dm thin metadata: fix __udivdi3 undefined on 32-bit
[linux/fpc-iii.git] / fs / aio.c
blobc283eb03cb38e29fd2b4edb1082eab48c17a2838
1 /*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
9 * See ../COPYING for licensing terms.
11 #define pr_fmt(fmt) "%s: " fmt, __func__
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/errno.h>
16 #include <linux/time.h>
17 #include <linux/aio_abi.h>
18 #include <linux/export.h>
19 #include <linux/syscalls.h>
20 #include <linux/backing-dev.h>
21 #include <linux/uio.h>
23 #include <linux/sched.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/timer.h>
32 #include <linux/aio.h>
33 #include <linux/highmem.h>
34 #include <linux/workqueue.h>
35 #include <linux/security.h>
36 #include <linux/eventfd.h>
37 #include <linux/blkdev.h>
38 #include <linux/compat.h>
39 #include <linux/migrate.h>
40 #include <linux/ramfs.h>
41 #include <linux/percpu-refcount.h>
42 #include <linux/mount.h>
44 #include <asm/kmap_types.h>
45 #include <asm/uaccess.h>
47 #include "internal.h"
49 #define AIO_RING_MAGIC 0xa10a10a1
50 #define AIO_RING_COMPAT_FEATURES 1
51 #define AIO_RING_INCOMPAT_FEATURES 0
52 struct aio_ring {
53 unsigned id; /* kernel internal index number */
54 unsigned nr; /* number of io_events */
55 unsigned head; /* Written to by userland or under ring_lock
56 * mutex by aio_read_events_ring(). */
57 unsigned tail;
59 unsigned magic;
60 unsigned compat_features;
61 unsigned incompat_features;
62 unsigned header_length; /* size of aio_ring */
65 struct io_event io_events[0];
66 }; /* 128 bytes + ring size */
68 #define AIO_RING_PAGES 8
70 struct kioctx_table {
71 struct rcu_head rcu;
72 unsigned nr;
73 struct kioctx __rcu *table[];
76 struct kioctx_cpu {
77 unsigned reqs_available;
80 struct ctx_rq_wait {
81 struct completion comp;
82 atomic_t count;
85 struct kioctx {
86 struct percpu_ref users;
87 atomic_t dead;
89 struct percpu_ref reqs;
91 unsigned long user_id;
93 struct __percpu kioctx_cpu *cpu;
96 * For percpu reqs_available, number of slots we move to/from global
97 * counter at a time:
99 unsigned req_batch;
101 * This is what userspace passed to io_setup(), it's not used for
102 * anything but counting against the global max_reqs quota.
104 * The real limit is nr_events - 1, which will be larger (see
105 * aio_setup_ring())
107 unsigned max_reqs;
109 /* Size of ringbuffer, in units of struct io_event */
110 unsigned nr_events;
112 unsigned long mmap_base;
113 unsigned long mmap_size;
115 struct page **ring_pages;
116 long nr_pages;
118 struct rcu_head free_rcu;
119 struct work_struct free_work; /* see free_ioctx() */
122 * signals when all in-flight requests are done
124 struct ctx_rq_wait *rq_wait;
126 struct {
128 * This counts the number of available slots in the ringbuffer,
129 * so we avoid overflowing it: it's decremented (if positive)
130 * when allocating a kiocb and incremented when the resulting
131 * io_event is pulled off the ringbuffer.
133 * We batch accesses to it with a percpu version.
135 atomic_t reqs_available;
136 } ____cacheline_aligned_in_smp;
138 struct {
139 spinlock_t ctx_lock;
140 struct list_head active_reqs; /* used for cancellation */
141 } ____cacheline_aligned_in_smp;
143 struct {
144 struct mutex ring_lock;
145 wait_queue_head_t wait;
146 } ____cacheline_aligned_in_smp;
148 struct {
149 unsigned tail;
150 unsigned completed_events;
151 spinlock_t completion_lock;
152 } ____cacheline_aligned_in_smp;
154 struct page *internal_pages[AIO_RING_PAGES];
155 struct file *aio_ring_file;
157 unsigned id;
161 * We use ki_cancel == KIOCB_CANCELLED to indicate that a kiocb has been either
162 * cancelled or completed (this makes a certain amount of sense because
163 * successful cancellation - io_cancel() - does deliver the completion to
164 * userspace).
166 * And since most things don't implement kiocb cancellation and we'd really like
167 * kiocb completion to be lockless when possible, we use ki_cancel to
168 * synchronize cancellation and completion - we only set it to KIOCB_CANCELLED
169 * with xchg() or cmpxchg(), see batch_complete_aio() and kiocb_cancel().
171 #define KIOCB_CANCELLED ((void *) (~0ULL))
173 struct aio_kiocb {
174 struct kiocb common;
176 struct kioctx *ki_ctx;
177 kiocb_cancel_fn *ki_cancel;
179 struct iocb __user *ki_user_iocb; /* user's aiocb */
180 __u64 ki_user_data; /* user's data for completion */
182 struct list_head ki_list; /* the aio core uses this
183 * for cancellation */
186 * If the aio_resfd field of the userspace iocb is not zero,
187 * this is the underlying eventfd context to deliver events to.
189 struct eventfd_ctx *ki_eventfd;
192 /*------ sysctl variables----*/
193 static DEFINE_SPINLOCK(aio_nr_lock);
194 unsigned long aio_nr; /* current system wide number of aio requests */
195 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
196 /*----end sysctl variables---*/
198 static struct kmem_cache *kiocb_cachep;
199 static struct kmem_cache *kioctx_cachep;
201 static struct vfsmount *aio_mnt;
203 static const struct file_operations aio_ring_fops;
204 static const struct address_space_operations aio_ctx_aops;
206 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
208 struct qstr this = QSTR_INIT("[aio]", 5);
209 struct file *file;
210 struct path path;
211 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
212 if (IS_ERR(inode))
213 return ERR_CAST(inode);
215 inode->i_mapping->a_ops = &aio_ctx_aops;
216 inode->i_mapping->private_data = ctx;
217 inode->i_size = PAGE_SIZE * nr_pages;
219 path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
220 if (!path.dentry) {
221 iput(inode);
222 return ERR_PTR(-ENOMEM);
224 path.mnt = mntget(aio_mnt);
226 d_instantiate(path.dentry, inode);
227 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
228 if (IS_ERR(file)) {
229 path_put(&path);
230 return file;
233 file->f_flags = O_RDWR;
234 return file;
237 static struct dentry *aio_mount(struct file_system_type *fs_type,
238 int flags, const char *dev_name, void *data)
240 static const struct dentry_operations ops = {
241 .d_dname = simple_dname,
243 struct dentry *root = mount_pseudo(fs_type, "aio:", NULL, &ops,
244 AIO_RING_MAGIC);
246 if (!IS_ERR(root))
247 root->d_sb->s_iflags |= SB_I_NOEXEC;
248 return root;
251 /* aio_setup
252 * Creates the slab caches used by the aio routines, panic on
253 * failure as this is done early during the boot sequence.
255 static int __init aio_setup(void)
257 static struct file_system_type aio_fs = {
258 .name = "aio",
259 .mount = aio_mount,
260 .kill_sb = kill_anon_super,
262 aio_mnt = kern_mount(&aio_fs);
263 if (IS_ERR(aio_mnt))
264 panic("Failed to create aio fs mount.");
266 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
267 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
269 pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
271 return 0;
273 __initcall(aio_setup);
275 static void put_aio_ring_file(struct kioctx *ctx)
277 struct file *aio_ring_file = ctx->aio_ring_file;
278 if (aio_ring_file) {
279 truncate_setsize(aio_ring_file->f_inode, 0);
281 /* Prevent further access to the kioctx from migratepages */
282 spin_lock(&aio_ring_file->f_inode->i_mapping->private_lock);
283 aio_ring_file->f_inode->i_mapping->private_data = NULL;
284 ctx->aio_ring_file = NULL;
285 spin_unlock(&aio_ring_file->f_inode->i_mapping->private_lock);
287 fput(aio_ring_file);
291 static void aio_free_ring(struct kioctx *ctx)
293 int i;
295 /* Disconnect the kiotx from the ring file. This prevents future
296 * accesses to the kioctx from page migration.
298 put_aio_ring_file(ctx);
300 for (i = 0; i < ctx->nr_pages; i++) {
301 struct page *page;
302 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
303 page_count(ctx->ring_pages[i]));
304 page = ctx->ring_pages[i];
305 if (!page)
306 continue;
307 ctx->ring_pages[i] = NULL;
308 put_page(page);
311 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
312 kfree(ctx->ring_pages);
313 ctx->ring_pages = NULL;
317 static int aio_ring_mremap(struct vm_area_struct *vma)
319 struct file *file = vma->vm_file;
320 struct mm_struct *mm = vma->vm_mm;
321 struct kioctx_table *table;
322 int i, res = -EINVAL;
324 spin_lock(&mm->ioctx_lock);
325 rcu_read_lock();
326 table = rcu_dereference(mm->ioctx_table);
327 for (i = 0; i < table->nr; i++) {
328 struct kioctx *ctx;
330 ctx = rcu_dereference(table->table[i]);
331 if (ctx && ctx->aio_ring_file == file) {
332 if (!atomic_read(&ctx->dead)) {
333 ctx->user_id = ctx->mmap_base = vma->vm_start;
334 res = 0;
336 break;
340 rcu_read_unlock();
341 spin_unlock(&mm->ioctx_lock);
342 return res;
345 static const struct vm_operations_struct aio_ring_vm_ops = {
346 .mremap = aio_ring_mremap,
347 #if IS_ENABLED(CONFIG_MMU)
348 .fault = filemap_fault,
349 .map_pages = filemap_map_pages,
350 .page_mkwrite = filemap_page_mkwrite,
351 #endif
354 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
356 vma->vm_flags |= VM_DONTEXPAND;
357 vma->vm_ops = &aio_ring_vm_ops;
358 return 0;
361 static const struct file_operations aio_ring_fops = {
362 .mmap = aio_ring_mmap,
365 #if IS_ENABLED(CONFIG_MIGRATION)
366 static int aio_migratepage(struct address_space *mapping, struct page *new,
367 struct page *old, enum migrate_mode mode)
369 struct kioctx *ctx;
370 unsigned long flags;
371 pgoff_t idx;
372 int rc;
374 rc = 0;
376 /* mapping->private_lock here protects against the kioctx teardown. */
377 spin_lock(&mapping->private_lock);
378 ctx = mapping->private_data;
379 if (!ctx) {
380 rc = -EINVAL;
381 goto out;
384 /* The ring_lock mutex. The prevents aio_read_events() from writing
385 * to the ring's head, and prevents page migration from mucking in
386 * a partially initialized kiotx.
388 if (!mutex_trylock(&ctx->ring_lock)) {
389 rc = -EAGAIN;
390 goto out;
393 idx = old->index;
394 if (idx < (pgoff_t)ctx->nr_pages) {
395 /* Make sure the old page hasn't already been changed */
396 if (ctx->ring_pages[idx] != old)
397 rc = -EAGAIN;
398 } else
399 rc = -EINVAL;
401 if (rc != 0)
402 goto out_unlock;
404 /* Writeback must be complete */
405 BUG_ON(PageWriteback(old));
406 get_page(new);
408 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
409 if (rc != MIGRATEPAGE_SUCCESS) {
410 put_page(new);
411 goto out_unlock;
414 /* Take completion_lock to prevent other writes to the ring buffer
415 * while the old page is copied to the new. This prevents new
416 * events from being lost.
418 spin_lock_irqsave(&ctx->completion_lock, flags);
419 migrate_page_copy(new, old);
420 BUG_ON(ctx->ring_pages[idx] != old);
421 ctx->ring_pages[idx] = new;
422 spin_unlock_irqrestore(&ctx->completion_lock, flags);
424 /* The old page is no longer accessible. */
425 put_page(old);
427 out_unlock:
428 mutex_unlock(&ctx->ring_lock);
429 out:
430 spin_unlock(&mapping->private_lock);
431 return rc;
433 #endif
435 static const struct address_space_operations aio_ctx_aops = {
436 .set_page_dirty = __set_page_dirty_no_writeback,
437 #if IS_ENABLED(CONFIG_MIGRATION)
438 .migratepage = aio_migratepage,
439 #endif
442 static int aio_setup_ring(struct kioctx *ctx)
444 struct aio_ring *ring;
445 unsigned nr_events = ctx->max_reqs;
446 struct mm_struct *mm = current->mm;
447 unsigned long size, unused;
448 int nr_pages;
449 int i;
450 struct file *file;
452 /* Compensate for the ring buffer's head/tail overlap entry */
453 nr_events += 2; /* 1 is required, 2 for good luck */
455 size = sizeof(struct aio_ring);
456 size += sizeof(struct io_event) * nr_events;
458 nr_pages = PFN_UP(size);
459 if (nr_pages < 0)
460 return -EINVAL;
462 file = aio_private_file(ctx, nr_pages);
463 if (IS_ERR(file)) {
464 ctx->aio_ring_file = NULL;
465 return -ENOMEM;
468 ctx->aio_ring_file = file;
469 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
470 / sizeof(struct io_event);
472 ctx->ring_pages = ctx->internal_pages;
473 if (nr_pages > AIO_RING_PAGES) {
474 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
475 GFP_KERNEL);
476 if (!ctx->ring_pages) {
477 put_aio_ring_file(ctx);
478 return -ENOMEM;
482 for (i = 0; i < nr_pages; i++) {
483 struct page *page;
484 page = find_or_create_page(file->f_inode->i_mapping,
485 i, GFP_HIGHUSER | __GFP_ZERO);
486 if (!page)
487 break;
488 pr_debug("pid(%d) page[%d]->count=%d\n",
489 current->pid, i, page_count(page));
490 SetPageUptodate(page);
491 unlock_page(page);
493 ctx->ring_pages[i] = page;
495 ctx->nr_pages = i;
497 if (unlikely(i != nr_pages)) {
498 aio_free_ring(ctx);
499 return -ENOMEM;
502 ctx->mmap_size = nr_pages * PAGE_SIZE;
503 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
505 down_write(&mm->mmap_sem);
506 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
507 PROT_READ | PROT_WRITE,
508 MAP_SHARED, 0, &unused);
509 up_write(&mm->mmap_sem);
510 if (IS_ERR((void *)ctx->mmap_base)) {
511 ctx->mmap_size = 0;
512 aio_free_ring(ctx);
513 return -ENOMEM;
516 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
518 ctx->user_id = ctx->mmap_base;
519 ctx->nr_events = nr_events; /* trusted copy */
521 ring = kmap_atomic(ctx->ring_pages[0]);
522 ring->nr = nr_events; /* user copy */
523 ring->id = ~0U;
524 ring->head = ring->tail = 0;
525 ring->magic = AIO_RING_MAGIC;
526 ring->compat_features = AIO_RING_COMPAT_FEATURES;
527 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
528 ring->header_length = sizeof(struct aio_ring);
529 kunmap_atomic(ring);
530 flush_dcache_page(ctx->ring_pages[0]);
532 return 0;
535 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
536 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
537 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
539 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
541 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, common);
542 struct kioctx *ctx = req->ki_ctx;
543 unsigned long flags;
545 spin_lock_irqsave(&ctx->ctx_lock, flags);
547 if (!req->ki_list.next)
548 list_add(&req->ki_list, &ctx->active_reqs);
550 req->ki_cancel = cancel;
552 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
554 EXPORT_SYMBOL(kiocb_set_cancel_fn);
556 static int kiocb_cancel(struct aio_kiocb *kiocb)
558 kiocb_cancel_fn *old, *cancel;
561 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
562 * actually has a cancel function, hence the cmpxchg()
565 cancel = ACCESS_ONCE(kiocb->ki_cancel);
566 do {
567 if (!cancel || cancel == KIOCB_CANCELLED)
568 return -EINVAL;
570 old = cancel;
571 cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
572 } while (cancel != old);
574 return cancel(&kiocb->common);
578 * free_ioctx() should be RCU delayed to synchronize against the RCU
579 * protected lookup_ioctx() and also needs process context to call
580 * aio_free_ring(), so the double bouncing through kioctx->free_rcu and
581 * ->free_work.
583 static void free_ioctx(struct work_struct *work)
585 struct kioctx *ctx = container_of(work, struct kioctx, free_work);
587 pr_debug("freeing %p\n", ctx);
589 aio_free_ring(ctx);
590 free_percpu(ctx->cpu);
591 percpu_ref_exit(&ctx->reqs);
592 percpu_ref_exit(&ctx->users);
593 kmem_cache_free(kioctx_cachep, ctx);
596 static void free_ioctx_rcufn(struct rcu_head *head)
598 struct kioctx *ctx = container_of(head, struct kioctx, free_rcu);
600 INIT_WORK(&ctx->free_work, free_ioctx);
601 schedule_work(&ctx->free_work);
604 static void free_ioctx_reqs(struct percpu_ref *ref)
606 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
608 /* At this point we know that there are no any in-flight requests */
609 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
610 complete(&ctx->rq_wait->comp);
612 /* Synchronize against RCU protected table->table[] dereferences */
613 call_rcu(&ctx->free_rcu, free_ioctx_rcufn);
617 * When this function runs, the kioctx has been removed from the "hash table"
618 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
619 * now it's safe to cancel any that need to be.
621 static void free_ioctx_users(struct percpu_ref *ref)
623 struct kioctx *ctx = container_of(ref, struct kioctx, users);
624 struct aio_kiocb *req;
626 spin_lock_irq(&ctx->ctx_lock);
628 while (!list_empty(&ctx->active_reqs)) {
629 req = list_first_entry(&ctx->active_reqs,
630 struct aio_kiocb, ki_list);
631 kiocb_cancel(req);
632 list_del_init(&req->ki_list);
635 spin_unlock_irq(&ctx->ctx_lock);
637 percpu_ref_kill(&ctx->reqs);
638 percpu_ref_put(&ctx->reqs);
641 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
643 unsigned i, new_nr;
644 struct kioctx_table *table, *old;
645 struct aio_ring *ring;
647 spin_lock(&mm->ioctx_lock);
648 table = rcu_dereference_raw(mm->ioctx_table);
650 while (1) {
651 if (table)
652 for (i = 0; i < table->nr; i++)
653 if (!rcu_access_pointer(table->table[i])) {
654 ctx->id = i;
655 rcu_assign_pointer(table->table[i], ctx);
656 spin_unlock(&mm->ioctx_lock);
658 /* While kioctx setup is in progress,
659 * we are protected from page migration
660 * changes ring_pages by ->ring_lock.
662 ring = kmap_atomic(ctx->ring_pages[0]);
663 ring->id = ctx->id;
664 kunmap_atomic(ring);
665 return 0;
668 new_nr = (table ? table->nr : 1) * 4;
669 spin_unlock(&mm->ioctx_lock);
671 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
672 new_nr, GFP_KERNEL);
673 if (!table)
674 return -ENOMEM;
676 table->nr = new_nr;
678 spin_lock(&mm->ioctx_lock);
679 old = rcu_dereference_raw(mm->ioctx_table);
681 if (!old) {
682 rcu_assign_pointer(mm->ioctx_table, table);
683 } else if (table->nr > old->nr) {
684 memcpy(table->table, old->table,
685 old->nr * sizeof(struct kioctx *));
687 rcu_assign_pointer(mm->ioctx_table, table);
688 kfree_rcu(old, rcu);
689 } else {
690 kfree(table);
691 table = old;
696 static void aio_nr_sub(unsigned nr)
698 spin_lock(&aio_nr_lock);
699 if (WARN_ON(aio_nr - nr > aio_nr))
700 aio_nr = 0;
701 else
702 aio_nr -= nr;
703 spin_unlock(&aio_nr_lock);
706 /* ioctx_alloc
707 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
709 static struct kioctx *ioctx_alloc(unsigned nr_events)
711 struct mm_struct *mm = current->mm;
712 struct kioctx *ctx;
713 int err = -ENOMEM;
716 * We keep track of the number of available ringbuffer slots, to prevent
717 * overflow (reqs_available), and we also use percpu counters for this.
719 * So since up to half the slots might be on other cpu's percpu counters
720 * and unavailable, double nr_events so userspace sees what they
721 * expected: additionally, we move req_batch slots to/from percpu
722 * counters at a time, so make sure that isn't 0:
724 nr_events = max(nr_events, num_possible_cpus() * 4);
725 nr_events *= 2;
727 /* Prevent overflows */
728 if (nr_events > (0x10000000U / sizeof(struct io_event))) {
729 pr_debug("ENOMEM: nr_events too high\n");
730 return ERR_PTR(-EINVAL);
733 if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL))
734 return ERR_PTR(-EAGAIN);
736 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
737 if (!ctx)
738 return ERR_PTR(-ENOMEM);
740 ctx->max_reqs = nr_events;
742 spin_lock_init(&ctx->ctx_lock);
743 spin_lock_init(&ctx->completion_lock);
744 mutex_init(&ctx->ring_lock);
745 /* Protect against page migration throughout kiotx setup by keeping
746 * the ring_lock mutex held until setup is complete. */
747 mutex_lock(&ctx->ring_lock);
748 init_waitqueue_head(&ctx->wait);
750 INIT_LIST_HEAD(&ctx->active_reqs);
752 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
753 goto err;
755 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
756 goto err;
758 ctx->cpu = alloc_percpu(struct kioctx_cpu);
759 if (!ctx->cpu)
760 goto err;
762 err = aio_setup_ring(ctx);
763 if (err < 0)
764 goto err;
766 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
767 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
768 if (ctx->req_batch < 1)
769 ctx->req_batch = 1;
771 /* limit the number of system wide aios */
772 spin_lock(&aio_nr_lock);
773 if (aio_nr + nr_events > (aio_max_nr * 2UL) ||
774 aio_nr + nr_events < aio_nr) {
775 spin_unlock(&aio_nr_lock);
776 err = -EAGAIN;
777 goto err_ctx;
779 aio_nr += ctx->max_reqs;
780 spin_unlock(&aio_nr_lock);
782 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
783 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
785 err = ioctx_add_table(ctx, mm);
786 if (err)
787 goto err_cleanup;
789 /* Release the ring_lock mutex now that all setup is complete. */
790 mutex_unlock(&ctx->ring_lock);
792 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
793 ctx, ctx->user_id, mm, ctx->nr_events);
794 return ctx;
796 err_cleanup:
797 aio_nr_sub(ctx->max_reqs);
798 err_ctx:
799 atomic_set(&ctx->dead, 1);
800 if (ctx->mmap_size)
801 vm_munmap(ctx->mmap_base, ctx->mmap_size);
802 aio_free_ring(ctx);
803 err:
804 mutex_unlock(&ctx->ring_lock);
805 free_percpu(ctx->cpu);
806 percpu_ref_exit(&ctx->reqs);
807 percpu_ref_exit(&ctx->users);
808 kmem_cache_free(kioctx_cachep, ctx);
809 pr_debug("error allocating ioctx %d\n", err);
810 return ERR_PTR(err);
813 /* kill_ioctx
814 * Cancels all outstanding aio requests on an aio context. Used
815 * when the processes owning a context have all exited to encourage
816 * the rapid destruction of the kioctx.
818 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
819 struct ctx_rq_wait *wait)
821 struct kioctx_table *table;
823 spin_lock(&mm->ioctx_lock);
824 if (atomic_xchg(&ctx->dead, 1)) {
825 spin_unlock(&mm->ioctx_lock);
826 return -EINVAL;
829 table = rcu_dereference_raw(mm->ioctx_table);
830 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
831 RCU_INIT_POINTER(table->table[ctx->id], NULL);
832 spin_unlock(&mm->ioctx_lock);
834 /* free_ioctx_reqs() will do the necessary RCU synchronization */
835 wake_up_all(&ctx->wait);
838 * It'd be more correct to do this in free_ioctx(), after all
839 * the outstanding kiocbs have finished - but by then io_destroy
840 * has already returned, so io_setup() could potentially return
841 * -EAGAIN with no ioctxs actually in use (as far as userspace
842 * could tell).
844 aio_nr_sub(ctx->max_reqs);
846 if (ctx->mmap_size)
847 vm_munmap(ctx->mmap_base, ctx->mmap_size);
849 ctx->rq_wait = wait;
850 percpu_ref_kill(&ctx->users);
851 return 0;
855 * exit_aio: called when the last user of mm goes away. At this point, there is
856 * no way for any new requests to be submited or any of the io_* syscalls to be
857 * called on the context.
859 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
860 * them.
862 void exit_aio(struct mm_struct *mm)
864 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
865 struct ctx_rq_wait wait;
866 int i, skipped;
868 if (!table)
869 return;
871 atomic_set(&wait.count, table->nr);
872 init_completion(&wait.comp);
874 skipped = 0;
875 for (i = 0; i < table->nr; ++i) {
876 struct kioctx *ctx =
877 rcu_dereference_protected(table->table[i], true);
879 if (!ctx) {
880 skipped++;
881 continue;
885 * We don't need to bother with munmap() here - exit_mmap(mm)
886 * is coming and it'll unmap everything. And we simply can't,
887 * this is not necessarily our ->mm.
888 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
889 * that it needs to unmap the area, just set it to 0.
891 ctx->mmap_size = 0;
892 kill_ioctx(mm, ctx, &wait);
895 if (!atomic_sub_and_test(skipped, &wait.count)) {
896 /* Wait until all IO for the context are done. */
897 wait_for_completion(&wait.comp);
900 RCU_INIT_POINTER(mm->ioctx_table, NULL);
901 kfree(table);
904 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
906 struct kioctx_cpu *kcpu;
907 unsigned long flags;
909 local_irq_save(flags);
910 kcpu = this_cpu_ptr(ctx->cpu);
911 kcpu->reqs_available += nr;
913 while (kcpu->reqs_available >= ctx->req_batch * 2) {
914 kcpu->reqs_available -= ctx->req_batch;
915 atomic_add(ctx->req_batch, &ctx->reqs_available);
918 local_irq_restore(flags);
921 static bool get_reqs_available(struct kioctx *ctx)
923 struct kioctx_cpu *kcpu;
924 bool ret = false;
925 unsigned long flags;
927 local_irq_save(flags);
928 kcpu = this_cpu_ptr(ctx->cpu);
929 if (!kcpu->reqs_available) {
930 int old, avail = atomic_read(&ctx->reqs_available);
932 do {
933 if (avail < ctx->req_batch)
934 goto out;
936 old = avail;
937 avail = atomic_cmpxchg(&ctx->reqs_available,
938 avail, avail - ctx->req_batch);
939 } while (avail != old);
941 kcpu->reqs_available += ctx->req_batch;
944 ret = true;
945 kcpu->reqs_available--;
946 out:
947 local_irq_restore(flags);
948 return ret;
951 /* refill_reqs_available
952 * Updates the reqs_available reference counts used for tracking the
953 * number of free slots in the completion ring. This can be called
954 * from aio_complete() (to optimistically update reqs_available) or
955 * from aio_get_req() (the we're out of events case). It must be
956 * called holding ctx->completion_lock.
958 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
959 unsigned tail)
961 unsigned events_in_ring, completed;
963 /* Clamp head since userland can write to it. */
964 head %= ctx->nr_events;
965 if (head <= tail)
966 events_in_ring = tail - head;
967 else
968 events_in_ring = ctx->nr_events - (head - tail);
970 completed = ctx->completed_events;
971 if (events_in_ring < completed)
972 completed -= events_in_ring;
973 else
974 completed = 0;
976 if (!completed)
977 return;
979 ctx->completed_events -= completed;
980 put_reqs_available(ctx, completed);
983 /* user_refill_reqs_available
984 * Called to refill reqs_available when aio_get_req() encounters an
985 * out of space in the completion ring.
987 static void user_refill_reqs_available(struct kioctx *ctx)
989 spin_lock_irq(&ctx->completion_lock);
990 if (ctx->completed_events) {
991 struct aio_ring *ring;
992 unsigned head;
994 /* Access of ring->head may race with aio_read_events_ring()
995 * here, but that's okay since whether we read the old version
996 * or the new version, and either will be valid. The important
997 * part is that head cannot pass tail since we prevent
998 * aio_complete() from updating tail by holding
999 * ctx->completion_lock. Even if head is invalid, the check
1000 * against ctx->completed_events below will make sure we do the
1001 * safe/right thing.
1003 ring = kmap_atomic(ctx->ring_pages[0]);
1004 head = ring->head;
1005 kunmap_atomic(ring);
1007 refill_reqs_available(ctx, head, ctx->tail);
1010 spin_unlock_irq(&ctx->completion_lock);
1013 /* aio_get_req
1014 * Allocate a slot for an aio request.
1015 * Returns NULL if no requests are free.
1017 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1019 struct aio_kiocb *req;
1021 if (!get_reqs_available(ctx)) {
1022 user_refill_reqs_available(ctx);
1023 if (!get_reqs_available(ctx))
1024 return NULL;
1027 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
1028 if (unlikely(!req))
1029 goto out_put;
1031 percpu_ref_get(&ctx->reqs);
1033 req->ki_ctx = ctx;
1034 return req;
1035 out_put:
1036 put_reqs_available(ctx, 1);
1037 return NULL;
1040 static void kiocb_free(struct aio_kiocb *req)
1042 if (req->common.ki_filp)
1043 fput(req->common.ki_filp);
1044 if (req->ki_eventfd != NULL)
1045 eventfd_ctx_put(req->ki_eventfd);
1046 kmem_cache_free(kiocb_cachep, req);
1049 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1051 struct aio_ring __user *ring = (void __user *)ctx_id;
1052 struct mm_struct *mm = current->mm;
1053 struct kioctx *ctx, *ret = NULL;
1054 struct kioctx_table *table;
1055 unsigned id;
1057 if (get_user(id, &ring->id))
1058 return NULL;
1060 rcu_read_lock();
1061 table = rcu_dereference(mm->ioctx_table);
1063 if (!table || id >= table->nr)
1064 goto out;
1066 ctx = rcu_dereference(table->table[id]);
1067 if (ctx && ctx->user_id == ctx_id) {
1068 if (percpu_ref_tryget_live(&ctx->users))
1069 ret = ctx;
1071 out:
1072 rcu_read_unlock();
1073 return ret;
1076 /* aio_complete
1077 * Called when the io request on the given iocb is complete.
1079 static void aio_complete(struct kiocb *kiocb, long res, long res2)
1081 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, common);
1082 struct kioctx *ctx = iocb->ki_ctx;
1083 struct aio_ring *ring;
1084 struct io_event *ev_page, *event;
1085 unsigned tail, pos, head;
1086 unsigned long flags;
1089 * Special case handling for sync iocbs:
1090 * - events go directly into the iocb for fast handling
1091 * - the sync task with the iocb in its stack holds the single iocb
1092 * ref, no other paths have a way to get another ref
1093 * - the sync task helpfully left a reference to itself in the iocb
1095 BUG_ON(is_sync_kiocb(kiocb));
1097 if (iocb->ki_list.next) {
1098 unsigned long flags;
1100 spin_lock_irqsave(&ctx->ctx_lock, flags);
1101 list_del(&iocb->ki_list);
1102 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1106 * Add a completion event to the ring buffer. Must be done holding
1107 * ctx->completion_lock to prevent other code from messing with the tail
1108 * pointer since we might be called from irq context.
1110 spin_lock_irqsave(&ctx->completion_lock, flags);
1112 tail = ctx->tail;
1113 pos = tail + AIO_EVENTS_OFFSET;
1115 if (++tail >= ctx->nr_events)
1116 tail = 0;
1118 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1119 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1121 event->obj = (u64)(unsigned long)iocb->ki_user_iocb;
1122 event->data = iocb->ki_user_data;
1123 event->res = res;
1124 event->res2 = res2;
1126 kunmap_atomic(ev_page);
1127 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1129 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1130 ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data,
1131 res, res2);
1133 /* after flagging the request as done, we
1134 * must never even look at it again
1136 smp_wmb(); /* make event visible before updating tail */
1138 ctx->tail = tail;
1140 ring = kmap_atomic(ctx->ring_pages[0]);
1141 head = ring->head;
1142 ring->tail = tail;
1143 kunmap_atomic(ring);
1144 flush_dcache_page(ctx->ring_pages[0]);
1146 ctx->completed_events++;
1147 if (ctx->completed_events > 1)
1148 refill_reqs_available(ctx, head, tail);
1149 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1151 pr_debug("added to ring %p at [%u]\n", iocb, tail);
1154 * Check if the user asked us to deliver the result through an
1155 * eventfd. The eventfd_signal() function is safe to be called
1156 * from IRQ context.
1158 if (iocb->ki_eventfd != NULL)
1159 eventfd_signal(iocb->ki_eventfd, 1);
1161 /* everything turned out well, dispose of the aiocb. */
1162 kiocb_free(iocb);
1165 * We have to order our ring_info tail store above and test
1166 * of the wait list below outside the wait lock. This is
1167 * like in wake_up_bit() where clearing a bit has to be
1168 * ordered with the unlocked test.
1170 smp_mb();
1172 if (waitqueue_active(&ctx->wait))
1173 wake_up(&ctx->wait);
1175 percpu_ref_put(&ctx->reqs);
1178 /* aio_read_events_ring
1179 * Pull an event off of the ioctx's event ring. Returns the number of
1180 * events fetched
1182 static long aio_read_events_ring(struct kioctx *ctx,
1183 struct io_event __user *event, long nr)
1185 struct aio_ring *ring;
1186 unsigned head, tail, pos;
1187 long ret = 0;
1188 int copy_ret;
1191 * The mutex can block and wake us up and that will cause
1192 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1193 * and repeat. This should be rare enough that it doesn't cause
1194 * peformance issues. See the comment in read_events() for more detail.
1196 sched_annotate_sleep();
1197 mutex_lock(&ctx->ring_lock);
1199 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1200 ring = kmap_atomic(ctx->ring_pages[0]);
1201 head = ring->head;
1202 tail = ring->tail;
1203 kunmap_atomic(ring);
1206 * Ensure that once we've read the current tail pointer, that
1207 * we also see the events that were stored up to the tail.
1209 smp_rmb();
1211 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1213 if (head == tail)
1214 goto out;
1216 head %= ctx->nr_events;
1217 tail %= ctx->nr_events;
1219 while (ret < nr) {
1220 long avail;
1221 struct io_event *ev;
1222 struct page *page;
1224 avail = (head <= tail ? tail : ctx->nr_events) - head;
1225 if (head == tail)
1226 break;
1228 avail = min(avail, nr - ret);
1229 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
1230 ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
1232 pos = head + AIO_EVENTS_OFFSET;
1233 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1234 pos %= AIO_EVENTS_PER_PAGE;
1236 ev = kmap(page);
1237 copy_ret = copy_to_user(event + ret, ev + pos,
1238 sizeof(*ev) * avail);
1239 kunmap(page);
1241 if (unlikely(copy_ret)) {
1242 ret = -EFAULT;
1243 goto out;
1246 ret += avail;
1247 head += avail;
1248 head %= ctx->nr_events;
1251 ring = kmap_atomic(ctx->ring_pages[0]);
1252 ring->head = head;
1253 kunmap_atomic(ring);
1254 flush_dcache_page(ctx->ring_pages[0]);
1256 pr_debug("%li h%u t%u\n", ret, head, tail);
1257 out:
1258 mutex_unlock(&ctx->ring_lock);
1260 return ret;
1263 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1264 struct io_event __user *event, long *i)
1266 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1268 if (ret > 0)
1269 *i += ret;
1271 if (unlikely(atomic_read(&ctx->dead)))
1272 ret = -EINVAL;
1274 if (!*i)
1275 *i = ret;
1277 return ret < 0 || *i >= min_nr;
1280 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1281 struct io_event __user *event,
1282 struct timespec __user *timeout)
1284 ktime_t until = { .tv64 = KTIME_MAX };
1285 long ret = 0;
1287 if (timeout) {
1288 struct timespec ts;
1290 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1291 return -EFAULT;
1293 until = timespec_to_ktime(ts);
1297 * Note that aio_read_events() is being called as the conditional - i.e.
1298 * we're calling it after prepare_to_wait() has set task state to
1299 * TASK_INTERRUPTIBLE.
1301 * But aio_read_events() can block, and if it blocks it's going to flip
1302 * the task state back to TASK_RUNNING.
1304 * This should be ok, provided it doesn't flip the state back to
1305 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1306 * will only happen if the mutex_lock() call blocks, and we then find
1307 * the ringbuffer empty. So in practice we should be ok, but it's
1308 * something to be aware of when touching this code.
1310 if (until.tv64 == 0)
1311 aio_read_events(ctx, min_nr, nr, event, &ret);
1312 else
1313 wait_event_interruptible_hrtimeout(ctx->wait,
1314 aio_read_events(ctx, min_nr, nr, event, &ret),
1315 until);
1317 if (!ret && signal_pending(current))
1318 ret = -EINTR;
1320 return ret;
1323 /* sys_io_setup:
1324 * Create an aio_context capable of receiving at least nr_events.
1325 * ctxp must not point to an aio_context that already exists, and
1326 * must be initialized to 0 prior to the call. On successful
1327 * creation of the aio_context, *ctxp is filled in with the resulting
1328 * handle. May fail with -EINVAL if *ctxp is not initialized,
1329 * if the specified nr_events exceeds internal limits. May fail
1330 * with -EAGAIN if the specified nr_events exceeds the user's limit
1331 * of available events. May fail with -ENOMEM if insufficient kernel
1332 * resources are available. May fail with -EFAULT if an invalid
1333 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1334 * implemented.
1336 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1338 struct kioctx *ioctx = NULL;
1339 unsigned long ctx;
1340 long ret;
1342 ret = get_user(ctx, ctxp);
1343 if (unlikely(ret))
1344 goto out;
1346 ret = -EINVAL;
1347 if (unlikely(ctx || nr_events == 0)) {
1348 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1349 ctx, nr_events);
1350 goto out;
1353 ioctx = ioctx_alloc(nr_events);
1354 ret = PTR_ERR(ioctx);
1355 if (!IS_ERR(ioctx)) {
1356 ret = put_user(ioctx->user_id, ctxp);
1357 if (ret)
1358 kill_ioctx(current->mm, ioctx, NULL);
1359 percpu_ref_put(&ioctx->users);
1362 out:
1363 return ret;
1366 /* sys_io_destroy:
1367 * Destroy the aio_context specified. May cancel any outstanding
1368 * AIOs and block on completion. Will fail with -ENOSYS if not
1369 * implemented. May fail with -EINVAL if the context pointed to
1370 * is invalid.
1372 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1374 struct kioctx *ioctx = lookup_ioctx(ctx);
1375 if (likely(NULL != ioctx)) {
1376 struct ctx_rq_wait wait;
1377 int ret;
1379 init_completion(&wait.comp);
1380 atomic_set(&wait.count, 1);
1382 /* Pass requests_done to kill_ioctx() where it can be set
1383 * in a thread-safe way. If we try to set it here then we have
1384 * a race condition if two io_destroy() called simultaneously.
1386 ret = kill_ioctx(current->mm, ioctx, &wait);
1387 percpu_ref_put(&ioctx->users);
1389 /* Wait until all IO for the context are done. Otherwise kernel
1390 * keep using user-space buffers even if user thinks the context
1391 * is destroyed.
1393 if (!ret)
1394 wait_for_completion(&wait.comp);
1396 return ret;
1398 pr_debug("EINVAL: invalid context id\n");
1399 return -EINVAL;
1402 typedef ssize_t (rw_iter_op)(struct kiocb *, struct iov_iter *);
1404 static int aio_setup_vectored_rw(int rw, char __user *buf, size_t len,
1405 struct iovec **iovec,
1406 bool compat,
1407 struct iov_iter *iter)
1409 #ifdef CONFIG_COMPAT
1410 if (compat)
1411 return compat_import_iovec(rw,
1412 (struct compat_iovec __user *)buf,
1413 len, UIO_FASTIOV, iovec, iter);
1414 #endif
1415 return import_iovec(rw, (struct iovec __user *)buf,
1416 len, UIO_FASTIOV, iovec, iter);
1420 * aio_run_iocb:
1421 * Performs the initial checks and io submission.
1423 static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode,
1424 char __user *buf, size_t len, bool compat)
1426 struct file *file = req->ki_filp;
1427 ssize_t ret;
1428 int rw;
1429 fmode_t mode;
1430 rw_iter_op *iter_op;
1431 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1432 struct iov_iter iter;
1434 switch (opcode) {
1435 case IOCB_CMD_PREAD:
1436 case IOCB_CMD_PREADV:
1437 mode = FMODE_READ;
1438 rw = READ;
1439 iter_op = file->f_op->read_iter;
1440 goto rw_common;
1442 case IOCB_CMD_PWRITE:
1443 case IOCB_CMD_PWRITEV:
1444 mode = FMODE_WRITE;
1445 rw = WRITE;
1446 iter_op = file->f_op->write_iter;
1447 goto rw_common;
1448 rw_common:
1449 if (unlikely(!(file->f_mode & mode)))
1450 return -EBADF;
1452 if (!iter_op)
1453 return -EINVAL;
1455 if (opcode == IOCB_CMD_PREADV || opcode == IOCB_CMD_PWRITEV)
1456 ret = aio_setup_vectored_rw(rw, buf, len,
1457 &iovec, compat, &iter);
1458 else {
1459 ret = import_single_range(rw, buf, len, iovec, &iter);
1460 iovec = NULL;
1462 if (!ret)
1463 ret = rw_verify_area(rw, file, &req->ki_pos,
1464 iov_iter_count(&iter));
1465 if (ret < 0) {
1466 kfree(iovec);
1467 return ret;
1470 len = ret;
1472 if (rw == WRITE)
1473 file_start_write(file);
1475 ret = iter_op(req, &iter);
1477 if (rw == WRITE)
1478 file_end_write(file);
1479 kfree(iovec);
1480 break;
1482 case IOCB_CMD_FDSYNC:
1483 if (!file->f_op->aio_fsync)
1484 return -EINVAL;
1486 ret = file->f_op->aio_fsync(req, 1);
1487 break;
1489 case IOCB_CMD_FSYNC:
1490 if (!file->f_op->aio_fsync)
1491 return -EINVAL;
1493 ret = file->f_op->aio_fsync(req, 0);
1494 break;
1496 default:
1497 pr_debug("EINVAL: no operation provided\n");
1498 return -EINVAL;
1501 if (ret != -EIOCBQUEUED) {
1503 * There's no easy way to restart the syscall since other AIO's
1504 * may be already running. Just fail this IO with EINTR.
1506 if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
1507 ret == -ERESTARTNOHAND ||
1508 ret == -ERESTART_RESTARTBLOCK))
1509 ret = -EINTR;
1510 aio_complete(req, ret, 0);
1513 return 0;
1516 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1517 struct iocb *iocb, bool compat)
1519 struct aio_kiocb *req;
1520 ssize_t ret;
1522 /* enforce forwards compatibility on users */
1523 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1524 pr_debug("EINVAL: reserve field set\n");
1525 return -EINVAL;
1528 /* prevent overflows */
1529 if (unlikely(
1530 (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1531 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1532 ((ssize_t)iocb->aio_nbytes < 0)
1533 )) {
1534 pr_debug("EINVAL: overflow check\n");
1535 return -EINVAL;
1538 req = aio_get_req(ctx);
1539 if (unlikely(!req))
1540 return -EAGAIN;
1542 req->common.ki_filp = fget(iocb->aio_fildes);
1543 if (unlikely(!req->common.ki_filp)) {
1544 ret = -EBADF;
1545 goto out_put_req;
1547 req->common.ki_pos = iocb->aio_offset;
1548 req->common.ki_complete = aio_complete;
1549 req->common.ki_flags = iocb_flags(req->common.ki_filp);
1551 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1553 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1554 * instance of the file* now. The file descriptor must be
1555 * an eventfd() fd, and will be signaled for each completed
1556 * event using the eventfd_signal() function.
1558 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1559 if (IS_ERR(req->ki_eventfd)) {
1560 ret = PTR_ERR(req->ki_eventfd);
1561 req->ki_eventfd = NULL;
1562 goto out_put_req;
1565 req->common.ki_flags |= IOCB_EVENTFD;
1568 ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1569 if (unlikely(ret)) {
1570 pr_debug("EFAULT: aio_key\n");
1571 goto out_put_req;
1574 req->ki_user_iocb = user_iocb;
1575 req->ki_user_data = iocb->aio_data;
1577 ret = aio_run_iocb(&req->common, iocb->aio_lio_opcode,
1578 (char __user *)(unsigned long)iocb->aio_buf,
1579 iocb->aio_nbytes,
1580 compat);
1581 if (ret)
1582 goto out_put_req;
1584 return 0;
1585 out_put_req:
1586 put_reqs_available(ctx, 1);
1587 percpu_ref_put(&ctx->reqs);
1588 kiocb_free(req);
1589 return ret;
1592 long do_io_submit(aio_context_t ctx_id, long nr,
1593 struct iocb __user *__user *iocbpp, bool compat)
1595 struct kioctx *ctx;
1596 long ret = 0;
1597 int i = 0;
1598 struct blk_plug plug;
1600 if (unlikely(nr < 0))
1601 return -EINVAL;
1603 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1604 nr = LONG_MAX/sizeof(*iocbpp);
1606 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1607 return -EFAULT;
1609 ctx = lookup_ioctx(ctx_id);
1610 if (unlikely(!ctx)) {
1611 pr_debug("EINVAL: invalid context id\n");
1612 return -EINVAL;
1615 blk_start_plug(&plug);
1618 * AKPM: should this return a partial result if some of the IOs were
1619 * successfully submitted?
1621 for (i=0; i<nr; i++) {
1622 struct iocb __user *user_iocb;
1623 struct iocb tmp;
1625 if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1626 ret = -EFAULT;
1627 break;
1630 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1631 ret = -EFAULT;
1632 break;
1635 ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1636 if (ret)
1637 break;
1639 blk_finish_plug(&plug);
1641 percpu_ref_put(&ctx->users);
1642 return i ? i : ret;
1645 /* sys_io_submit:
1646 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1647 * the number of iocbs queued. May return -EINVAL if the aio_context
1648 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1649 * *iocbpp[0] is not properly initialized, if the operation specified
1650 * is invalid for the file descriptor in the iocb. May fail with
1651 * -EFAULT if any of the data structures point to invalid data. May
1652 * fail with -EBADF if the file descriptor specified in the first
1653 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1654 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1655 * fail with -ENOSYS if not implemented.
1657 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1658 struct iocb __user * __user *, iocbpp)
1660 return do_io_submit(ctx_id, nr, iocbpp, 0);
1663 /* lookup_kiocb
1664 * Finds a given iocb for cancellation.
1666 static struct aio_kiocb *
1667 lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, u32 key)
1669 struct aio_kiocb *kiocb;
1671 assert_spin_locked(&ctx->ctx_lock);
1673 if (key != KIOCB_KEY)
1674 return NULL;
1676 /* TODO: use a hash or array, this sucks. */
1677 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
1678 if (kiocb->ki_user_iocb == iocb)
1679 return kiocb;
1681 return NULL;
1684 /* sys_io_cancel:
1685 * Attempts to cancel an iocb previously passed to io_submit. If
1686 * the operation is successfully cancelled, the resulting event is
1687 * copied into the memory pointed to by result without being placed
1688 * into the completion queue and 0 is returned. May fail with
1689 * -EFAULT if any of the data structures pointed to are invalid.
1690 * May fail with -EINVAL if aio_context specified by ctx_id is
1691 * invalid. May fail with -EAGAIN if the iocb specified was not
1692 * cancelled. Will fail with -ENOSYS if not implemented.
1694 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1695 struct io_event __user *, result)
1697 struct kioctx *ctx;
1698 struct aio_kiocb *kiocb;
1699 u32 key;
1700 int ret;
1702 ret = get_user(key, &iocb->aio_key);
1703 if (unlikely(ret))
1704 return -EFAULT;
1706 ctx = lookup_ioctx(ctx_id);
1707 if (unlikely(!ctx))
1708 return -EINVAL;
1710 spin_lock_irq(&ctx->ctx_lock);
1712 kiocb = lookup_kiocb(ctx, iocb, key);
1713 if (kiocb)
1714 ret = kiocb_cancel(kiocb);
1715 else
1716 ret = -EINVAL;
1718 spin_unlock_irq(&ctx->ctx_lock);
1720 if (!ret) {
1722 * The result argument is no longer used - the io_event is
1723 * always delivered via the ring buffer. -EINPROGRESS indicates
1724 * cancellation is progress:
1726 ret = -EINPROGRESS;
1729 percpu_ref_put(&ctx->users);
1731 return ret;
1734 /* io_getevents:
1735 * Attempts to read at least min_nr events and up to nr events from
1736 * the completion queue for the aio_context specified by ctx_id. If
1737 * it succeeds, the number of read events is returned. May fail with
1738 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1739 * out of range, if timeout is out of range. May fail with -EFAULT
1740 * if any of the memory specified is invalid. May return 0 or
1741 * < min_nr if the timeout specified by timeout has elapsed
1742 * before sufficient events are available, where timeout == NULL
1743 * specifies an infinite timeout. Note that the timeout pointed to by
1744 * timeout is relative. Will fail with -ENOSYS if not implemented.
1746 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1747 long, min_nr,
1748 long, nr,
1749 struct io_event __user *, events,
1750 struct timespec __user *, timeout)
1752 struct kioctx *ioctx = lookup_ioctx(ctx_id);
1753 long ret = -EINVAL;
1755 if (likely(ioctx)) {
1756 if (likely(min_nr <= nr && min_nr >= 0))
1757 ret = read_events(ioctx, min_nr, nr, events, timeout);
1758 percpu_ref_put(&ioctx->users);
1760 return ret;