2 * VFIO PCI config space virtualization
4 * Copyright (C) 2012 Red Hat, Inc. All rights reserved.
5 * Author: Alex Williamson <alex.williamson@redhat.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 * Derived from original vfio:
12 * Copyright 2010 Cisco Systems, Inc. All rights reserved.
13 * Author: Tom Lyon, pugs@cisco.com
17 * This code handles reading and writing of PCI configuration registers.
18 * This is hairy because we want to allow a lot of flexibility to the
19 * user driver, but cannot trust it with all of the config fields.
20 * Tables determine which fields can be read and written, as well as
21 * which fields are 'virtualized' - special actions and translations to
22 * make it appear to the user that he has control, when in fact things
23 * must be negotiated with the underlying OS.
27 #include <linux/pci.h>
28 #include <linux/uaccess.h>
29 #include <linux/vfio.h>
30 #include <linux/slab.h>
32 #include "vfio_pci_private.h"
34 #define PCI_CFG_SPACE_SIZE 256
36 /* Useful "pseudo" capabilities */
37 #define PCI_CAP_ID_BASIC 0
38 #define PCI_CAP_ID_INVALID 0xFF
40 #define is_bar(offset) \
41 ((offset >= PCI_BASE_ADDRESS_0 && offset < PCI_BASE_ADDRESS_5 + 4) || \
42 (offset >= PCI_ROM_ADDRESS && offset < PCI_ROM_ADDRESS + 4))
45 * Lengths of PCI Config Capabilities
46 * 0: Removed from the user visible capability list
49 static const u8 pci_cap_length
[PCI_CAP_ID_MAX
+ 1] = {
50 [PCI_CAP_ID_BASIC
] = PCI_STD_HEADER_SIZEOF
, /* pci config header */
51 [PCI_CAP_ID_PM
] = PCI_PM_SIZEOF
,
52 [PCI_CAP_ID_AGP
] = PCI_AGP_SIZEOF
,
53 [PCI_CAP_ID_VPD
] = PCI_CAP_VPD_SIZEOF
,
54 [PCI_CAP_ID_SLOTID
] = 0, /* bridge - don't care */
55 [PCI_CAP_ID_MSI
] = 0xFF, /* 10, 14, 20, or 24 */
56 [PCI_CAP_ID_CHSWP
] = 0, /* cpci - not yet */
57 [PCI_CAP_ID_PCIX
] = 0xFF, /* 8 or 24 */
58 [PCI_CAP_ID_HT
] = 0xFF, /* hypertransport */
59 [PCI_CAP_ID_VNDR
] = 0xFF, /* variable */
60 [PCI_CAP_ID_DBG
] = 0, /* debug - don't care */
61 [PCI_CAP_ID_CCRC
] = 0, /* cpci - not yet */
62 [PCI_CAP_ID_SHPC
] = 0, /* hotswap - not yet */
63 [PCI_CAP_ID_SSVID
] = 0, /* bridge - don't care */
64 [PCI_CAP_ID_AGP3
] = 0, /* AGP8x - not yet */
65 [PCI_CAP_ID_SECDEV
] = 0, /* secure device not yet */
66 [PCI_CAP_ID_EXP
] = 0xFF, /* 20 or 44 */
67 [PCI_CAP_ID_MSIX
] = PCI_CAP_MSIX_SIZEOF
,
68 [PCI_CAP_ID_SATA
] = 0xFF,
69 [PCI_CAP_ID_AF
] = PCI_CAP_AF_SIZEOF
,
73 * Lengths of PCIe/PCI-X Extended Config Capabilities
74 * 0: Removed or masked from the user visible capabilty list
77 static const u16 pci_ext_cap_length
[PCI_EXT_CAP_ID_MAX
+ 1] = {
78 [PCI_EXT_CAP_ID_ERR
] = PCI_ERR_ROOT_COMMAND
,
79 [PCI_EXT_CAP_ID_VC
] = 0xFF,
80 [PCI_EXT_CAP_ID_DSN
] = PCI_EXT_CAP_DSN_SIZEOF
,
81 [PCI_EXT_CAP_ID_PWR
] = PCI_EXT_CAP_PWR_SIZEOF
,
82 [PCI_EXT_CAP_ID_RCLD
] = 0, /* root only - don't care */
83 [PCI_EXT_CAP_ID_RCILC
] = 0, /* root only - don't care */
84 [PCI_EXT_CAP_ID_RCEC
] = 0, /* root only - don't care */
85 [PCI_EXT_CAP_ID_MFVC
] = 0xFF,
86 [PCI_EXT_CAP_ID_VC9
] = 0xFF, /* same as CAP_ID_VC */
87 [PCI_EXT_CAP_ID_RCRB
] = 0, /* root only - don't care */
88 [PCI_EXT_CAP_ID_VNDR
] = 0xFF,
89 [PCI_EXT_CAP_ID_CAC
] = 0, /* obsolete */
90 [PCI_EXT_CAP_ID_ACS
] = 0xFF,
91 [PCI_EXT_CAP_ID_ARI
] = PCI_EXT_CAP_ARI_SIZEOF
,
92 [PCI_EXT_CAP_ID_ATS
] = PCI_EXT_CAP_ATS_SIZEOF
,
93 [PCI_EXT_CAP_ID_SRIOV
] = PCI_EXT_CAP_SRIOV_SIZEOF
,
94 [PCI_EXT_CAP_ID_MRIOV
] = 0, /* not yet */
95 [PCI_EXT_CAP_ID_MCAST
] = PCI_EXT_CAP_MCAST_ENDPOINT_SIZEOF
,
96 [PCI_EXT_CAP_ID_PRI
] = PCI_EXT_CAP_PRI_SIZEOF
,
97 [PCI_EXT_CAP_ID_AMD_XXX
] = 0, /* not yet */
98 [PCI_EXT_CAP_ID_REBAR
] = 0xFF,
99 [PCI_EXT_CAP_ID_DPA
] = 0xFF,
100 [PCI_EXT_CAP_ID_TPH
] = 0xFF,
101 [PCI_EXT_CAP_ID_LTR
] = PCI_EXT_CAP_LTR_SIZEOF
,
102 [PCI_EXT_CAP_ID_SECPCI
] = 0, /* not yet */
103 [PCI_EXT_CAP_ID_PMUX
] = 0, /* not yet */
104 [PCI_EXT_CAP_ID_PASID
] = 0, /* not yet */
108 * Read/Write Permission Bits - one bit for each bit in capability
109 * Any field can be read if it exists, but what is read depends on
110 * whether the field is 'virtualized', or just pass thru to the
111 * hardware. Any virtualized field is also virtualized for writes.
112 * Writes are only permitted if they have a 1 bit here.
115 u8
*virt
; /* read/write virtual data, not hw */
116 u8
*write
; /* writeable bits */
117 int (*readfn
)(struct vfio_pci_device
*vdev
, int pos
, int count
,
118 struct perm_bits
*perm
, int offset
, __le32
*val
);
119 int (*writefn
)(struct vfio_pci_device
*vdev
, int pos
, int count
,
120 struct perm_bits
*perm
, int offset
, __le32 val
);
124 #define ALL_VIRT 0xFFFFFFFFU
126 #define ALL_WRITE 0xFFFFFFFFU
128 static int vfio_user_config_read(struct pci_dev
*pdev
, int offset
,
129 __le32
*val
, int count
)
138 ret
= pci_user_read_config_byte(pdev
, offset
, &tmp
);
145 ret
= pci_user_read_config_word(pdev
, offset
, &tmp
);
150 ret
= pci_user_read_config_dword(pdev
, offset
, &tmp_val
);
154 *val
= cpu_to_le32(tmp_val
);
156 return pcibios_err_to_errno(ret
);
159 static int vfio_user_config_write(struct pci_dev
*pdev
, int offset
,
160 __le32 val
, int count
)
163 u32 tmp_val
= le32_to_cpu(val
);
167 ret
= pci_user_write_config_byte(pdev
, offset
, tmp_val
);
170 ret
= pci_user_write_config_word(pdev
, offset
, tmp_val
);
173 ret
= pci_user_write_config_dword(pdev
, offset
, tmp_val
);
177 return pcibios_err_to_errno(ret
);
180 static int vfio_default_config_read(struct vfio_pci_device
*vdev
, int pos
,
181 int count
, struct perm_bits
*perm
,
182 int offset
, __le32
*val
)
186 memcpy(val
, vdev
->vconfig
+ pos
, count
);
188 memcpy(&virt
, perm
->virt
+ offset
, count
);
190 /* Any non-virtualized bits? */
191 if (cpu_to_le32(~0U >> (32 - (count
* 8))) != virt
) {
192 struct pci_dev
*pdev
= vdev
->pdev
;
196 ret
= vfio_user_config_read(pdev
, pos
, &phys_val
, count
);
200 *val
= (phys_val
& ~virt
) | (*val
& virt
);
206 static int vfio_default_config_write(struct vfio_pci_device
*vdev
, int pos
,
207 int count
, struct perm_bits
*perm
,
208 int offset
, __le32 val
)
210 __le32 virt
= 0, write
= 0;
212 memcpy(&write
, perm
->write
+ offset
, count
);
215 return count
; /* drop, no writable bits */
217 memcpy(&virt
, perm
->virt
+ offset
, count
);
219 /* Virtualized and writable bits go to vconfig */
223 memcpy(&virt_val
, vdev
->vconfig
+ pos
, count
);
225 virt_val
&= ~(write
& virt
);
226 virt_val
|= (val
& (write
& virt
));
228 memcpy(vdev
->vconfig
+ pos
, &virt_val
, count
);
231 /* Non-virtualzed and writable bits go to hardware */
233 struct pci_dev
*pdev
= vdev
->pdev
;
237 ret
= vfio_user_config_read(pdev
, pos
, &phys_val
, count
);
241 phys_val
&= ~(write
& ~virt
);
242 phys_val
|= (val
& (write
& ~virt
));
244 ret
= vfio_user_config_write(pdev
, pos
, phys_val
, count
);
252 /* Allow direct read from hardware, except for capability next pointer */
253 static int vfio_direct_config_read(struct vfio_pci_device
*vdev
, int pos
,
254 int count
, struct perm_bits
*perm
,
255 int offset
, __le32
*val
)
259 ret
= vfio_user_config_read(vdev
->pdev
, pos
, val
, count
);
261 return pcibios_err_to_errno(ret
);
263 if (pos
>= PCI_CFG_SPACE_SIZE
) { /* Extended cap header mangling */
265 memcpy(val
, vdev
->vconfig
+ pos
, count
);
266 } else if (pos
>= PCI_STD_HEADER_SIZEOF
) { /* Std cap mangling */
267 if (offset
== PCI_CAP_LIST_ID
&& count
> 1)
268 memcpy(val
, vdev
->vconfig
+ pos
,
269 min(PCI_CAP_FLAGS
, count
));
270 else if (offset
== PCI_CAP_LIST_NEXT
)
271 memcpy(val
, vdev
->vconfig
+ pos
, 1);
277 /* Raw access skips any kind of virtualization */
278 static int vfio_raw_config_write(struct vfio_pci_device
*vdev
, int pos
,
279 int count
, struct perm_bits
*perm
,
280 int offset
, __le32 val
)
284 ret
= vfio_user_config_write(vdev
->pdev
, pos
, val
, count
);
291 static int vfio_raw_config_read(struct vfio_pci_device
*vdev
, int pos
,
292 int count
, struct perm_bits
*perm
,
293 int offset
, __le32
*val
)
297 ret
= vfio_user_config_read(vdev
->pdev
, pos
, val
, count
);
299 return pcibios_err_to_errno(ret
);
304 /* Default capability regions to read-only, no-virtualization */
305 static struct perm_bits cap_perms
[PCI_CAP_ID_MAX
+ 1] = {
306 [0 ... PCI_CAP_ID_MAX
] = { .readfn
= vfio_direct_config_read
}
308 static struct perm_bits ecap_perms
[PCI_EXT_CAP_ID_MAX
+ 1] = {
309 [0 ... PCI_EXT_CAP_ID_MAX
] = { .readfn
= vfio_direct_config_read
}
312 * Default unassigned regions to raw read-write access. Some devices
313 * require this to function as they hide registers between the gaps in
314 * config space (be2net). Like MMIO and I/O port registers, we have
315 * to trust the hardware isolation.
317 static struct perm_bits unassigned_perms
= {
318 .readfn
= vfio_raw_config_read
,
319 .writefn
= vfio_raw_config_write
322 static void free_perm_bits(struct perm_bits
*perm
)
330 static int alloc_perm_bits(struct perm_bits
*perm
, int size
)
333 * Round up all permission bits to the next dword, this lets us
334 * ignore whether a read/write exceeds the defined capability
335 * structure. We can do this because:
336 * - Standard config space is already dword aligned
337 * - Capabilities are all dword alinged (bits 0:1 of next reserved)
338 * - Express capabilities defined as dword aligned
340 size
= round_up(size
, 4);
344 * - All Readable, None Writeable, None Virtualized
346 perm
->virt
= kzalloc(size
, GFP_KERNEL
);
347 perm
->write
= kzalloc(size
, GFP_KERNEL
);
348 if (!perm
->virt
|| !perm
->write
) {
349 free_perm_bits(perm
);
353 perm
->readfn
= vfio_default_config_read
;
354 perm
->writefn
= vfio_default_config_write
;
360 * Helper functions for filling in permission tables
362 static inline void p_setb(struct perm_bits
*p
, int off
, u8 virt
, u8 write
)
365 p
->write
[off
] = write
;
368 /* Handle endian-ness - pci and tables are little-endian */
369 static inline void p_setw(struct perm_bits
*p
, int off
, u16 virt
, u16 write
)
371 *(__le16
*)(&p
->virt
[off
]) = cpu_to_le16(virt
);
372 *(__le16
*)(&p
->write
[off
]) = cpu_to_le16(write
);
375 /* Handle endian-ness - pci and tables are little-endian */
376 static inline void p_setd(struct perm_bits
*p
, int off
, u32 virt
, u32 write
)
378 *(__le32
*)(&p
->virt
[off
]) = cpu_to_le32(virt
);
379 *(__le32
*)(&p
->write
[off
]) = cpu_to_le32(write
);
383 * Restore the *real* BARs after we detect a FLR or backdoor reset.
384 * (backdoor = some device specific technique that we didn't catch)
386 static void vfio_bar_restore(struct vfio_pci_device
*vdev
)
388 struct pci_dev
*pdev
= vdev
->pdev
;
389 u32
*rbar
= vdev
->rbar
;
395 pr_info("%s: %s reset recovery - restoring bars\n",
396 __func__
, dev_name(&pdev
->dev
));
398 for (i
= PCI_BASE_ADDRESS_0
; i
<= PCI_BASE_ADDRESS_5
; i
+= 4, rbar
++)
399 pci_user_write_config_dword(pdev
, i
, *rbar
);
401 pci_user_write_config_dword(pdev
, PCI_ROM_ADDRESS
, *rbar
);
404 static __le32
vfio_generate_bar_flags(struct pci_dev
*pdev
, int bar
)
406 unsigned long flags
= pci_resource_flags(pdev
, bar
);
409 if (flags
& IORESOURCE_IO
)
410 return cpu_to_le32(PCI_BASE_ADDRESS_SPACE_IO
);
412 val
= PCI_BASE_ADDRESS_SPACE_MEMORY
;
414 if (flags
& IORESOURCE_PREFETCH
)
415 val
|= PCI_BASE_ADDRESS_MEM_PREFETCH
;
417 if (flags
& IORESOURCE_MEM_64
)
418 val
|= PCI_BASE_ADDRESS_MEM_TYPE_64
;
420 return cpu_to_le32(val
);
424 * Pretend we're hardware and tweak the values of the *virtual* PCI BARs
425 * to reflect the hardware capabilities. This implements BAR sizing.
427 static void vfio_bar_fixup(struct vfio_pci_device
*vdev
)
429 struct pci_dev
*pdev
= vdev
->pdev
;
434 bar
= (__le32
*)&vdev
->vconfig
[PCI_BASE_ADDRESS_0
];
436 for (i
= PCI_STD_RESOURCES
; i
<= PCI_STD_RESOURCE_END
; i
++, bar
++) {
437 if (!pci_resource_start(pdev
, i
)) {
438 *bar
= 0; /* Unmapped by host = unimplemented to user */
442 mask
= ~(pci_resource_len(pdev
, i
) - 1);
444 *bar
&= cpu_to_le32((u32
)mask
);
445 *bar
|= vfio_generate_bar_flags(pdev
, i
);
447 if (*bar
& cpu_to_le32(PCI_BASE_ADDRESS_MEM_TYPE_64
)) {
449 *bar
&= cpu_to_le32((u32
)(mask
>> 32));
454 bar
= (__le32
*)&vdev
->vconfig
[PCI_ROM_ADDRESS
];
457 * NB. we expose the actual BAR size here, regardless of whether
458 * we can read it. When we report the REGION_INFO for the ROM
459 * we report what PCI tells us is the actual ROM size.
461 if (pci_resource_start(pdev
, PCI_ROM_RESOURCE
)) {
462 mask
= ~(pci_resource_len(pdev
, PCI_ROM_RESOURCE
) - 1);
463 mask
|= PCI_ROM_ADDRESS_ENABLE
;
464 *bar
&= cpu_to_le32((u32
)mask
);
468 vdev
->bardirty
= false;
471 static int vfio_basic_config_read(struct vfio_pci_device
*vdev
, int pos
,
472 int count
, struct perm_bits
*perm
,
473 int offset
, __le32
*val
)
475 if (is_bar(offset
)) /* pos == offset for basic config */
476 vfio_bar_fixup(vdev
);
478 count
= vfio_default_config_read(vdev
, pos
, count
, perm
, offset
, val
);
480 /* Mask in virtual memory enable for SR-IOV devices */
481 if (offset
== PCI_COMMAND
&& vdev
->pdev
->is_virtfn
) {
482 u16 cmd
= le16_to_cpu(*(__le16
*)&vdev
->vconfig
[PCI_COMMAND
]);
483 u32 tmp_val
= le32_to_cpu(*val
);
485 tmp_val
|= cmd
& PCI_COMMAND_MEMORY
;
486 *val
= cpu_to_le32(tmp_val
);
492 static int vfio_basic_config_write(struct vfio_pci_device
*vdev
, int pos
,
493 int count
, struct perm_bits
*perm
,
494 int offset
, __le32 val
)
496 struct pci_dev
*pdev
= vdev
->pdev
;
501 virt_cmd
= (__le16
*)&vdev
->vconfig
[PCI_COMMAND
];
503 if (offset
== PCI_COMMAND
) {
504 bool phys_mem
, virt_mem
, new_mem
, phys_io
, virt_io
, new_io
;
507 ret
= pci_user_read_config_word(pdev
, PCI_COMMAND
, &phys_cmd
);
511 new_cmd
= le32_to_cpu(val
);
513 phys_mem
= !!(phys_cmd
& PCI_COMMAND_MEMORY
);
514 virt_mem
= !!(le16_to_cpu(*virt_cmd
) & PCI_COMMAND_MEMORY
);
515 new_mem
= !!(new_cmd
& PCI_COMMAND_MEMORY
);
517 phys_io
= !!(phys_cmd
& PCI_COMMAND_IO
);
518 virt_io
= !!(le16_to_cpu(*virt_cmd
) & PCI_COMMAND_IO
);
519 new_io
= !!(new_cmd
& PCI_COMMAND_IO
);
522 * If the user is writing mem/io enable (new_mem/io) and we
523 * think it's already enabled (virt_mem/io), but the hardware
524 * shows it disabled (phys_mem/io, then the device has
525 * undergone some kind of backdoor reset and needs to be
526 * restored before we allow it to enable the bars.
527 * SR-IOV devices will trigger this, but we catch them later
529 if ((new_mem
&& virt_mem
&& !phys_mem
) ||
530 (new_io
&& virt_io
&& !phys_io
))
531 vfio_bar_restore(vdev
);
534 count
= vfio_default_config_write(vdev
, pos
, count
, perm
, offset
, val
);
539 * Save current memory/io enable bits in vconfig to allow for
540 * the test above next time.
542 if (offset
== PCI_COMMAND
) {
543 u16 mask
= PCI_COMMAND_MEMORY
| PCI_COMMAND_IO
;
545 *virt_cmd
&= cpu_to_le16(~mask
);
546 *virt_cmd
|= cpu_to_le16(new_cmd
& mask
);
549 /* Emulate INTx disable */
550 if (offset
>= PCI_COMMAND
&& offset
<= PCI_COMMAND
+ 1) {
551 bool virt_intx_disable
;
553 virt_intx_disable
= !!(le16_to_cpu(*virt_cmd
) &
554 PCI_COMMAND_INTX_DISABLE
);
556 if (virt_intx_disable
&& !vdev
->virq_disabled
) {
557 vdev
->virq_disabled
= true;
558 vfio_pci_intx_mask(vdev
);
559 } else if (!virt_intx_disable
&& vdev
->virq_disabled
) {
560 vdev
->virq_disabled
= false;
561 vfio_pci_intx_unmask(vdev
);
566 vdev
->bardirty
= true;
571 /* Permissions for the Basic PCI Header */
572 static int __init
init_pci_cap_basic_perm(struct perm_bits
*perm
)
574 if (alloc_perm_bits(perm
, PCI_STD_HEADER_SIZEOF
))
577 perm
->readfn
= vfio_basic_config_read
;
578 perm
->writefn
= vfio_basic_config_write
;
580 /* Virtualized for SR-IOV functions, which just have FFFF */
581 p_setw(perm
, PCI_VENDOR_ID
, (u16
)ALL_VIRT
, NO_WRITE
);
582 p_setw(perm
, PCI_DEVICE_ID
, (u16
)ALL_VIRT
, NO_WRITE
);
585 * Virtualize INTx disable, we use it internally for interrupt
586 * control and can emulate it for non-PCI 2.3 devices.
588 p_setw(perm
, PCI_COMMAND
, PCI_COMMAND_INTX_DISABLE
, (u16
)ALL_WRITE
);
590 /* Virtualize capability list, we might want to skip/disable */
591 p_setw(perm
, PCI_STATUS
, PCI_STATUS_CAP_LIST
, NO_WRITE
);
593 /* No harm to write */
594 p_setb(perm
, PCI_CACHE_LINE_SIZE
, NO_VIRT
, (u8
)ALL_WRITE
);
595 p_setb(perm
, PCI_LATENCY_TIMER
, NO_VIRT
, (u8
)ALL_WRITE
);
596 p_setb(perm
, PCI_BIST
, NO_VIRT
, (u8
)ALL_WRITE
);
598 /* Virtualize all bars, can't touch the real ones */
599 p_setd(perm
, PCI_BASE_ADDRESS_0
, ALL_VIRT
, ALL_WRITE
);
600 p_setd(perm
, PCI_BASE_ADDRESS_1
, ALL_VIRT
, ALL_WRITE
);
601 p_setd(perm
, PCI_BASE_ADDRESS_2
, ALL_VIRT
, ALL_WRITE
);
602 p_setd(perm
, PCI_BASE_ADDRESS_3
, ALL_VIRT
, ALL_WRITE
);
603 p_setd(perm
, PCI_BASE_ADDRESS_4
, ALL_VIRT
, ALL_WRITE
);
604 p_setd(perm
, PCI_BASE_ADDRESS_5
, ALL_VIRT
, ALL_WRITE
);
605 p_setd(perm
, PCI_ROM_ADDRESS
, ALL_VIRT
, ALL_WRITE
);
607 /* Allow us to adjust capability chain */
608 p_setb(perm
, PCI_CAPABILITY_LIST
, (u8
)ALL_VIRT
, NO_WRITE
);
610 /* Sometimes used by sw, just virtualize */
611 p_setb(perm
, PCI_INTERRUPT_LINE
, (u8
)ALL_VIRT
, (u8
)ALL_WRITE
);
613 /* Virtualize interrupt pin to allow hiding INTx */
614 p_setb(perm
, PCI_INTERRUPT_PIN
, (u8
)ALL_VIRT
, (u8
)NO_WRITE
);
619 static int vfio_pm_config_write(struct vfio_pci_device
*vdev
, int pos
,
620 int count
, struct perm_bits
*perm
,
621 int offset
, __le32 val
)
623 count
= vfio_default_config_write(vdev
, pos
, count
, perm
, offset
, val
);
627 if (offset
== PCI_PM_CTRL
) {
630 switch (le32_to_cpu(val
) & PCI_PM_CTRL_STATE_MASK
) {
645 pci_set_power_state(vdev
->pdev
, state
);
651 /* Permissions for the Power Management capability */
652 static int __init
init_pci_cap_pm_perm(struct perm_bits
*perm
)
654 if (alloc_perm_bits(perm
, pci_cap_length
[PCI_CAP_ID_PM
]))
657 perm
->writefn
= vfio_pm_config_write
;
660 * We always virtualize the next field so we can remove
661 * capabilities from the chain if we want to.
663 p_setb(perm
, PCI_CAP_LIST_NEXT
, (u8
)ALL_VIRT
, NO_WRITE
);
666 * Power management is defined *per function*, so we can let
667 * the user change power state, but we trap and initiate the
668 * change ourselves, so the state bits are read-only.
670 p_setd(perm
, PCI_PM_CTRL
, NO_VIRT
, ~PCI_PM_CTRL_STATE_MASK
);
674 static int vfio_vpd_config_write(struct vfio_pci_device
*vdev
, int pos
,
675 int count
, struct perm_bits
*perm
,
676 int offset
, __le32 val
)
678 struct pci_dev
*pdev
= vdev
->pdev
;
679 __le16
*paddr
= (__le16
*)(vdev
->vconfig
+ pos
- offset
+ PCI_VPD_ADDR
);
680 __le32
*pdata
= (__le32
*)(vdev
->vconfig
+ pos
- offset
+ PCI_VPD_DATA
);
685 * Write through to emulation. If the write includes the upper byte
686 * of PCI_VPD_ADDR, then the PCI_VPD_ADDR_F bit is written and we
689 count
= vfio_default_config_write(vdev
, pos
, count
, perm
, offset
, val
);
690 if (count
< 0 || offset
> PCI_VPD_ADDR
+ 1 ||
691 offset
+ count
<= PCI_VPD_ADDR
+ 1)
694 addr
= le16_to_cpu(*paddr
);
696 if (addr
& PCI_VPD_ADDR_F
) {
697 data
= le32_to_cpu(*pdata
);
698 if (pci_write_vpd(pdev
, addr
& ~PCI_VPD_ADDR_F
, 4, &data
) != 4)
701 if (pci_read_vpd(pdev
, addr
, 4, &data
) != 4)
703 *pdata
= cpu_to_le32(data
);
707 * Toggle PCI_VPD_ADDR_F in the emulated PCI_VPD_ADDR register to
708 * signal completion. If an error occurs above, we assume that not
709 * toggling this bit will induce a driver timeout.
711 addr
^= PCI_VPD_ADDR_F
;
712 *paddr
= cpu_to_le16(addr
);
717 /* Permissions for Vital Product Data capability */
718 static int __init
init_pci_cap_vpd_perm(struct perm_bits
*perm
)
720 if (alloc_perm_bits(perm
, pci_cap_length
[PCI_CAP_ID_VPD
]))
723 perm
->writefn
= vfio_vpd_config_write
;
726 * We always virtualize the next field so we can remove
727 * capabilities from the chain if we want to.
729 p_setb(perm
, PCI_CAP_LIST_NEXT
, (u8
)ALL_VIRT
, NO_WRITE
);
732 * Both the address and data registers are virtualized to
733 * enable access through the pci_vpd_read/write functions
735 p_setw(perm
, PCI_VPD_ADDR
, (u16
)ALL_VIRT
, (u16
)ALL_WRITE
);
736 p_setd(perm
, PCI_VPD_DATA
, ALL_VIRT
, ALL_WRITE
);
741 /* Permissions for PCI-X capability */
742 static int __init
init_pci_cap_pcix_perm(struct perm_bits
*perm
)
744 /* Alloc 24, but only 8 are used in v0 */
745 if (alloc_perm_bits(perm
, PCI_CAP_PCIX_SIZEOF_V2
))
748 p_setb(perm
, PCI_CAP_LIST_NEXT
, (u8
)ALL_VIRT
, NO_WRITE
);
750 p_setw(perm
, PCI_X_CMD
, NO_VIRT
, (u16
)ALL_WRITE
);
751 p_setd(perm
, PCI_X_ECC_CSR
, NO_VIRT
, ALL_WRITE
);
755 static int vfio_exp_config_write(struct vfio_pci_device
*vdev
, int pos
,
756 int count
, struct perm_bits
*perm
,
757 int offset
, __le32 val
)
759 __le16
*ctrl
= (__le16
*)(vdev
->vconfig
+ pos
-
760 offset
+ PCI_EXP_DEVCTL
);
761 int readrq
= le16_to_cpu(*ctrl
) & PCI_EXP_DEVCTL_READRQ
;
763 count
= vfio_default_config_write(vdev
, pos
, count
, perm
, offset
, val
);
768 * The FLR bit is virtualized, if set and the device supports PCIe
769 * FLR, issue a reset_function. Regardless, clear the bit, the spec
770 * requires it to be always read as zero. NB, reset_function might
771 * not use a PCIe FLR, we don't have that level of granularity.
773 if (*ctrl
& cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR
)) {
777 *ctrl
&= ~cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR
);
779 ret
= pci_user_read_config_dword(vdev
->pdev
,
780 pos
- offset
+ PCI_EXP_DEVCAP
,
783 if (!ret
&& (cap
& PCI_EXP_DEVCAP_FLR
))
784 pci_try_reset_function(vdev
->pdev
);
788 * MPS is virtualized to the user, writes do not change the physical
789 * register since determining a proper MPS value requires a system wide
790 * device view. The MRRS is largely independent of MPS, but since the
791 * user does not have that system-wide view, they might set a safe, but
792 * inefficiently low value. Here we allow writes through to hardware,
793 * but we set the floor to the physical device MPS setting, so that
794 * we can at least use full TLPs, as defined by the MPS value.
796 * NB, if any devices actually depend on an artificially low MRRS
797 * setting, this will need to be revisited, perhaps with a quirk
798 * though pcie_set_readrq().
800 if (readrq
!= (le16_to_cpu(*ctrl
) & PCI_EXP_DEVCTL_READRQ
)) {
802 ((le16_to_cpu(*ctrl
) & PCI_EXP_DEVCTL_READRQ
) >> 12);
803 readrq
= max(readrq
, pcie_get_mps(vdev
->pdev
));
805 pcie_set_readrq(vdev
->pdev
, readrq
);
811 /* Permissions for PCI Express capability */
812 static int __init
init_pci_cap_exp_perm(struct perm_bits
*perm
)
814 /* Alloc larger of two possible sizes */
815 if (alloc_perm_bits(perm
, PCI_CAP_EXP_ENDPOINT_SIZEOF_V2
))
818 perm
->writefn
= vfio_exp_config_write
;
820 p_setb(perm
, PCI_CAP_LIST_NEXT
, (u8
)ALL_VIRT
, NO_WRITE
);
823 * Allow writes to device control fields, except devctl_phantom,
824 * which could confuse IOMMU, MPS, which can break communication
825 * with other physical devices, and the ARI bit in devctl2, which
826 * is set at probe time. FLR and MRRS get virtualized via our
829 p_setw(perm
, PCI_EXP_DEVCTL
,
830 PCI_EXP_DEVCTL_BCR_FLR
| PCI_EXP_DEVCTL_PAYLOAD
|
831 PCI_EXP_DEVCTL_READRQ
, ~PCI_EXP_DEVCTL_PHANTOM
);
832 p_setw(perm
, PCI_EXP_DEVCTL2
, NO_VIRT
, ~PCI_EXP_DEVCTL2_ARI
);
836 static int vfio_af_config_write(struct vfio_pci_device
*vdev
, int pos
,
837 int count
, struct perm_bits
*perm
,
838 int offset
, __le32 val
)
840 u8
*ctrl
= vdev
->vconfig
+ pos
- offset
+ PCI_AF_CTRL
;
842 count
= vfio_default_config_write(vdev
, pos
, count
, perm
, offset
, val
);
847 * The FLR bit is virtualized, if set and the device supports AF
848 * FLR, issue a reset_function. Regardless, clear the bit, the spec
849 * requires it to be always read as zero. NB, reset_function might
850 * not use an AF FLR, we don't have that level of granularity.
852 if (*ctrl
& PCI_AF_CTRL_FLR
) {
856 *ctrl
&= ~PCI_AF_CTRL_FLR
;
858 ret
= pci_user_read_config_byte(vdev
->pdev
,
859 pos
- offset
+ PCI_AF_CAP
,
862 if (!ret
&& (cap
& PCI_AF_CAP_FLR
) && (cap
& PCI_AF_CAP_TP
))
863 pci_try_reset_function(vdev
->pdev
);
869 /* Permissions for Advanced Function capability */
870 static int __init
init_pci_cap_af_perm(struct perm_bits
*perm
)
872 if (alloc_perm_bits(perm
, pci_cap_length
[PCI_CAP_ID_AF
]))
875 perm
->writefn
= vfio_af_config_write
;
877 p_setb(perm
, PCI_CAP_LIST_NEXT
, (u8
)ALL_VIRT
, NO_WRITE
);
878 p_setb(perm
, PCI_AF_CTRL
, PCI_AF_CTRL_FLR
, PCI_AF_CTRL_FLR
);
882 /* Permissions for Advanced Error Reporting extended capability */
883 static int __init
init_pci_ext_cap_err_perm(struct perm_bits
*perm
)
887 if (alloc_perm_bits(perm
, pci_ext_cap_length
[PCI_EXT_CAP_ID_ERR
]))
891 * Virtualize the first dword of all express capabilities
892 * because it includes the next pointer. This lets us later
893 * remove capabilities from the chain if we need to.
895 p_setd(perm
, 0, ALL_VIRT
, NO_WRITE
);
897 /* Writable bits mask */
898 mask
= PCI_ERR_UNC_UND
| /* Undefined */
899 PCI_ERR_UNC_DLP
| /* Data Link Protocol */
900 PCI_ERR_UNC_SURPDN
| /* Surprise Down */
901 PCI_ERR_UNC_POISON_TLP
| /* Poisoned TLP */
902 PCI_ERR_UNC_FCP
| /* Flow Control Protocol */
903 PCI_ERR_UNC_COMP_TIME
| /* Completion Timeout */
904 PCI_ERR_UNC_COMP_ABORT
| /* Completer Abort */
905 PCI_ERR_UNC_UNX_COMP
| /* Unexpected Completion */
906 PCI_ERR_UNC_RX_OVER
| /* Receiver Overflow */
907 PCI_ERR_UNC_MALF_TLP
| /* Malformed TLP */
908 PCI_ERR_UNC_ECRC
| /* ECRC Error Status */
909 PCI_ERR_UNC_UNSUP
| /* Unsupported Request */
910 PCI_ERR_UNC_ACSV
| /* ACS Violation */
911 PCI_ERR_UNC_INTN
| /* internal error */
912 PCI_ERR_UNC_MCBTLP
| /* MC blocked TLP */
913 PCI_ERR_UNC_ATOMEG
| /* Atomic egress blocked */
914 PCI_ERR_UNC_TLPPRE
; /* TLP prefix blocked */
915 p_setd(perm
, PCI_ERR_UNCOR_STATUS
, NO_VIRT
, mask
);
916 p_setd(perm
, PCI_ERR_UNCOR_MASK
, NO_VIRT
, mask
);
917 p_setd(perm
, PCI_ERR_UNCOR_SEVER
, NO_VIRT
, mask
);
919 mask
= PCI_ERR_COR_RCVR
| /* Receiver Error Status */
920 PCI_ERR_COR_BAD_TLP
| /* Bad TLP Status */
921 PCI_ERR_COR_BAD_DLLP
| /* Bad DLLP Status */
922 PCI_ERR_COR_REP_ROLL
| /* REPLAY_NUM Rollover */
923 PCI_ERR_COR_REP_TIMER
| /* Replay Timer Timeout */
924 PCI_ERR_COR_ADV_NFAT
| /* Advisory Non-Fatal */
925 PCI_ERR_COR_INTERNAL
| /* Corrected Internal */
926 PCI_ERR_COR_LOG_OVER
; /* Header Log Overflow */
927 p_setd(perm
, PCI_ERR_COR_STATUS
, NO_VIRT
, mask
);
928 p_setd(perm
, PCI_ERR_COR_MASK
, NO_VIRT
, mask
);
930 mask
= PCI_ERR_CAP_ECRC_GENE
| /* ECRC Generation Enable */
931 PCI_ERR_CAP_ECRC_CHKE
; /* ECRC Check Enable */
932 p_setd(perm
, PCI_ERR_CAP
, NO_VIRT
, mask
);
936 /* Permissions for Power Budgeting extended capability */
937 static int __init
init_pci_ext_cap_pwr_perm(struct perm_bits
*perm
)
939 if (alloc_perm_bits(perm
, pci_ext_cap_length
[PCI_EXT_CAP_ID_PWR
]))
942 p_setd(perm
, 0, ALL_VIRT
, NO_WRITE
);
944 /* Writing the data selector is OK, the info is still read-only */
945 p_setb(perm
, PCI_PWR_DATA
, NO_VIRT
, (u8
)ALL_WRITE
);
950 * Initialize the shared permission tables
952 void vfio_pci_uninit_perm_bits(void)
954 free_perm_bits(&cap_perms
[PCI_CAP_ID_BASIC
]);
956 free_perm_bits(&cap_perms
[PCI_CAP_ID_PM
]);
957 free_perm_bits(&cap_perms
[PCI_CAP_ID_VPD
]);
958 free_perm_bits(&cap_perms
[PCI_CAP_ID_PCIX
]);
959 free_perm_bits(&cap_perms
[PCI_CAP_ID_EXP
]);
960 free_perm_bits(&cap_perms
[PCI_CAP_ID_AF
]);
962 free_perm_bits(&ecap_perms
[PCI_EXT_CAP_ID_ERR
]);
963 free_perm_bits(&ecap_perms
[PCI_EXT_CAP_ID_PWR
]);
966 int __init
vfio_pci_init_perm_bits(void)
970 /* Basic config space */
971 ret
= init_pci_cap_basic_perm(&cap_perms
[PCI_CAP_ID_BASIC
]);
974 ret
|= init_pci_cap_pm_perm(&cap_perms
[PCI_CAP_ID_PM
]);
975 ret
|= init_pci_cap_vpd_perm(&cap_perms
[PCI_CAP_ID_VPD
]);
976 ret
|= init_pci_cap_pcix_perm(&cap_perms
[PCI_CAP_ID_PCIX
]);
977 cap_perms
[PCI_CAP_ID_VNDR
].writefn
= vfio_raw_config_write
;
978 ret
|= init_pci_cap_exp_perm(&cap_perms
[PCI_CAP_ID_EXP
]);
979 ret
|= init_pci_cap_af_perm(&cap_perms
[PCI_CAP_ID_AF
]);
981 /* Extended capabilities */
982 ret
|= init_pci_ext_cap_err_perm(&ecap_perms
[PCI_EXT_CAP_ID_ERR
]);
983 ret
|= init_pci_ext_cap_pwr_perm(&ecap_perms
[PCI_EXT_CAP_ID_PWR
]);
984 ecap_perms
[PCI_EXT_CAP_ID_VNDR
].writefn
= vfio_raw_config_write
;
987 vfio_pci_uninit_perm_bits();
992 static int vfio_find_cap_start(struct vfio_pci_device
*vdev
, int pos
)
995 int base
= (pos
>= PCI_CFG_SPACE_SIZE
) ? PCI_CFG_SPACE_SIZE
:
996 PCI_STD_HEADER_SIZEOF
;
997 cap
= vdev
->pci_config_map
[pos
];
999 if (cap
== PCI_CAP_ID_BASIC
)
1002 /* XXX Can we have to abutting capabilities of the same type? */
1003 while (pos
- 1 >= base
&& vdev
->pci_config_map
[pos
- 1] == cap
)
1009 static int vfio_msi_config_read(struct vfio_pci_device
*vdev
, int pos
,
1010 int count
, struct perm_bits
*perm
,
1011 int offset
, __le32
*val
)
1013 /* Update max available queue size from msi_qmax */
1014 if (offset
<= PCI_MSI_FLAGS
&& offset
+ count
>= PCI_MSI_FLAGS
) {
1018 start
= vfio_find_cap_start(vdev
, pos
);
1020 flags
= (__le16
*)&vdev
->vconfig
[start
];
1022 *flags
&= cpu_to_le16(~PCI_MSI_FLAGS_QMASK
);
1023 *flags
|= cpu_to_le16(vdev
->msi_qmax
<< 1);
1026 return vfio_default_config_read(vdev
, pos
, count
, perm
, offset
, val
);
1029 static int vfio_msi_config_write(struct vfio_pci_device
*vdev
, int pos
,
1030 int count
, struct perm_bits
*perm
,
1031 int offset
, __le32 val
)
1033 count
= vfio_default_config_write(vdev
, pos
, count
, perm
, offset
, val
);
1037 /* Fixup and write configured queue size and enable to hardware */
1038 if (offset
<= PCI_MSI_FLAGS
&& offset
+ count
>= PCI_MSI_FLAGS
) {
1043 start
= vfio_find_cap_start(vdev
, pos
);
1045 pflags
= (__le16
*)&vdev
->vconfig
[start
+ PCI_MSI_FLAGS
];
1047 flags
= le16_to_cpu(*pflags
);
1049 /* MSI is enabled via ioctl */
1051 flags
&= ~PCI_MSI_FLAGS_ENABLE
;
1053 /* Check queue size */
1054 if ((flags
& PCI_MSI_FLAGS_QSIZE
) >> 4 > vdev
->msi_qmax
) {
1055 flags
&= ~PCI_MSI_FLAGS_QSIZE
;
1056 flags
|= vdev
->msi_qmax
<< 4;
1059 /* Write back to virt and to hardware */
1060 *pflags
= cpu_to_le16(flags
);
1061 ret
= pci_user_write_config_word(vdev
->pdev
,
1062 start
+ PCI_MSI_FLAGS
,
1065 return pcibios_err_to_errno(ret
);
1072 * MSI determination is per-device, so this routine gets used beyond
1073 * initialization time. Don't add __init
1075 static int init_pci_cap_msi_perm(struct perm_bits
*perm
, int len
, u16 flags
)
1077 if (alloc_perm_bits(perm
, len
))
1080 perm
->readfn
= vfio_msi_config_read
;
1081 perm
->writefn
= vfio_msi_config_write
;
1083 p_setb(perm
, PCI_CAP_LIST_NEXT
, (u8
)ALL_VIRT
, NO_WRITE
);
1086 * The upper byte of the control register is reserved,
1087 * just setup the lower byte.
1089 p_setb(perm
, PCI_MSI_FLAGS
, (u8
)ALL_VIRT
, (u8
)ALL_WRITE
);
1090 p_setd(perm
, PCI_MSI_ADDRESS_LO
, ALL_VIRT
, ALL_WRITE
);
1091 if (flags
& PCI_MSI_FLAGS_64BIT
) {
1092 p_setd(perm
, PCI_MSI_ADDRESS_HI
, ALL_VIRT
, ALL_WRITE
);
1093 p_setw(perm
, PCI_MSI_DATA_64
, (u16
)ALL_VIRT
, (u16
)ALL_WRITE
);
1094 if (flags
& PCI_MSI_FLAGS_MASKBIT
) {
1095 p_setd(perm
, PCI_MSI_MASK_64
, NO_VIRT
, ALL_WRITE
);
1096 p_setd(perm
, PCI_MSI_PENDING_64
, NO_VIRT
, ALL_WRITE
);
1099 p_setw(perm
, PCI_MSI_DATA_32
, (u16
)ALL_VIRT
, (u16
)ALL_WRITE
);
1100 if (flags
& PCI_MSI_FLAGS_MASKBIT
) {
1101 p_setd(perm
, PCI_MSI_MASK_32
, NO_VIRT
, ALL_WRITE
);
1102 p_setd(perm
, PCI_MSI_PENDING_32
, NO_VIRT
, ALL_WRITE
);
1108 /* Determine MSI CAP field length; initialize msi_perms on 1st call per vdev */
1109 static int vfio_msi_cap_len(struct vfio_pci_device
*vdev
, u8 pos
)
1111 struct pci_dev
*pdev
= vdev
->pdev
;
1115 ret
= pci_read_config_word(pdev
, pos
+ PCI_MSI_FLAGS
, &flags
);
1117 return pcibios_err_to_errno(ret
);
1119 len
= 10; /* Minimum size */
1120 if (flags
& PCI_MSI_FLAGS_64BIT
)
1122 if (flags
& PCI_MSI_FLAGS_MASKBIT
)
1128 vdev
->msi_perm
= kmalloc(sizeof(struct perm_bits
), GFP_KERNEL
);
1129 if (!vdev
->msi_perm
)
1132 ret
= init_pci_cap_msi_perm(vdev
->msi_perm
, len
, flags
);
1139 /* Determine extended capability length for VC (2 & 9) and MFVC */
1140 static int vfio_vc_cap_len(struct vfio_pci_device
*vdev
, u16 pos
)
1142 struct pci_dev
*pdev
= vdev
->pdev
;
1144 int ret
, evcc
, phases
, vc_arb
;
1145 int len
= PCI_CAP_VC_BASE_SIZEOF
;
1147 ret
= pci_read_config_dword(pdev
, pos
+ PCI_VC_PORT_CAP1
, &tmp
);
1149 return pcibios_err_to_errno(ret
);
1151 evcc
= tmp
& PCI_VC_CAP1_EVCC
; /* extended vc count */
1152 ret
= pci_read_config_dword(pdev
, pos
+ PCI_VC_PORT_CAP2
, &tmp
);
1154 return pcibios_err_to_errno(ret
);
1156 if (tmp
& PCI_VC_CAP2_128_PHASE
)
1158 else if (tmp
& PCI_VC_CAP2_64_PHASE
)
1160 else if (tmp
& PCI_VC_CAP2_32_PHASE
)
1165 vc_arb
= phases
* 4;
1168 * Port arbitration tables are root & switch only;
1169 * function arbitration tables are function 0 only.
1170 * In either case, we'll never let user write them so
1171 * we don't care how big they are
1173 len
+= (1 + evcc
) * PCI_CAP_VC_PER_VC_SIZEOF
;
1175 len
= round_up(len
, 16);
1181 static int vfio_cap_len(struct vfio_pci_device
*vdev
, u8 cap
, u8 pos
)
1183 struct pci_dev
*pdev
= vdev
->pdev
;
1190 case PCI_CAP_ID_MSI
:
1191 return vfio_msi_cap_len(vdev
, pos
);
1192 case PCI_CAP_ID_PCIX
:
1193 ret
= pci_read_config_word(pdev
, pos
+ PCI_X_CMD
, &word
);
1195 return pcibios_err_to_errno(ret
);
1197 if (PCI_X_CMD_VERSION(word
)) {
1198 /* Test for extended capabilities */
1199 pci_read_config_dword(pdev
, PCI_CFG_SPACE_SIZE
, &dword
);
1200 vdev
->extended_caps
= (dword
!= 0);
1201 return PCI_CAP_PCIX_SIZEOF_V2
;
1203 return PCI_CAP_PCIX_SIZEOF_V0
;
1204 case PCI_CAP_ID_VNDR
:
1205 /* length follows next field */
1206 ret
= pci_read_config_byte(pdev
, pos
+ PCI_CAP_FLAGS
, &byte
);
1208 return pcibios_err_to_errno(ret
);
1211 case PCI_CAP_ID_EXP
:
1212 /* Test for extended capabilities */
1213 pci_read_config_dword(pdev
, PCI_CFG_SPACE_SIZE
, &dword
);
1214 vdev
->extended_caps
= (dword
!= 0);
1216 /* length based on version */
1217 if ((pcie_caps_reg(pdev
) & PCI_EXP_FLAGS_VERS
) == 1)
1218 return PCI_CAP_EXP_ENDPOINT_SIZEOF_V1
;
1220 return PCI_CAP_EXP_ENDPOINT_SIZEOF_V2
;
1222 ret
= pci_read_config_byte(pdev
, pos
+ 3, &byte
);
1224 return pcibios_err_to_errno(ret
);
1226 return (byte
& HT_3BIT_CAP_MASK
) ?
1227 HT_CAP_SIZEOF_SHORT
: HT_CAP_SIZEOF_LONG
;
1228 case PCI_CAP_ID_SATA
:
1229 ret
= pci_read_config_byte(pdev
, pos
+ PCI_SATA_REGS
, &byte
);
1231 return pcibios_err_to_errno(ret
);
1233 byte
&= PCI_SATA_REGS_MASK
;
1234 if (byte
== PCI_SATA_REGS_INLINE
)
1235 return PCI_SATA_SIZEOF_LONG
;
1237 return PCI_SATA_SIZEOF_SHORT
;
1239 pr_warn("%s: %s unknown length for pci cap 0x%x@0x%x\n",
1240 dev_name(&pdev
->dev
), __func__
, cap
, pos
);
1246 static int vfio_ext_cap_len(struct vfio_pci_device
*vdev
, u16 ecap
, u16 epos
)
1248 struct pci_dev
*pdev
= vdev
->pdev
;
1254 case PCI_EXT_CAP_ID_VNDR
:
1255 ret
= pci_read_config_dword(pdev
, epos
+ PCI_VSEC_HDR
, &dword
);
1257 return pcibios_err_to_errno(ret
);
1259 return dword
>> PCI_VSEC_HDR_LEN_SHIFT
;
1260 case PCI_EXT_CAP_ID_VC
:
1261 case PCI_EXT_CAP_ID_VC9
:
1262 case PCI_EXT_CAP_ID_MFVC
:
1263 return vfio_vc_cap_len(vdev
, epos
);
1264 case PCI_EXT_CAP_ID_ACS
:
1265 ret
= pci_read_config_byte(pdev
, epos
+ PCI_ACS_CAP
, &byte
);
1267 return pcibios_err_to_errno(ret
);
1269 if (byte
& PCI_ACS_EC
) {
1272 ret
= pci_read_config_byte(pdev
,
1273 epos
+ PCI_ACS_EGRESS_BITS
,
1276 return pcibios_err_to_errno(ret
);
1278 bits
= byte
? round_up(byte
, 32) : 256;
1279 return 8 + (bits
/ 8);
1283 case PCI_EXT_CAP_ID_REBAR
:
1284 ret
= pci_read_config_byte(pdev
, epos
+ PCI_REBAR_CTRL
, &byte
);
1286 return pcibios_err_to_errno(ret
);
1288 byte
&= PCI_REBAR_CTRL_NBAR_MASK
;
1289 byte
>>= PCI_REBAR_CTRL_NBAR_SHIFT
;
1291 return 4 + (byte
* 8);
1292 case PCI_EXT_CAP_ID_DPA
:
1293 ret
= pci_read_config_byte(pdev
, epos
+ PCI_DPA_CAP
, &byte
);
1295 return pcibios_err_to_errno(ret
);
1297 byte
&= PCI_DPA_CAP_SUBSTATE_MASK
;
1298 return PCI_DPA_BASE_SIZEOF
+ byte
+ 1;
1299 case PCI_EXT_CAP_ID_TPH
:
1300 ret
= pci_read_config_dword(pdev
, epos
+ PCI_TPH_CAP
, &dword
);
1302 return pcibios_err_to_errno(ret
);
1304 if ((dword
& PCI_TPH_CAP_LOC_MASK
) == PCI_TPH_LOC_CAP
) {
1307 sts
= dword
& PCI_TPH_CAP_ST_MASK
;
1308 sts
>>= PCI_TPH_CAP_ST_SHIFT
;
1309 return PCI_TPH_BASE_SIZEOF
+ (sts
* 2) + 2;
1311 return PCI_TPH_BASE_SIZEOF
;
1313 pr_warn("%s: %s unknown length for pci ecap 0x%x@0x%x\n",
1314 dev_name(&pdev
->dev
), __func__
, ecap
, epos
);
1320 static int vfio_fill_vconfig_bytes(struct vfio_pci_device
*vdev
,
1321 int offset
, int size
)
1323 struct pci_dev
*pdev
= vdev
->pdev
;
1327 * We try to read physical config space in the largest chunks
1328 * we can, assuming that all of the fields support dword access.
1329 * pci_save_state() makes this same assumption and seems to do ok.
1334 if (size
>= 4 && !(offset
% 4)) {
1335 __le32
*dwordp
= (__le32
*)&vdev
->vconfig
[offset
];
1338 ret
= pci_read_config_dword(pdev
, offset
, &dword
);
1341 *dwordp
= cpu_to_le32(dword
);
1343 } else if (size
>= 2 && !(offset
% 2)) {
1344 __le16
*wordp
= (__le16
*)&vdev
->vconfig
[offset
];
1347 ret
= pci_read_config_word(pdev
, offset
, &word
);
1350 *wordp
= cpu_to_le16(word
);
1353 u8
*byte
= &vdev
->vconfig
[offset
];
1354 ret
= pci_read_config_byte(pdev
, offset
, byte
);
1367 static int vfio_cap_init(struct vfio_pci_device
*vdev
)
1369 struct pci_dev
*pdev
= vdev
->pdev
;
1370 u8
*map
= vdev
->pci_config_map
;
1373 int loops
, ret
, caps
= 0;
1375 /* Any capabilities? */
1376 ret
= pci_read_config_word(pdev
, PCI_STATUS
, &status
);
1380 if (!(status
& PCI_STATUS_CAP_LIST
))
1381 return 0; /* Done */
1383 ret
= pci_read_config_byte(pdev
, PCI_CAPABILITY_LIST
, &pos
);
1387 /* Mark the previous position in case we want to skip a capability */
1388 prev
= &vdev
->vconfig
[PCI_CAPABILITY_LIST
];
1390 /* We can bound our loop, capabilities are dword aligned */
1391 loops
= (PCI_CFG_SPACE_SIZE
- PCI_STD_HEADER_SIZEOF
) / PCI_CAP_SIZEOF
;
1392 while (pos
&& loops
--) {
1396 ret
= pci_read_config_byte(pdev
, pos
, &cap
);
1400 ret
= pci_read_config_byte(pdev
,
1401 pos
+ PCI_CAP_LIST_NEXT
, &next
);
1405 if (cap
<= PCI_CAP_ID_MAX
) {
1406 len
= pci_cap_length
[cap
];
1407 if (len
== 0xFF) { /* Variable length */
1408 len
= vfio_cap_len(vdev
, cap
, pos
);
1415 pr_info("%s: %s hiding cap 0x%x\n",
1416 __func__
, dev_name(&pdev
->dev
), cap
);
1422 /* Sanity check, do we overlap other capabilities? */
1423 for (i
= 0; i
< len
; i
++) {
1424 if (likely(map
[pos
+ i
] == PCI_CAP_ID_INVALID
))
1427 pr_warn("%s: %s pci config conflict @0x%x, was cap 0x%x now cap 0x%x\n",
1428 __func__
, dev_name(&pdev
->dev
),
1429 pos
+ i
, map
[pos
+ i
], cap
);
1432 memset(map
+ pos
, cap
, len
);
1433 ret
= vfio_fill_vconfig_bytes(vdev
, pos
, len
);
1437 prev
= &vdev
->vconfig
[pos
+ PCI_CAP_LIST_NEXT
];
1442 /* If we didn't fill any capabilities, clear the status flag */
1444 __le16
*vstatus
= (__le16
*)&vdev
->vconfig
[PCI_STATUS
];
1445 *vstatus
&= ~cpu_to_le16(PCI_STATUS_CAP_LIST
);
1451 static int vfio_ecap_init(struct vfio_pci_device
*vdev
)
1453 struct pci_dev
*pdev
= vdev
->pdev
;
1454 u8
*map
= vdev
->pci_config_map
;
1456 __le32
*prev
= NULL
;
1457 int loops
, ret
, ecaps
= 0;
1459 if (!vdev
->extended_caps
)
1462 epos
= PCI_CFG_SPACE_SIZE
;
1464 loops
= (pdev
->cfg_size
- PCI_CFG_SPACE_SIZE
) / PCI_CAP_SIZEOF
;
1466 while (loops
-- && epos
>= PCI_CFG_SPACE_SIZE
) {
1470 bool hidden
= false;
1472 ret
= pci_read_config_dword(pdev
, epos
, &header
);
1476 ecap
= PCI_EXT_CAP_ID(header
);
1478 if (ecap
<= PCI_EXT_CAP_ID_MAX
) {
1479 len
= pci_ext_cap_length
[ecap
];
1481 len
= vfio_ext_cap_len(vdev
, ecap
, epos
);
1488 pr_info("%s: %s hiding ecap 0x%x@0x%x\n",
1489 __func__
, dev_name(&pdev
->dev
), ecap
, epos
);
1491 /* If not the first in the chain, we can skip over it */
1493 u32 val
= epos
= PCI_EXT_CAP_NEXT(header
);
1494 *prev
&= cpu_to_le32(~(0xffcU
<< 20));
1495 *prev
|= cpu_to_le32(val
<< 20);
1500 * Otherwise, fill in a placeholder, the direct
1501 * readfn will virtualize this automatically
1503 len
= PCI_CAP_SIZEOF
;
1507 for (i
= 0; i
< len
; i
++) {
1508 if (likely(map
[epos
+ i
] == PCI_CAP_ID_INVALID
))
1511 pr_warn("%s: %s pci config conflict @0x%x, was ecap 0x%x now ecap 0x%x\n",
1512 __func__
, dev_name(&pdev
->dev
),
1513 epos
+ i
, map
[epos
+ i
], ecap
);
1517 * Even though ecap is 2 bytes, we're currently a long way
1518 * from exceeding 1 byte capabilities. If we ever make it
1519 * up to 0xFF we'll need to up this to a two-byte, byte map.
1521 BUILD_BUG_ON(PCI_EXT_CAP_ID_MAX
>= PCI_CAP_ID_INVALID
);
1523 memset(map
+ epos
, ecap
, len
);
1524 ret
= vfio_fill_vconfig_bytes(vdev
, epos
, len
);
1529 * If we're just using this capability to anchor the list,
1530 * hide the real ID. Only count real ecaps. XXX PCI spec
1531 * indicates to use cap id = 0, version = 0, next = 0 if
1532 * ecaps are absent, hope users check all the way to next.
1535 *(__le32
*)&vdev
->vconfig
[epos
] &=
1536 cpu_to_le32((0xffcU
<< 20));
1540 prev
= (__le32
*)&vdev
->vconfig
[epos
];
1541 epos
= PCI_EXT_CAP_NEXT(header
);
1545 *(u32
*)&vdev
->vconfig
[PCI_CFG_SPACE_SIZE
] = 0;
1551 * For each device we allocate a pci_config_map that indicates the
1552 * capability occupying each dword and thus the struct perm_bits we
1553 * use for read and write. We also allocate a virtualized config
1554 * space which tracks reads and writes to bits that we emulate for
1555 * the user. Initial values filled from device.
1557 * Using shared stuct perm_bits between all vfio-pci devices saves
1558 * us from allocating cfg_size buffers for virt and write for every
1559 * device. We could remove vconfig and allocate individual buffers
1560 * for each area requring emulated bits, but the array of pointers
1561 * would be comparable in size (at least for standard config space).
1563 int vfio_config_init(struct vfio_pci_device
*vdev
)
1565 struct pci_dev
*pdev
= vdev
->pdev
;
1570 * Config space, caps and ecaps are all dword aligned, so we could
1571 * use one byte per dword to record the type. However, there are
1572 * no requiremenst on the length of a capability, so the gap between
1573 * capabilities needs byte granularity.
1575 map
= kmalloc(pdev
->cfg_size
, GFP_KERNEL
);
1579 vconfig
= kmalloc(pdev
->cfg_size
, GFP_KERNEL
);
1585 vdev
->pci_config_map
= map
;
1586 vdev
->vconfig
= vconfig
;
1588 memset(map
, PCI_CAP_ID_BASIC
, PCI_STD_HEADER_SIZEOF
);
1589 memset(map
+ PCI_STD_HEADER_SIZEOF
, PCI_CAP_ID_INVALID
,
1590 pdev
->cfg_size
- PCI_STD_HEADER_SIZEOF
);
1592 ret
= vfio_fill_vconfig_bytes(vdev
, 0, PCI_STD_HEADER_SIZEOF
);
1596 vdev
->bardirty
= true;
1599 * XXX can we just pci_load_saved_state/pci_restore_state?
1600 * may need to rebuild vconfig after that
1603 /* For restore after reset */
1604 vdev
->rbar
[0] = le32_to_cpu(*(__le32
*)&vconfig
[PCI_BASE_ADDRESS_0
]);
1605 vdev
->rbar
[1] = le32_to_cpu(*(__le32
*)&vconfig
[PCI_BASE_ADDRESS_1
]);
1606 vdev
->rbar
[2] = le32_to_cpu(*(__le32
*)&vconfig
[PCI_BASE_ADDRESS_2
]);
1607 vdev
->rbar
[3] = le32_to_cpu(*(__le32
*)&vconfig
[PCI_BASE_ADDRESS_3
]);
1608 vdev
->rbar
[4] = le32_to_cpu(*(__le32
*)&vconfig
[PCI_BASE_ADDRESS_4
]);
1609 vdev
->rbar
[5] = le32_to_cpu(*(__le32
*)&vconfig
[PCI_BASE_ADDRESS_5
]);
1610 vdev
->rbar
[6] = le32_to_cpu(*(__le32
*)&vconfig
[PCI_ROM_ADDRESS
]);
1612 if (pdev
->is_virtfn
) {
1613 *(__le16
*)&vconfig
[PCI_VENDOR_ID
] = cpu_to_le16(pdev
->vendor
);
1614 *(__le16
*)&vconfig
[PCI_DEVICE_ID
] = cpu_to_le16(pdev
->device
);
1617 if (!IS_ENABLED(CONFIG_VFIO_PCI_INTX
))
1618 vconfig
[PCI_INTERRUPT_PIN
] = 0;
1620 ret
= vfio_cap_init(vdev
);
1624 ret
= vfio_ecap_init(vdev
);
1632 vdev
->pci_config_map
= NULL
;
1634 vdev
->vconfig
= NULL
;
1635 return pcibios_err_to_errno(ret
);
1638 void vfio_config_free(struct vfio_pci_device
*vdev
)
1640 kfree(vdev
->vconfig
);
1641 vdev
->vconfig
= NULL
;
1642 kfree(vdev
->pci_config_map
);
1643 vdev
->pci_config_map
= NULL
;
1644 kfree(vdev
->msi_perm
);
1645 vdev
->msi_perm
= NULL
;
1649 * Find the remaining number of bytes in a dword that match the given
1650 * position. Stop at either the end of the capability or the dword boundary.
1652 static size_t vfio_pci_cap_remaining_dword(struct vfio_pci_device
*vdev
,
1655 u8 cap
= vdev
->pci_config_map
[pos
];
1658 for (i
= 1; (pos
+ i
) % 4 && vdev
->pci_config_map
[pos
+ i
] == cap
; i
++)
1664 static ssize_t
vfio_config_do_rw(struct vfio_pci_device
*vdev
, char __user
*buf
,
1665 size_t count
, loff_t
*ppos
, bool iswrite
)
1667 struct pci_dev
*pdev
= vdev
->pdev
;
1668 struct perm_bits
*perm
;
1670 int cap_start
= 0, offset
;
1674 if (*ppos
< 0 || *ppos
>= pdev
->cfg_size
||
1675 *ppos
+ count
> pdev
->cfg_size
)
1679 * Chop accesses into aligned chunks containing no more than a
1680 * single capability. Caller increments to the next chunk.
1682 count
= min(count
, vfio_pci_cap_remaining_dword(vdev
, *ppos
));
1683 if (count
>= 4 && !(*ppos
% 4))
1685 else if (count
>= 2 && !(*ppos
% 2))
1692 cap_id
= vdev
->pci_config_map
[*ppos
];
1694 if (cap_id
== PCI_CAP_ID_INVALID
) {
1695 perm
= &unassigned_perms
;
1698 if (*ppos
>= PCI_CFG_SPACE_SIZE
) {
1699 WARN_ON(cap_id
> PCI_EXT_CAP_ID_MAX
);
1701 perm
= &ecap_perms
[cap_id
];
1702 cap_start
= vfio_find_cap_start(vdev
, *ppos
);
1704 WARN_ON(cap_id
> PCI_CAP_ID_MAX
);
1706 perm
= &cap_perms
[cap_id
];
1708 if (cap_id
== PCI_CAP_ID_MSI
)
1709 perm
= vdev
->msi_perm
;
1711 if (cap_id
> PCI_CAP_ID_BASIC
)
1712 cap_start
= vfio_find_cap_start(vdev
, *ppos
);
1716 WARN_ON(!cap_start
&& cap_id
!= PCI_CAP_ID_BASIC
);
1717 WARN_ON(cap_start
> *ppos
);
1719 offset
= *ppos
- cap_start
;
1725 if (copy_from_user(&val
, buf
, count
))
1728 ret
= perm
->writefn(vdev
, *ppos
, count
, perm
, offset
, val
);
1731 ret
= perm
->readfn(vdev
, *ppos
, count
,
1732 perm
, offset
, &val
);
1737 if (copy_to_user(buf
, &val
, count
))
1744 ssize_t
vfio_pci_config_rw(struct vfio_pci_device
*vdev
, char __user
*buf
,
1745 size_t count
, loff_t
*ppos
, bool iswrite
)
1751 pos
&= VFIO_PCI_OFFSET_MASK
;
1754 ret
= vfio_config_do_rw(vdev
, buf
, count
, &pos
, iswrite
);