi_device_transfer_bytes_histo0
.attr
,
169 &dev_attr_spi_device_transfer_bytes_histo1
.attr
,
170 &dev_attr_spi_device_transfer_bytes_histo2
.attr
,
171 &dev_attr_spi_device_transfer_bytes_histo3
.attr
,
172 &dev_attr_spi_device_transfer_bytes_histo4
.attr
,
173 &dev_attr_spi_device_transfer_bytes_histo5
.attr
,
174 &dev_attr_spi_device_transfer_bytes_histo6
.attr
,
175 &dev_attr_spi_device_transfer_bytes_histo7
.attr
,
176 &dev_attr_spi_device_transfer_bytes_histo8
.attr
,
177 &dev_attr_spi_device_transfer_bytes_histo9
.attr
,
178 &dev_attr_spi_device_transfer_bytes_histo10
.attr
,
179 &dev_attr_spi_device_transfer_bytes_histo11
.attr
,
180 &dev_attr_spi_device_transfer_bytes_histo12
.attr
,
181 &dev_attr_spi_device_transfer_bytes_histo13
.attr
,
182 &dev_attr_spi_device_transfer_bytes_histo14
.attr
,
183 &dev_attr_spi_device_transfer_bytes_histo15
.attr
,
184 &dev_attr_spi_device_transfer_bytes_histo16
.attr
,
188 static const struct attribute_group spi_device_statistics_group
= {
189 .name
= "statistics",
190 .attrs
= spi_device_statistics_attrs
,
193 static const struct attribute_group
*spi_dev_groups
[] = {
195 &spi_device_statistics_group
,
199 static struct attribute
*spi_master_statistics_attrs
[] = {
200 &dev_attr_spi_master_messages
.attr
,
201 &dev_attr_spi_master_transfers
.attr
,
202 &dev_attr_spi_master_errors
.attr
,
203 &dev_attr_spi_master_timedout
.attr
,
204 &dev_attr_spi_master_spi_sync
.attr
,
205 &dev_attr_spi_master_spi_sync_immediate
.attr
,
206 &dev_attr_spi_master_spi_async
.attr
,
207 &dev_attr_spi_master_bytes
.attr
,
208 &dev_attr_spi_master_bytes_rx
.attr
,
209 &dev_attr_spi_master_bytes_tx
.attr
,
210 &dev_attr_spi_master_transfer_bytes_histo0
.attr
,
211 &dev_attr_spi_master_transfer_bytes_histo1
.attr
,
212 &dev_attr_spi_master_transfer_bytes_histo2
.attr
,
213 &dev_attr_spi_master_transfer_bytes_histo3
.attr
,
214 &dev_attr_spi_master_transfer_bytes_histo4
.attr
,
215 &dev_attr_spi_master_transfer_bytes_histo5
.attr
,
216 &dev_attr_spi_master_transfer_bytes_histo6
.attr
,
217 &dev_attr_spi_master_transfer_bytes_histo7
.attr
,
218 &dev_attr_spi_master_transfer_bytes_histo8
.attr
,
219 &dev_attr_spi_master_transfer_bytes_histo9
.attr
,
220 &dev_attr_spi_master_transfer_bytes_histo10
.attr
,
221 &dev_attr_spi_master_transfer_bytes_histo11
.attr
,
222 &dev_attr_spi_master_transfer_bytes_histo12
.attr
,
223 &dev_attr_spi_master_transfer_bytes_histo13
.attr
,
224 &dev_attr_spi_master_transfer_bytes_histo14
.attr
,
225 &dev_attr_spi_master_transfer_bytes_histo15
.attr
,
226 &dev_attr_spi_master_transfer_bytes_histo16
.attr
,
230 static const struct attribute_group spi_master_statistics_group
= {
231 .name
= "statistics",
232 .attrs
= spi_master_statistics_attrs
,
235 static const struct attribute_group
*spi_master_groups
[] = {
236 &spi_master_statistics_group
,
240 void spi_statistics_add_transfer_stats(struct spi_statistics
*stats
,
241 struct spi_transfer
*xfer
,
242 struct spi_master
*master
)
245 int l2len
= min(fls(xfer
->len
), SPI_STATISTICS_HISTO_SIZE
) - 1;
250 spin_lock_irqsave(&stats
->lock
, flags
);
253 stats
->transfer_bytes_histo
[l2len
]++;
255 stats
->bytes
+= xfer
->len
;
256 if ((xfer
->tx_buf
) &&
257 (xfer
->tx_buf
!= master
->dummy_tx
))
258 stats
->bytes_tx
+= xfer
->len
;
259 if ((xfer
->rx_buf
) &&
260 (xfer
->rx_buf
!= master
->dummy_rx
))
261 stats
->bytes_rx
+= xfer
->len
;
263 spin_unlock_irqrestore(&stats
->lock
, flags
);
265 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats
);
267 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
268 * and the sysfs version makes coldplug work too.
271 static const struct spi_device_id
*spi_match_id(const struct spi_device_id
*id
,
272 const struct spi_device
*sdev
)
274 while (id
->name
[0]) {
275 if (!strcmp(sdev
->modalias
, id
->name
))
282 const struct spi_device_id
*spi_get_device_id(const struct spi_device
*sdev
)
284 const struct spi_driver
*sdrv
= to_spi_driver(sdev
->dev
.driver
);
286 return spi_match_id(sdrv
->id_table
, sdev
);
288 EXPORT_SYMBOL_GPL(spi_get_device_id
);
290 static int spi_match_device(struct device
*dev
, struct device_driver
*drv
)
292 const struct spi_device
*spi
= to_spi_device(dev
);
293 const struct spi_driver
*sdrv
= to_spi_driver(drv
);
295 /* Attempt an OF style match */
296 if (of_driver_match_device(dev
, drv
))
300 if (acpi_driver_match_device(dev
, drv
))
304 return !!spi_match_id(sdrv
->id_table
, spi
);
306 return strcmp(spi
->modalias
, drv
->name
) == 0;
309 static int spi_uevent(struct device
*dev
, struct kobj_uevent_env
*env
)
311 const struct spi_device
*spi
= to_spi_device(dev
);
314 rc
= acpi_device_uevent_modalias(dev
, env
);
318 add_uevent_var(env
, "MODALIAS=%s%s", SPI_MODULE_PREFIX
, spi
->modalias
);
322 struct bus_type spi_bus_type
= {
324 .dev_groups
= spi_dev_groups
,
325 .match
= spi_match_device
,
326 .uevent
= spi_uevent
,
328 EXPORT_SYMBOL_GPL(spi_bus_type
);
331 static int spi_drv_probe(struct device
*dev
)
333 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
334 struct spi_device
*spi
= to_spi_device(dev
);
337 ret
= of_clk_set_defaults(dev
->of_node
, false);
342 spi
->irq
= of_irq_get(dev
->of_node
, 0);
343 if (spi
->irq
== -EPROBE_DEFER
)
344 return -EPROBE_DEFER
;
349 ret
= dev_pm_domain_attach(dev
, true);
350 if (ret
!= -EPROBE_DEFER
) {
351 ret
= sdrv
->probe(spi
);
353 dev_pm_domain_detach(dev
, true);
359 static int spi_drv_remove(struct device
*dev
)
361 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
364 ret
= sdrv
->remove(to_spi_device(dev
));
365 dev_pm_domain_detach(dev
, true);
370 static void spi_drv_shutdown(struct device
*dev
)
372 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
374 sdrv
->shutdown(to_spi_device(dev
));
378 * __spi_register_driver - register a SPI driver
379 * @owner: owner module of the driver to register
380 * @sdrv: the driver to register
383 * Return: zero on success, else a negative error code.
385 int __spi_register_driver(struct module
*owner
, struct spi_driver
*sdrv
)
387 sdrv
->driver
.owner
= owner
;
388 sdrv
->driver
.bus
= &spi_bus_type
;
390 sdrv
->driver
.probe
= spi_drv_probe
;
392 sdrv
->driver
.remove
= spi_drv_remove
;
394 sdrv
->driver
.shutdown
= spi_drv_shutdown
;
395 return driver_register(&sdrv
->driver
);
397 EXPORT_SYMBOL_GPL(__spi_register_driver
);
399 /*-------------------------------------------------------------------------*/
401 /* SPI devices should normally not be created by SPI device drivers; that
402 * would make them board-specific. Similarly with SPI master drivers.
403 * Device registration normally goes into like arch/.../mach.../board-YYY.c
404 * with other readonly (flashable) information about mainboard devices.
408 struct list_head list
;
409 struct spi_board_info board_info
;
412 static LIST_HEAD(board_list
);
413 static LIST_HEAD(spi_master_list
);
416 * Used to protect add/del opertion for board_info list and
417 * spi_master list, and their matching process
419 static DEFINE_MUTEX(board_lock
);
422 * spi_alloc_device - Allocate a new SPI device
423 * @master: Controller to which device is connected
426 * Allows a driver to allocate and initialize a spi_device without
427 * registering it immediately. This allows a driver to directly
428 * fill the spi_device with device parameters before calling
429 * spi_add_device() on it.
431 * Caller is responsible to call spi_add_device() on the returned
432 * spi_device structure to add it to the SPI master. If the caller
433 * needs to discard the spi_device without adding it, then it should
434 * call spi_dev_put() on it.
436 * Return: a pointer to the new device, or NULL.
438 struct spi_device
*spi_alloc_device(struct spi_master
*master
)
440 struct spi_device
*spi
;
442 if (!spi_master_get(master
))
445 spi
= kzalloc(sizeof(*spi
), GFP_KERNEL
);
447 spi_master_put(master
);
451 spi
->master
= master
;
452 spi
->dev
.parent
= &master
->dev
;
453 spi
->dev
.bus
= &spi_bus_type
;
454 spi
->dev
.release
= spidev_release
;
455 spi
->cs_gpio
= -ENOENT
;
457 spin_lock_init(&spi
->statistics
.lock
);
459 device_initialize(&spi
->dev
);
462 EXPORT_SYMBOL_GPL(spi_alloc_device
);
464 static void spi_dev_set_name(struct spi_device
*spi
)
466 struct acpi_device
*adev
= ACPI_COMPANION(&spi
->dev
);
469 dev_set_name(&spi
->dev
, "spi-%s", acpi_dev_name(adev
));
473 dev_set_name(&spi
->dev
, "%s.%u", dev_name(&spi
->master
->dev
),
477 static int spi_dev_check(struct device
*dev
, void *data
)
479 struct spi_device
*spi
= to_spi_device(dev
);
480 struct spi_device
*new_spi
= data
;
482 if (spi
->master
== new_spi
->master
&&
483 spi
->chip_select
== new_spi
->chip_select
)
489 * spi_add_device - Add spi_device allocated with spi_alloc_device
490 * @spi: spi_device to register
492 * Companion function to spi_alloc_device. Devices allocated with
493 * spi_alloc_device can be added onto the spi bus with this function.
495 * Return: 0 on success; negative errno on failure
497 int spi_add_device(struct spi_device
*spi
)
499 static DEFINE_MUTEX(spi_add_lock
);
500 struct spi_master
*master
= spi
->master
;
501 struct device
*dev
= master
->dev
.parent
;
504 /* Chipselects are numbered 0..max; validate. */
505 if (spi
->chip_select
>= master
->num_chipselect
) {
506 dev_err(dev
, "cs%d >= max %d\n",
508 master
->num_chipselect
);
512 /* Set the bus ID string */
513 spi_dev_set_name(spi
);
515 /* We need to make sure there's no other device with this
516 * chipselect **BEFORE** we call setup(), else we'll trash
517 * its configuration. Lock against concurrent add() calls.
519 mutex_lock(&spi_add_lock
);
521 status
= bus_for_each_dev(&spi_bus_type
, NULL
, spi
, spi_dev_check
);
523 dev_err(dev
, "chipselect %d already in use\n",
528 if (master
->cs_gpios
)
529 spi
->cs_gpio
= master
->cs_gpios
[spi
->chip_select
];
531 /* Drivers may modify this initial i/o setup, but will
532 * normally rely on the device being setup. Devices
533 * using SPI_CS_HIGH can't coexist well otherwise...
535 status
= spi_setup(spi
);
537 dev_err(dev
, "can't setup %s, status %d\n",
538 dev_name(&spi
->dev
), status
);
542 /* Device may be bound to an active driver when this returns */
543 status
= device_add(&spi
->dev
);
545 dev_err(dev
, "can't add %s, status %d\n",
546 dev_name(&spi
->dev
), status
);
548 dev_dbg(dev
, "registered child %s\n", dev_name(&spi
->dev
));
551 mutex_unlock(&spi_add_lock
);
554 EXPORT_SYMBOL_GPL(spi_add_device
);
557 * spi_new_device - instantiate one new SPI device
558 * @master: Controller to which device is connected
559 * @chip: Describes the SPI device
562 * On typical mainboards, this is purely internal; and it's not needed
563 * after board init creates the hard-wired devices. Some development
564 * platforms may not be able to use spi_register_board_info though, and
565 * this is exported so that for example a USB or parport based adapter
566 * driver could add devices (which it would learn about out-of-band).
568 * Return: the new device, or NULL.
570 struct spi_device
*spi_new_device(struct spi_master
*master
,
571 struct spi_board_info
*chip
)
573 struct spi_device
*proxy
;
576 /* NOTE: caller did any chip->bus_num checks necessary.
578 * Also, unless we change the return value convention to use
579 * error-or-pointer (not NULL-or-pointer), troubleshootability
580 * suggests syslogged diagnostics are best here (ugh).
583 proxy
= spi_alloc_device(master
);
587 WARN_ON(strlen(chip
->modalias
) >= sizeof(proxy
->modalias
));
589 proxy
->chip_select
= chip
->chip_select
;
590 proxy
->max_speed_hz
= chip
->max_speed_hz
;
591 proxy
->mode
= chip
->mode
;
592 proxy
->irq
= chip
->irq
;
593 strlcpy(proxy
->modalias
, chip
->modalias
, sizeof(proxy
->modalias
));
594 proxy
->dev
.platform_data
= (void *) chip
->platform_data
;
595 proxy
->controller_data
= chip
->controller_data
;
596 proxy
->controller_state
= NULL
;
598 status
= spi_add_device(proxy
);
606 EXPORT_SYMBOL_GPL(spi_new_device
);
608 static void spi_match_master_to_boardinfo(struct spi_master
*master
,
609 struct spi_board_info
*bi
)
611 struct spi_device
*dev
;
613 if (master
->bus_num
!= bi
->bus_num
)
616 dev
= spi_new_device(master
, bi
);
618 dev_err(master
->dev
.parent
, "can't create new device for %s\n",
623 * spi_register_board_info - register SPI devices for a given board
624 * @info: array of chip descriptors
625 * @n: how many descriptors are provided
628 * Board-specific early init code calls this (probably during arch_initcall)
629 * with segments of the SPI device table. Any device nodes are created later,
630 * after the relevant parent SPI controller (bus_num) is defined. We keep
631 * this table of devices forever, so that reloading a controller driver will
632 * not make Linux forget about these hard-wired devices.
634 * Other code can also call this, e.g. a particular add-on board might provide
635 * SPI devices through its expansion connector, so code initializing that board
636 * would naturally declare its SPI devices.
638 * The board info passed can safely be __initdata ... but be careful of
639 * any embedded pointers (platform_data, etc), they're copied as-is.
641 * Return: zero on success, else a negative error code.
643 int spi_register_board_info(struct spi_board_info
const *info
, unsigned n
)
645 struct boardinfo
*bi
;
651 bi
= kzalloc(n
* sizeof(*bi
), GFP_KERNEL
);
655 for (i
= 0; i
< n
; i
++, bi
++, info
++) {
656 struct spi_master
*master
;
658 memcpy(&bi
->board_info
, info
, sizeof(*info
));
659 mutex_lock(&board_lock
);
660 list_add_tail(&bi
->list
, &board_list
);
661 list_for_each_entry(master
, &spi_master_list
, list
)
662 spi_match_master_to_boardinfo(master
, &bi
->board_info
);
663 mutex_unlock(&board_lock
);
669 /*-------------------------------------------------------------------------*/
671 static void spi_set_cs(struct spi_device
*spi
, bool enable
)
673 if (spi
->mode
& SPI_CS_HIGH
)
676 if (gpio_is_valid(spi
->cs_gpio
))
677 gpio_set_value(spi
->cs_gpio
, !enable
);
678 else if (spi
->master
->set_cs
)
679 spi
->master
->set_cs(spi
, !enable
);
682 #ifdef CONFIG_HAS_DMA
683 static int spi_map_buf(struct spi_master
*master
, struct device
*dev
,
684 struct sg_table
*sgt
, void *buf
, size_t len
,
685 enum dma_data_direction dir
)
687 const bool vmalloced_buf
= is_vmalloc_addr(buf
);
690 struct page
*vm_page
;
696 desc_len
= PAGE_SIZE
;
697 sgs
= DIV_ROUND_UP(len
+ offset_in_page(buf
), desc_len
);
699 desc_len
= master
->max_dma_len
;
700 sgs
= DIV_ROUND_UP(len
, desc_len
);
703 ret
= sg_alloc_table(sgt
, sgs
, GFP_KERNEL
);
707 for (i
= 0; i
< sgs
; i
++) {
711 * Next scatterlist entry size is the minimum between
712 * the desc_len and the remaining buffer length that
715 min
= min_t(size_t, desc_len
,
717 PAGE_SIZE
- offset_in_page(buf
)));
718 vm_page
= vmalloc_to_page(buf
);
723 sg_set_page(&sgt
->sgl
[i
], vm_page
,
724 min
, offset_in_page(buf
));
726 min
= min_t(size_t, len
, desc_len
);
728 sg_set_buf(&sgt
->sgl
[i
], sg_buf
, min
);
736 ret
= dma_map_sg(dev
, sgt
->sgl
, sgt
->nents
, dir
);
749 static void spi_unmap_buf(struct spi_master
*master
, struct device
*dev
,
750 struct sg_table
*sgt
, enum dma_data_direction dir
)
752 if (sgt
->orig_nents
) {
753 dma_unmap_sg(dev
, sgt
->sgl
, sgt
->orig_nents
, dir
);
758 static int __spi_map_msg(struct spi_master
*master
, struct spi_message
*msg
)
760 struct device
*tx_dev
, *rx_dev
;
761 struct spi_transfer
*xfer
;
764 if (!master
->can_dma
)
768 tx_dev
= master
->dma_tx
->device
->dev
;
770 tx_dev
= &master
->dev
;
773 rx_dev
= master
->dma_rx
->device
->dev
;
775 rx_dev
= &master
->dev
;
777 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
778 if (!master
->can_dma(master
, msg
->spi
, xfer
))
781 if (xfer
->tx_buf
!= NULL
) {
782 ret
= spi_map_buf(master
, tx_dev
, &xfer
->tx_sg
,
783 (void *)xfer
->tx_buf
, xfer
->len
,
789 if (xfer
->rx_buf
!= NULL
) {
790 ret
= spi_map_buf(master
, rx_dev
, &xfer
->rx_sg
,
791 xfer
->rx_buf
, xfer
->len
,
794 spi_unmap_buf(master
, tx_dev
, &xfer
->tx_sg
,
801 master
->cur_msg_mapped
= true;
806 static int __spi_unmap_msg(struct spi_master
*master
, struct spi_message
*msg
)
808 struct spi_transfer
*xfer
;
809 struct device
*tx_dev
, *rx_dev
;
811 if (!master
->cur_msg_mapped
|| !master
->can_dma
)
815 tx_dev
= master
->dma_tx
->device
->dev
;
817 tx_dev
= &master
->dev
;
820 rx_dev
= master
->dma_rx
->device
->dev
;
822 rx_dev
= &master
->dev
;
824 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
825 if (!master
->can_dma(master
, msg
->spi
, xfer
))
828 spi_unmap_buf(master
, rx_dev
, &xfer
->rx_sg
, DMA_FROM_DEVICE
);
829 spi_unmap_buf(master
, tx_dev
, &xfer
->tx_sg
, DMA_TO_DEVICE
);
834 #else /* !CONFIG_HAS_DMA */
835 static inline int __spi_map_msg(struct spi_master
*master
,
836 struct spi_message
*msg
)
841 static inline int __spi_unmap_msg(struct spi_master
*master
,
842 struct spi_message
*msg
)
846 #endif /* !CONFIG_HAS_DMA */
848 static inline int spi_unmap_msg(struct spi_master
*master
,
849 struct spi_message
*msg
)
851 struct spi_transfer
*xfer
;
853 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
855 * Restore the original value of tx_buf or rx_buf if they are
858 if (xfer
->tx_buf
== master
->dummy_tx
)
860 if (xfer
->rx_buf
== master
->dummy_rx
)
864 return __spi_unmap_msg(master
, msg
);
867 static int spi_map_msg(struct spi_master
*master
, struct spi_message
*msg
)
869 struct spi_transfer
*xfer
;
871 unsigned int max_tx
, max_rx
;
873 if (master
->flags
& (SPI_MASTER_MUST_RX
| SPI_MASTER_MUST_TX
)) {
877 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
878 if ((master
->flags
& SPI_MASTER_MUST_TX
) &&
880 max_tx
= max(xfer
->len
, max_tx
);
881 if ((master
->flags
& SPI_MASTER_MUST_RX
) &&
883 max_rx
= max(xfer
->len
, max_rx
);
887 tmp
= krealloc(master
->dummy_tx
, max_tx
,
888 GFP_KERNEL
| GFP_DMA
);
891 master
->dummy_tx
= tmp
;
892 memset(tmp
, 0, max_tx
);
896 tmp
= krealloc(master
->dummy_rx
, max_rx
,
897 GFP_KERNEL
| GFP_DMA
);
900 master
->dummy_rx
= tmp
;
903 if (max_tx
|| max_rx
) {
904 list_for_each_entry(xfer
, &msg
->transfers
,
907 xfer
->tx_buf
= master
->dummy_tx
;
909 xfer
->rx_buf
= master
->dummy_rx
;
914 return __spi_map_msg(master
, msg
);
918 * spi_transfer_one_message - Default implementation of transfer_one_message()
920 * This is a standard implementation of transfer_one_message() for
921 * drivers which impelment a transfer_one() operation. It provides
922 * standard handling of delays and chip select management.
924 static int spi_transfer_one_message(struct spi_master
*master
,
925 struct spi_message
*msg
)
927 struct spi_transfer
*xfer
;
928 bool keep_cs
= false;
930 unsigned long ms
= 1;
931 struct spi_statistics
*statm
= &master
->statistics
;
932 struct spi_statistics
*stats
= &msg
->spi
->statistics
;
934 spi_set_cs(msg
->spi
, true);
936 SPI_STATISTICS_INCREMENT_FIELD(statm
, messages
);
937 SPI_STATISTICS_INCREMENT_FIELD(stats
, messages
);
939 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
940 trace_spi_transfer_start(msg
, xfer
);
942 spi_statistics_add_transfer_stats(statm
, xfer
, master
);
943 spi_statistics_add_transfer_stats(stats
, xfer
, master
);
945 if (xfer
->tx_buf
|| xfer
->rx_buf
) {
946 reinit_completion(&master
->xfer_completion
);
948 ret
= master
->transfer_one(master
, msg
->spi
, xfer
);
950 SPI_STATISTICS_INCREMENT_FIELD(statm
,
952 SPI_STATISTICS_INCREMENT_FIELD(stats
,
954 dev_err(&msg
->spi
->dev
,
955 "SPI transfer failed: %d\n", ret
);
961 ms
= xfer
->len
* 8 * 1000 / xfer
->speed_hz
;
962 ms
+= ms
+ 100; /* some tolerance */
964 ms
= wait_for_completion_timeout(&master
->xfer_completion
,
965 msecs_to_jiffies(ms
));
969 SPI_STATISTICS_INCREMENT_FIELD(statm
,
971 SPI_STATISTICS_INCREMENT_FIELD(stats
,
973 dev_err(&msg
->spi
->dev
,
974 "SPI transfer timed out\n");
975 msg
->status
= -ETIMEDOUT
;
979 dev_err(&msg
->spi
->dev
,
980 "Bufferless transfer has length %u\n",
984 trace_spi_transfer_stop(msg
, xfer
);
986 if (msg
->status
!= -EINPROGRESS
)
989 if (xfer
->delay_usecs
)
990 udelay(xfer
->delay_usecs
);
992 if (xfer
->cs_change
) {
993 if (list_is_last(&xfer
->transfer_list
,
997 spi_set_cs(msg
->spi
, false);
999 spi_set_cs(msg
->spi
, true);
1003 msg
->actual_length
+= xfer
->len
;
1007 if (ret
!= 0 || !keep_cs
)
1008 spi_set_cs(msg
->spi
, false);
1010 if (msg
->status
== -EINPROGRESS
)
1013 if (msg
->status
&& master
->handle_err
)
1014 master
->handle_err(master
, msg
);
1016 spi_finalize_current_message(master
);
1022 * spi_finalize_current_transfer - report completion of a transfer
1023 * @master: the master reporting completion
1025 * Called by SPI drivers using the core transfer_one_message()
1026 * implementation to notify it that the current interrupt driven
1027 * transfer has finished and the next one may be scheduled.
1029 void spi_finalize_current_transfer(struct spi_master
*master
)
1031 complete(&master
->xfer_completion
);
1033 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer
);
1036 * __spi_pump_messages - function which processes spi message queue
1037 * @master: master to process queue for
1038 * @in_kthread: true if we are in the context of the message pump thread
1040 * This function checks if there is any spi message in the queue that
1041 * needs processing and if so call out to the driver to initialize hardware
1042 * and transfer each message.
1044 * Note that it is called both from the kthread itself and also from
1045 * inside spi_sync(); the queue extraction handling at the top of the
1046 * function should deal with this safely.
1048 static void __spi_pump_messages(struct spi_master
*master
, bool in_kthread
)
1050 unsigned long flags
;
1051 bool was_busy
= false;
1055 spin_lock_irqsave(&master
->queue_lock
, flags
);
1057 /* Make sure we are not already running a message */
1058 if (master
->cur_msg
) {
1059 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1063 /* If another context is idling the device then defer */
1064 if (master
->idling
) {
1065 queue_kthread_work(&master
->kworker
, &master
->pump_messages
);
1066 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1070 /* Check if the queue is idle */
1071 if (list_empty(&master
->queue
) || !master
->running
) {
1072 if (!master
->busy
) {
1073 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1077 /* Only do teardown in the thread */
1079 queue_kthread_work(&master
->kworker
,
1080 &master
->pump_messages
);
1081 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1085 master
->busy
= false;
1086 master
->idling
= true;
1087 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1089 kfree(master
->dummy_rx
);
1090 master
->dummy_rx
= NULL
;
1091 kfree(master
->dummy_tx
);
1092 master
->dummy_tx
= NULL
;
1093 if (master
->unprepare_transfer_hardware
&&
1094 master
->unprepare_transfer_hardware(master
))
1095 dev_err(&master
->dev
,
1096 "failed to unprepare transfer hardware\n");
1097 if (master
->auto_runtime_pm
) {
1098 pm_runtime_mark_last_busy(master
->dev
.parent
);
1099 pm_runtime_put_autosuspend(master
->dev
.parent
);
1101 trace_spi_master_idle(master
);
1103 spin_lock_irqsave(&master
->queue_lock
, flags
);
1104 master
->idling
= false;
1105 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1109 /* Extract head of queue */
1111 list_first_entry(&master
->queue
, struct spi_message
, queue
);
1113 list_del_init(&master
->cur_msg
->queue
);
1117 master
->busy
= true;
1118 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1120 if (!was_busy
&& master
->auto_runtime_pm
) {
1121 ret
= pm_runtime_get_sync(master
->dev
.parent
);
1123 dev_err(&master
->dev
, "Failed to power device: %d\n",
1130 trace_spi_master_busy(master
);
1132 if (!was_busy
&& master
->prepare_transfer_hardware
) {
1133 ret
= master
->prepare_transfer_hardware(master
);
1135 dev_err(&master
->dev
,
1136 "failed to prepare transfer hardware\n");
1138 if (master
->auto_runtime_pm
)
1139 pm_runtime_put(master
->dev
.parent
);
1144 trace_spi_message_start(master
->cur_msg
);
1146 if (master
->prepare_message
) {
1147 ret
= master
->prepare_message(master
, master
->cur_msg
);
1149 dev_err(&master
->dev
,
1150 "failed to prepare message: %d\n", ret
);
1151 master
->cur_msg
->status
= ret
;
1152 spi_finalize_current_message(master
);
1155 master
->cur_msg_prepared
= true;
1158 ret
= spi_map_msg(master
, master
->cur_msg
);
1160 master
->cur_msg
->status
= ret
;
1161 spi_finalize_current_message(master
);
1165 ret
= master
->transfer_one_message(master
, master
->cur_msg
);
1167 dev_err(&master
->dev
,
1168 "failed to transfer one message from queue\n");
1174 * spi_pump_messages - kthread work function which processes spi message queue
1175 * @work: pointer to kthread work struct contained in the master struct
1177 static void spi_pump_messages(struct kthread_work
*work
)
1179 struct spi_master
*master
=
1180 container_of(work
, struct spi_master
, pump_messages
);
1182 __spi_pump_messages(master
, true);
1185 static int spi_init_queue(struct spi_master
*master
)
1187 struct sched_param param
= { .sched_priority
= MAX_RT_PRIO
- 1 };
1189 master
->running
= false;
1190 master
->busy
= false;
1192 init_kthread_worker(&master
->kworker
);
1193 master
->kworker_task
= kthread_run(kthread_worker_fn
,
1194 &master
->kworker
, "%s",
1195 dev_name(&master
->dev
));
1196 if (IS_ERR(master
->kworker_task
)) {
1197 dev_err(&master
->dev
, "failed to create message pump task\n");
1198 return PTR_ERR(master
->kworker_task
);
1200 init_kthread_work(&master
->pump_messages
, spi_pump_messages
);
1203 * Master config will indicate if this controller should run the
1204 * message pump with high (realtime) priority to reduce the transfer
1205 * latency on the bus by minimising the delay between a transfer
1206 * request and the scheduling of the message pump thread. Without this
1207 * setting the message pump thread will remain at default priority.
1210 dev_info(&master
->dev
,
1211 "will run message pump with realtime priority\n");
1212 sched_setscheduler(master
->kworker_task
, SCHED_FIFO
, ¶m
);
1219 * spi_get_next_queued_message() - called by driver to check for queued
1221 * @master: the master to check for queued messages
1223 * If there are more messages in the queue, the next message is returned from
1226 * Return: the next message in the queue, else NULL if the queue is empty.
1228 struct spi_message
*spi_get_next_queued_message(struct spi_master
*master
)
1230 struct spi_message
*next
;
1231 unsigned long flags
;
1233 /* get a pointer to the next message, if any */
1234 spin_lock_irqsave(&master
->queue_lock
, flags
);
1235 next
= list_first_entry_or_null(&master
->queue
, struct spi_message
,
1237 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1241 EXPORT_SYMBOL_GPL(spi_get_next_queued_message
);
1244 * spi_finalize_current_message() - the current message is complete
1245 * @master: the master to return the message to
1247 * Called by the driver to notify the core that the message in the front of the
1248 * queue is complete and can be removed from the queue.
1250 void spi_finalize_current_message(struct spi_master
*master
)
1252 struct spi_message
*mesg
;
1253 unsigned long flags
;
1256 spin_lock_irqsave(&master
->queue_lock
, flags
);
1257 mesg
= master
->cur_msg
;
1258 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1260 spi_unmap_msg(master
, mesg
);
1262 if (master
->cur_msg_prepared
&& master
->unprepare_message
) {
1263 ret
= master
->unprepare_message(master
, mesg
);
1265 dev_err(&master
->dev
,
1266 "failed to unprepare message: %d\n", ret
);
1270 spin_lock_irqsave(&master
->queue_lock
, flags
);
1271 master
->cur_msg
= NULL
;
1272 master
->cur_msg_prepared
= false;
1273 queue_kthread_work(&master
->kworker
, &master
->pump_messages
);
1274 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1276 trace_spi_message_done(mesg
);
1280 mesg
->complete(mesg
->context
);
1282 EXPORT_SYMBOL_GPL(spi_finalize_current_message
);
1284 static int spi_start_queue(struct spi_master
*master
)
1286 unsigned long flags
;
1288 spin_lock_irqsave(&master
->queue_lock
, flags
);
1290 if (master
->running
|| master
->busy
) {
1291 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1295 master
->running
= true;
1296 master
->cur_msg
= NULL
;
1297 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1299 queue_kthread_work(&master
->kworker
, &master
->pump_messages
);
1304 static int spi_stop_queue(struct spi_master
*master
)
1306 unsigned long flags
;
1307 unsigned limit
= 500;
1310 spin_lock_irqsave(&master
->queue_lock
, flags
);
1313 * This is a bit lame, but is optimized for the common execution path.
1314 * A wait_queue on the master->busy could be used, but then the common
1315 * execution path (pump_messages) would be required to call wake_up or
1316 * friends on every SPI message. Do this instead.
1318 while ((!list_empty(&master
->queue
) || master
->busy
) && limit
--) {
1319 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1320 usleep_range(10000, 11000);
1321 spin_lock_irqsave(&master
->queue_lock
, flags
);
1324 if (!list_empty(&master
->queue
) || master
->busy
)
1327 master
->running
= false;
1329 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1332 dev_warn(&master
->dev
,
1333 "could not stop message queue\n");
1339 static int spi_destroy_queue(struct spi_master
*master
)
1343 ret
= spi_stop_queue(master
);
1346 * flush_kthread_worker will block until all work is done.
1347 * If the reason that stop_queue timed out is that the work will never
1348 * finish, then it does no good to call flush/stop thread, so
1352 dev_err(&master
->dev
, "problem destroying queue\n");
1356 flush_kthread_worker(&master
->kworker
);
1357 kthread_stop(master
->kworker_task
);
1362 static int __spi_queued_transfer(struct spi_device
*spi
,
1363 struct spi_message
*msg
,
1366 struct spi_master
*master
= spi
->master
;
1367 unsigned long flags
;
1369 spin_lock_irqsave(&master
->queue_lock
, flags
);
1371 if (!master
->running
) {
1372 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1375 msg
->actual_length
= 0;
1376 msg
->status
= -EINPROGRESS
;
1378 list_add_tail(&msg
->queue
, &master
->queue
);
1379 if (!master
->busy
&& need_pump
)
1380 queue_kthread_work(&master
->kworker
, &master
->pump_messages
);
1382 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1387 * spi_queued_transfer - transfer function for queued transfers
1388 * @spi: spi device which is requesting transfer
1389 * @msg: spi message which is to handled is queued to driver queue
1391 * Return: zero on success, else a negative error code.
1393 static int spi_queued_transfer(struct spi_device
*spi
, struct spi_message
*msg
)
1395 return __spi_queued_transfer(spi
, msg
, true);
1398 static int spi_master_initialize_queue(struct spi_master
*master
)
1402 master
->transfer
= spi_queued_transfer
;
1403 if (!master
->transfer_one_message
)
1404 master
->transfer_one_message
= spi_transfer_one_message
;
1406 /* Initialize and start queue */
1407 ret
= spi_init_queue(master
);
1409 dev_err(&master
->dev
, "problem initializing queue\n");
1410 goto err_init_queue
;
1412 master
->queued
= true;
1413 ret
= spi_start_queue(master
);
1415 dev_err(&master
->dev
, "problem starting queue\n");
1416 goto err_start_queue
;
1422 spi_destroy_queue(master
);
1427 /*-------------------------------------------------------------------------*/
1429 #if defined(CONFIG_OF)
1430 static struct spi_device
*
1431 of_register_spi_device(struct spi_master
*master
, struct device_node
*nc
)
1433 struct spi_device
*spi
;
1437 /* Alloc an spi_device */
1438 spi
= spi_alloc_device(master
);
1440 dev_err(&master
->dev
, "spi_device alloc error for %s\n",
1446 /* Select device driver */
1447 rc
= of_modalias_node(nc
, spi
->modalias
,
1448 sizeof(spi
->modalias
));
1450 dev_err(&master
->dev
, "cannot find modalias for %s\n",
1455 /* Device address */
1456 rc
= of_property_read_u32(nc
, "reg", &value
);
1458 dev_err(&master
->dev
, "%s has no valid 'reg' property (%d)\n",
1462 spi
->chip_select
= value
;
1464 /* Mode (clock phase/polarity/etc.) */
1465 if (of_find_property(nc
, "spi-cpha", NULL
))
1466 spi
->mode
|= SPI_CPHA
;
1467 if (of_find_property(nc
, "spi-cpol", NULL
))
1468 spi
->mode
|= SPI_CPOL
;
1469 if (of_find_property(nc
, "spi-cs-high", NULL
))
1470 spi
->mode
|= SPI_CS_HIGH
;
1471 if (of_find_property(nc
, "spi-3wire", NULL
))
1472 spi
->mode
|= SPI_3WIRE
;
1473 if (of_find_property(nc
, "spi-lsb-first", NULL
))
1474 spi
->mode
|= SPI_LSB_FIRST
;
1476 /* Device DUAL/QUAD mode */
1477 if (!of_property_read_u32(nc
, "spi-tx-bus-width", &value
)) {
1482 spi
->mode
|= SPI_TX_DUAL
;
1485 spi
->mode
|= SPI_TX_QUAD
;
1488 dev_warn(&master
->dev
,
1489 "spi-tx-bus-width %d not supported\n",
1495 if (!of_property_read_u32(nc
, "spi-rx-bus-width", &value
)) {
1500 spi
->mode
|= SPI_RX_DUAL
;
1503 spi
->mode
|= SPI_RX_QUAD
;
1506 dev_warn(&master
->dev
,
1507 "spi-rx-bus-width %d not supported\n",
1514 rc
= of_property_read_u32(nc
, "spi-max-frequency", &value
);
1516 dev_err(&master
->dev
, "%s has no valid 'spi-max-frequency' property (%d)\n",
1520 spi
->max_speed_hz
= value
;
1522 /* Store a pointer to the node in the device structure */
1524 spi
->dev
.of_node
= nc
;
1526 /* Register the new device */
1527 rc
= spi_add_device(spi
);
1529 dev_err(&master
->dev
, "spi_device register error %s\n",
1542 * of_register_spi_devices() - Register child devices onto the SPI bus
1543 * @master: Pointer to spi_master device
1545 * Registers an spi_device for each child node of master node which has a 'reg'
1548 static void of_register_spi_devices(struct spi_master
*master
)
1550 struct spi_device
*spi
;
1551 struct device_node
*nc
;
1553 if (!master
->dev
.of_node
)
1556 for_each_available_child_of_node(master
->dev
.of_node
, nc
) {
1557 spi
= of_register_spi_device(master
, nc
);
1559 dev_warn(&master
->dev
, "Failed to create SPI device for %s\n",
1564 static void of_register_spi_devices(struct spi_master
*master
) { }
1568 static int acpi_spi_add_resource(struct acpi_resource
*ares
, void *data
)
1570 struct spi_device
*spi
= data
;
1572 if (ares
->type
== ACPI_RESOURCE_TYPE_SERIAL_BUS
) {
1573 struct acpi_resource_spi_serialbus
*sb
;
1575 sb
= &ares
->data
.spi_serial_bus
;
1576 if (sb
->type
== ACPI_RESOURCE_SERIAL_TYPE_SPI
) {
1577 spi
->chip_select
= sb
->device_selection
;
1578 spi
->max_speed_hz
= sb
->connection_speed
;
1580 if (sb
->clock_phase
== ACPI_SPI_SECOND_PHASE
)
1581 spi
->mode
|= SPI_CPHA
;
1582 if (sb
->clock_polarity
== ACPI_SPI_START_HIGH
)
1583 spi
->mode
|= SPI_CPOL
;
1584 if (sb
->device_polarity
== ACPI_SPI_ACTIVE_HIGH
)
1585 spi
->mode
|= SPI_CS_HIGH
;
1587 } else if (spi
->irq
< 0) {
1590 if (acpi_dev_resource_interrupt(ares
, 0, &r
))
1594 /* Always tell the ACPI core to skip this resource */
1598 static acpi_status
acpi_spi_add_device(acpi_handle handle
, u32 level
,
1599 void *data
, void **return_value
)
1601 struct spi_master
*master
= data
;
1602 struct list_head resource_list
;
1603 struct acpi_device
*adev
;
1604 struct spi_device
*spi
;
1607 if (acpi_bus_get_device(handle
, &adev
))
1609 if (acpi_bus_get_status(adev
) || !adev
->status
.present
)
1612 spi
= spi_alloc_device(master
);
1614 dev_err(&master
->dev
, "failed to allocate SPI device for %s\n",
1615 dev_name(&adev
->dev
));
1616 return AE_NO_MEMORY
;
1619 ACPI_COMPANION_SET(&spi
->dev
, adev
);
1622 INIT_LIST_HEAD(&resource_list
);
1623 ret
= acpi_dev_get_resources(adev
, &resource_list
,
1624 acpi_spi_add_resource
, spi
);
1625 acpi_dev_free_resource_list(&resource_list
);
1627 if (ret
< 0 || !spi
->max_speed_hz
) {
1632 adev
->power
.flags
.ignore_parent
= true;
1633 strlcpy(spi
->modalias
, acpi_device_hid(adev
), sizeof(spi
->modalias
));
1634 if (spi_add_device(spi
)) {
1635 adev
->power
.flags
.ignore_parent
= false;
1636 dev_err(&master
->dev
, "failed to add SPI device %s from ACPI\n",
1637 dev_name(&adev
->dev
));
1644 static void acpi_register_spi_devices(struct spi_master
*master
)
1649 handle
= ACPI_HANDLE(master
->dev
.parent
);
1653 status
= acpi_walk_namespace(ACPI_TYPE_DEVICE
, handle
, 1,
1654 acpi_spi_add_device
, NULL
,
1656 if (ACPI_FAILURE(status
))
1657 dev_warn(&master
->dev
, "failed to enumerate SPI slaves\n");
1660 static inline void acpi_register_spi_devices(struct spi_master
*master
) {}
1661 #endif /* CONFIG_ACPI */
1663 static void spi_master_release(struct device
*dev
)
1665 struct spi_master
*master
;
1667 master
= container_of(dev
, struct spi_master
, dev
);
1671 static struct class spi_master_class
= {
1672 .name
= "spi_master",
1673 .owner
= THIS_MODULE
,
1674 .dev_release
= spi_master_release
,
1675 .dev_groups
= spi_master_groups
,
1680 * spi_alloc_master - allocate SPI master controller
1681 * @dev: the controller, possibly using the platform_bus
1682 * @size: how much zeroed driver-private data to allocate; the pointer to this
1683 * memory is in the driver_data field of the returned device,
1684 * accessible with spi_master_get_devdata().
1685 * Context: can sleep
1687 * This call is used only by SPI master controller drivers, which are the
1688 * only ones directly touching chip registers. It's how they allocate
1689 * an spi_master structure, prior to calling spi_register_master().
1691 * This must be called from context that can sleep.
1693 * The caller is responsible for assigning the bus number and initializing
1694 * the master's methods before calling spi_register_master(); and (after errors
1695 * adding the device) calling spi_master_put() to prevent a memory leak.
1697 * Return: the SPI master structure on success, else NULL.
1699 struct spi_master
*spi_alloc_master(struct device
*dev
, unsigned size
)
1701 struct spi_master
*master
;
1706 master
= kzalloc(size
+ sizeof(*master
), GFP_KERNEL
);
1710 device_initialize(&master
->dev
);
1711 master
->bus_num
= -1;
1712 master
->num_chipselect
= 1;
1713 master
->dev
.class = &spi_master_class
;
1714 master
->dev
.parent
= dev
;
1715 spi_master_set_devdata(master
, &master
[1]);
1719 EXPORT_SYMBOL_GPL(spi_alloc_master
);
1722 static int of_spi_register_master(struct spi_master
*master
)
1725 struct device_node
*np
= master
->dev
.of_node
;
1730 nb
= of_gpio_named_count(np
, "cs-gpios");
1731 master
->num_chipselect
= max_t(int, nb
, master
->num_chipselect
);
1733 /* Return error only for an incorrectly formed cs-gpios property */
1734 if (nb
== 0 || nb
== -ENOENT
)
1739 cs
= devm_kzalloc(&master
->dev
,
1740 sizeof(int) * master
->num_chipselect
,
1742 master
->cs_gpios
= cs
;
1744 if (!master
->cs_gpios
)
1747 for (i
= 0; i
< master
->num_chipselect
; i
++)
1750 for (i
= 0; i
< nb
; i
++)
1751 cs
[i
] = of_get_named_gpio(np
, "cs-gpios", i
);
1756 static int of_spi_register_master(struct spi_master
*master
)
1763 * spi_register_master - register SPI master controller
1764 * @master: initialized master, originally from spi_alloc_master()
1765 * Context: can sleep
1767 * SPI master controllers connect to their drivers using some non-SPI bus,
1768 * such as the platform bus. The final stage of probe() in that code
1769 * includes calling spi_register_master() to hook up to this SPI bus glue.
1771 * SPI controllers use board specific (often SOC specific) bus numbers,
1772 * and board-specific addressing for SPI devices combines those numbers
1773 * with chip select numbers. Since SPI does not directly support dynamic
1774 * device identification, boards need configuration tables telling which
1775 * chip is at which address.
1777 * This must be called from context that can sleep. It returns zero on
1778 * success, else a negative error code (dropping the master's refcount).
1779 * After a successful return, the caller is responsible for calling
1780 * spi_unregister_master().
1782 * Return: zero on success, else a negative error code.
1784 int spi_register_master(struct spi_master
*master
)
1786 static atomic_t dyn_bus_id
= ATOMIC_INIT((1<<15) - 1);
1787 struct device
*dev
= master
->dev
.parent
;
1788 struct boardinfo
*bi
;
1789 int status
= -ENODEV
;
1795 status
= of_spi_register_master(master
);
1799 /* even if it's just one always-selected device, there must
1800 * be at least one chipselect
1802 if (master
->num_chipselect
== 0)
1805 if ((master
->bus_num
< 0) && master
->dev
.of_node
)
1806 master
->bus_num
= of_alias_get_id(master
->dev
.of_node
, "spi");
1808 /* convention: dynamically assigned bus IDs count down from the max */
1809 if (master
->bus_num
< 0) {
1810 /* FIXME switch to an IDR based scheme, something like
1811 * I2C now uses, so we can't run out of "dynamic" IDs
1813 master
->bus_num
= atomic_dec_return(&dyn_bus_id
);
1817 INIT_LIST_HEAD(&master
->queue
);
1818 spin_lock_init(&master
->queue_lock
);
1819 spin_lock_init(&master
->bus_lock_spinlock
);
1820 mutex_init(&master
->bus_lock_mutex
);
1821 master
->bus_lock_flag
= 0;
1822 init_completion(&master
->xfer_completion
);
1823 if (!master
->max_dma_len
)
1824 master
->max_dma_len
= INT_MAX
;
1826 /* register the device, then userspace will see it.
1827 * registration fails if the bus ID is in use.
1829 dev_set_name(&master
->dev
, "spi%u", master
->bus_num
);
1830 status
= device_add(&master
->dev
);
1833 dev_dbg(dev
, "registered master %s%s\n", dev_name(&master
->dev
),
1834 dynamic
? " (dynamic)" : "");
1836 /* If we're using a queued driver, start the queue */
1837 if (master
->transfer
)
1838 dev_info(dev
, "master is unqueued, this is deprecated\n");
1840 status
= spi_master_initialize_queue(master
);
1842 device_del(&master
->dev
);
1846 /* add statistics */
1847 spin_lock_init(&master
->statistics
.lock
);
1849 mutex_lock(&board_lock
);
1850 list_add_tail(&master
->list
, &spi_master_list
);
1851 list_for_each_entry(bi
, &board_list
, list
)
1852 spi_match_master_to_boardinfo(master
, &bi
->board_info
);
1853 mutex_unlock(&board_lock
);
1855 /* Register devices from the device tree and ACPI */
1856 of_register_spi_devices(master
);
1857 acpi_register_spi_devices(master
);
1861 EXPORT_SYMBOL_GPL(spi_register_master
);
1863 static void devm_spi_unregister(struct device
*dev
, void *res
)
1865 spi_unregister_master(*(struct spi_master
**)res
);
1869 * dev_spi_register_master - register managed SPI master controller
1870 * @dev: device managing SPI master
1871 * @master: initialized master, originally from spi_alloc_master()
1872 * Context: can sleep
1874 * Register a SPI device as with spi_register_master() which will
1875 * automatically be unregister
1877 * Return: zero on success, else a negative error code.
1879 int devm_spi_register_master(struct device
*dev
, struct spi_master
*master
)
1881 struct spi_master
**ptr
;
1884 ptr
= devres_alloc(devm_spi_unregister
, sizeof(*ptr
), GFP_KERNEL
);
1888 ret
= spi_register_master(master
);
1891 devres_add(dev
, ptr
);
1898 EXPORT_SYMBOL_GPL(devm_spi_register_master
);
1900 static int __unregister(struct device
*dev
, void *null
)
1902 spi_unregister_device(to_spi_device(dev
));
1907 * spi_unregister_master - unregister SPI master controller
1908 * @master: the master being unregistered
1909 * Context: can sleep
1911 * This call is used only by SPI master controller drivers, which are the
1912 * only ones directly touching chip registers.
1914 * This must be called from context that can sleep.
1916 void spi_unregister_master(struct spi_master
*master
)
1920 if (master
->queued
) {
1921 if (spi_destroy_queue(master
))
1922 dev_err(&master
->dev
, "queue remove failed\n");
1925 mutex_lock(&board_lock
);
1926 list_del(&master
->list
);
1927 mutex_unlock(&board_lock
);
1929 dummy
= device_for_each_child(&master
->dev
, NULL
, __unregister
);
1930 device_unregister(&master
->dev
);
1932 EXPORT_SYMBOL_GPL(spi_unregister_master
);
1934 int spi_master_suspend(struct spi_master
*master
)
1938 /* Basically no-ops for non-queued masters */
1939 if (!master
->queued
)
1942 ret
= spi_stop_queue(master
);
1944 dev_err(&master
->dev
, "queue stop failed\n");
1948 EXPORT_SYMBOL_GPL(spi_master_suspend
);
1950 int spi_master_resume(struct spi_master
*master
)
1954 if (!master
->queued
)
1957 ret
= spi_start_queue(master
);
1959 dev_err(&master
->dev
, "queue restart failed\n");
1963 EXPORT_SYMBOL_GPL(spi_master_resume
);
1965 static int __spi_master_match(struct device
*dev
, const void *data
)
1967 struct spi_master
*m
;
1968 const u16
*bus_num
= data
;
1970 m
= container_of(dev
, struct spi_master
, dev
);
1971 return m
->bus_num
== *bus_num
;
1975 * spi_busnum_to_master - look up master associated with bus_num
1976 * @bus_num: the master's bus number
1977 * Context: can sleep
1979 * This call may be used with devices that are registered after
1980 * arch init time. It returns a refcounted pointer to the relevant
1981 * spi_master (which the caller must release), or NULL if there is
1982 * no such master registered.
1984 * Return: the SPI master structure on success, else NULL.
1986 struct spi_master
*spi_busnum_to_master(u16 bus_num
)
1989 struct spi_master
*master
= NULL
;
1991 dev
= class_find_device(&spi_master_class
, NULL
, &bus_num
,
1992 __spi_master_match
);
1994 master
= container_of(dev
, struct spi_master
, dev
);
1995 /* reference got in class_find_device */
1998 EXPORT_SYMBOL_GPL(spi_busnum_to_master
);
2001 /*-------------------------------------------------------------------------*/
2003 /* Core methods for SPI master protocol drivers. Some of the
2004 * other core methods are currently defined as inline functions.
2007 static int __spi_validate_bits_per_word(struct spi_master
*master
, u8 bits_per_word
)
2009 if (master
->bits_per_word_mask
) {
2010 /* Only 32 bits fit in the mask */
2011 if (bits_per_word
> 32)
2013 if (!(master
->bits_per_word_mask
&
2014 SPI_BPW_MASK(bits_per_word
)))
2022 * spi_setup - setup SPI mode and clock rate
2023 * @spi: the device whose settings are being modified
2024 * Context: can sleep, and no requests are queued to the device
2026 * SPI protocol drivers may need to update the transfer mode if the
2027 * device doesn't work with its default. They may likewise need
2028 * to update clock rates or word sizes from initial values. This function
2029 * changes those settings, and must be called from a context that can sleep.
2030 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2031 * effect the next time the device is selected and data is transferred to
2032 * or from it. When this function returns, the spi device is deselected.
2034 * Note that this call will fail if the protocol driver specifies an option
2035 * that the underlying controller or its driver does not support. For
2036 * example, not all hardware supports wire transfers using nine bit words,
2037 * LSB-first wire encoding, or active-high chipselects.
2039 * Return: zero on success, else a negative error code.
2041 int spi_setup(struct spi_device
*spi
)
2043 unsigned bad_bits
, ugly_bits
;
2046 /* check mode to prevent that DUAL and QUAD set at the same time
2048 if (((spi
->mode
& SPI_TX_DUAL
) && (spi
->mode
& SPI_TX_QUAD
)) ||
2049 ((spi
->mode
& SPI_RX_DUAL
) && (spi
->mode
& SPI_RX_QUAD
))) {
2051 "setup: can not select dual and quad at the same time\n");
2054 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2056 if ((spi
->mode
& SPI_3WIRE
) && (spi
->mode
&
2057 (SPI_TX_DUAL
| SPI_TX_QUAD
| SPI_RX_DUAL
| SPI_RX_QUAD
)))
2059 /* help drivers fail *cleanly* when they need options
2060 * that aren't supported with their current master
2062 bad_bits
= spi
->mode
& ~spi
->master
->mode_bits
;
2063 ugly_bits
= bad_bits
&
2064 (SPI_TX_DUAL
| SPI_TX_QUAD
| SPI_RX_DUAL
| SPI_RX_QUAD
);
2067 "setup: ignoring unsupported mode bits %x\n",
2069 spi
->mode
&= ~ugly_bits
;
2070 bad_bits
&= ~ugly_bits
;
2073 dev_err(&spi
->dev
, "setup: unsupported mode bits %x\n",
2078 if (!spi
->bits_per_word
)
2079 spi
->bits_per_word
= 8;
2081 status
= __spi_validate_bits_per_word(spi
->master
, spi
->bits_per_word
);
2085 if (!spi
->max_speed_hz
)
2086 spi
->max_speed_hz
= spi
->master
->max_speed_hz
;
2088 if (spi
->master
->setup
)
2089 status
= spi
->master
->setup(spi
);
2091 spi_set_cs(spi
, false);
2093 dev_dbg(&spi
->dev
, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2094 (int) (spi
->mode
& (SPI_CPOL
| SPI_CPHA
)),
2095 (spi
->mode
& SPI_CS_HIGH
) ? "cs_high, " : "",
2096 (spi
->mode
& SPI_LSB_FIRST
) ? "lsb, " : "",
2097 (spi
->mode
& SPI_3WIRE
) ? "3wire, " : "",
2098 (spi
->mode
& SPI_LOOP
) ? "loopback, " : "",
2099 spi
->bits_per_word
, spi
->max_speed_hz
,
2104 EXPORT_SYMBOL_GPL(spi_setup
);
2106 static int __spi_validate(struct spi_device
*spi
, struct spi_message
*message
)
2108 struct spi_master
*master
= spi
->master
;
2109 struct spi_transfer
*xfer
;
2112 if (list_empty(&message
->transfers
))
2115 /* Half-duplex links include original MicroWire, and ones with
2116 * only one data pin like SPI_3WIRE (switches direction) or where
2117 * either MOSI or MISO is missing. They can also be caused by
2118 * software limitations.
2120 if ((master
->flags
& SPI_MASTER_HALF_DUPLEX
)
2121 || (spi
->mode
& SPI_3WIRE
)) {
2122 unsigned flags
= master
->flags
;
2124 list_for_each_entry(xfer
, &message
->transfers
, transfer_list
) {
2125 if (xfer
->rx_buf
&& xfer
->tx_buf
)
2127 if ((flags
& SPI_MASTER_NO_TX
) && xfer
->tx_buf
)
2129 if ((flags
& SPI_MASTER_NO_RX
) && xfer
->rx_buf
)
2135 * Set transfer bits_per_word and max speed as spi device default if
2136 * it is not set for this transfer.
2137 * Set transfer tx_nbits and rx_nbits as single transfer default
2138 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2140 message
->frame_length
= 0;
2141 list_for_each_entry(xfer
, &message
->transfers
, transfer_list
) {
2142 message
->frame_length
+= xfer
->len
;
2143 if (!xfer
->bits_per_word
)
2144 xfer
->bits_per_word
= spi
->bits_per_word
;
2146 if (!xfer
->speed_hz
)
2147 xfer
->speed_hz
= spi
->max_speed_hz
;
2148 if (!xfer
->speed_hz
)
2149 xfer
->speed_hz
= master
->max_speed_hz
;
2151 if (master
->max_speed_hz
&&
2152 xfer
->speed_hz
> master
->max_speed_hz
)
2153 xfer
->speed_hz
= master
->max_speed_hz
;
2155 if (__spi_validate_bits_per_word(master
, xfer
->bits_per_word
))
2159 * SPI transfer length should be multiple of SPI word size
2160 * where SPI word size should be power-of-two multiple
2162 if (xfer
->bits_per_word
<= 8)
2164 else if (xfer
->bits_per_word
<= 16)
2169 /* No partial transfers accepted */
2170 if (xfer
->len
% w_size
)
2173 if (xfer
->speed_hz
&& master
->min_speed_hz
&&
2174 xfer
->speed_hz
< master
->min_speed_hz
)
2177 if (xfer
->tx_buf
&& !xfer
->tx_nbits
)
2178 xfer
->tx_nbits
= SPI_NBITS_SINGLE
;
2179 if (xfer
->rx_buf
&& !xfer
->rx_nbits
)
2180 xfer
->rx_nbits
= SPI_NBITS_SINGLE
;
2181 /* check transfer tx/rx_nbits:
2182 * 1. check the value matches one of single, dual and quad
2183 * 2. check tx/rx_nbits match the mode in spi_device
2186 if (xfer
->tx_nbits
!= SPI_NBITS_SINGLE
&&
2187 xfer
->tx_nbits
!= SPI_NBITS_DUAL
&&
2188 xfer
->tx_nbits
!= SPI_NBITS_QUAD
)
2190 if ((xfer
->tx_nbits
== SPI_NBITS_DUAL
) &&
2191 !(spi
->mode
& (SPI_TX_DUAL
| SPI_TX_QUAD
)))
2193 if ((xfer
->tx_nbits
== SPI_NBITS_QUAD
) &&
2194 !(spi
->mode
& SPI_TX_QUAD
))
2197 /* check transfer rx_nbits */
2199 if (xfer
->rx_nbits
!= SPI_NBITS_SINGLE
&&
2200 xfer
->rx_nbits
!= SPI_NBITS_DUAL
&&
2201 xfer
->rx_nbits
!= SPI_NBITS_QUAD
)
2203 if ((xfer
->rx_nbits
== SPI_NBITS_DUAL
) &&
2204 !(spi
->mode
& (SPI_RX_DUAL
| SPI_RX_QUAD
)))
2206 if ((xfer
->rx_nbits
== SPI_NBITS_QUAD
) &&
2207 !(spi
->mode
& SPI_RX_QUAD
))
2212 message
->status
= -EINPROGRESS
;
2217 static int __spi_async(struct spi_device
*spi
, struct spi_message
*message
)
2219 struct spi_master
*master
= spi
->master
;
2223 SPI_STATISTICS_INCREMENT_FIELD(&master
->statistics
, spi_async
);
2224 SPI_STATISTICS_INCREMENT_FIELD(&spi
->statistics
, spi_async
);
2226 trace_spi_message_submit(message
);
2228 return master
->transfer(spi
, message
);
2232 * spi_async - asynchronous SPI transfer
2233 * @spi: device with which data will be exchanged
2234 * @message: describes the data transfers, including completion callback
2235 * Context: any (irqs may be blocked, etc)
2237 * This call may be used in_irq and other contexts which can't sleep,
2238 * as well as from task contexts which can sleep.
2240 * The completion callback is invoked in a context which can't sleep.
2241 * Before that invocation, the value of message->status is undefined.
2242 * When the callback is issued, message->status holds either zero (to
2243 * indicate complete success) or a negative error code. After that
2244 * callback returns, the driver which issued the transfer request may
2245 * deallocate the associated memory; it's no longer in use by any SPI
2246 * core or controller driver code.
2248 * Note that although all messages to a spi_device are handled in
2249 * FIFO order, messages may go to different devices in other orders.
2250 * Some device might be higher priority, or have various "hard" access
2251 * time requirements, for example.
2253 * On detection of any fault during the transfer, processing of
2254 * the entire message is aborted, and the device is deselected.
2255 * Until returning from the associated message completion callback,
2256 * no other spi_message queued to that device will be processed.
2257 * (This rule applies equally to all the synchronous transfer calls,
2258 * which are wrappers around this core asynchronous primitive.)
2260 * Return: zero on success, else a negative error code.
2262 int spi_async(struct spi_device
*spi
, struct spi_message
*message
)
2264 struct spi_master
*master
= spi
->master
;
2266 unsigned long flags
;
2268 ret
= __spi_validate(spi
, message
);
2272 spin_lock_irqsave(&master
->bus_lock_spinlock
, flags
);
2274 if (master
->bus_lock_flag
)
2277 ret
= __spi_async(spi
, message
);
2279 spin_unlock_irqrestore(&master
->bus_lock_spinlock
, flags
);
2283 EXPORT_SYMBOL_GPL(spi_async
);
2286 * spi_async_locked - version of spi_async with exclusive bus usage
2287 * @spi: device with which data will be exchanged
2288 * @message: describes the data transfers, including completion callback
2289 * Context: any (irqs may be blocked, etc)
2291 * This call may be used in_irq and other contexts which can't sleep,
2292 * as well as from task contexts which can sleep.
2294 * The completion callback is invoked in a context which can't sleep.
2295 * Before that invocation, the value of message->status is undefined.
2296 * When the callback is issued, message->status holds either zero (to
2297 * indicate complete success) or a negative error code. After that
2298 * callback returns, the driver which issued the transfer request may
2299 * deallocate the associated memory; it's no longer in use by any SPI
2300 * core or controller driver code.
2302 * Note that although all messages to a spi_device are handled in
2303 * FIFO order, messages may go to different devices in other orders.
2304 * Some device might be higher priority, or have various "hard" access
2305 * time requirements, for example.
2307 * On detection of any fault during the transfer, processing of
2308 * the entire message is aborted, and the device is deselected.
2309 * Until returning from the associated message completion callback,
2310 * no other spi_message queued to that device will be processed.
2311 * (This rule applies equally to all the synchronous transfer calls,
2312 * which are wrappers around this core asynchronous primitive.)
2314 * Return: zero on success, else a negative error code.
2316 int spi_async_locked(struct spi_device
*spi
, struct spi_message
*message
)
2318 struct spi_master
*master
= spi
->master
;
2320 unsigned long flags
;
2322 ret
= __spi_validate(spi
, message
);
2326 spin_lock_irqsave(&master
->bus_lock_spinlock
, flags
);
2328 ret
= __spi_async(spi
, message
);
2330 spin_unlock_irqrestore(&master
->bus_lock_spinlock
, flags
);
2335 EXPORT_SYMBOL_GPL(spi_async_locked
);
2338 /*-------------------------------------------------------------------------*/
2340 /* Utility methods for SPI master protocol drivers, layered on
2341 * top of the core. Some other utility methods are defined as
2345 static void spi_complete(void *arg
)
2350 static int __spi_sync(struct spi_device
*spi
, struct spi_message
*message
,
2353 DECLARE_COMPLETION_ONSTACK(done
);
2355 struct spi_master
*master
= spi
->master
;
2356 unsigned long flags
;
2358 status
= __spi_validate(spi
, message
);
2362 message
->complete
= spi_complete
;
2363 message
->context
= &done
;
2366 SPI_STATISTICS_INCREMENT_FIELD(&master
->statistics
, spi_sync
);
2367 SPI_STATISTICS_INCREMENT_FIELD(&spi
->statistics
, spi_sync
);
2370 mutex_lock(&master
->bus_lock_mutex
);
2372 /* If we're not using the legacy transfer method then we will
2373 * try to transfer in the calling context so special case.
2374 * This code would be less tricky if we could remove the
2375 * support for driver implemented message queues.
2377 if (master
->transfer
== spi_queued_transfer
) {
2378 spin_lock_irqsave(&master
->bus_lock_spinlock
, flags
);
2380 trace_spi_message_submit(message
);
2382 status
= __spi_queued_transfer(spi
, message
, false);
2384 spin_unlock_irqrestore(&master
->bus_lock_spinlock
, flags
);
2386 status
= spi_async_locked(spi
, message
);
2390 mutex_unlock(&master
->bus_lock_mutex
);
2393 /* Push out the messages in the calling context if we
2396 if (master
->transfer
== spi_queued_transfer
) {
2397 SPI_STATISTICS_INCREMENT_FIELD(&master
->statistics
,
2398 spi_sync_immediate
);
2399 SPI_STATISTICS_INCREMENT_FIELD(&spi
->statistics
,
2400 spi_sync_immediate
);
2401 __spi_pump_messages(master
, false);
2404 wait_for_completion(&done
);
2405 status
= message
->status
;
2407 message
->context
= NULL
;
2412 * spi_sync - blocking/synchronous SPI data transfers
2413 * @spi: device with which data will be exchanged
2414 * @message: describes the data transfers
2415 * Context: can sleep
2417 * This call may only be used from a context that may sleep. The sleep
2418 * is non-interruptible, and has no timeout. Low-overhead controller
2419 * drivers may DMA directly into and out of the message buffers.
2421 * Note that the SPI device's chip select is active during the message,
2422 * and then is normally disabled between messages. Drivers for some
2423 * frequently-used devices may want to minimize costs of selecting a chip,
2424 * by leaving it selected in anticipation that the next message will go
2425 * to the same chip. (That may increase power usage.)
2427 * Also, the caller is guaranteeing that the memory associated with the
2428 * message will not be freed before this call returns.
2430 * Return: zero on success, else a negative error code.
2432 int spi_sync(struct spi_device
*spi
, struct spi_message
*message
)
2434 return __spi_sync(spi
, message
, 0);
2436 EXPORT_SYMBOL_GPL(spi_sync
);
2439 * spi_sync_locked - version of spi_sync with exclusive bus usage
2440 * @spi: device with which data will be exchanged
2441 * @message: describes the data transfers
2442 * Context: can sleep
2444 * This call may only be used from a context that may sleep. The sleep
2445 * is non-interruptible, and has no timeout. Low-overhead controller
2446 * drivers may DMA directly into and out of the message buffers.
2448 * This call should be used by drivers that require exclusive access to the
2449 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2450 * be released by a spi_bus_unlock call when the exclusive access is over.
2452 * Return: zero on success, else a negative error code.
2454 int spi_sync_locked(struct spi_device
*spi
, struct spi_message
*message
)
2456 return __spi_sync(spi
, message
, 1);
2458 EXPORT_SYMBOL_GPL(spi_sync_locked
);
2461 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2462 * @master: SPI bus master that should be locked for exclusive bus access
2463 * Context: can sleep
2465 * This call may only be used from a context that may sleep. The sleep
2466 * is non-interruptible, and has no timeout.
2468 * This call should be used by drivers that require exclusive access to the
2469 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2470 * exclusive access is over. Data transfer must be done by spi_sync_locked
2471 * and spi_async_locked calls when the SPI bus lock is held.
2473 * Return: always zero.
2475 int spi_bus_lock(struct spi_master
*master
)
2477 unsigned long flags
;
2479 mutex_lock(&master
->bus_lock_mutex
);
2481 spin_lock_irqsave(&master
->bus_lock_spinlock
, flags
);
2482 master
->bus_lock_flag
= 1;
2483 spin_unlock_irqrestore(&master
->bus_lock_spinlock
, flags
);
2485 /* mutex remains locked until spi_bus_unlock is called */
2489 EXPORT_SYMBOL_GPL(spi_bus_lock
);
2492 * spi_bus_unlock - release the lock for exclusive SPI bus usage
2493 * @master: SPI bus master that was locked for exclusive bus access
2494 * Context: can sleep
2496 * This call may only be used from a context that may sleep. The sleep
2497 * is non-interruptible, and has no timeout.
2499 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2502 * Return: always zero.
2504 int spi_bus_unlock(struct spi_master
*master
)
2506 master
->bus_lock_flag
= 0;
2508 mutex_unlock(&master
->bus_lock_mutex
);
2512 EXPORT_SYMBOL_GPL(spi_bus_unlock
);
2514 /* portable code must never pass more than 32 bytes */
2515 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
2520 * spi_write_then_read - SPI synchronous write followed by read
2521 * @spi: device with which data will be exchanged
2522 * @txbuf: data to be written (need not be dma-safe)
2523 * @n_tx: size of txbuf, in bytes
2524 * @rxbuf: buffer into which data will be read (need not be dma-safe)
2525 * @n_rx: size of rxbuf, in bytes
2526 * Context: can sleep
2528 * This performs a half duplex MicroWire style transaction with the
2529 * device, sending txbuf and then reading rxbuf. The return value
2530 * is zero for success, else a negative errno status code.
2531 * This call may only be used from a context that may sleep.
2533 * Parameters to this routine are always copied using a small buffer;
2534 * portable code should never use this for more than 32 bytes.
2535 * Performance-sensitive or bulk transfer code should instead use
2536 * spi_{async,sync}() calls with dma-safe buffers.
2538 * Return: zero on success, else a negative error code.
2540 int spi_write_then_read(struct spi_device
*spi
,
2541 const void *txbuf
, unsigned n_tx
,
2542 void *rxbuf
, unsigned n_rx
)
2544 static DEFINE_MUTEX(lock
);
2547 struct spi_message message
;
2548 struct spi_transfer x
[2];
2551 /* Use preallocated DMA-safe buffer if we can. We can't avoid
2552 * copying here, (as a pure convenience thing), but we can
2553 * keep heap costs out of the hot path unless someone else is
2554 * using the pre-allocated buffer or the transfer is too large.
2556 if ((n_tx
+ n_rx
) > SPI_BUFSIZ
|| !mutex_trylock(&lock
)) {
2557 local_buf
= kmalloc(max((unsigned)SPI_BUFSIZ
, n_tx
+ n_rx
),
2558 GFP_KERNEL
| GFP_DMA
);
2565 spi_message_init(&message
);
2566 memset(x
, 0, sizeof(x
));
2569 spi_message_add_tail(&x
[0], &message
);
2573 spi_message_add_tail(&x
[1], &message
);
2576 memcpy(local_buf
, txbuf
, n_tx
);
2577 x
[0].tx_buf
= local_buf
;
2578 x
[1].rx_buf
= local_buf
+ n_tx
;
2581 status
= spi_sync(spi
, &message
);
2583 memcpy(rxbuf
, x
[1].rx_buf
, n_rx
);
2585 if (x
[0].tx_buf
== buf
)
2586 mutex_unlock(&lock
);
2592 EXPORT_SYMBOL_GPL(spi_write_then_read
);
2594 /*-------------------------------------------------------------------------*/
2596 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
2597 static int __spi_of_device_match(struct device
*dev
, void *data
)
2599 return dev
->of_node
== data
;
2602 /* must call put_device() when done with returned spi_device device */
2603 static struct spi_device
*of_find_spi_device_by_node(struct device_node
*node
)
2605 struct device
*dev
= bus_find_device(&spi_bus_type
, NULL
, node
,
2606 __spi_of_device_match
);
2607 return dev
? to_spi_device(dev
) : NULL
;
2610 static int __spi_of_master_match(struct device
*dev
, const void *data
)
2612 return dev
->of_node
== data
;
2615 /* the spi masters are not using spi_bus, so we find it with another way */
2616 static struct spi_master
*of_find_spi_master_by_node(struct device_node
*node
)
2620 dev
= class_find_device(&spi_master_class
, NULL
, node
,
2621 __spi_of_master_match
);
2625 /* reference got in class_find_device */
2626 return container_of(dev
, struct spi_master
, dev
);
2629 static int of_spi_notify(struct notifier_block
*nb
, unsigned long action
,
2632 struct of_reconfig_data
*rd
= arg
;
2633 struct spi_master
*master
;
2634 struct spi_device
*spi
;
2636 switch (of_reconfig_get_state_change(action
, arg
)) {
2637 case OF_RECONFIG_CHANGE_ADD
:
2638 master
= of_find_spi_master_by_node(rd
->dn
->parent
);
2640 return NOTIFY_OK
; /* not for us */
2642 spi
= of_register_spi_device(master
, rd
->dn
);
2643 put_device(&master
->dev
);
2646 pr_err("%s: failed to create for '%s'\n",
2647 __func__
, rd
->dn
->full_name
);
2648 return notifier_from_errno(PTR_ERR(spi
));
2652 case OF_RECONFIG_CHANGE_REMOVE
:
2653 /* find our device by node */
2654 spi
= of_find_spi_device_by_node(rd
->dn
);
2656 return NOTIFY_OK
; /* no? not meant for us */
2658 /* unregister takes one ref away */
2659 spi_unregister_device(spi
);
2661 /* and put the reference of the find */
2662 put_device(&spi
->dev
);
2669 static struct notifier_block spi_of_notifier
= {
2670 .notifier_call
= of_spi_notify
,
2672 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2673 extern struct notifier_block spi_of_notifier
;
2674 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2676 static int __init
spi_init(void)
2680 buf
= kmalloc(SPI_BUFSIZ
, GFP_KERNEL
);
2686 status
= bus_register(&spi_bus_type
);
2690 status
= class_register(&spi_master_class
);
2694 if (IS_ENABLED(CONFIG_OF_DYNAMIC
))
2695 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier
));
2700 bus_unregister(&spi_bus_type
);
2708 /* board_info is normally registered in arch_initcall(),
2709 * but even essential drivers wait till later
2711 * REVISIT only boardinfo really needs static linking. the rest (device and
2712 * driver registration) _could_ be dynamically linked (modular) ... costs
2713 * include needing to have boardinfo data structures be much more public.
2715 postcore_initcall(spi_init
);