2 * (C) Copyright Linus Torvalds 1999
3 * (C) Copyright Johannes Erdfelt 1999-2001
4 * (C) Copyright Andreas Gal 1999
5 * (C) Copyright Gregory P. Smith 1999
6 * (C) Copyright Deti Fliegl 1999
7 * (C) Copyright Randy Dunlap 2000
8 * (C) Copyright David Brownell 2000-2002
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 #include <linux/bcd.h>
26 #include <linux/module.h>
27 #include <linux/version.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/completion.h>
31 #include <linux/utsname.h>
34 #include <linux/device.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/mutex.h>
38 #include <asm/byteorder.h>
39 #include <asm/unaligned.h>
40 #include <linux/platform_device.h>
41 #include <linux/workqueue.h>
42 #include <linux/pm_runtime.h>
43 #include <linux/types.h>
45 #include <linux/phy/phy.h>
46 #include <linux/usb.h>
47 #include <linux/usb/hcd.h>
48 #include <linux/usb/phy.h>
53 /*-------------------------------------------------------------------------*/
56 * USB Host Controller Driver framework
58 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
59 * HCD-specific behaviors/bugs.
61 * This does error checks, tracks devices and urbs, and delegates to a
62 * "hc_driver" only for code (and data) that really needs to know about
63 * hardware differences. That includes root hub registers, i/o queues,
64 * and so on ... but as little else as possible.
66 * Shared code includes most of the "root hub" code (these are emulated,
67 * though each HC's hardware works differently) and PCI glue, plus request
68 * tracking overhead. The HCD code should only block on spinlocks or on
69 * hardware handshaking; blocking on software events (such as other kernel
70 * threads releasing resources, or completing actions) is all generic.
72 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
73 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
74 * only by the hub driver ... and that neither should be seen or used by
75 * usb client device drivers.
77 * Contributors of ideas or unattributed patches include: David Brownell,
78 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
81 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
82 * associated cleanup. "usb_hcd" still != "usb_bus".
83 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
86 /*-------------------------------------------------------------------------*/
88 /* Keep track of which host controller drivers are loaded */
89 unsigned long usb_hcds_loaded
;
90 EXPORT_SYMBOL_GPL(usb_hcds_loaded
);
92 /* host controllers we manage */
93 LIST_HEAD (usb_bus_list
);
94 EXPORT_SYMBOL_GPL (usb_bus_list
);
96 /* used when allocating bus numbers */
98 static DECLARE_BITMAP(busmap
, USB_MAXBUS
);
100 /* used when updating list of hcds */
101 DEFINE_MUTEX(usb_bus_list_lock
); /* exported only for usbfs */
102 EXPORT_SYMBOL_GPL (usb_bus_list_lock
);
104 /* used for controlling access to virtual root hubs */
105 static DEFINE_SPINLOCK(hcd_root_hub_lock
);
107 /* used when updating an endpoint's URB list */
108 static DEFINE_SPINLOCK(hcd_urb_list_lock
);
110 /* used to protect against unlinking URBs after the device is gone */
111 static DEFINE_SPINLOCK(hcd_urb_unlink_lock
);
113 /* wait queue for synchronous unlinks */
114 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue
);
116 static inline int is_root_hub(struct usb_device
*udev
)
118 return (udev
->parent
== NULL
);
121 /*-------------------------------------------------------------------------*/
124 * Sharable chunks of root hub code.
127 /*-------------------------------------------------------------------------*/
128 #define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
129 #define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
131 /* usb 3.0 root hub device descriptor */
132 static const u8 usb3_rh_dev_descriptor
[18] = {
133 0x12, /* __u8 bLength; */
134 USB_DT_DEVICE
, /* __u8 bDescriptorType; Device */
135 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
137 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
138 0x00, /* __u8 bDeviceSubClass; */
139 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
140 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
142 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
143 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
144 KERNEL_VER
, KERNEL_REL
, /* __le16 bcdDevice */
146 0x03, /* __u8 iManufacturer; */
147 0x02, /* __u8 iProduct; */
148 0x01, /* __u8 iSerialNumber; */
149 0x01 /* __u8 bNumConfigurations; */
152 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */
153 static const u8 usb25_rh_dev_descriptor
[18] = {
154 0x12, /* __u8 bLength; */
155 USB_DT_DEVICE
, /* __u8 bDescriptorType; Device */
156 0x50, 0x02, /* __le16 bcdUSB; v2.5 */
158 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
159 0x00, /* __u8 bDeviceSubClass; */
160 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
161 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
163 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
164 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
165 KERNEL_VER
, KERNEL_REL
, /* __le16 bcdDevice */
167 0x03, /* __u8 iManufacturer; */
168 0x02, /* __u8 iProduct; */
169 0x01, /* __u8 iSerialNumber; */
170 0x01 /* __u8 bNumConfigurations; */
173 /* usb 2.0 root hub device descriptor */
174 static const u8 usb2_rh_dev_descriptor
[18] = {
175 0x12, /* __u8 bLength; */
176 USB_DT_DEVICE
, /* __u8 bDescriptorType; Device */
177 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
179 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
180 0x00, /* __u8 bDeviceSubClass; */
181 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
182 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
184 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
185 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
186 KERNEL_VER
, KERNEL_REL
, /* __le16 bcdDevice */
188 0x03, /* __u8 iManufacturer; */
189 0x02, /* __u8 iProduct; */
190 0x01, /* __u8 iSerialNumber; */
191 0x01 /* __u8 bNumConfigurations; */
194 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
196 /* usb 1.1 root hub device descriptor */
197 static const u8 usb11_rh_dev_descriptor
[18] = {
198 0x12, /* __u8 bLength; */
199 USB_DT_DEVICE
, /* __u8 bDescriptorType; Device */
200 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
202 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
203 0x00, /* __u8 bDeviceSubClass; */
204 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
205 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
207 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
208 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
209 KERNEL_VER
, KERNEL_REL
, /* __le16 bcdDevice */
211 0x03, /* __u8 iManufacturer; */
212 0x02, /* __u8 iProduct; */
213 0x01, /* __u8 iSerialNumber; */
214 0x01 /* __u8 bNumConfigurations; */
218 /*-------------------------------------------------------------------------*/
220 /* Configuration descriptors for our root hubs */
222 static const u8 fs_rh_config_descriptor
[] = {
224 /* one configuration */
225 0x09, /* __u8 bLength; */
226 USB_DT_CONFIG
, /* __u8 bDescriptorType; Configuration */
227 0x19, 0x00, /* __le16 wTotalLength; */
228 0x01, /* __u8 bNumInterfaces; (1) */
229 0x01, /* __u8 bConfigurationValue; */
230 0x00, /* __u8 iConfiguration; */
231 0xc0, /* __u8 bmAttributes;
236 0x00, /* __u8 MaxPower; */
239 * USB 2.0, single TT organization (mandatory):
240 * one interface, protocol 0
242 * USB 2.0, multiple TT organization (optional):
243 * two interfaces, protocols 1 (like single TT)
244 * and 2 (multiple TT mode) ... config is
250 0x09, /* __u8 if_bLength; */
251 USB_DT_INTERFACE
, /* __u8 if_bDescriptorType; Interface */
252 0x00, /* __u8 if_bInterfaceNumber; */
253 0x00, /* __u8 if_bAlternateSetting; */
254 0x01, /* __u8 if_bNumEndpoints; */
255 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
256 0x00, /* __u8 if_bInterfaceSubClass; */
257 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
258 0x00, /* __u8 if_iInterface; */
260 /* one endpoint (status change endpoint) */
261 0x07, /* __u8 ep_bLength; */
262 USB_DT_ENDPOINT
, /* __u8 ep_bDescriptorType; Endpoint */
263 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
264 0x03, /* __u8 ep_bmAttributes; Interrupt */
265 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
266 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
269 static const u8 hs_rh_config_descriptor
[] = {
271 /* one configuration */
272 0x09, /* __u8 bLength; */
273 USB_DT_CONFIG
, /* __u8 bDescriptorType; Configuration */
274 0x19, 0x00, /* __le16 wTotalLength; */
275 0x01, /* __u8 bNumInterfaces; (1) */
276 0x01, /* __u8 bConfigurationValue; */
277 0x00, /* __u8 iConfiguration; */
278 0xc0, /* __u8 bmAttributes;
283 0x00, /* __u8 MaxPower; */
286 * USB 2.0, single TT organization (mandatory):
287 * one interface, protocol 0
289 * USB 2.0, multiple TT organization (optional):
290 * two interfaces, protocols 1 (like single TT)
291 * and 2 (multiple TT mode) ... config is
297 0x09, /* __u8 if_bLength; */
298 USB_DT_INTERFACE
, /* __u8 if_bDescriptorType; Interface */
299 0x00, /* __u8 if_bInterfaceNumber; */
300 0x00, /* __u8 if_bAlternateSetting; */
301 0x01, /* __u8 if_bNumEndpoints; */
302 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
303 0x00, /* __u8 if_bInterfaceSubClass; */
304 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
305 0x00, /* __u8 if_iInterface; */
307 /* one endpoint (status change endpoint) */
308 0x07, /* __u8 ep_bLength; */
309 USB_DT_ENDPOINT
, /* __u8 ep_bDescriptorType; Endpoint */
310 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
311 0x03, /* __u8 ep_bmAttributes; Interrupt */
312 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
313 * see hub.c:hub_configure() for details. */
314 (USB_MAXCHILDREN
+ 1 + 7) / 8, 0x00,
315 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
318 static const u8 ss_rh_config_descriptor
[] = {
319 /* one configuration */
320 0x09, /* __u8 bLength; */
321 USB_DT_CONFIG
, /* __u8 bDescriptorType; Configuration */
322 0x1f, 0x00, /* __le16 wTotalLength; */
323 0x01, /* __u8 bNumInterfaces; (1) */
324 0x01, /* __u8 bConfigurationValue; */
325 0x00, /* __u8 iConfiguration; */
326 0xc0, /* __u8 bmAttributes;
331 0x00, /* __u8 MaxPower; */
334 0x09, /* __u8 if_bLength; */
335 USB_DT_INTERFACE
, /* __u8 if_bDescriptorType; Interface */
336 0x00, /* __u8 if_bInterfaceNumber; */
337 0x00, /* __u8 if_bAlternateSetting; */
338 0x01, /* __u8 if_bNumEndpoints; */
339 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
340 0x00, /* __u8 if_bInterfaceSubClass; */
341 0x00, /* __u8 if_bInterfaceProtocol; */
342 0x00, /* __u8 if_iInterface; */
344 /* one endpoint (status change endpoint) */
345 0x07, /* __u8 ep_bLength; */
346 USB_DT_ENDPOINT
, /* __u8 ep_bDescriptorType; Endpoint */
347 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
348 0x03, /* __u8 ep_bmAttributes; Interrupt */
349 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
350 * see hub.c:hub_configure() for details. */
351 (USB_MAXCHILDREN
+ 1 + 7) / 8, 0x00,
352 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
354 /* one SuperSpeed endpoint companion descriptor */
355 0x06, /* __u8 ss_bLength */
356 USB_DT_SS_ENDPOINT_COMP
, /* __u8 ss_bDescriptorType; SuperSpeed EP */
358 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
359 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
360 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
363 /* authorized_default behaviour:
364 * -1 is authorized for all devices except wireless (old behaviour)
365 * 0 is unauthorized for all devices
366 * 1 is authorized for all devices
368 static int authorized_default
= -1;
369 module_param(authorized_default
, int, S_IRUGO
|S_IWUSR
);
370 MODULE_PARM_DESC(authorized_default
,
371 "Default USB device authorization: 0 is not authorized, 1 is "
372 "authorized, -1 is authorized except for wireless USB (default, "
374 /*-------------------------------------------------------------------------*/
377 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
378 * @s: Null-terminated ASCII (actually ISO-8859-1) string
379 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
380 * @len: Length (in bytes; may be odd) of descriptor buffer.
382 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
386 * USB String descriptors can contain at most 126 characters; input
387 * strings longer than that are truncated.
390 ascii2desc(char const *s
, u8
*buf
, unsigned len
)
392 unsigned n
, t
= 2 + 2*strlen(s
);
395 t
= 254; /* Longest possible UTF string descriptor */
399 t
+= USB_DT_STRING
<< 8; /* Now t is first 16 bits to store */
407 t
= (unsigned char)*s
++;
413 * rh_string() - provides string descriptors for root hub
414 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
415 * @hcd: the host controller for this root hub
416 * @data: buffer for output packet
417 * @len: length of the provided buffer
419 * Produces either a manufacturer, product or serial number string for the
420 * virtual root hub device.
422 * Return: The number of bytes filled in: the length of the descriptor or
423 * of the provided buffer, whichever is less.
426 rh_string(int id
, struct usb_hcd
const *hcd
, u8
*data
, unsigned len
)
430 static char const langids
[4] = {4, USB_DT_STRING
, 0x09, 0x04};
435 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
436 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
439 memcpy(data
, langids
, len
);
443 s
= hcd
->self
.bus_name
;
447 s
= hcd
->product_desc
;
451 snprintf (buf
, sizeof buf
, "%s %s %s", init_utsname()->sysname
,
452 init_utsname()->release
, hcd
->driver
->description
);
456 /* Can't happen; caller guarantees it */
460 return ascii2desc(s
, data
, len
);
464 /* Root hub control transfers execute synchronously */
465 static int rh_call_control (struct usb_hcd
*hcd
, struct urb
*urb
)
467 struct usb_ctrlrequest
*cmd
;
468 u16 typeReq
, wValue
, wIndex
, wLength
;
469 u8
*ubuf
= urb
->transfer_buffer
;
473 u8 patch_protocol
= 0;
480 spin_lock_irq(&hcd_root_hub_lock
);
481 status
= usb_hcd_link_urb_to_ep(hcd
, urb
);
482 spin_unlock_irq(&hcd_root_hub_lock
);
485 urb
->hcpriv
= hcd
; /* Indicate it's queued */
487 cmd
= (struct usb_ctrlrequest
*) urb
->setup_packet
;
488 typeReq
= (cmd
->bRequestType
<< 8) | cmd
->bRequest
;
489 wValue
= le16_to_cpu (cmd
->wValue
);
490 wIndex
= le16_to_cpu (cmd
->wIndex
);
491 wLength
= le16_to_cpu (cmd
->wLength
);
493 if (wLength
> urb
->transfer_buffer_length
)
497 * tbuf should be at least as big as the
498 * USB hub descriptor.
500 tbuf_size
= max_t(u16
, sizeof(struct usb_hub_descriptor
), wLength
);
501 tbuf
= kzalloc(tbuf_size
, GFP_KERNEL
);
510 urb
->actual_length
= 0;
513 /* DEVICE REQUESTS */
515 /* The root hub's remote wakeup enable bit is implemented using
516 * driver model wakeup flags. If this system supports wakeup
517 * through USB, userspace may change the default "allow wakeup"
518 * policy through sysfs or these calls.
520 * Most root hubs support wakeup from downstream devices, for
521 * runtime power management (disabling USB clocks and reducing
522 * VBUS power usage). However, not all of them do so; silicon,
523 * board, and BIOS bugs here are not uncommon, so these can't
524 * be treated quite like external hubs.
526 * Likewise, not all root hubs will pass wakeup events upstream,
527 * to wake up the whole system. So don't assume root hub and
528 * controller capabilities are identical.
531 case DeviceRequest
| USB_REQ_GET_STATUS
:
532 tbuf
[0] = (device_may_wakeup(&hcd
->self
.root_hub
->dev
)
533 << USB_DEVICE_REMOTE_WAKEUP
)
534 | (1 << USB_DEVICE_SELF_POWERED
);
538 case DeviceOutRequest
| USB_REQ_CLEAR_FEATURE
:
539 if (wValue
== USB_DEVICE_REMOTE_WAKEUP
)
540 device_set_wakeup_enable(&hcd
->self
.root_hub
->dev
, 0);
544 case DeviceOutRequest
| USB_REQ_SET_FEATURE
:
545 if (device_can_wakeup(&hcd
->self
.root_hub
->dev
)
546 && wValue
== USB_DEVICE_REMOTE_WAKEUP
)
547 device_set_wakeup_enable(&hcd
->self
.root_hub
->dev
, 1);
551 case DeviceRequest
| USB_REQ_GET_CONFIGURATION
:
555 case DeviceOutRequest
| USB_REQ_SET_CONFIGURATION
:
557 case DeviceRequest
| USB_REQ_GET_DESCRIPTOR
:
558 switch (wValue
& 0xff00) {
559 case USB_DT_DEVICE
<< 8:
560 switch (hcd
->speed
) {
563 bufp
= usb3_rh_dev_descriptor
;
566 bufp
= usb25_rh_dev_descriptor
;
569 bufp
= usb2_rh_dev_descriptor
;
572 bufp
= usb11_rh_dev_descriptor
;
581 case USB_DT_CONFIG
<< 8:
582 switch (hcd
->speed
) {
585 bufp
= ss_rh_config_descriptor
;
586 len
= sizeof ss_rh_config_descriptor
;
590 bufp
= hs_rh_config_descriptor
;
591 len
= sizeof hs_rh_config_descriptor
;
594 bufp
= fs_rh_config_descriptor
;
595 len
= sizeof fs_rh_config_descriptor
;
600 if (device_can_wakeup(&hcd
->self
.root_hub
->dev
))
603 case USB_DT_STRING
<< 8:
604 if ((wValue
& 0xff) < 4)
605 urb
->actual_length
= rh_string(wValue
& 0xff,
607 else /* unsupported IDs --> "protocol stall" */
610 case USB_DT_BOS
<< 8:
616 case DeviceRequest
| USB_REQ_GET_INTERFACE
:
620 case DeviceOutRequest
| USB_REQ_SET_INTERFACE
:
622 case DeviceOutRequest
| USB_REQ_SET_ADDRESS
:
623 /* wValue == urb->dev->devaddr */
624 dev_dbg (hcd
->self
.controller
, "root hub device address %d\n",
628 /* INTERFACE REQUESTS (no defined feature/status flags) */
630 /* ENDPOINT REQUESTS */
632 case EndpointRequest
| USB_REQ_GET_STATUS
:
633 /* ENDPOINT_HALT flag */
638 case EndpointOutRequest
| USB_REQ_CLEAR_FEATURE
:
639 case EndpointOutRequest
| USB_REQ_SET_FEATURE
:
640 dev_dbg (hcd
->self
.controller
, "no endpoint features yet\n");
643 /* CLASS REQUESTS (and errors) */
647 /* non-generic request */
653 case GetHubDescriptor
:
654 len
= sizeof (struct usb_hub_descriptor
);
656 case DeviceRequest
| USB_REQ_GET_DESCRIPTOR
:
657 /* len is returned by hub_control */
660 status
= hcd
->driver
->hub_control (hcd
,
661 typeReq
, wValue
, wIndex
,
664 if (typeReq
== GetHubDescriptor
)
665 usb_hub_adjust_deviceremovable(hcd
->self
.root_hub
,
666 (struct usb_hub_descriptor
*)tbuf
);
669 /* "protocol stall" on error */
675 if (status
!= -EPIPE
) {
676 dev_dbg (hcd
->self
.controller
,
677 "CTRL: TypeReq=0x%x val=0x%x "
678 "idx=0x%x len=%d ==> %d\n",
679 typeReq
, wValue
, wIndex
,
682 } else if (status
> 0) {
683 /* hub_control may return the length of data copied. */
688 if (urb
->transfer_buffer_length
< len
)
689 len
= urb
->transfer_buffer_length
;
690 urb
->actual_length
= len
;
691 /* always USB_DIR_IN, toward host */
692 memcpy (ubuf
, bufp
, len
);
694 /* report whether RH hardware supports remote wakeup */
696 len
> offsetof (struct usb_config_descriptor
,
698 ((struct usb_config_descriptor
*)ubuf
)->bmAttributes
699 |= USB_CONFIG_ATT_WAKEUP
;
701 /* report whether RH hardware has an integrated TT */
702 if (patch_protocol
&&
703 len
> offsetof(struct usb_device_descriptor
,
705 ((struct usb_device_descriptor
*) ubuf
)->
706 bDeviceProtocol
= USB_HUB_PR_HS_SINGLE_TT
;
712 /* any errors get returned through the urb completion */
713 spin_lock_irq(&hcd_root_hub_lock
);
714 usb_hcd_unlink_urb_from_ep(hcd
, urb
);
715 usb_hcd_giveback_urb(hcd
, urb
, status
);
716 spin_unlock_irq(&hcd_root_hub_lock
);
720 /*-------------------------------------------------------------------------*/
723 * Root Hub interrupt transfers are polled using a timer if the
724 * driver requests it; otherwise the driver is responsible for
725 * calling usb_hcd_poll_rh_status() when an event occurs.
727 * Completions are called in_interrupt(), but they may or may not
730 void usb_hcd_poll_rh_status(struct usb_hcd
*hcd
)
735 char buffer
[6]; /* Any root hubs with > 31 ports? */
737 if (unlikely(!hcd
->rh_pollable
))
739 if (!hcd
->uses_new_polling
&& !hcd
->status_urb
)
742 length
= hcd
->driver
->hub_status_data(hcd
, buffer
);
745 /* try to complete the status urb */
746 spin_lock_irqsave(&hcd_root_hub_lock
, flags
);
747 urb
= hcd
->status_urb
;
749 clear_bit(HCD_FLAG_POLL_PENDING
, &hcd
->flags
);
750 hcd
->status_urb
= NULL
;
751 urb
->actual_length
= length
;
752 memcpy(urb
->transfer_buffer
, buffer
, length
);
754 usb_hcd_unlink_urb_from_ep(hcd
, urb
);
755 usb_hcd_giveback_urb(hcd
, urb
, 0);
758 set_bit(HCD_FLAG_POLL_PENDING
, &hcd
->flags
);
760 spin_unlock_irqrestore(&hcd_root_hub_lock
, flags
);
763 /* The USB 2.0 spec says 256 ms. This is close enough and won't
764 * exceed that limit if HZ is 100. The math is more clunky than
765 * maybe expected, this is to make sure that all timers for USB devices
766 * fire at the same time to give the CPU a break in between */
767 if (hcd
->uses_new_polling
? HCD_POLL_RH(hcd
) :
768 (length
== 0 && hcd
->status_urb
!= NULL
))
769 mod_timer (&hcd
->rh_timer
, (jiffies
/(HZ
/4) + 1) * (HZ
/4));
771 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status
);
774 static void rh_timer_func (unsigned long _hcd
)
776 usb_hcd_poll_rh_status((struct usb_hcd
*) _hcd
);
779 /*-------------------------------------------------------------------------*/
781 static int rh_queue_status (struct usb_hcd
*hcd
, struct urb
*urb
)
785 unsigned len
= 1 + (urb
->dev
->maxchild
/ 8);
787 spin_lock_irqsave (&hcd_root_hub_lock
, flags
);
788 if (hcd
->status_urb
|| urb
->transfer_buffer_length
< len
) {
789 dev_dbg (hcd
->self
.controller
, "not queuing rh status urb\n");
794 retval
= usb_hcd_link_urb_to_ep(hcd
, urb
);
798 hcd
->status_urb
= urb
;
799 urb
->hcpriv
= hcd
; /* indicate it's queued */
800 if (!hcd
->uses_new_polling
)
801 mod_timer(&hcd
->rh_timer
, (jiffies
/(HZ
/4) + 1) * (HZ
/4));
803 /* If a status change has already occurred, report it ASAP */
804 else if (HCD_POLL_PENDING(hcd
))
805 mod_timer(&hcd
->rh_timer
, jiffies
);
808 spin_unlock_irqrestore (&hcd_root_hub_lock
, flags
);
812 static int rh_urb_enqueue (struct usb_hcd
*hcd
, struct urb
*urb
)
814 if (usb_endpoint_xfer_int(&urb
->ep
->desc
))
815 return rh_queue_status (hcd
, urb
);
816 if (usb_endpoint_xfer_control(&urb
->ep
->desc
))
817 return rh_call_control (hcd
, urb
);
821 /*-------------------------------------------------------------------------*/
823 /* Unlinks of root-hub control URBs are legal, but they don't do anything
824 * since these URBs always execute synchronously.
826 static int usb_rh_urb_dequeue(struct usb_hcd
*hcd
, struct urb
*urb
, int status
)
831 spin_lock_irqsave(&hcd_root_hub_lock
, flags
);
832 rc
= usb_hcd_check_unlink_urb(hcd
, urb
, status
);
836 if (usb_endpoint_num(&urb
->ep
->desc
) == 0) { /* Control URB */
839 } else { /* Status URB */
840 if (!hcd
->uses_new_polling
)
841 del_timer (&hcd
->rh_timer
);
842 if (urb
== hcd
->status_urb
) {
843 hcd
->status_urb
= NULL
;
844 usb_hcd_unlink_urb_from_ep(hcd
, urb
);
845 usb_hcd_giveback_urb(hcd
, urb
, status
);
849 spin_unlock_irqrestore(&hcd_root_hub_lock
, flags
);
856 * Show & store the current value of authorized_default
858 static ssize_t
authorized_default_show(struct device
*dev
,
859 struct device_attribute
*attr
, char *buf
)
861 struct usb_device
*rh_usb_dev
= to_usb_device(dev
);
862 struct usb_bus
*usb_bus
= rh_usb_dev
->bus
;
865 hcd
= bus_to_hcd(usb_bus
);
866 return snprintf(buf
, PAGE_SIZE
, "%u\n", !!HCD_DEV_AUTHORIZED(hcd
));
869 static ssize_t
authorized_default_store(struct device
*dev
,
870 struct device_attribute
*attr
,
871 const char *buf
, size_t size
)
875 struct usb_device
*rh_usb_dev
= to_usb_device(dev
);
876 struct usb_bus
*usb_bus
= rh_usb_dev
->bus
;
879 hcd
= bus_to_hcd(usb_bus
);
880 result
= sscanf(buf
, "%u\n", &val
);
883 set_bit(HCD_FLAG_DEV_AUTHORIZED
, &hcd
->flags
);
885 clear_bit(HCD_FLAG_DEV_AUTHORIZED
, &hcd
->flags
);
893 static DEVICE_ATTR_RW(authorized_default
);
896 * interface_authorized_default_show - show default authorization status
899 * note: interface_authorized_default is the default value
900 * for initializing the authorized attribute of interfaces
902 static ssize_t
interface_authorized_default_show(struct device
*dev
,
903 struct device_attribute
*attr
, char *buf
)
905 struct usb_device
*usb_dev
= to_usb_device(dev
);
906 struct usb_hcd
*hcd
= bus_to_hcd(usb_dev
->bus
);
908 return sprintf(buf
, "%u\n", !!HCD_INTF_AUTHORIZED(hcd
));
912 * interface_authorized_default_store - store default authorization status
915 * note: interface_authorized_default is the default value
916 * for initializing the authorized attribute of interfaces
918 static ssize_t
interface_authorized_default_store(struct device
*dev
,
919 struct device_attribute
*attr
, const char *buf
, size_t count
)
921 struct usb_device
*usb_dev
= to_usb_device(dev
);
922 struct usb_hcd
*hcd
= bus_to_hcd(usb_dev
->bus
);
926 if (strtobool(buf
, &val
) != 0)
930 set_bit(HCD_FLAG_INTF_AUTHORIZED
, &hcd
->flags
);
932 clear_bit(HCD_FLAG_INTF_AUTHORIZED
, &hcd
->flags
);
936 static DEVICE_ATTR_RW(interface_authorized_default
);
938 /* Group all the USB bus attributes */
939 static struct attribute
*usb_bus_attrs
[] = {
940 &dev_attr_authorized_default
.attr
,
941 &dev_attr_interface_authorized_default
.attr
,
945 static struct attribute_group usb_bus_attr_group
= {
946 .name
= NULL
, /* we want them in the same directory */
947 .attrs
= usb_bus_attrs
,
952 /*-------------------------------------------------------------------------*/
955 * usb_bus_init - shared initialization code
956 * @bus: the bus structure being initialized
958 * This code is used to initialize a usb_bus structure, memory for which is
959 * separately managed.
961 static void usb_bus_init (struct usb_bus
*bus
)
963 memset (&bus
->devmap
, 0, sizeof(struct usb_devmap
));
965 bus
->devnum_next
= 1;
967 bus
->root_hub
= NULL
;
969 bus
->bandwidth_allocated
= 0;
970 bus
->bandwidth_int_reqs
= 0;
971 bus
->bandwidth_isoc_reqs
= 0;
972 mutex_init(&bus
->devnum_next_mutex
);
974 INIT_LIST_HEAD (&bus
->bus_list
);
977 /*-------------------------------------------------------------------------*/
980 * usb_register_bus - registers the USB host controller with the usb core
981 * @bus: pointer to the bus to register
982 * Context: !in_interrupt()
984 * Assigns a bus number, and links the controller into usbcore data
985 * structures so that it can be seen by scanning the bus list.
987 * Return: 0 if successful. A negative error code otherwise.
989 static int usb_register_bus(struct usb_bus
*bus
)
994 mutex_lock(&usb_bus_list_lock
);
995 busnum
= find_next_zero_bit(busmap
, USB_MAXBUS
, 1);
996 if (busnum
>= USB_MAXBUS
) {
997 printk (KERN_ERR
"%s: too many buses\n", usbcore_name
);
998 goto error_find_busnum
;
1000 set_bit(busnum
, busmap
);
1001 bus
->busnum
= busnum
;
1003 /* Add it to the local list of buses */
1004 list_add (&bus
->bus_list
, &usb_bus_list
);
1005 mutex_unlock(&usb_bus_list_lock
);
1007 usb_notify_add_bus(bus
);
1009 dev_info (bus
->controller
, "new USB bus registered, assigned bus "
1010 "number %d\n", bus
->busnum
);
1014 mutex_unlock(&usb_bus_list_lock
);
1019 * usb_deregister_bus - deregisters the USB host controller
1020 * @bus: pointer to the bus to deregister
1021 * Context: !in_interrupt()
1023 * Recycles the bus number, and unlinks the controller from usbcore data
1024 * structures so that it won't be seen by scanning the bus list.
1026 static void usb_deregister_bus (struct usb_bus
*bus
)
1028 dev_info (bus
->controller
, "USB bus %d deregistered\n", bus
->busnum
);
1031 * NOTE: make sure that all the devices are removed by the
1032 * controller code, as well as having it call this when cleaning
1035 mutex_lock(&usb_bus_list_lock
);
1036 list_del (&bus
->bus_list
);
1037 mutex_unlock(&usb_bus_list_lock
);
1039 usb_notify_remove_bus(bus
);
1041 clear_bit(bus
->busnum
, busmap
);
1045 * register_root_hub - called by usb_add_hcd() to register a root hub
1046 * @hcd: host controller for this root hub
1048 * This function registers the root hub with the USB subsystem. It sets up
1049 * the device properly in the device tree and then calls usb_new_device()
1050 * to register the usb device. It also assigns the root hub's USB address
1053 * Return: 0 if successful. A negative error code otherwise.
1055 static int register_root_hub(struct usb_hcd
*hcd
)
1057 struct device
*parent_dev
= hcd
->self
.controller
;
1058 struct usb_device
*usb_dev
= hcd
->self
.root_hub
;
1059 const int devnum
= 1;
1062 usb_dev
->devnum
= devnum
;
1063 usb_dev
->bus
->devnum_next
= devnum
+ 1;
1064 memset (&usb_dev
->bus
->devmap
.devicemap
, 0,
1065 sizeof usb_dev
->bus
->devmap
.devicemap
);
1066 set_bit (devnum
, usb_dev
->bus
->devmap
.devicemap
);
1067 usb_set_device_state(usb_dev
, USB_STATE_ADDRESS
);
1069 mutex_lock(&usb_bus_list_lock
);
1071 usb_dev
->ep0
.desc
.wMaxPacketSize
= cpu_to_le16(64);
1072 retval
= usb_get_device_descriptor(usb_dev
, USB_DT_DEVICE_SIZE
);
1073 if (retval
!= sizeof usb_dev
->descriptor
) {
1074 mutex_unlock(&usb_bus_list_lock
);
1075 dev_dbg (parent_dev
, "can't read %s device descriptor %d\n",
1076 dev_name(&usb_dev
->dev
), retval
);
1077 return (retval
< 0) ? retval
: -EMSGSIZE
;
1080 if (le16_to_cpu(usb_dev
->descriptor
.bcdUSB
) >= 0x0201) {
1081 retval
= usb_get_bos_descriptor(usb_dev
);
1083 usb_dev
->lpm_capable
= usb_device_supports_lpm(usb_dev
);
1084 } else if (usb_dev
->speed
>= USB_SPEED_SUPER
) {
1085 mutex_unlock(&usb_bus_list_lock
);
1086 dev_dbg(parent_dev
, "can't read %s bos descriptor %d\n",
1087 dev_name(&usb_dev
->dev
), retval
);
1092 retval
= usb_new_device (usb_dev
);
1094 dev_err (parent_dev
, "can't register root hub for %s, %d\n",
1095 dev_name(&usb_dev
->dev
), retval
);
1097 spin_lock_irq (&hcd_root_hub_lock
);
1098 hcd
->rh_registered
= 1;
1099 spin_unlock_irq (&hcd_root_hub_lock
);
1101 /* Did the HC die before the root hub was registered? */
1103 usb_hc_died (hcd
); /* This time clean up */
1105 mutex_unlock(&usb_bus_list_lock
);
1111 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1112 * @bus: the bus which the root hub belongs to
1113 * @portnum: the port which is being resumed
1115 * HCDs should call this function when they know that a resume signal is
1116 * being sent to a root-hub port. The root hub will be prevented from
1117 * going into autosuspend until usb_hcd_end_port_resume() is called.
1119 * The bus's private lock must be held by the caller.
1121 void usb_hcd_start_port_resume(struct usb_bus
*bus
, int portnum
)
1123 unsigned bit
= 1 << portnum
;
1125 if (!(bus
->resuming_ports
& bit
)) {
1126 bus
->resuming_ports
|= bit
;
1127 pm_runtime_get_noresume(&bus
->root_hub
->dev
);
1130 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume
);
1133 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1134 * @bus: the bus which the root hub belongs to
1135 * @portnum: the port which is being resumed
1137 * HCDs should call this function when they know that a resume signal has
1138 * stopped being sent to a root-hub port. The root hub will be allowed to
1139 * autosuspend again.
1141 * The bus's private lock must be held by the caller.
1143 void usb_hcd_end_port_resume(struct usb_bus
*bus
, int portnum
)
1145 unsigned bit
= 1 << portnum
;
1147 if (bus
->resuming_ports
& bit
) {
1148 bus
->resuming_ports
&= ~bit
;
1149 pm_runtime_put_noidle(&bus
->root_hub
->dev
);
1152 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume
);
1154 /*-------------------------------------------------------------------------*/
1157 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1158 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1159 * @is_input: true iff the transaction sends data to the host
1160 * @isoc: true for isochronous transactions, false for interrupt ones
1161 * @bytecount: how many bytes in the transaction.
1163 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1166 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1167 * scheduled in software, this function is only used for such scheduling.
1169 long usb_calc_bus_time (int speed
, int is_input
, int isoc
, int bytecount
)
1174 case USB_SPEED_LOW
: /* INTR only */
1176 tmp
= (67667L * (31L + 10L * BitTime (bytecount
))) / 1000L;
1177 return 64060L + (2 * BW_HUB_LS_SETUP
) + BW_HOST_DELAY
+ tmp
;
1179 tmp
= (66700L * (31L + 10L * BitTime (bytecount
))) / 1000L;
1180 return 64107L + (2 * BW_HUB_LS_SETUP
) + BW_HOST_DELAY
+ tmp
;
1182 case USB_SPEED_FULL
: /* ISOC or INTR */
1184 tmp
= (8354L * (31L + 10L * BitTime (bytecount
))) / 1000L;
1185 return ((is_input
) ? 7268L : 6265L) + BW_HOST_DELAY
+ tmp
;
1187 tmp
= (8354L * (31L + 10L * BitTime (bytecount
))) / 1000L;
1188 return 9107L + BW_HOST_DELAY
+ tmp
;
1190 case USB_SPEED_HIGH
: /* ISOC or INTR */
1191 /* FIXME adjust for input vs output */
1193 tmp
= HS_NSECS_ISO (bytecount
);
1195 tmp
= HS_NSECS (bytecount
);
1198 pr_debug ("%s: bogus device speed!\n", usbcore_name
);
1202 EXPORT_SYMBOL_GPL(usb_calc_bus_time
);
1205 /*-------------------------------------------------------------------------*/
1208 * Generic HC operations.
1211 /*-------------------------------------------------------------------------*/
1214 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1215 * @hcd: host controller to which @urb was submitted
1216 * @urb: URB being submitted
1218 * Host controller drivers should call this routine in their enqueue()
1219 * method. The HCD's private spinlock must be held and interrupts must
1220 * be disabled. The actions carried out here are required for URB
1221 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1223 * Return: 0 for no error, otherwise a negative error code (in which case
1224 * the enqueue() method must fail). If no error occurs but enqueue() fails
1225 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1226 * the private spinlock and returning.
1228 int usb_hcd_link_urb_to_ep(struct usb_hcd
*hcd
, struct urb
*urb
)
1232 spin_lock(&hcd_urb_list_lock
);
1234 /* Check that the URB isn't being killed */
1235 if (unlikely(atomic_read(&urb
->reject
))) {
1240 if (unlikely(!urb
->ep
->enabled
)) {
1245 if (unlikely(!urb
->dev
->can_submit
)) {
1251 * Check the host controller's state and add the URB to the
1254 if (HCD_RH_RUNNING(hcd
)) {
1256 list_add_tail(&urb
->urb_list
, &urb
->ep
->urb_list
);
1262 spin_unlock(&hcd_urb_list_lock
);
1265 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep
);
1268 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1269 * @hcd: host controller to which @urb was submitted
1270 * @urb: URB being checked for unlinkability
1271 * @status: error code to store in @urb if the unlink succeeds
1273 * Host controller drivers should call this routine in their dequeue()
1274 * method. The HCD's private spinlock must be held and interrupts must
1275 * be disabled. The actions carried out here are required for making
1276 * sure than an unlink is valid.
1278 * Return: 0 for no error, otherwise a negative error code (in which case
1279 * the dequeue() method must fail). The possible error codes are:
1281 * -EIDRM: @urb was not submitted or has already completed.
1282 * The completion function may not have been called yet.
1284 * -EBUSY: @urb has already been unlinked.
1286 int usb_hcd_check_unlink_urb(struct usb_hcd
*hcd
, struct urb
*urb
,
1289 struct list_head
*tmp
;
1291 /* insist the urb is still queued */
1292 list_for_each(tmp
, &urb
->ep
->urb_list
) {
1293 if (tmp
== &urb
->urb_list
)
1296 if (tmp
!= &urb
->urb_list
)
1299 /* Any status except -EINPROGRESS means something already started to
1300 * unlink this URB from the hardware. So there's no more work to do.
1304 urb
->unlinked
= status
;
1307 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb
);
1310 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1311 * @hcd: host controller to which @urb was submitted
1312 * @urb: URB being unlinked
1314 * Host controller drivers should call this routine before calling
1315 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1316 * interrupts must be disabled. The actions carried out here are required
1317 * for URB completion.
1319 void usb_hcd_unlink_urb_from_ep(struct usb_hcd
*hcd
, struct urb
*urb
)
1321 /* clear all state linking urb to this dev (and hcd) */
1322 spin_lock(&hcd_urb_list_lock
);
1323 list_del_init(&urb
->urb_list
);
1324 spin_unlock(&hcd_urb_list_lock
);
1326 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep
);
1329 * Some usb host controllers can only perform dma using a small SRAM area.
1330 * The usb core itself is however optimized for host controllers that can dma
1331 * using regular system memory - like pci devices doing bus mastering.
1333 * To support host controllers with limited dma capabilities we provide dma
1334 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1335 * For this to work properly the host controller code must first use the
1336 * function dma_declare_coherent_memory() to point out which memory area
1337 * that should be used for dma allocations.
1339 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1340 * dma using dma_alloc_coherent() which in turn allocates from the memory
1341 * area pointed out with dma_declare_coherent_memory().
1343 * So, to summarize...
1345 * - We need "local" memory, canonical example being
1346 * a small SRAM on a discrete controller being the
1347 * only memory that the controller can read ...
1348 * (a) "normal" kernel memory is no good, and
1349 * (b) there's not enough to share
1351 * - The only *portable* hook for such stuff in the
1352 * DMA framework is dma_declare_coherent_memory()
1354 * - So we use that, even though the primary requirement
1355 * is that the memory be "local" (hence addressable
1356 * by that device), not "coherent".
1360 static int hcd_alloc_coherent(struct usb_bus
*bus
,
1361 gfp_t mem_flags
, dma_addr_t
*dma_handle
,
1362 void **vaddr_handle
, size_t size
,
1363 enum dma_data_direction dir
)
1365 unsigned char *vaddr
;
1367 if (*vaddr_handle
== NULL
) {
1372 vaddr
= hcd_buffer_alloc(bus
, size
+ sizeof(vaddr
),
1373 mem_flags
, dma_handle
);
1378 * Store the virtual address of the buffer at the end
1379 * of the allocated dma buffer. The size of the buffer
1380 * may be uneven so use unaligned functions instead
1381 * of just rounding up. It makes sense to optimize for
1382 * memory footprint over access speed since the amount
1383 * of memory available for dma may be limited.
1385 put_unaligned((unsigned long)*vaddr_handle
,
1386 (unsigned long *)(vaddr
+ size
));
1388 if (dir
== DMA_TO_DEVICE
)
1389 memcpy(vaddr
, *vaddr_handle
, size
);
1391 *vaddr_handle
= vaddr
;
1395 static void hcd_free_coherent(struct usb_bus
*bus
, dma_addr_t
*dma_handle
,
1396 void **vaddr_handle
, size_t size
,
1397 enum dma_data_direction dir
)
1399 unsigned char *vaddr
= *vaddr_handle
;
1401 vaddr
= (void *)get_unaligned((unsigned long *)(vaddr
+ size
));
1403 if (dir
== DMA_FROM_DEVICE
)
1404 memcpy(vaddr
, *vaddr_handle
, size
);
1406 hcd_buffer_free(bus
, size
+ sizeof(vaddr
), *vaddr_handle
, *dma_handle
);
1408 *vaddr_handle
= vaddr
;
1412 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd
*hcd
, struct urb
*urb
)
1414 if (urb
->transfer_flags
& URB_SETUP_MAP_SINGLE
)
1415 dma_unmap_single(hcd
->self
.controller
,
1417 sizeof(struct usb_ctrlrequest
),
1419 else if (urb
->transfer_flags
& URB_SETUP_MAP_LOCAL
)
1420 hcd_free_coherent(urb
->dev
->bus
,
1422 (void **) &urb
->setup_packet
,
1423 sizeof(struct usb_ctrlrequest
),
1426 /* Make it safe to call this routine more than once */
1427 urb
->transfer_flags
&= ~(URB_SETUP_MAP_SINGLE
| URB_SETUP_MAP_LOCAL
);
1429 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma
);
1431 static void unmap_urb_for_dma(struct usb_hcd
*hcd
, struct urb
*urb
)
1433 if (hcd
->driver
->unmap_urb_for_dma
)
1434 hcd
->driver
->unmap_urb_for_dma(hcd
, urb
);
1436 usb_hcd_unmap_urb_for_dma(hcd
, urb
);
1439 void usb_hcd_unmap_urb_for_dma(struct usb_hcd
*hcd
, struct urb
*urb
)
1441 enum dma_data_direction dir
;
1443 usb_hcd_unmap_urb_setup_for_dma(hcd
, urb
);
1445 dir
= usb_urb_dir_in(urb
) ? DMA_FROM_DEVICE
: DMA_TO_DEVICE
;
1446 if (urb
->transfer_flags
& URB_DMA_MAP_SG
)
1447 dma_unmap_sg(hcd
->self
.controller
,
1451 else if (urb
->transfer_flags
& URB_DMA_MAP_PAGE
)
1452 dma_unmap_page(hcd
->self
.controller
,
1454 urb
->transfer_buffer_length
,
1456 else if (urb
->transfer_flags
& URB_DMA_MAP_SINGLE
)
1457 dma_unmap_single(hcd
->self
.controller
,
1459 urb
->transfer_buffer_length
,
1461 else if (urb
->transfer_flags
& URB_MAP_LOCAL
)
1462 hcd_free_coherent(urb
->dev
->bus
,
1464 &urb
->transfer_buffer
,
1465 urb
->transfer_buffer_length
,
1468 /* Make it safe to call this routine more than once */
1469 urb
->transfer_flags
&= ~(URB_DMA_MAP_SG
| URB_DMA_MAP_PAGE
|
1470 URB_DMA_MAP_SINGLE
| URB_MAP_LOCAL
);
1472 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma
);
1474 static int map_urb_for_dma(struct usb_hcd
*hcd
, struct urb
*urb
,
1477 if (hcd
->driver
->map_urb_for_dma
)
1478 return hcd
->driver
->map_urb_for_dma(hcd
, urb
, mem_flags
);
1480 return usb_hcd_map_urb_for_dma(hcd
, urb
, mem_flags
);
1483 int usb_hcd_map_urb_for_dma(struct usb_hcd
*hcd
, struct urb
*urb
,
1486 enum dma_data_direction dir
;
1489 /* Map the URB's buffers for DMA access.
1490 * Lower level HCD code should use *_dma exclusively,
1491 * unless it uses pio or talks to another transport,
1492 * or uses the provided scatter gather list for bulk.
1495 if (usb_endpoint_xfer_control(&urb
->ep
->desc
)) {
1496 if (hcd
->self
.uses_pio_for_control
)
1498 if (hcd
->self
.uses_dma
) {
1499 urb
->setup_dma
= dma_map_single(
1500 hcd
->self
.controller
,
1502 sizeof(struct usb_ctrlrequest
),
1504 if (dma_mapping_error(hcd
->self
.controller
,
1507 urb
->transfer_flags
|= URB_SETUP_MAP_SINGLE
;
1508 } else if (hcd
->driver
->flags
& HCD_LOCAL_MEM
) {
1509 ret
= hcd_alloc_coherent(
1510 urb
->dev
->bus
, mem_flags
,
1512 (void **)&urb
->setup_packet
,
1513 sizeof(struct usb_ctrlrequest
),
1517 urb
->transfer_flags
|= URB_SETUP_MAP_LOCAL
;
1521 dir
= usb_urb_dir_in(urb
) ? DMA_FROM_DEVICE
: DMA_TO_DEVICE
;
1522 if (urb
->transfer_buffer_length
!= 0
1523 && !(urb
->transfer_flags
& URB_NO_TRANSFER_DMA_MAP
)) {
1524 if (hcd
->self
.uses_dma
) {
1528 /* We don't support sg for isoc transfers ! */
1529 if (usb_endpoint_xfer_isoc(&urb
->ep
->desc
)) {
1535 hcd
->self
.controller
,
1542 urb
->transfer_flags
|= URB_DMA_MAP_SG
;
1543 urb
->num_mapped_sgs
= n
;
1544 if (n
!= urb
->num_sgs
)
1545 urb
->transfer_flags
|=
1546 URB_DMA_SG_COMBINED
;
1547 } else if (urb
->sg
) {
1548 struct scatterlist
*sg
= urb
->sg
;
1549 urb
->transfer_dma
= dma_map_page(
1550 hcd
->self
.controller
,
1553 urb
->transfer_buffer_length
,
1555 if (dma_mapping_error(hcd
->self
.controller
,
1559 urb
->transfer_flags
|= URB_DMA_MAP_PAGE
;
1560 } else if (is_vmalloc_addr(urb
->transfer_buffer
)) {
1561 WARN_ONCE(1, "transfer buffer not dma capable\n");
1564 urb
->transfer_dma
= dma_map_single(
1565 hcd
->self
.controller
,
1566 urb
->transfer_buffer
,
1567 urb
->transfer_buffer_length
,
1569 if (dma_mapping_error(hcd
->self
.controller
,
1573 urb
->transfer_flags
|= URB_DMA_MAP_SINGLE
;
1575 } else if (hcd
->driver
->flags
& HCD_LOCAL_MEM
) {
1576 ret
= hcd_alloc_coherent(
1577 urb
->dev
->bus
, mem_flags
,
1579 &urb
->transfer_buffer
,
1580 urb
->transfer_buffer_length
,
1583 urb
->transfer_flags
|= URB_MAP_LOCAL
;
1585 if (ret
&& (urb
->transfer_flags
& (URB_SETUP_MAP_SINGLE
|
1586 URB_SETUP_MAP_LOCAL
)))
1587 usb_hcd_unmap_urb_for_dma(hcd
, urb
);
1591 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma
);
1593 /*-------------------------------------------------------------------------*/
1595 /* may be called in any context with a valid urb->dev usecount
1596 * caller surrenders "ownership" of urb
1597 * expects usb_submit_urb() to have sanity checked and conditioned all
1600 int usb_hcd_submit_urb (struct urb
*urb
, gfp_t mem_flags
)
1603 struct usb_hcd
*hcd
= bus_to_hcd(urb
->dev
->bus
);
1605 /* increment urb's reference count as part of giving it to the HCD
1606 * (which will control it). HCD guarantees that it either returns
1607 * an error or calls giveback(), but not both.
1610 atomic_inc(&urb
->use_count
);
1611 atomic_inc(&urb
->dev
->urbnum
);
1612 usbmon_urb_submit(&hcd
->self
, urb
);
1614 /* NOTE requirements on root-hub callers (usbfs and the hub
1615 * driver, for now): URBs' urb->transfer_buffer must be
1616 * valid and usb_buffer_{sync,unmap}() not be needed, since
1617 * they could clobber root hub response data. Also, control
1618 * URBs must be submitted in process context with interrupts
1622 if (is_root_hub(urb
->dev
)) {
1623 status
= rh_urb_enqueue(hcd
, urb
);
1625 status
= map_urb_for_dma(hcd
, urb
, mem_flags
);
1626 if (likely(status
== 0)) {
1627 status
= hcd
->driver
->urb_enqueue(hcd
, urb
, mem_flags
);
1628 if (unlikely(status
))
1629 unmap_urb_for_dma(hcd
, urb
);
1633 if (unlikely(status
)) {
1634 usbmon_urb_submit_error(&hcd
->self
, urb
, status
);
1636 INIT_LIST_HEAD(&urb
->urb_list
);
1637 atomic_dec(&urb
->use_count
);
1638 atomic_dec(&urb
->dev
->urbnum
);
1639 if (atomic_read(&urb
->reject
))
1640 wake_up(&usb_kill_urb_queue
);
1646 /*-------------------------------------------------------------------------*/
1648 /* this makes the hcd giveback() the urb more quickly, by kicking it
1649 * off hardware queues (which may take a while) and returning it as
1650 * soon as practical. we've already set up the urb's return status,
1651 * but we can't know if the callback completed already.
1653 static int unlink1(struct usb_hcd
*hcd
, struct urb
*urb
, int status
)
1657 if (is_root_hub(urb
->dev
))
1658 value
= usb_rh_urb_dequeue(hcd
, urb
, status
);
1661 /* The only reason an HCD might fail this call is if
1662 * it has not yet fully queued the urb to begin with.
1663 * Such failures should be harmless. */
1664 value
= hcd
->driver
->urb_dequeue(hcd
, urb
, status
);
1670 * called in any context
1672 * caller guarantees urb won't be recycled till both unlink()
1673 * and the urb's completion function return
1675 int usb_hcd_unlink_urb (struct urb
*urb
, int status
)
1677 struct usb_hcd
*hcd
;
1678 struct usb_device
*udev
= urb
->dev
;
1679 int retval
= -EIDRM
;
1680 unsigned long flags
;
1682 /* Prevent the device and bus from going away while
1683 * the unlink is carried out. If they are already gone
1684 * then urb->use_count must be 0, since disconnected
1685 * devices can't have any active URBs.
1687 spin_lock_irqsave(&hcd_urb_unlink_lock
, flags
);
1688 if (atomic_read(&urb
->use_count
) > 0) {
1692 spin_unlock_irqrestore(&hcd_urb_unlink_lock
, flags
);
1694 hcd
= bus_to_hcd(urb
->dev
->bus
);
1695 retval
= unlink1(hcd
, urb
, status
);
1697 retval
= -EINPROGRESS
;
1698 else if (retval
!= -EIDRM
&& retval
!= -EBUSY
)
1699 dev_dbg(&udev
->dev
, "hcd_unlink_urb %pK fail %d\n",
1706 /*-------------------------------------------------------------------------*/
1708 static void __usb_hcd_giveback_urb(struct urb
*urb
)
1710 struct usb_hcd
*hcd
= bus_to_hcd(urb
->dev
->bus
);
1711 struct usb_anchor
*anchor
= urb
->anchor
;
1712 int status
= urb
->unlinked
;
1713 unsigned long flags
;
1716 if (unlikely((urb
->transfer_flags
& URB_SHORT_NOT_OK
) &&
1717 urb
->actual_length
< urb
->transfer_buffer_length
&&
1719 status
= -EREMOTEIO
;
1721 unmap_urb_for_dma(hcd
, urb
);
1722 usbmon_urb_complete(&hcd
->self
, urb
, status
);
1723 usb_anchor_suspend_wakeups(anchor
);
1724 usb_unanchor_urb(urb
);
1725 if (likely(status
== 0))
1726 usb_led_activity(USB_LED_EVENT_HOST
);
1728 /* pass ownership to the completion handler */
1729 urb
->status
= status
;
1732 * We disable local IRQs here avoid possible deadlock because
1733 * drivers may call spin_lock() to hold lock which might be
1734 * acquired in one hard interrupt handler.
1736 * The local_irq_save()/local_irq_restore() around complete()
1737 * will be removed if current USB drivers have been cleaned up
1738 * and no one may trigger the above deadlock situation when
1739 * running complete() in tasklet.
1741 local_irq_save(flags
);
1743 local_irq_restore(flags
);
1745 usb_anchor_resume_wakeups(anchor
);
1746 atomic_dec(&urb
->use_count
);
1747 if (unlikely(atomic_read(&urb
->reject
)))
1748 wake_up(&usb_kill_urb_queue
);
1752 static void usb_giveback_urb_bh(unsigned long param
)
1754 struct giveback_urb_bh
*bh
= (struct giveback_urb_bh
*)param
;
1755 struct list_head local_list
;
1757 spin_lock_irq(&bh
->lock
);
1760 list_replace_init(&bh
->head
, &local_list
);
1761 spin_unlock_irq(&bh
->lock
);
1763 while (!list_empty(&local_list
)) {
1766 urb
= list_entry(local_list
.next
, struct urb
, urb_list
);
1767 list_del_init(&urb
->urb_list
);
1768 bh
->completing_ep
= urb
->ep
;
1769 __usb_hcd_giveback_urb(urb
);
1770 bh
->completing_ep
= NULL
;
1773 /* check if there are new URBs to giveback */
1774 spin_lock_irq(&bh
->lock
);
1775 if (!list_empty(&bh
->head
))
1777 bh
->running
= false;
1778 spin_unlock_irq(&bh
->lock
);
1782 * usb_hcd_giveback_urb - return URB from HCD to device driver
1783 * @hcd: host controller returning the URB
1784 * @urb: urb being returned to the USB device driver.
1785 * @status: completion status code for the URB.
1786 * Context: in_interrupt()
1788 * This hands the URB from HCD to its USB device driver, using its
1789 * completion function. The HCD has freed all per-urb resources
1790 * (and is done using urb->hcpriv). It also released all HCD locks;
1791 * the device driver won't cause problems if it frees, modifies,
1792 * or resubmits this URB.
1794 * If @urb was unlinked, the value of @status will be overridden by
1795 * @urb->unlinked. Erroneous short transfers are detected in case
1796 * the HCD hasn't checked for them.
1798 void usb_hcd_giveback_urb(struct usb_hcd
*hcd
, struct urb
*urb
, int status
)
1800 struct giveback_urb_bh
*bh
;
1801 bool running
, high_prio_bh
;
1803 /* pass status to tasklet via unlinked */
1804 if (likely(!urb
->unlinked
))
1805 urb
->unlinked
= status
;
1807 if (!hcd_giveback_urb_in_bh(hcd
) && !is_root_hub(urb
->dev
)) {
1808 __usb_hcd_giveback_urb(urb
);
1812 if (usb_pipeisoc(urb
->pipe
) || usb_pipeint(urb
->pipe
)) {
1813 bh
= &hcd
->high_prio_bh
;
1814 high_prio_bh
= true;
1816 bh
= &hcd
->low_prio_bh
;
1817 high_prio_bh
= false;
1820 spin_lock(&bh
->lock
);
1821 list_add_tail(&urb
->urb_list
, &bh
->head
);
1822 running
= bh
->running
;
1823 spin_unlock(&bh
->lock
);
1827 else if (high_prio_bh
)
1828 tasklet_hi_schedule(&bh
->bh
);
1830 tasklet_schedule(&bh
->bh
);
1832 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb
);
1834 /*-------------------------------------------------------------------------*/
1836 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1837 * queue to drain completely. The caller must first insure that no more
1838 * URBs can be submitted for this endpoint.
1840 void usb_hcd_flush_endpoint(struct usb_device
*udev
,
1841 struct usb_host_endpoint
*ep
)
1843 struct usb_hcd
*hcd
;
1849 hcd
= bus_to_hcd(udev
->bus
);
1851 /* No more submits can occur */
1852 spin_lock_irq(&hcd_urb_list_lock
);
1854 list_for_each_entry_reverse(urb
, &ep
->urb_list
, urb_list
) {
1860 is_in
= usb_urb_dir_in(urb
);
1861 spin_unlock(&hcd_urb_list_lock
);
1864 unlink1(hcd
, urb
, -ESHUTDOWN
);
1865 dev_dbg (hcd
->self
.controller
,
1866 "shutdown urb %pK ep%d%s%s\n",
1867 urb
, usb_endpoint_num(&ep
->desc
),
1868 is_in
? "in" : "out",
1871 switch (usb_endpoint_type(&ep
->desc
)) {
1872 case USB_ENDPOINT_XFER_CONTROL
:
1874 case USB_ENDPOINT_XFER_BULK
:
1876 case USB_ENDPOINT_XFER_INT
:
1885 /* list contents may have changed */
1886 spin_lock(&hcd_urb_list_lock
);
1889 spin_unlock_irq(&hcd_urb_list_lock
);
1891 /* Wait until the endpoint queue is completely empty */
1892 while (!list_empty (&ep
->urb_list
)) {
1893 spin_lock_irq(&hcd_urb_list_lock
);
1895 /* The list may have changed while we acquired the spinlock */
1897 if (!list_empty (&ep
->urb_list
)) {
1898 urb
= list_entry (ep
->urb_list
.prev
, struct urb
,
1902 spin_unlock_irq(&hcd_urb_list_lock
);
1912 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1914 * @udev: target &usb_device
1915 * @new_config: new configuration to install
1916 * @cur_alt: the current alternate interface setting
1917 * @new_alt: alternate interface setting that is being installed
1919 * To change configurations, pass in the new configuration in new_config,
1920 * and pass NULL for cur_alt and new_alt.
1922 * To reset a device's configuration (put the device in the ADDRESSED state),
1923 * pass in NULL for new_config, cur_alt, and new_alt.
1925 * To change alternate interface settings, pass in NULL for new_config,
1926 * pass in the current alternate interface setting in cur_alt,
1927 * and pass in the new alternate interface setting in new_alt.
1929 * Return: An error if the requested bandwidth change exceeds the
1930 * bus bandwidth or host controller internal resources.
1932 int usb_hcd_alloc_bandwidth(struct usb_device
*udev
,
1933 struct usb_host_config
*new_config
,
1934 struct usb_host_interface
*cur_alt
,
1935 struct usb_host_interface
*new_alt
)
1937 int num_intfs
, i
, j
;
1938 struct usb_host_interface
*alt
= NULL
;
1940 struct usb_hcd
*hcd
;
1941 struct usb_host_endpoint
*ep
;
1943 hcd
= bus_to_hcd(udev
->bus
);
1944 if (!hcd
->driver
->check_bandwidth
)
1947 /* Configuration is being removed - set configuration 0 */
1948 if (!new_config
&& !cur_alt
) {
1949 for (i
= 1; i
< 16; ++i
) {
1950 ep
= udev
->ep_out
[i
];
1952 hcd
->driver
->drop_endpoint(hcd
, udev
, ep
);
1953 ep
= udev
->ep_in
[i
];
1955 hcd
->driver
->drop_endpoint(hcd
, udev
, ep
);
1957 hcd
->driver
->check_bandwidth(hcd
, udev
);
1960 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1961 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1962 * of the bus. There will always be bandwidth for endpoint 0, so it's
1966 num_intfs
= new_config
->desc
.bNumInterfaces
;
1967 /* Remove endpoints (except endpoint 0, which is always on the
1968 * schedule) from the old config from the schedule
1970 for (i
= 1; i
< 16; ++i
) {
1971 ep
= udev
->ep_out
[i
];
1973 ret
= hcd
->driver
->drop_endpoint(hcd
, udev
, ep
);
1977 ep
= udev
->ep_in
[i
];
1979 ret
= hcd
->driver
->drop_endpoint(hcd
, udev
, ep
);
1984 for (i
= 0; i
< num_intfs
; ++i
) {
1985 struct usb_host_interface
*first_alt
;
1988 first_alt
= &new_config
->intf_cache
[i
]->altsetting
[0];
1989 iface_num
= first_alt
->desc
.bInterfaceNumber
;
1990 /* Set up endpoints for alternate interface setting 0 */
1991 alt
= usb_find_alt_setting(new_config
, iface_num
, 0);
1993 /* No alt setting 0? Pick the first setting. */
1996 for (j
= 0; j
< alt
->desc
.bNumEndpoints
; j
++) {
1997 ret
= hcd
->driver
->add_endpoint(hcd
, udev
, &alt
->endpoint
[j
]);
2003 if (cur_alt
&& new_alt
) {
2004 struct usb_interface
*iface
= usb_ifnum_to_if(udev
,
2005 cur_alt
->desc
.bInterfaceNumber
);
2009 if (iface
->resetting_device
) {
2011 * The USB core just reset the device, so the xHCI host
2012 * and the device will think alt setting 0 is installed.
2013 * However, the USB core will pass in the alternate
2014 * setting installed before the reset as cur_alt. Dig
2015 * out the alternate setting 0 structure, or the first
2016 * alternate setting if a broken device doesn't have alt
2019 cur_alt
= usb_altnum_to_altsetting(iface
, 0);
2021 cur_alt
= &iface
->altsetting
[0];
2024 /* Drop all the endpoints in the current alt setting */
2025 for (i
= 0; i
< cur_alt
->desc
.bNumEndpoints
; i
++) {
2026 ret
= hcd
->driver
->drop_endpoint(hcd
, udev
,
2027 &cur_alt
->endpoint
[i
]);
2031 /* Add all the endpoints in the new alt setting */
2032 for (i
= 0; i
< new_alt
->desc
.bNumEndpoints
; i
++) {
2033 ret
= hcd
->driver
->add_endpoint(hcd
, udev
,
2034 &new_alt
->endpoint
[i
]);
2039 ret
= hcd
->driver
->check_bandwidth(hcd
, udev
);
2042 hcd
->driver
->reset_bandwidth(hcd
, udev
);
2046 /* Disables the endpoint: synchronizes with the hcd to make sure all
2047 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
2048 * have been called previously. Use for set_configuration, set_interface,
2049 * driver removal, physical disconnect.
2051 * example: a qh stored in ep->hcpriv, holding state related to endpoint
2052 * type, maxpacket size, toggle, halt status, and scheduling.
2054 void usb_hcd_disable_endpoint(struct usb_device
*udev
,
2055 struct usb_host_endpoint
*ep
)
2057 struct usb_hcd
*hcd
;
2060 hcd
= bus_to_hcd(udev
->bus
);
2061 if (hcd
->driver
->endpoint_disable
)
2062 hcd
->driver
->endpoint_disable(hcd
, ep
);
2066 * usb_hcd_reset_endpoint - reset host endpoint state
2067 * @udev: USB device.
2068 * @ep: the endpoint to reset.
2070 * Resets any host endpoint state such as the toggle bit, sequence
2071 * number and current window.
2073 void usb_hcd_reset_endpoint(struct usb_device
*udev
,
2074 struct usb_host_endpoint
*ep
)
2076 struct usb_hcd
*hcd
= bus_to_hcd(udev
->bus
);
2078 if (hcd
->driver
->endpoint_reset
)
2079 hcd
->driver
->endpoint_reset(hcd
, ep
);
2081 int epnum
= usb_endpoint_num(&ep
->desc
);
2082 int is_out
= usb_endpoint_dir_out(&ep
->desc
);
2083 int is_control
= usb_endpoint_xfer_control(&ep
->desc
);
2085 usb_settoggle(udev
, epnum
, is_out
, 0);
2087 usb_settoggle(udev
, epnum
, !is_out
, 0);
2092 * usb_alloc_streams - allocate bulk endpoint stream IDs.
2093 * @interface: alternate setting that includes all endpoints.
2094 * @eps: array of endpoints that need streams.
2095 * @num_eps: number of endpoints in the array.
2096 * @num_streams: number of streams to allocate.
2097 * @mem_flags: flags hcd should use to allocate memory.
2099 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2100 * Drivers may queue multiple transfers to different stream IDs, which may
2101 * complete in a different order than they were queued.
2103 * Return: On success, the number of allocated streams. On failure, a negative
2106 int usb_alloc_streams(struct usb_interface
*interface
,
2107 struct usb_host_endpoint
**eps
, unsigned int num_eps
,
2108 unsigned int num_streams
, gfp_t mem_flags
)
2110 struct usb_hcd
*hcd
;
2111 struct usb_device
*dev
;
2114 dev
= interface_to_usbdev(interface
);
2115 hcd
= bus_to_hcd(dev
->bus
);
2116 if (!hcd
->driver
->alloc_streams
|| !hcd
->driver
->free_streams
)
2118 if (dev
->speed
< USB_SPEED_SUPER
)
2120 if (dev
->state
< USB_STATE_CONFIGURED
)
2123 for (i
= 0; i
< num_eps
; i
++) {
2124 /* Streams only apply to bulk endpoints. */
2125 if (!usb_endpoint_xfer_bulk(&eps
[i
]->desc
))
2127 /* Re-alloc is not allowed */
2128 if (eps
[i
]->streams
)
2132 ret
= hcd
->driver
->alloc_streams(hcd
, dev
, eps
, num_eps
,
2133 num_streams
, mem_flags
);
2137 for (i
= 0; i
< num_eps
; i
++)
2138 eps
[i
]->streams
= ret
;
2142 EXPORT_SYMBOL_GPL(usb_alloc_streams
);
2145 * usb_free_streams - free bulk endpoint stream IDs.
2146 * @interface: alternate setting that includes all endpoints.
2147 * @eps: array of endpoints to remove streams from.
2148 * @num_eps: number of endpoints in the array.
2149 * @mem_flags: flags hcd should use to allocate memory.
2151 * Reverts a group of bulk endpoints back to not using stream IDs.
2152 * Can fail if we are given bad arguments, or HCD is broken.
2154 * Return: 0 on success. On failure, a negative error code.
2156 int usb_free_streams(struct usb_interface
*interface
,
2157 struct usb_host_endpoint
**eps
, unsigned int num_eps
,
2160 struct usb_hcd
*hcd
;
2161 struct usb_device
*dev
;
2164 dev
= interface_to_usbdev(interface
);
2165 hcd
= bus_to_hcd(dev
->bus
);
2166 if (dev
->speed
< USB_SPEED_SUPER
)
2169 /* Double-free is not allowed */
2170 for (i
= 0; i
< num_eps
; i
++)
2171 if (!eps
[i
] || !eps
[i
]->streams
)
2174 ret
= hcd
->driver
->free_streams(hcd
, dev
, eps
, num_eps
, mem_flags
);
2178 for (i
= 0; i
< num_eps
; i
++)
2179 eps
[i
]->streams
= 0;
2183 EXPORT_SYMBOL_GPL(usb_free_streams
);
2185 /* Protect against drivers that try to unlink URBs after the device
2186 * is gone, by waiting until all unlinks for @udev are finished.
2187 * Since we don't currently track URBs by device, simply wait until
2188 * nothing is running in the locked region of usb_hcd_unlink_urb().
2190 void usb_hcd_synchronize_unlinks(struct usb_device
*udev
)
2192 spin_lock_irq(&hcd_urb_unlink_lock
);
2193 spin_unlock_irq(&hcd_urb_unlink_lock
);
2196 /*-------------------------------------------------------------------------*/
2198 /* called in any context */
2199 int usb_hcd_get_frame_number (struct usb_device
*udev
)
2201 struct usb_hcd
*hcd
= bus_to_hcd(udev
->bus
);
2203 if (!HCD_RH_RUNNING(hcd
))
2205 return hcd
->driver
->get_frame_number (hcd
);
2208 /*-------------------------------------------------------------------------*/
2212 int hcd_bus_suspend(struct usb_device
*rhdev
, pm_message_t msg
)
2214 struct usb_hcd
*hcd
= container_of(rhdev
->bus
, struct usb_hcd
, self
);
2216 int old_state
= hcd
->state
;
2218 dev_dbg(&rhdev
->dev
, "bus %ssuspend, wakeup %d\n",
2219 (PMSG_IS_AUTO(msg
) ? "auto-" : ""),
2220 rhdev
->do_remote_wakeup
);
2221 if (HCD_DEAD(hcd
)) {
2222 dev_dbg(&rhdev
->dev
, "skipped %s of dead bus\n", "suspend");
2226 if (!hcd
->driver
->bus_suspend
) {
2229 clear_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
2230 hcd
->state
= HC_STATE_QUIESCING
;
2231 status
= hcd
->driver
->bus_suspend(hcd
);
2234 usb_set_device_state(rhdev
, USB_STATE_SUSPENDED
);
2235 hcd
->state
= HC_STATE_SUSPENDED
;
2237 /* Did we race with a root-hub wakeup event? */
2238 if (rhdev
->do_remote_wakeup
) {
2241 status
= hcd
->driver
->hub_status_data(hcd
, buffer
);
2243 dev_dbg(&rhdev
->dev
, "suspend raced with wakeup event\n");
2244 hcd_bus_resume(rhdev
, PMSG_AUTO_RESUME
);
2249 spin_lock_irq(&hcd_root_hub_lock
);
2250 if (!HCD_DEAD(hcd
)) {
2251 set_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
2252 hcd
->state
= old_state
;
2254 spin_unlock_irq(&hcd_root_hub_lock
);
2255 dev_dbg(&rhdev
->dev
, "bus %s fail, err %d\n",
2261 int hcd_bus_resume(struct usb_device
*rhdev
, pm_message_t msg
)
2263 struct usb_hcd
*hcd
= container_of(rhdev
->bus
, struct usb_hcd
, self
);
2265 int old_state
= hcd
->state
;
2267 dev_dbg(&rhdev
->dev
, "usb %sresume\n",
2268 (PMSG_IS_AUTO(msg
) ? "auto-" : ""));
2269 if (HCD_DEAD(hcd
)) {
2270 dev_dbg(&rhdev
->dev
, "skipped %s of dead bus\n", "resume");
2273 if (!hcd
->driver
->bus_resume
)
2275 if (HCD_RH_RUNNING(hcd
))
2278 hcd
->state
= HC_STATE_RESUMING
;
2279 status
= hcd
->driver
->bus_resume(hcd
);
2280 clear_bit(HCD_FLAG_WAKEUP_PENDING
, &hcd
->flags
);
2282 struct usb_device
*udev
;
2285 spin_lock_irq(&hcd_root_hub_lock
);
2286 if (!HCD_DEAD(hcd
)) {
2287 usb_set_device_state(rhdev
, rhdev
->actconfig
2288 ? USB_STATE_CONFIGURED
2289 : USB_STATE_ADDRESS
);
2290 set_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
2291 hcd
->state
= HC_STATE_RUNNING
;
2293 spin_unlock_irq(&hcd_root_hub_lock
);
2296 * Check whether any of the enabled ports on the root hub are
2297 * unsuspended. If they are then a TRSMRCY delay is needed
2298 * (this is what the USB-2 spec calls a "global resume").
2299 * Otherwise we can skip the delay.
2301 usb_hub_for_each_child(rhdev
, port1
, udev
) {
2302 if (udev
->state
!= USB_STATE_NOTATTACHED
&&
2303 !udev
->port_is_suspended
) {
2304 usleep_range(10000, 11000); /* TRSMRCY */
2309 hcd
->state
= old_state
;
2310 dev_dbg(&rhdev
->dev
, "bus %s fail, err %d\n",
2312 if (status
!= -ESHUTDOWN
)
2318 /* Workqueue routine for root-hub remote wakeup */
2319 static void hcd_resume_work(struct work_struct
*work
)
2321 struct usb_hcd
*hcd
= container_of(work
, struct usb_hcd
, wakeup_work
);
2322 struct usb_device
*udev
= hcd
->self
.root_hub
;
2324 usb_remote_wakeup(udev
);
2328 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2329 * @hcd: host controller for this root hub
2331 * The USB host controller calls this function when its root hub is
2332 * suspended (with the remote wakeup feature enabled) and a remote
2333 * wakeup request is received. The routine submits a workqueue request
2334 * to resume the root hub (that is, manage its downstream ports again).
2336 void usb_hcd_resume_root_hub (struct usb_hcd
*hcd
)
2338 unsigned long flags
;
2340 spin_lock_irqsave (&hcd_root_hub_lock
, flags
);
2341 if (hcd
->rh_registered
) {
2342 pm_wakeup_event(&hcd
->self
.root_hub
->dev
, 0);
2343 set_bit(HCD_FLAG_WAKEUP_PENDING
, &hcd
->flags
);
2344 queue_work(pm_wq
, &hcd
->wakeup_work
);
2346 spin_unlock_irqrestore (&hcd_root_hub_lock
, flags
);
2348 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub
);
2350 #endif /* CONFIG_PM */
2352 /*-------------------------------------------------------------------------*/
2354 #ifdef CONFIG_USB_OTG
2357 * usb_bus_start_enum - start immediate enumeration (for OTG)
2358 * @bus: the bus (must use hcd framework)
2359 * @port_num: 1-based number of port; usually bus->otg_port
2360 * Context: in_interrupt()
2362 * Starts enumeration, with an immediate reset followed later by
2363 * hub_wq identifying and possibly configuring the device.
2364 * This is needed by OTG controller drivers, where it helps meet
2365 * HNP protocol timing requirements for starting a port reset.
2367 * Return: 0 if successful.
2369 int usb_bus_start_enum(struct usb_bus
*bus
, unsigned port_num
)
2371 struct usb_hcd
*hcd
;
2372 int status
= -EOPNOTSUPP
;
2374 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2375 * boards with root hubs hooked up to internal devices (instead of
2376 * just the OTG port) may need more attention to resetting...
2378 hcd
= container_of (bus
, struct usb_hcd
, self
);
2379 if (port_num
&& hcd
->driver
->start_port_reset
)
2380 status
= hcd
->driver
->start_port_reset(hcd
, port_num
);
2382 /* allocate hub_wq shortly after (first) root port reset finishes;
2383 * it may issue others, until at least 50 msecs have passed.
2386 mod_timer(&hcd
->rh_timer
, jiffies
+ msecs_to_jiffies(10));
2389 EXPORT_SYMBOL_GPL(usb_bus_start_enum
);
2393 /*-------------------------------------------------------------------------*/
2396 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2397 * @irq: the IRQ being raised
2398 * @__hcd: pointer to the HCD whose IRQ is being signaled
2400 * If the controller isn't HALTed, calls the driver's irq handler.
2401 * Checks whether the controller is now dead.
2403 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2405 irqreturn_t
usb_hcd_irq (int irq
, void *__hcd
)
2407 struct usb_hcd
*hcd
= __hcd
;
2410 if (unlikely(HCD_DEAD(hcd
) || !HCD_HW_ACCESSIBLE(hcd
)))
2412 else if (hcd
->driver
->irq(hcd
) == IRQ_NONE
)
2419 EXPORT_SYMBOL_GPL(usb_hcd_irq
);
2421 /*-------------------------------------------------------------------------*/
2424 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2425 * @hcd: pointer to the HCD representing the controller
2427 * This is called by bus glue to report a USB host controller that died
2428 * while operations may still have been pending. It's called automatically
2429 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2431 * Only call this function with the primary HCD.
2433 void usb_hc_died (struct usb_hcd
*hcd
)
2435 unsigned long flags
;
2437 dev_err (hcd
->self
.controller
, "HC died; cleaning up\n");
2439 spin_lock_irqsave (&hcd_root_hub_lock
, flags
);
2440 clear_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
2441 set_bit(HCD_FLAG_DEAD
, &hcd
->flags
);
2442 if (hcd
->rh_registered
) {
2443 clear_bit(HCD_FLAG_POLL_RH
, &hcd
->flags
);
2445 /* make hub_wq clean up old urbs and devices */
2446 usb_set_device_state (hcd
->self
.root_hub
,
2447 USB_STATE_NOTATTACHED
);
2448 usb_kick_hub_wq(hcd
->self
.root_hub
);
2450 if (usb_hcd_is_primary_hcd(hcd
) && hcd
->shared_hcd
) {
2451 hcd
= hcd
->shared_hcd
;
2452 clear_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
2453 set_bit(HCD_FLAG_DEAD
, &hcd
->flags
);
2454 if (hcd
->rh_registered
) {
2455 clear_bit(HCD_FLAG_POLL_RH
, &hcd
->flags
);
2457 /* make hub_wq clean up old urbs and devices */
2458 usb_set_device_state(hcd
->self
.root_hub
,
2459 USB_STATE_NOTATTACHED
);
2460 usb_kick_hub_wq(hcd
->self
.root_hub
);
2463 spin_unlock_irqrestore (&hcd_root_hub_lock
, flags
);
2464 /* Make sure that the other roothub is also deallocated. */
2466 EXPORT_SYMBOL_GPL (usb_hc_died
);
2468 /*-------------------------------------------------------------------------*/
2470 static void init_giveback_urb_bh(struct giveback_urb_bh
*bh
)
2473 spin_lock_init(&bh
->lock
);
2474 INIT_LIST_HEAD(&bh
->head
);
2475 tasklet_init(&bh
->bh
, usb_giveback_urb_bh
, (unsigned long)bh
);
2479 * usb_create_shared_hcd - create and initialize an HCD structure
2480 * @driver: HC driver that will use this hcd
2481 * @dev: device for this HC, stored in hcd->self.controller
2482 * @bus_name: value to store in hcd->self.bus_name
2483 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2484 * PCI device. Only allocate certain resources for the primary HCD
2485 * Context: !in_interrupt()
2487 * Allocate a struct usb_hcd, with extra space at the end for the
2488 * HC driver's private data. Initialize the generic members of the
2491 * Return: On success, a pointer to the created and initialized HCD structure.
2492 * On failure (e.g. if memory is unavailable), %NULL.
2494 struct usb_hcd
*usb_create_shared_hcd(const struct hc_driver
*driver
,
2495 struct device
*dev
, const char *bus_name
,
2496 struct usb_hcd
*primary_hcd
)
2498 struct usb_hcd
*hcd
;
2500 hcd
= kzalloc(sizeof(*hcd
) + driver
->hcd_priv_size
, GFP_KERNEL
);
2502 dev_dbg (dev
, "hcd alloc failed\n");
2505 if (primary_hcd
== NULL
) {
2506 hcd
->address0_mutex
= kmalloc(sizeof(*hcd
->address0_mutex
),
2508 if (!hcd
->address0_mutex
) {
2510 dev_dbg(dev
, "hcd address0 mutex alloc failed\n");
2513 mutex_init(hcd
->address0_mutex
);
2514 hcd
->bandwidth_mutex
= kmalloc(sizeof(*hcd
->bandwidth_mutex
),
2516 if (!hcd
->bandwidth_mutex
) {
2517 kfree(hcd
->address0_mutex
);
2519 dev_dbg(dev
, "hcd bandwidth mutex alloc failed\n");
2522 mutex_init(hcd
->bandwidth_mutex
);
2523 dev_set_drvdata(dev
, hcd
);
2525 mutex_lock(&usb_port_peer_mutex
);
2526 hcd
->address0_mutex
= primary_hcd
->address0_mutex
;
2527 hcd
->bandwidth_mutex
= primary_hcd
->bandwidth_mutex
;
2528 hcd
->primary_hcd
= primary_hcd
;
2529 primary_hcd
->primary_hcd
= primary_hcd
;
2530 hcd
->shared_hcd
= primary_hcd
;
2531 primary_hcd
->shared_hcd
= hcd
;
2532 mutex_unlock(&usb_port_peer_mutex
);
2535 kref_init(&hcd
->kref
);
2537 usb_bus_init(&hcd
->self
);
2538 hcd
->self
.controller
= dev
;
2539 hcd
->self
.bus_name
= bus_name
;
2540 hcd
->self
.uses_dma
= (dev
->dma_mask
!= NULL
);
2542 init_timer(&hcd
->rh_timer
);
2543 hcd
->rh_timer
.function
= rh_timer_func
;
2544 hcd
->rh_timer
.data
= (unsigned long) hcd
;
2546 INIT_WORK(&hcd
->wakeup_work
, hcd_resume_work
);
2549 hcd
->driver
= driver
;
2550 hcd
->speed
= driver
->flags
& HCD_MASK
;
2551 hcd
->product_desc
= (driver
->product_desc
) ? driver
->product_desc
:
2552 "USB Host Controller";
2555 EXPORT_SYMBOL_GPL(usb_create_shared_hcd
);
2558 * usb_create_hcd - create and initialize an HCD structure
2559 * @driver: HC driver that will use this hcd
2560 * @dev: device for this HC, stored in hcd->self.controller
2561 * @bus_name: value to store in hcd->self.bus_name
2562 * Context: !in_interrupt()
2564 * Allocate a struct usb_hcd, with extra space at the end for the
2565 * HC driver's private data. Initialize the generic members of the
2568 * Return: On success, a pointer to the created and initialized HCD
2569 * structure. On failure (e.g. if memory is unavailable), %NULL.
2571 struct usb_hcd
*usb_create_hcd(const struct hc_driver
*driver
,
2572 struct device
*dev
, const char *bus_name
)
2574 return usb_create_shared_hcd(driver
, dev
, bus_name
, NULL
);
2576 EXPORT_SYMBOL_GPL(usb_create_hcd
);
2579 * Roothubs that share one PCI device must also share the bandwidth mutex.
2580 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2583 * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2584 * freed. When hcd_release() is called for either hcd in a peer set,
2585 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2587 static void hcd_release(struct kref
*kref
)
2589 struct usb_hcd
*hcd
= container_of (kref
, struct usb_hcd
, kref
);
2591 mutex_lock(&usb_port_peer_mutex
);
2592 if (hcd
->shared_hcd
) {
2593 struct usb_hcd
*peer
= hcd
->shared_hcd
;
2595 peer
->shared_hcd
= NULL
;
2596 peer
->primary_hcd
= NULL
;
2598 kfree(hcd
->address0_mutex
);
2599 kfree(hcd
->bandwidth_mutex
);
2601 mutex_unlock(&usb_port_peer_mutex
);
2605 struct usb_hcd
*usb_get_hcd (struct usb_hcd
*hcd
)
2608 kref_get (&hcd
->kref
);
2611 EXPORT_SYMBOL_GPL(usb_get_hcd
);
2613 void usb_put_hcd (struct usb_hcd
*hcd
)
2616 kref_put (&hcd
->kref
, hcd_release
);
2618 EXPORT_SYMBOL_GPL(usb_put_hcd
);
2620 int usb_hcd_is_primary_hcd(struct usb_hcd
*hcd
)
2622 if (!hcd
->primary_hcd
)
2624 return hcd
== hcd
->primary_hcd
;
2626 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd
);
2628 int usb_hcd_find_raw_port_number(struct usb_hcd
*hcd
, int port1
)
2630 if (!hcd
->driver
->find_raw_port_number
)
2633 return hcd
->driver
->find_raw_port_number(hcd
, port1
);
2636 static int usb_hcd_request_irqs(struct usb_hcd
*hcd
,
2637 unsigned int irqnum
, unsigned long irqflags
)
2641 if (hcd
->driver
->irq
) {
2643 snprintf(hcd
->irq_descr
, sizeof(hcd
->irq_descr
), "%s:usb%d",
2644 hcd
->driver
->description
, hcd
->self
.busnum
);
2645 retval
= request_irq(irqnum
, &usb_hcd_irq
, irqflags
,
2646 hcd
->irq_descr
, hcd
);
2648 dev_err(hcd
->self
.controller
,
2649 "request interrupt %d failed\n",
2654 dev_info(hcd
->self
.controller
, "irq %d, %s 0x%08llx\n", irqnum
,
2655 (hcd
->driver
->flags
& HCD_MEMORY
) ?
2656 "io mem" : "io base",
2657 (unsigned long long)hcd
->rsrc_start
);
2660 if (hcd
->rsrc_start
)
2661 dev_info(hcd
->self
.controller
, "%s 0x%08llx\n",
2662 (hcd
->driver
->flags
& HCD_MEMORY
) ?
2663 "io mem" : "io base",
2664 (unsigned long long)hcd
->rsrc_start
);
2670 * Before we free this root hub, flush in-flight peering attempts
2671 * and disable peer lookups
2673 static void usb_put_invalidate_rhdev(struct usb_hcd
*hcd
)
2675 struct usb_device
*rhdev
;
2677 mutex_lock(&usb_port_peer_mutex
);
2678 rhdev
= hcd
->self
.root_hub
;
2679 hcd
->self
.root_hub
= NULL
;
2680 mutex_unlock(&usb_port_peer_mutex
);
2685 * usb_add_hcd - finish generic HCD structure initialization and register
2686 * @hcd: the usb_hcd structure to initialize
2687 * @irqnum: Interrupt line to allocate
2688 * @irqflags: Interrupt type flags
2690 * Finish the remaining parts of generic HCD initialization: allocate the
2691 * buffers of consistent memory, register the bus, request the IRQ line,
2692 * and call the driver's reset() and start() routines.
2694 int usb_add_hcd(struct usb_hcd
*hcd
,
2695 unsigned int irqnum
, unsigned long irqflags
)
2698 struct usb_device
*rhdev
;
2700 if (IS_ENABLED(CONFIG_USB_PHY
) && !hcd
->usb_phy
) {
2701 struct usb_phy
*phy
= usb_get_phy_dev(hcd
->self
.controller
, 0);
2704 retval
= PTR_ERR(phy
);
2705 if (retval
== -EPROBE_DEFER
)
2708 retval
= usb_phy_init(phy
);
2714 hcd
->remove_phy
= 1;
2718 if (IS_ENABLED(CONFIG_GENERIC_PHY
) && !hcd
->phy
) {
2719 struct phy
*phy
= phy_get(hcd
->self
.controller
, "usb");
2722 retval
= PTR_ERR(phy
);
2723 if (retval
== -EPROBE_DEFER
)
2726 retval
= phy_init(phy
);
2731 retval
= phy_power_on(phy
);
2738 hcd
->remove_phy
= 1;
2742 dev_info(hcd
->self
.controller
, "%s\n", hcd
->product_desc
);
2744 /* Keep old behaviour if authorized_default is not in [0, 1]. */
2745 if (authorized_default
< 0 || authorized_default
> 1) {
2747 clear_bit(HCD_FLAG_DEV_AUTHORIZED
, &hcd
->flags
);
2749 set_bit(HCD_FLAG_DEV_AUTHORIZED
, &hcd
->flags
);
2751 if (authorized_default
)
2752 set_bit(HCD_FLAG_DEV_AUTHORIZED
, &hcd
->flags
);
2754 clear_bit(HCD_FLAG_DEV_AUTHORIZED
, &hcd
->flags
);
2756 set_bit(HCD_FLAG_HW_ACCESSIBLE
, &hcd
->flags
);
2758 /* per default all interfaces are authorized */
2759 set_bit(HCD_FLAG_INTF_AUTHORIZED
, &hcd
->flags
);
2761 /* HC is in reset state, but accessible. Now do the one-time init,
2762 * bottom up so that hcds can customize the root hubs before hub_wq
2763 * starts talking to them. (Note, bus id is assigned early too.)
2765 retval
= hcd_buffer_create(hcd
);
2767 dev_dbg(hcd
->self
.controller
, "pool alloc failed\n");
2768 goto err_create_buf
;
2771 retval
= usb_register_bus(&hcd
->self
);
2773 goto err_register_bus
;
2775 rhdev
= usb_alloc_dev(NULL
, &hcd
->self
, 0);
2776 if (rhdev
== NULL
) {
2777 dev_err(hcd
->self
.controller
, "unable to allocate root hub\n");
2779 goto err_allocate_root_hub
;
2781 mutex_lock(&usb_port_peer_mutex
);
2782 hcd
->self
.root_hub
= rhdev
;
2783 mutex_unlock(&usb_port_peer_mutex
);
2785 switch (hcd
->speed
) {
2787 rhdev
->speed
= USB_SPEED_FULL
;
2790 rhdev
->speed
= USB_SPEED_HIGH
;
2793 rhdev
->speed
= USB_SPEED_WIRELESS
;
2797 rhdev
->speed
= USB_SPEED_SUPER
;
2801 goto err_set_rh_speed
;
2804 /* wakeup flag init defaults to "everything works" for root hubs,
2805 * but drivers can override it in reset() if needed, along with
2806 * recording the overall controller's system wakeup capability.
2808 device_set_wakeup_capable(&rhdev
->dev
, 1);
2810 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2811 * registered. But since the controller can die at any time,
2812 * let's initialize the flag before touching the hardware.
2814 set_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
2816 /* "reset" is misnamed; its role is now one-time init. the controller
2817 * should already have been reset (and boot firmware kicked off etc).
2819 if (hcd
->driver
->reset
) {
2820 retval
= hcd
->driver
->reset(hcd
);
2822 dev_err(hcd
->self
.controller
, "can't setup: %d\n",
2824 goto err_hcd_driver_setup
;
2827 hcd
->rh_pollable
= 1;
2829 /* NOTE: root hub and controller capabilities may not be the same */
2830 if (device_can_wakeup(hcd
->self
.controller
)
2831 && device_can_wakeup(&hcd
->self
.root_hub
->dev
))
2832 dev_dbg(hcd
->self
.controller
, "supports USB remote wakeup\n");
2834 /* initialize tasklets */
2835 init_giveback_urb_bh(&hcd
->high_prio_bh
);
2836 init_giveback_urb_bh(&hcd
->low_prio_bh
);
2838 /* enable irqs just before we start the controller,
2839 * if the BIOS provides legacy PCI irqs.
2841 if (usb_hcd_is_primary_hcd(hcd
) && irqnum
) {
2842 retval
= usb_hcd_request_irqs(hcd
, irqnum
, irqflags
);
2844 goto err_request_irq
;
2847 hcd
->state
= HC_STATE_RUNNING
;
2848 retval
= hcd
->driver
->start(hcd
);
2850 dev_err(hcd
->self
.controller
, "startup error %d\n", retval
);
2851 goto err_hcd_driver_start
;
2854 /* starting here, usbcore will pay attention to this root hub */
2855 retval
= register_root_hub(hcd
);
2857 goto err_register_root_hub
;
2859 retval
= sysfs_create_group(&rhdev
->dev
.kobj
, &usb_bus_attr_group
);
2861 printk(KERN_ERR
"Cannot register USB bus sysfs attributes: %d\n",
2863 goto error_create_attr_group
;
2865 if (hcd
->uses_new_polling
&& HCD_POLL_RH(hcd
))
2866 usb_hcd_poll_rh_status(hcd
);
2870 error_create_attr_group
:
2871 clear_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
2872 if (HC_IS_RUNNING(hcd
->state
))
2873 hcd
->state
= HC_STATE_QUIESCING
;
2874 spin_lock_irq(&hcd_root_hub_lock
);
2875 hcd
->rh_registered
= 0;
2876 spin_unlock_irq(&hcd_root_hub_lock
);
2879 cancel_work_sync(&hcd
->wakeup_work
);
2881 mutex_lock(&usb_bus_list_lock
);
2882 usb_disconnect(&rhdev
); /* Sets rhdev to NULL */
2883 mutex_unlock(&usb_bus_list_lock
);
2884 err_register_root_hub
:
2885 hcd
->rh_pollable
= 0;
2886 clear_bit(HCD_FLAG_POLL_RH
, &hcd
->flags
);
2887 del_timer_sync(&hcd
->rh_timer
);
2888 hcd
->driver
->stop(hcd
);
2889 hcd
->state
= HC_STATE_HALT
;
2890 clear_bit(HCD_FLAG_POLL_RH
, &hcd
->flags
);
2891 del_timer_sync(&hcd
->rh_timer
);
2892 err_hcd_driver_start
:
2893 if (usb_hcd_is_primary_hcd(hcd
) && hcd
->irq
> 0)
2894 free_irq(irqnum
, hcd
);
2896 err_hcd_driver_setup
:
2898 usb_put_invalidate_rhdev(hcd
);
2899 err_allocate_root_hub
:
2900 usb_deregister_bus(&hcd
->self
);
2902 hcd_buffer_destroy(hcd
);
2904 if (IS_ENABLED(CONFIG_GENERIC_PHY
) && hcd
->remove_phy
&& hcd
->phy
) {
2905 phy_power_off(hcd
->phy
);
2911 if (hcd
->remove_phy
&& hcd
->usb_phy
) {
2912 usb_phy_shutdown(hcd
->usb_phy
);
2913 usb_put_phy(hcd
->usb_phy
);
2914 hcd
->usb_phy
= NULL
;
2918 EXPORT_SYMBOL_GPL(usb_add_hcd
);
2921 * usb_remove_hcd - shutdown processing for generic HCDs
2922 * @hcd: the usb_hcd structure to remove
2923 * Context: !in_interrupt()
2925 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2926 * invoking the HCD's stop() method.
2928 void usb_remove_hcd(struct usb_hcd
*hcd
)
2930 struct usb_device
*rhdev
= hcd
->self
.root_hub
;
2932 dev_info(hcd
->self
.controller
, "remove, state %x\n", hcd
->state
);
2935 sysfs_remove_group(&rhdev
->dev
.kobj
, &usb_bus_attr_group
);
2937 clear_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
2938 if (HC_IS_RUNNING (hcd
->state
))
2939 hcd
->state
= HC_STATE_QUIESCING
;
2941 dev_dbg(hcd
->self
.controller
, "roothub graceful disconnect\n");
2942 spin_lock_irq (&hcd_root_hub_lock
);
2943 hcd
->rh_registered
= 0;
2944 spin_unlock_irq (&hcd_root_hub_lock
);
2947 cancel_work_sync(&hcd
->wakeup_work
);
2950 mutex_lock(&usb_bus_list_lock
);
2951 usb_disconnect(&rhdev
); /* Sets rhdev to NULL */
2952 mutex_unlock(&usb_bus_list_lock
);
2955 * tasklet_kill() isn't needed here because:
2956 * - driver's disconnect() called from usb_disconnect() should
2957 * make sure its URBs are completed during the disconnect()
2960 * - it is too late to run complete() here since driver may have
2961 * been removed already now
2964 /* Prevent any more root-hub status calls from the timer.
2965 * The HCD might still restart the timer (if a port status change
2966 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2967 * the hub_status_data() callback.
2969 hcd
->rh_pollable
= 0;
2970 clear_bit(HCD_FLAG_POLL_RH
, &hcd
->flags
);
2971 del_timer_sync(&hcd
->rh_timer
);
2973 hcd
->driver
->stop(hcd
);
2974 hcd
->state
= HC_STATE_HALT
;
2976 /* In case the HCD restarted the timer, stop it again. */
2977 clear_bit(HCD_FLAG_POLL_RH
, &hcd
->flags
);
2978 del_timer_sync(&hcd
->rh_timer
);
2980 if (usb_hcd_is_primary_hcd(hcd
)) {
2982 free_irq(hcd
->irq
, hcd
);
2985 usb_deregister_bus(&hcd
->self
);
2986 hcd_buffer_destroy(hcd
);
2988 if (IS_ENABLED(CONFIG_GENERIC_PHY
) && hcd
->remove_phy
&& hcd
->phy
) {
2989 phy_power_off(hcd
->phy
);
2994 if (hcd
->remove_phy
&& hcd
->usb_phy
) {
2995 usb_phy_shutdown(hcd
->usb_phy
);
2996 usb_put_phy(hcd
->usb_phy
);
2997 hcd
->usb_phy
= NULL
;
3000 usb_put_invalidate_rhdev(hcd
);
3003 EXPORT_SYMBOL_GPL(usb_remove_hcd
);
3006 usb_hcd_platform_shutdown(struct platform_device
*dev
)
3008 struct usb_hcd
*hcd
= platform_get_drvdata(dev
);
3010 if (hcd
->driver
->shutdown
)
3011 hcd
->driver
->shutdown(hcd
);
3013 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown
);
3015 /*-------------------------------------------------------------------------*/
3017 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
3019 struct usb_mon_operations
*mon_ops
;
3022 * The registration is unlocked.
3023 * We do it this way because we do not want to lock in hot paths.
3025 * Notice that the code is minimally error-proof. Because usbmon needs
3026 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3029 int usb_mon_register (struct usb_mon_operations
*ops
)
3039 EXPORT_SYMBOL_GPL (usb_mon_register
);
3041 void usb_mon_deregister (void)
3044 if (mon_ops
== NULL
) {
3045 printk(KERN_ERR
"USB: monitor was not registered\n");
3051 EXPORT_SYMBOL_GPL (usb_mon_deregister
);
3053 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */