1 /* ePAPR hypervisor byte channel device driver
3 * Copyright 2009-2011 Freescale Semiconductor, Inc.
5 * Author: Timur Tabi <timur@freescale.com>
7 * This file is licensed under the terms of the GNU General Public License
8 * version 2. This program is licensed "as is" without any warranty of any
9 * kind, whether express or implied.
11 * This driver support three distinct interfaces, all of which are related to
12 * ePAPR hypervisor byte channels.
14 * 1) An early-console (udbg) driver. This provides early console output
15 * through a byte channel. The byte channel handle must be specified in a
18 * 2) A normal console driver. Output is sent to the byte channel designated
19 * for stdout in the device tree. The console driver is for handling kernel
22 * 3) A tty driver, which is used to handle user-space input and output. The
23 * byte channel used for the console is designated as the default tty.
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/slab.h>
29 #include <linux/err.h>
30 #include <linux/interrupt.h>
32 #include <linux/poll.h>
33 #include <asm/epapr_hcalls.h>
35 #include <linux/of_irq.h>
36 #include <linux/platform_device.h>
37 #include <linux/cdev.h>
38 #include <linux/console.h>
39 #include <linux/tty.h>
40 #include <linux/tty_flip.h>
41 #include <linux/circ_buf.h>
44 /* The size of the transmit circular buffer. This must be a power of two. */
47 /* Per-byte channel private data */
55 spinlock_t lock
; /* lock for transmit buffer */
56 unsigned char buf
[BUF_SIZE
]; /* transmit circular buffer */
57 unsigned int head
; /* circular buffer head */
58 unsigned int tail
; /* circular buffer tail */
60 int tx_irq_enabled
; /* true == TX interrupt is enabled */
63 /* Array of byte channel objects */
64 static struct ehv_bc_data
*bcs
;
66 /* Byte channel handle for stdout (and stdin), taken from device tree */
67 static unsigned int stdout_bc
;
69 /* Virtual IRQ for the byte channel handle for stdin, taken from device tree */
70 static unsigned int stdout_irq
;
72 /**************************** SUPPORT FUNCTIONS ****************************/
75 * Enable the transmit interrupt
77 * Unlike a serial device, byte channels have no mechanism for disabling their
78 * own receive or transmit interrupts. To emulate that feature, we toggle
79 * the IRQ in the kernel.
81 * We cannot just blindly call enable_irq() or disable_irq(), because these
82 * calls are reference counted. This means that we cannot call enable_irq()
83 * if interrupts are already enabled. This can happen in two situations:
85 * 1. The tty layer makes two back-to-back calls to ehv_bc_tty_write()
86 * 2. A transmit interrupt occurs while executing ehv_bc_tx_dequeue()
88 * To work around this, we keep a flag to tell us if the IRQ is enabled or not.
90 static void enable_tx_interrupt(struct ehv_bc_data
*bc
)
92 if (!bc
->tx_irq_enabled
) {
93 enable_irq(bc
->tx_irq
);
94 bc
->tx_irq_enabled
= 1;
98 static void disable_tx_interrupt(struct ehv_bc_data
*bc
)
100 if (bc
->tx_irq_enabled
) {
101 disable_irq_nosync(bc
->tx_irq
);
102 bc
->tx_irq_enabled
= 0;
107 * find the byte channel handle to use for the console
109 * The byte channel to be used for the console is specified via a "stdout"
110 * property in the /chosen node.
112 static int find_console_handle(void)
114 struct device_node
*np
= of_stdout
;
115 const uint32_t *iprop
;
117 /* We don't care what the aliased node is actually called. We only
118 * care if it's compatible with "epapr,hv-byte-channel", because that
119 * indicates that it's a byte channel node.
121 if (!np
|| !of_device_is_compatible(np
, "epapr,hv-byte-channel"))
124 stdout_irq
= irq_of_parse_and_map(np
, 0);
125 if (stdout_irq
== NO_IRQ
) {
126 pr_err("ehv-bc: no 'interrupts' property in %s node\n", np
->full_name
);
131 * The 'hv-handle' property contains the handle for this byte channel.
133 iprop
= of_get_property(np
, "hv-handle", NULL
);
135 pr_err("ehv-bc: no 'hv-handle' property in %s node\n",
139 stdout_bc
= be32_to_cpu(*iprop
);
143 /*************************** EARLY CONSOLE DRIVER ***************************/
145 #ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC
148 * send a byte to a byte channel, wait if necessary
150 * This function sends a byte to a byte channel, and it waits and
151 * retries if the byte channel is full. It returns if the character
152 * has been sent, or if some error has occurred.
155 static void byte_channel_spin_send(const char data
)
161 ret
= ev_byte_channel_send(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE
,
163 } while (ret
== EV_EAGAIN
);
167 * The udbg subsystem calls this function to display a single character.
168 * We convert CR to a CR/LF.
170 static void ehv_bc_udbg_putc(char c
)
173 byte_channel_spin_send('\r');
175 byte_channel_spin_send(c
);
179 * early console initialization
181 * PowerPC kernels support an early printk console, also known as udbg.
182 * This function must be called via the ppc_md.init_early function pointer.
183 * At this point, the device tree has been unflattened, so we can obtain the
184 * byte channel handle for stdout.
186 * We only support displaying of characters (putc). We do not support
189 void __init
udbg_init_ehv_bc(void)
191 unsigned int rx_count
, tx_count
;
194 /* Verify the byte channel handle */
195 ret
= ev_byte_channel_poll(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE
,
196 &rx_count
, &tx_count
);
200 udbg_putc
= ehv_bc_udbg_putc
;
201 register_early_udbg_console();
203 udbg_printf("ehv-bc: early console using byte channel handle %u\n",
204 CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE
);
209 /****************************** CONSOLE DRIVER ******************************/
211 static struct tty_driver
*ehv_bc_driver
;
214 * Byte channel console sending worker function.
216 * For consoles, if the output buffer is full, we should just spin until it
219 static int ehv_bc_console_byte_channel_send(unsigned int handle
, const char *s
,
226 len
= min_t(unsigned int, count
, EV_BYTE_CHANNEL_MAX_BYTES
);
228 ret
= ev_byte_channel_send(handle
, &len
, s
);
229 } while (ret
== EV_EAGAIN
);
238 * write a string to the console
240 * This function gets called to write a string from the kernel, typically from
241 * a printk(). This function spins until all data is written.
243 * We copy the data to a temporary buffer because we need to insert a \r in
244 * front of every \n. It's more efficient to copy the data to the buffer than
245 * it is to make multiple hcalls for each character or each newline.
247 static void ehv_bc_console_write(struct console
*co
, const char *s
,
250 char s2
[EV_BYTE_CHANNEL_MAX_BYTES
];
251 unsigned int i
, j
= 0;
254 for (i
= 0; i
< count
; i
++) {
261 if (j
>= (EV_BYTE_CHANNEL_MAX_BYTES
- 1)) {
262 if (ehv_bc_console_byte_channel_send(stdout_bc
, s2
, j
))
269 ehv_bc_console_byte_channel_send(stdout_bc
, s2
, j
);
273 * When /dev/console is opened, the kernel iterates the console list looking
274 * for one with ->device and then calls that method. On success, it expects
275 * the passed-in int* to contain the minor number to use.
277 static struct tty_driver
*ehv_bc_console_device(struct console
*co
, int *index
)
281 return ehv_bc_driver
;
284 static struct console ehv_bc_console
= {
286 .write
= ehv_bc_console_write
,
287 .device
= ehv_bc_console_device
,
288 .flags
= CON_PRINTBUFFER
| CON_ENABLED
,
292 * Console initialization
294 * This is the first function that is called after the device tree is
295 * available, so here is where we determine the byte channel handle and IRQ for
296 * stdout/stdin, even though that information is used by the tty and character
299 static int __init
ehv_bc_console_init(void)
301 if (!find_console_handle()) {
302 pr_debug("ehv-bc: stdout is not a byte channel\n");
306 #ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC
307 /* Print a friendly warning if the user chose the wrong byte channel
310 if (stdout_bc
!= CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE
)
311 pr_warn("ehv-bc: udbg handle %u is not the stdout handle\n",
312 CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE
);
315 /* add_preferred_console() must be called before register_console(),
316 otherwise it won't work. However, we don't want to enumerate all the
317 byte channels here, either, since we only care about one. */
319 add_preferred_console(ehv_bc_console
.name
, ehv_bc_console
.index
, NULL
);
320 register_console(&ehv_bc_console
);
322 pr_info("ehv-bc: registered console driver for byte channel %u\n",
327 console_initcall(ehv_bc_console_init
);
329 /******************************** TTY DRIVER ********************************/
332 * byte channel receive interupt handler
334 * This ISR is called whenever data is available on a byte channel.
336 static irqreturn_t
ehv_bc_tty_rx_isr(int irq
, void *data
)
338 struct ehv_bc_data
*bc
= data
;
339 unsigned int rx_count
, tx_count
, len
;
341 char buffer
[EV_BYTE_CHANNEL_MAX_BYTES
];
344 /* Find out how much data needs to be read, and then ask the TTY layer
345 * if it can handle that much. We want to ensure that every byte we
346 * read from the byte channel will be accepted by the TTY layer.
348 ev_byte_channel_poll(bc
->handle
, &rx_count
, &tx_count
);
349 count
= tty_buffer_request_room(&bc
->port
, rx_count
);
351 /* 'count' is the maximum amount of data the TTY layer can accept at
352 * this time. However, during testing, I was never able to get 'count'
353 * to be less than 'rx_count'. I'm not sure whether I'm calling it
358 len
= min_t(unsigned int, count
, sizeof(buffer
));
360 /* Read some data from the byte channel. This function will
361 * never return more than EV_BYTE_CHANNEL_MAX_BYTES bytes.
363 ev_byte_channel_receive(bc
->handle
, &len
, buffer
);
365 /* 'len' is now the amount of data that's been received. 'len'
366 * can't be zero, and most likely it's equal to one.
369 /* Pass the received data to the tty layer. */
370 ret
= tty_insert_flip_string(&bc
->port
, buffer
, len
);
372 /* 'ret' is the number of bytes that the TTY layer accepted.
373 * If it's not equal to 'len', then it means the buffer is
374 * full, which should never happen. If it does happen, we can
375 * exit gracefully, but we drop the last 'len - ret' characters
376 * that we read from the byte channel.
384 /* Tell the tty layer that we're done. */
385 tty_flip_buffer_push(&bc
->port
);
391 * dequeue the transmit buffer to the hypervisor
393 * This function, which can be called in interrupt context, dequeues as much
394 * data as possible from the transmit buffer to the byte channel.
396 static void ehv_bc_tx_dequeue(struct ehv_bc_data
*bc
)
399 unsigned int len
, ret
;
403 spin_lock_irqsave(&bc
->lock
, flags
);
404 len
= min_t(unsigned int,
405 CIRC_CNT_TO_END(bc
->head
, bc
->tail
, BUF_SIZE
),
406 EV_BYTE_CHANNEL_MAX_BYTES
);
408 ret
= ev_byte_channel_send(bc
->handle
, &len
, bc
->buf
+ bc
->tail
);
410 /* 'len' is valid only if the return code is 0 or EV_EAGAIN */
411 if (!ret
|| (ret
== EV_EAGAIN
))
412 bc
->tail
= (bc
->tail
+ len
) & (BUF_SIZE
- 1);
414 count
= CIRC_CNT(bc
->head
, bc
->tail
, BUF_SIZE
);
415 spin_unlock_irqrestore(&bc
->lock
, flags
);
416 } while (count
&& !ret
);
418 spin_lock_irqsave(&bc
->lock
, flags
);
419 if (CIRC_CNT(bc
->head
, bc
->tail
, BUF_SIZE
))
421 * If we haven't emptied the buffer, then enable the TX IRQ.
422 * We'll get an interrupt when there's more room in the
423 * hypervisor's output buffer.
425 enable_tx_interrupt(bc
);
427 disable_tx_interrupt(bc
);
428 spin_unlock_irqrestore(&bc
->lock
, flags
);
432 * byte channel transmit interupt handler
434 * This ISR is called whenever space becomes available for transmitting
435 * characters on a byte channel.
437 static irqreturn_t
ehv_bc_tty_tx_isr(int irq
, void *data
)
439 struct ehv_bc_data
*bc
= data
;
441 ehv_bc_tx_dequeue(bc
);
442 tty_port_tty_wakeup(&bc
->port
);
448 * This function is called when the tty layer has data for us send. We store
449 * the data first in a circular buffer, and then dequeue as much of that data
452 * We don't need to worry about whether there is enough room in the buffer for
453 * all the data. The purpose of ehv_bc_tty_write_room() is to tell the tty
454 * layer how much data it can safely send to us. We guarantee that
455 * ehv_bc_tty_write_room() will never lie, so the tty layer will never send us
458 static int ehv_bc_tty_write(struct tty_struct
*ttys
, const unsigned char *s
,
461 struct ehv_bc_data
*bc
= ttys
->driver_data
;
464 unsigned int written
= 0;
467 spin_lock_irqsave(&bc
->lock
, flags
);
468 len
= CIRC_SPACE_TO_END(bc
->head
, bc
->tail
, BUF_SIZE
);
472 memcpy(bc
->buf
+ bc
->head
, s
, len
);
473 bc
->head
= (bc
->head
+ len
) & (BUF_SIZE
- 1);
475 spin_unlock_irqrestore(&bc
->lock
, flags
);
484 ehv_bc_tx_dequeue(bc
);
490 * This function can be called multiple times for a given tty_struct, which is
491 * why we initialize bc->ttys in ehv_bc_tty_port_activate() instead.
493 * The tty layer will still call this function even if the device was not
494 * registered (i.e. tty_register_device() was not called). This happens
495 * because tty_register_device() is optional and some legacy drivers don't
496 * use it. So we need to check for that.
498 static int ehv_bc_tty_open(struct tty_struct
*ttys
, struct file
*filp
)
500 struct ehv_bc_data
*bc
= &bcs
[ttys
->index
];
505 return tty_port_open(&bc
->port
, ttys
, filp
);
509 * Amazingly, if ehv_bc_tty_open() returns an error code, the tty layer will
510 * still call this function to close the tty device. So we can't assume that
511 * the tty port has been initialized.
513 static void ehv_bc_tty_close(struct tty_struct
*ttys
, struct file
*filp
)
515 struct ehv_bc_data
*bc
= &bcs
[ttys
->index
];
518 tty_port_close(&bc
->port
, ttys
, filp
);
522 * Return the amount of space in the output buffer
524 * This is actually a contract between the driver and the tty layer outlining
525 * how much write room the driver can guarantee will be sent OR BUFFERED. This
526 * driver MUST honor the return value.
528 static int ehv_bc_tty_write_room(struct tty_struct
*ttys
)
530 struct ehv_bc_data
*bc
= ttys
->driver_data
;
534 spin_lock_irqsave(&bc
->lock
, flags
);
535 count
= CIRC_SPACE(bc
->head
, bc
->tail
, BUF_SIZE
);
536 spin_unlock_irqrestore(&bc
->lock
, flags
);
542 * Stop sending data to the tty layer
544 * This function is called when the tty layer's input buffers are getting full,
545 * so the driver should stop sending it data. The easiest way to do this is to
546 * disable the RX IRQ, which will prevent ehv_bc_tty_rx_isr() from being
549 * The hypervisor will continue to queue up any incoming data. If there is any
550 * data in the queue when the RX interrupt is enabled, we'll immediately get an
553 static void ehv_bc_tty_throttle(struct tty_struct
*ttys
)
555 struct ehv_bc_data
*bc
= ttys
->driver_data
;
557 disable_irq(bc
->rx_irq
);
561 * Resume sending data to the tty layer
563 * This function is called after previously calling ehv_bc_tty_throttle(). The
564 * tty layer's input buffers now have more room, so the driver can resume
567 static void ehv_bc_tty_unthrottle(struct tty_struct
*ttys
)
569 struct ehv_bc_data
*bc
= ttys
->driver_data
;
571 /* If there is any data in the queue when the RX interrupt is enabled,
572 * we'll immediately get an RX interrupt.
574 enable_irq(bc
->rx_irq
);
577 static void ehv_bc_tty_hangup(struct tty_struct
*ttys
)
579 struct ehv_bc_data
*bc
= ttys
->driver_data
;
581 ehv_bc_tx_dequeue(bc
);
582 tty_port_hangup(&bc
->port
);
586 * TTY driver operations
588 * If we could ask the hypervisor how much data is still in the TX buffer, or
589 * at least how big the TX buffers are, then we could implement the
590 * .wait_until_sent and .chars_in_buffer functions.
592 static const struct tty_operations ehv_bc_ops
= {
593 .open
= ehv_bc_tty_open
,
594 .close
= ehv_bc_tty_close
,
595 .write
= ehv_bc_tty_write
,
596 .write_room
= ehv_bc_tty_write_room
,
597 .throttle
= ehv_bc_tty_throttle
,
598 .unthrottle
= ehv_bc_tty_unthrottle
,
599 .hangup
= ehv_bc_tty_hangup
,
603 * initialize the TTY port
605 * This function will only be called once, no matter how many times
606 * ehv_bc_tty_open() is called. That's why we register the ISR here, and also
607 * why we initialize tty_struct-related variables here.
609 static int ehv_bc_tty_port_activate(struct tty_port
*port
,
610 struct tty_struct
*ttys
)
612 struct ehv_bc_data
*bc
= container_of(port
, struct ehv_bc_data
, port
);
615 ttys
->driver_data
= bc
;
617 ret
= request_irq(bc
->rx_irq
, ehv_bc_tty_rx_isr
, 0, "ehv-bc", bc
);
619 dev_err(bc
->dev
, "could not request rx irq %u (ret=%i)\n",
624 /* request_irq also enables the IRQ */
625 bc
->tx_irq_enabled
= 1;
627 ret
= request_irq(bc
->tx_irq
, ehv_bc_tty_tx_isr
, 0, "ehv-bc", bc
);
629 dev_err(bc
->dev
, "could not request tx irq %u (ret=%i)\n",
631 free_irq(bc
->rx_irq
, bc
);
635 /* The TX IRQ is enabled only when we can't write all the data to the
636 * byte channel at once, so by default it's disabled.
638 disable_tx_interrupt(bc
);
643 static void ehv_bc_tty_port_shutdown(struct tty_port
*port
)
645 struct ehv_bc_data
*bc
= container_of(port
, struct ehv_bc_data
, port
);
647 free_irq(bc
->tx_irq
, bc
);
648 free_irq(bc
->rx_irq
, bc
);
651 static const struct tty_port_operations ehv_bc_tty_port_ops
= {
652 .activate
= ehv_bc_tty_port_activate
,
653 .shutdown
= ehv_bc_tty_port_shutdown
,
656 static int ehv_bc_tty_probe(struct platform_device
*pdev
)
658 struct device_node
*np
= pdev
->dev
.of_node
;
659 struct ehv_bc_data
*bc
;
660 const uint32_t *iprop
;
663 static unsigned int index
= 1;
666 iprop
= of_get_property(np
, "hv-handle", NULL
);
668 dev_err(&pdev
->dev
, "no 'hv-handle' property in %s node\n",
673 /* We already told the console layer that the index for the console
674 * device is zero, so we need to make sure that we use that index when
675 * we probe the console byte channel node.
677 handle
= be32_to_cpu(*iprop
);
678 i
= (handle
== stdout_bc
) ? 0 : index
++;
684 spin_lock_init(&bc
->lock
);
686 bc
->rx_irq
= irq_of_parse_and_map(np
, 0);
687 bc
->tx_irq
= irq_of_parse_and_map(np
, 1);
688 if ((bc
->rx_irq
== NO_IRQ
) || (bc
->tx_irq
== NO_IRQ
)) {
689 dev_err(&pdev
->dev
, "no 'interrupts' property in %s node\n",
695 tty_port_init(&bc
->port
);
696 bc
->port
.ops
= &ehv_bc_tty_port_ops
;
698 bc
->dev
= tty_port_register_device(&bc
->port
, ehv_bc_driver
, i
,
700 if (IS_ERR(bc
->dev
)) {
701 ret
= PTR_ERR(bc
->dev
);
702 dev_err(&pdev
->dev
, "could not register tty (ret=%i)\n", ret
);
706 dev_set_drvdata(&pdev
->dev
, bc
);
708 dev_info(&pdev
->dev
, "registered /dev/%s%u for byte channel %u\n",
709 ehv_bc_driver
->name
, i
, bc
->handle
);
714 tty_port_destroy(&bc
->port
);
715 irq_dispose_mapping(bc
->tx_irq
);
716 irq_dispose_mapping(bc
->rx_irq
);
718 memset(bc
, 0, sizeof(struct ehv_bc_data
));
722 static int ehv_bc_tty_remove(struct platform_device
*pdev
)
724 struct ehv_bc_data
*bc
= dev_get_drvdata(&pdev
->dev
);
726 tty_unregister_device(ehv_bc_driver
, bc
- bcs
);
728 tty_port_destroy(&bc
->port
);
729 irq_dispose_mapping(bc
->tx_irq
);
730 irq_dispose_mapping(bc
->rx_irq
);
735 static const struct of_device_id ehv_bc_tty_of_ids
[] = {
736 { .compatible
= "epapr,hv-byte-channel" },
740 static struct platform_driver ehv_bc_tty_driver
= {
743 .of_match_table
= ehv_bc_tty_of_ids
,
745 .probe
= ehv_bc_tty_probe
,
746 .remove
= ehv_bc_tty_remove
,
750 * ehv_bc_init - ePAPR hypervisor byte channel driver initialization
752 * This function is called when this module is loaded.
754 static int __init
ehv_bc_init(void)
756 struct device_node
*np
;
757 unsigned int count
= 0; /* Number of elements in bcs[] */
760 pr_info("ePAPR hypervisor byte channel driver\n");
762 /* Count the number of byte channels */
763 for_each_compatible_node(np
, NULL
, "epapr,hv-byte-channel")
769 /* The array index of an element in bcs[] is the same as the tty index
770 * for that element. If you know the address of an element in the
771 * array, then you can use pointer math (e.g. "bc - bcs") to get its
774 bcs
= kzalloc(count
* sizeof(struct ehv_bc_data
), GFP_KERNEL
);
778 ehv_bc_driver
= alloc_tty_driver(count
);
779 if (!ehv_bc_driver
) {
784 ehv_bc_driver
->driver_name
= "ehv-bc";
785 ehv_bc_driver
->name
= ehv_bc_console
.name
;
786 ehv_bc_driver
->type
= TTY_DRIVER_TYPE_CONSOLE
;
787 ehv_bc_driver
->subtype
= SYSTEM_TYPE_CONSOLE
;
788 ehv_bc_driver
->init_termios
= tty_std_termios
;
789 ehv_bc_driver
->flags
= TTY_DRIVER_REAL_RAW
| TTY_DRIVER_DYNAMIC_DEV
;
790 tty_set_operations(ehv_bc_driver
, &ehv_bc_ops
);
792 ret
= tty_register_driver(ehv_bc_driver
);
794 pr_err("ehv-bc: could not register tty driver (ret=%i)\n", ret
);
798 ret
= platform_driver_register(&ehv_bc_tty_driver
);
800 pr_err("ehv-bc: could not register platform driver (ret=%i)\n",
809 tty_unregister_driver(ehv_bc_driver
);
810 put_tty_driver(ehv_bc_driver
);
820 * ehv_bc_exit - ePAPR hypervisor byte channel driver termination
822 * This function is called when this driver is unloaded.
824 static void __exit
ehv_bc_exit(void)
826 platform_driver_unregister(&ehv_bc_tty_driver
);
827 tty_unregister_driver(ehv_bc_driver
);
828 put_tty_driver(ehv_bc_driver
);
832 module_init(ehv_bc_init
);
833 module_exit(ehv_bc_exit
);
835 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
836 MODULE_DESCRIPTION("ePAPR hypervisor byte channel driver");
837 MODULE_LICENSE("GPL v2");