4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/swap.h>
18 #include <linux/timer.h>
24 #include <trace/events/f2fs.h>
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
28 static struct kmem_cache
*discard_entry_slab
;
29 static struct kmem_cache
*sit_entry_set_slab
;
30 static struct kmem_cache
*inmem_entry_slab
;
32 static unsigned long __reverse_ulong(unsigned char *str
)
34 unsigned long tmp
= 0;
35 int shift
= 24, idx
= 0;
37 #if BITS_PER_LONG == 64
41 tmp
|= (unsigned long)str
[idx
++] << shift
;
42 shift
-= BITS_PER_BYTE
;
48 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
49 * MSB and LSB are reversed in a byte by f2fs_set_bit.
51 static inline unsigned long __reverse_ffs(unsigned long word
)
55 #if BITS_PER_LONG == 64
56 if ((word
& 0xffffffff00000000UL
) == 0)
61 if ((word
& 0xffff0000) == 0)
66 if ((word
& 0xff00) == 0)
71 if ((word
& 0xf0) == 0)
76 if ((word
& 0xc) == 0)
81 if ((word
& 0x2) == 0)
87 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
88 * f2fs_set_bit makes MSB and LSB reversed in a byte.
91 * f2fs_set_bit(0, bitmap) => 1000 0000
92 * f2fs_set_bit(7, bitmap) => 0000 0001
94 static unsigned long __find_rev_next_bit(const unsigned long *addr
,
95 unsigned long size
, unsigned long offset
)
97 const unsigned long *p
= addr
+ BIT_WORD(offset
);
98 unsigned long result
= offset
& ~(BITS_PER_LONG
- 1);
105 offset
%= BITS_PER_LONG
;
109 tmp
= __reverse_ulong((unsigned char *)p
);
110 tmp
&= ~0UL >> offset
;
112 if (size
< BITS_PER_LONG
)
117 size
-= BITS_PER_LONG
;
118 result
+= BITS_PER_LONG
;
121 while (size
& ~(BITS_PER_LONG
-1)) {
122 tmp
= __reverse_ulong((unsigned char *)p
);
125 result
+= BITS_PER_LONG
;
126 size
-= BITS_PER_LONG
;
132 tmp
= __reverse_ulong((unsigned char *)p
);
134 tmp
&= (~0UL << (BITS_PER_LONG
- size
));
135 if (!tmp
) /* Are any bits set? */
136 return result
+ size
; /* Nope. */
138 return result
+ __reverse_ffs(tmp
);
141 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr
,
142 unsigned long size
, unsigned long offset
)
144 const unsigned long *p
= addr
+ BIT_WORD(offset
);
145 unsigned long result
= offset
& ~(BITS_PER_LONG
- 1);
152 offset
%= BITS_PER_LONG
;
156 tmp
= __reverse_ulong((unsigned char *)p
);
157 tmp
|= ~((~0UL << offset
) >> offset
);
159 if (size
< BITS_PER_LONG
)
164 size
-= BITS_PER_LONG
;
165 result
+= BITS_PER_LONG
;
168 while (size
& ~(BITS_PER_LONG
- 1)) {
169 tmp
= __reverse_ulong((unsigned char *)p
);
172 result
+= BITS_PER_LONG
;
173 size
-= BITS_PER_LONG
;
179 tmp
= __reverse_ulong((unsigned char *)p
);
181 tmp
|= ~(~0UL << (BITS_PER_LONG
- size
));
182 if (tmp
== ~0UL) /* Are any bits zero? */
183 return result
+ size
; /* Nope. */
185 return result
+ __reverse_ffz(tmp
);
188 void register_inmem_page(struct inode
*inode
, struct page
*page
)
190 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
191 struct inmem_pages
*new;
193 f2fs_trace_pid(page
);
195 set_page_private(page
, (unsigned long)ATOMIC_WRITTEN_PAGE
);
196 SetPagePrivate(page
);
198 new = f2fs_kmem_cache_alloc(inmem_entry_slab
, GFP_NOFS
);
200 /* add atomic page indices to the list */
202 INIT_LIST_HEAD(&new->list
);
204 /* increase reference count with clean state */
205 mutex_lock(&fi
->inmem_lock
);
207 list_add_tail(&new->list
, &fi
->inmem_pages
);
208 inc_page_count(F2FS_I_SB(inode
), F2FS_INMEM_PAGES
);
209 mutex_unlock(&fi
->inmem_lock
);
211 trace_f2fs_register_inmem_page(page
, INMEM
);
214 int commit_inmem_pages(struct inode
*inode
, bool abort
)
216 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
217 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
218 struct inmem_pages
*cur
, *tmp
;
219 bool submit_bio
= false;
220 struct f2fs_io_info fio
= {
223 .rw
= WRITE_SYNC
| REQ_PRIO
,
224 .encrypted_page
= NULL
,
229 * The abort is true only when f2fs_evict_inode is called.
230 * Basically, the f2fs_evict_inode doesn't produce any data writes, so
231 * that we don't need to call f2fs_balance_fs.
232 * Otherwise, f2fs_gc in f2fs_balance_fs can wait forever until this
233 * inode becomes free by iget_locked in f2fs_iget.
236 f2fs_balance_fs(sbi
);
240 mutex_lock(&fi
->inmem_lock
);
241 list_for_each_entry_safe(cur
, tmp
, &fi
->inmem_pages
, list
) {
242 lock_page(cur
->page
);
244 if (cur
->page
->mapping
== inode
->i_mapping
) {
245 set_page_dirty(cur
->page
);
246 f2fs_wait_on_page_writeback(cur
->page
, DATA
);
247 if (clear_page_dirty_for_io(cur
->page
))
248 inode_dec_dirty_pages(inode
);
249 trace_f2fs_commit_inmem_page(cur
->page
, INMEM
);
250 fio
.page
= cur
->page
;
251 err
= do_write_data_page(&fio
);
253 unlock_page(cur
->page
);
256 clear_cold_data(cur
->page
);
260 trace_f2fs_commit_inmem_page(cur
->page
, INMEM_DROP
);
262 set_page_private(cur
->page
, 0);
263 ClearPagePrivate(cur
->page
);
264 f2fs_put_page(cur
->page
, 1);
266 list_del(&cur
->list
);
267 kmem_cache_free(inmem_entry_slab
, cur
);
268 dec_page_count(F2FS_I_SB(inode
), F2FS_INMEM_PAGES
);
270 mutex_unlock(&fi
->inmem_lock
);
275 f2fs_submit_merged_bio(sbi
, DATA
, WRITE
);
281 * This function balances dirty node and dentry pages.
282 * In addition, it controls garbage collection.
284 void f2fs_balance_fs(struct f2fs_sb_info
*sbi
)
287 * We should do GC or end up with checkpoint, if there are so many dirty
288 * dir/node pages without enough free segments.
290 if (has_not_enough_free_secs(sbi
, 0)) {
291 mutex_lock(&sbi
->gc_mutex
);
296 void f2fs_balance_fs_bg(struct f2fs_sb_info
*sbi
)
298 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
301 /* try to shrink extent cache when there is no enough memory */
302 if (!available_free_memory(sbi
, EXTENT_CACHE
))
303 f2fs_shrink_extent_tree(sbi
, EXTENT_CACHE_SHRINK_NUMBER
);
305 /* check the # of cached NAT entries */
306 if (!available_free_memory(sbi
, NAT_ENTRIES
))
307 try_to_free_nats(sbi
, NAT_ENTRY_PER_BLOCK
);
309 if (!available_free_memory(sbi
, FREE_NIDS
))
310 try_to_free_nids(sbi
, NAT_ENTRY_PER_BLOCK
* FREE_NID_PAGES
);
312 /* checkpoint is the only way to shrink partial cached entries */
313 if (!available_free_memory(sbi
, NAT_ENTRIES
) ||
314 excess_prefree_segs(sbi
) ||
315 !available_free_memory(sbi
, INO_ENTRIES
) ||
316 jiffies
> sbi
->cp_expires
)
317 f2fs_sync_fs(sbi
->sb
, true);
320 static int issue_flush_thread(void *data
)
322 struct f2fs_sb_info
*sbi
= data
;
323 struct flush_cmd_control
*fcc
= SM_I(sbi
)->cmd_control_info
;
324 wait_queue_head_t
*q
= &fcc
->flush_wait_queue
;
326 if (kthread_should_stop())
329 if (!llist_empty(&fcc
->issue_list
)) {
331 struct flush_cmd
*cmd
, *next
;
334 bio
= f2fs_bio_alloc(0);
336 fcc
->dispatch_list
= llist_del_all(&fcc
->issue_list
);
337 fcc
->dispatch_list
= llist_reverse_order(fcc
->dispatch_list
);
339 bio
->bi_bdev
= sbi
->sb
->s_bdev
;
340 ret
= submit_bio_wait(WRITE_FLUSH
, bio
);
342 llist_for_each_entry_safe(cmd
, next
,
343 fcc
->dispatch_list
, llnode
) {
345 complete(&cmd
->wait
);
348 fcc
->dispatch_list
= NULL
;
351 wait_event_interruptible(*q
,
352 kthread_should_stop() || !llist_empty(&fcc
->issue_list
));
356 int f2fs_issue_flush(struct f2fs_sb_info
*sbi
)
358 struct flush_cmd_control
*fcc
= SM_I(sbi
)->cmd_control_info
;
359 struct flush_cmd cmd
;
361 trace_f2fs_issue_flush(sbi
->sb
, test_opt(sbi
, NOBARRIER
),
362 test_opt(sbi
, FLUSH_MERGE
));
364 if (test_opt(sbi
, NOBARRIER
))
367 if (!test_opt(sbi
, FLUSH_MERGE
)) {
368 struct bio
*bio
= f2fs_bio_alloc(0);
371 bio
->bi_bdev
= sbi
->sb
->s_bdev
;
372 ret
= submit_bio_wait(WRITE_FLUSH
, bio
);
377 init_completion(&cmd
.wait
);
379 llist_add(&cmd
.llnode
, &fcc
->issue_list
);
381 if (!fcc
->dispatch_list
)
382 wake_up(&fcc
->flush_wait_queue
);
384 wait_for_completion(&cmd
.wait
);
389 int create_flush_cmd_control(struct f2fs_sb_info
*sbi
)
391 dev_t dev
= sbi
->sb
->s_bdev
->bd_dev
;
392 struct flush_cmd_control
*fcc
;
395 fcc
= kzalloc(sizeof(struct flush_cmd_control
), GFP_KERNEL
);
398 init_waitqueue_head(&fcc
->flush_wait_queue
);
399 init_llist_head(&fcc
->issue_list
);
400 SM_I(sbi
)->cmd_control_info
= fcc
;
401 fcc
->f2fs_issue_flush
= kthread_run(issue_flush_thread
, sbi
,
402 "f2fs_flush-%u:%u", MAJOR(dev
), MINOR(dev
));
403 if (IS_ERR(fcc
->f2fs_issue_flush
)) {
404 err
= PTR_ERR(fcc
->f2fs_issue_flush
);
406 SM_I(sbi
)->cmd_control_info
= NULL
;
413 void destroy_flush_cmd_control(struct f2fs_sb_info
*sbi
)
415 struct flush_cmd_control
*fcc
= SM_I(sbi
)->cmd_control_info
;
417 if (fcc
&& fcc
->f2fs_issue_flush
)
418 kthread_stop(fcc
->f2fs_issue_flush
);
420 SM_I(sbi
)->cmd_control_info
= NULL
;
423 static void __locate_dirty_segment(struct f2fs_sb_info
*sbi
, unsigned int segno
,
424 enum dirty_type dirty_type
)
426 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
428 /* need not be added */
429 if (IS_CURSEG(sbi
, segno
))
432 if (!test_and_set_bit(segno
, dirty_i
->dirty_segmap
[dirty_type
]))
433 dirty_i
->nr_dirty
[dirty_type
]++;
435 if (dirty_type
== DIRTY
) {
436 struct seg_entry
*sentry
= get_seg_entry(sbi
, segno
);
437 enum dirty_type t
= sentry
->type
;
439 if (unlikely(t
>= DIRTY
)) {
443 if (!test_and_set_bit(segno
, dirty_i
->dirty_segmap
[t
]))
444 dirty_i
->nr_dirty
[t
]++;
448 static void __remove_dirty_segment(struct f2fs_sb_info
*sbi
, unsigned int segno
,
449 enum dirty_type dirty_type
)
451 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
453 if (test_and_clear_bit(segno
, dirty_i
->dirty_segmap
[dirty_type
]))
454 dirty_i
->nr_dirty
[dirty_type
]--;
456 if (dirty_type
== DIRTY
) {
457 struct seg_entry
*sentry
= get_seg_entry(sbi
, segno
);
458 enum dirty_type t
= sentry
->type
;
460 if (test_and_clear_bit(segno
, dirty_i
->dirty_segmap
[t
]))
461 dirty_i
->nr_dirty
[t
]--;
463 if (get_valid_blocks(sbi
, segno
, sbi
->segs_per_sec
) == 0)
464 clear_bit(GET_SECNO(sbi
, segno
),
465 dirty_i
->victim_secmap
);
470 * Should not occur error such as -ENOMEM.
471 * Adding dirty entry into seglist is not critical operation.
472 * If a given segment is one of current working segments, it won't be added.
474 static void locate_dirty_segment(struct f2fs_sb_info
*sbi
, unsigned int segno
)
476 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
477 unsigned short valid_blocks
;
479 if (segno
== NULL_SEGNO
|| IS_CURSEG(sbi
, segno
))
482 mutex_lock(&dirty_i
->seglist_lock
);
484 valid_blocks
= get_valid_blocks(sbi
, segno
, 0);
486 if (valid_blocks
== 0) {
487 __locate_dirty_segment(sbi
, segno
, PRE
);
488 __remove_dirty_segment(sbi
, segno
, DIRTY
);
489 } else if (valid_blocks
< sbi
->blocks_per_seg
) {
490 __locate_dirty_segment(sbi
, segno
, DIRTY
);
492 /* Recovery routine with SSR needs this */
493 __remove_dirty_segment(sbi
, segno
, DIRTY
);
496 mutex_unlock(&dirty_i
->seglist_lock
);
499 static int f2fs_issue_discard(struct f2fs_sb_info
*sbi
,
500 block_t blkstart
, block_t blklen
)
502 sector_t start
= SECTOR_FROM_BLOCK(blkstart
);
503 sector_t len
= SECTOR_FROM_BLOCK(blklen
);
504 struct seg_entry
*se
;
508 for (i
= blkstart
; i
< blkstart
+ blklen
; i
++) {
509 se
= get_seg_entry(sbi
, GET_SEGNO(sbi
, i
));
510 offset
= GET_BLKOFF_FROM_SEG0(sbi
, i
);
512 if (!f2fs_test_and_set_bit(offset
, se
->discard_map
))
515 trace_f2fs_issue_discard(sbi
->sb
, blkstart
, blklen
);
516 return blkdev_issue_discard(sbi
->sb
->s_bdev
, start
, len
, GFP_NOFS
, 0);
519 bool discard_next_dnode(struct f2fs_sb_info
*sbi
, block_t blkaddr
)
523 if (test_opt(sbi
, DISCARD
)) {
524 struct seg_entry
*se
= get_seg_entry(sbi
,
525 GET_SEGNO(sbi
, blkaddr
));
526 unsigned int offset
= GET_BLKOFF_FROM_SEG0(sbi
, blkaddr
);
528 if (f2fs_test_bit(offset
, se
->discard_map
))
531 err
= f2fs_issue_discard(sbi
, blkaddr
, 1);
535 update_meta_page(sbi
, NULL
, blkaddr
);
541 static void __add_discard_entry(struct f2fs_sb_info
*sbi
,
542 struct cp_control
*cpc
, struct seg_entry
*se
,
543 unsigned int start
, unsigned int end
)
545 struct list_head
*head
= &SM_I(sbi
)->discard_list
;
546 struct discard_entry
*new, *last
;
548 if (!list_empty(head
)) {
549 last
= list_last_entry(head
, struct discard_entry
, list
);
550 if (START_BLOCK(sbi
, cpc
->trim_start
) + start
==
551 last
->blkaddr
+ last
->len
) {
552 last
->len
+= end
- start
;
557 new = f2fs_kmem_cache_alloc(discard_entry_slab
, GFP_NOFS
);
558 INIT_LIST_HEAD(&new->list
);
559 new->blkaddr
= START_BLOCK(sbi
, cpc
->trim_start
) + start
;
560 new->len
= end
- start
;
561 list_add_tail(&new->list
, head
);
563 SM_I(sbi
)->nr_discards
+= end
- start
;
566 static void add_discard_addrs(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
568 int entries
= SIT_VBLOCK_MAP_SIZE
/ sizeof(unsigned long);
569 int max_blocks
= sbi
->blocks_per_seg
;
570 struct seg_entry
*se
= get_seg_entry(sbi
, cpc
->trim_start
);
571 unsigned long *cur_map
= (unsigned long *)se
->cur_valid_map
;
572 unsigned long *ckpt_map
= (unsigned long *)se
->ckpt_valid_map
;
573 unsigned long *discard_map
= (unsigned long *)se
->discard_map
;
574 unsigned long *dmap
= SIT_I(sbi
)->tmp_map
;
575 unsigned int start
= 0, end
= -1;
576 bool force
= (cpc
->reason
== CP_DISCARD
);
579 if (se
->valid_blocks
== max_blocks
)
583 if (!test_opt(sbi
, DISCARD
) || !se
->valid_blocks
||
584 SM_I(sbi
)->nr_discards
>= SM_I(sbi
)->max_discards
)
588 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
589 for (i
= 0; i
< entries
; i
++)
590 dmap
[i
] = force
? ~ckpt_map
[i
] & ~discard_map
[i
] :
591 (cur_map
[i
] ^ ckpt_map
[i
]) & ckpt_map
[i
];
593 while (force
|| SM_I(sbi
)->nr_discards
<= SM_I(sbi
)->max_discards
) {
594 start
= __find_rev_next_bit(dmap
, max_blocks
, end
+ 1);
595 if (start
>= max_blocks
)
598 end
= __find_rev_next_zero_bit(dmap
, max_blocks
, start
+ 1);
599 __add_discard_entry(sbi
, cpc
, se
, start
, end
);
603 void release_discard_addrs(struct f2fs_sb_info
*sbi
)
605 struct list_head
*head
= &(SM_I(sbi
)->discard_list
);
606 struct discard_entry
*entry
, *this;
609 list_for_each_entry_safe(entry
, this, head
, list
) {
610 list_del(&entry
->list
);
611 kmem_cache_free(discard_entry_slab
, entry
);
616 * Should call clear_prefree_segments after checkpoint is done.
618 static void set_prefree_as_free_segments(struct f2fs_sb_info
*sbi
)
620 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
623 mutex_lock(&dirty_i
->seglist_lock
);
624 for_each_set_bit(segno
, dirty_i
->dirty_segmap
[PRE
], MAIN_SEGS(sbi
))
625 __set_test_and_free(sbi
, segno
);
626 mutex_unlock(&dirty_i
->seglist_lock
);
629 void clear_prefree_segments(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
631 struct list_head
*head
= &(SM_I(sbi
)->discard_list
);
632 struct discard_entry
*entry
, *this;
633 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
634 unsigned long *prefree_map
= dirty_i
->dirty_segmap
[PRE
];
635 unsigned int start
= 0, end
= -1;
637 mutex_lock(&dirty_i
->seglist_lock
);
641 start
= find_next_bit(prefree_map
, MAIN_SEGS(sbi
), end
+ 1);
642 if (start
>= MAIN_SEGS(sbi
))
644 end
= find_next_zero_bit(prefree_map
, MAIN_SEGS(sbi
),
647 for (i
= start
; i
< end
; i
++)
648 clear_bit(i
, prefree_map
);
650 dirty_i
->nr_dirty
[PRE
] -= end
- start
;
652 if (!test_opt(sbi
, DISCARD
))
655 f2fs_issue_discard(sbi
, START_BLOCK(sbi
, start
),
656 (end
- start
) << sbi
->log_blocks_per_seg
);
658 mutex_unlock(&dirty_i
->seglist_lock
);
660 /* send small discards */
661 list_for_each_entry_safe(entry
, this, head
, list
) {
662 if (cpc
->reason
== CP_DISCARD
&& entry
->len
< cpc
->trim_minlen
)
664 f2fs_issue_discard(sbi
, entry
->blkaddr
, entry
->len
);
665 cpc
->trimmed
+= entry
->len
;
667 list_del(&entry
->list
);
668 SM_I(sbi
)->nr_discards
-= entry
->len
;
669 kmem_cache_free(discard_entry_slab
, entry
);
673 static bool __mark_sit_entry_dirty(struct f2fs_sb_info
*sbi
, unsigned int segno
)
675 struct sit_info
*sit_i
= SIT_I(sbi
);
677 if (!__test_and_set_bit(segno
, sit_i
->dirty_sentries_bitmap
)) {
678 sit_i
->dirty_sentries
++;
685 static void __set_sit_entry_type(struct f2fs_sb_info
*sbi
, int type
,
686 unsigned int segno
, int modified
)
688 struct seg_entry
*se
= get_seg_entry(sbi
, segno
);
691 __mark_sit_entry_dirty(sbi
, segno
);
694 static void update_sit_entry(struct f2fs_sb_info
*sbi
, block_t blkaddr
, int del
)
696 struct seg_entry
*se
;
697 unsigned int segno
, offset
;
698 long int new_vblocks
;
700 segno
= GET_SEGNO(sbi
, blkaddr
);
702 se
= get_seg_entry(sbi
, segno
);
703 new_vblocks
= se
->valid_blocks
+ del
;
704 offset
= GET_BLKOFF_FROM_SEG0(sbi
, blkaddr
);
706 f2fs_bug_on(sbi
, (new_vblocks
>> (sizeof(unsigned short) << 3) ||
707 (new_vblocks
> sbi
->blocks_per_seg
)));
709 se
->valid_blocks
= new_vblocks
;
710 se
->mtime
= get_mtime(sbi
);
711 SIT_I(sbi
)->max_mtime
= se
->mtime
;
713 /* Update valid block bitmap */
715 if (f2fs_test_and_set_bit(offset
, se
->cur_valid_map
))
717 if (!f2fs_test_and_set_bit(offset
, se
->discard_map
))
720 if (!f2fs_test_and_clear_bit(offset
, se
->cur_valid_map
))
722 if (f2fs_test_and_clear_bit(offset
, se
->discard_map
))
725 if (!f2fs_test_bit(offset
, se
->ckpt_valid_map
))
726 se
->ckpt_valid_blocks
+= del
;
728 __mark_sit_entry_dirty(sbi
, segno
);
730 /* update total number of valid blocks to be written in ckpt area */
731 SIT_I(sbi
)->written_valid_blocks
+= del
;
733 if (sbi
->segs_per_sec
> 1)
734 get_sec_entry(sbi
, segno
)->valid_blocks
+= del
;
737 void refresh_sit_entry(struct f2fs_sb_info
*sbi
, block_t old
, block_t
new)
739 update_sit_entry(sbi
, new, 1);
740 if (GET_SEGNO(sbi
, old
) != NULL_SEGNO
)
741 update_sit_entry(sbi
, old
, -1);
743 locate_dirty_segment(sbi
, GET_SEGNO(sbi
, old
));
744 locate_dirty_segment(sbi
, GET_SEGNO(sbi
, new));
747 void invalidate_blocks(struct f2fs_sb_info
*sbi
, block_t addr
)
749 unsigned int segno
= GET_SEGNO(sbi
, addr
);
750 struct sit_info
*sit_i
= SIT_I(sbi
);
752 f2fs_bug_on(sbi
, addr
== NULL_ADDR
);
753 if (addr
== NEW_ADDR
)
756 /* add it into sit main buffer */
757 mutex_lock(&sit_i
->sentry_lock
);
759 update_sit_entry(sbi
, addr
, -1);
761 /* add it into dirty seglist */
762 locate_dirty_segment(sbi
, segno
);
764 mutex_unlock(&sit_i
->sentry_lock
);
767 bool is_checkpointed_data(struct f2fs_sb_info
*sbi
, block_t blkaddr
)
769 struct sit_info
*sit_i
= SIT_I(sbi
);
770 unsigned int segno
, offset
;
771 struct seg_entry
*se
;
774 if (blkaddr
== NEW_ADDR
|| blkaddr
== NULL_ADDR
)
777 mutex_lock(&sit_i
->sentry_lock
);
779 segno
= GET_SEGNO(sbi
, blkaddr
);
780 se
= get_seg_entry(sbi
, segno
);
781 offset
= GET_BLKOFF_FROM_SEG0(sbi
, blkaddr
);
783 if (f2fs_test_bit(offset
, se
->ckpt_valid_map
))
786 mutex_unlock(&sit_i
->sentry_lock
);
792 * This function should be resided under the curseg_mutex lock
794 static void __add_sum_entry(struct f2fs_sb_info
*sbi
, int type
,
795 struct f2fs_summary
*sum
)
797 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
798 void *addr
= curseg
->sum_blk
;
799 addr
+= curseg
->next_blkoff
* sizeof(struct f2fs_summary
);
800 memcpy(addr
, sum
, sizeof(struct f2fs_summary
));
804 * Calculate the number of current summary pages for writing
806 int npages_for_summary_flush(struct f2fs_sb_info
*sbi
, bool for_ra
)
808 int valid_sum_count
= 0;
811 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++) {
812 if (sbi
->ckpt
->alloc_type
[i
] == SSR
)
813 valid_sum_count
+= sbi
->blocks_per_seg
;
816 valid_sum_count
+= le16_to_cpu(
817 F2FS_CKPT(sbi
)->cur_data_blkoff
[i
]);
819 valid_sum_count
+= curseg_blkoff(sbi
, i
);
823 sum_in_page
= (PAGE_CACHE_SIZE
- 2 * SUM_JOURNAL_SIZE
-
824 SUM_FOOTER_SIZE
) / SUMMARY_SIZE
;
825 if (valid_sum_count
<= sum_in_page
)
827 else if ((valid_sum_count
- sum_in_page
) <=
828 (PAGE_CACHE_SIZE
- SUM_FOOTER_SIZE
) / SUMMARY_SIZE
)
834 * Caller should put this summary page
836 struct page
*get_sum_page(struct f2fs_sb_info
*sbi
, unsigned int segno
)
838 return get_meta_page(sbi
, GET_SUM_BLOCK(sbi
, segno
));
841 void update_meta_page(struct f2fs_sb_info
*sbi
, void *src
, block_t blk_addr
)
843 struct page
*page
= grab_meta_page(sbi
, blk_addr
);
844 void *dst
= page_address(page
);
847 memcpy(dst
, src
, PAGE_CACHE_SIZE
);
849 memset(dst
, 0, PAGE_CACHE_SIZE
);
850 set_page_dirty(page
);
851 f2fs_put_page(page
, 1);
854 static void write_sum_page(struct f2fs_sb_info
*sbi
,
855 struct f2fs_summary_block
*sum_blk
, block_t blk_addr
)
857 update_meta_page(sbi
, (void *)sum_blk
, blk_addr
);
860 static int is_next_segment_free(struct f2fs_sb_info
*sbi
, int type
)
862 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
863 unsigned int segno
= curseg
->segno
+ 1;
864 struct free_segmap_info
*free_i
= FREE_I(sbi
);
866 if (segno
< MAIN_SEGS(sbi
) && segno
% sbi
->segs_per_sec
)
867 return !test_bit(segno
, free_i
->free_segmap
);
872 * Find a new segment from the free segments bitmap to right order
873 * This function should be returned with success, otherwise BUG
875 static void get_new_segment(struct f2fs_sb_info
*sbi
,
876 unsigned int *newseg
, bool new_sec
, int dir
)
878 struct free_segmap_info
*free_i
= FREE_I(sbi
);
879 unsigned int segno
, secno
, zoneno
;
880 unsigned int total_zones
= MAIN_SECS(sbi
) / sbi
->secs_per_zone
;
881 unsigned int hint
= *newseg
/ sbi
->segs_per_sec
;
882 unsigned int old_zoneno
= GET_ZONENO_FROM_SEGNO(sbi
, *newseg
);
883 unsigned int left_start
= hint
;
888 spin_lock(&free_i
->segmap_lock
);
890 if (!new_sec
&& ((*newseg
+ 1) % sbi
->segs_per_sec
)) {
891 segno
= find_next_zero_bit(free_i
->free_segmap
,
892 MAIN_SEGS(sbi
), *newseg
+ 1);
893 if (segno
- *newseg
< sbi
->segs_per_sec
-
894 (*newseg
% sbi
->segs_per_sec
))
898 secno
= find_next_zero_bit(free_i
->free_secmap
, MAIN_SECS(sbi
), hint
);
899 if (secno
>= MAIN_SECS(sbi
)) {
900 if (dir
== ALLOC_RIGHT
) {
901 secno
= find_next_zero_bit(free_i
->free_secmap
,
903 f2fs_bug_on(sbi
, secno
>= MAIN_SECS(sbi
));
906 left_start
= hint
- 1;
912 while (test_bit(left_start
, free_i
->free_secmap
)) {
913 if (left_start
> 0) {
917 left_start
= find_next_zero_bit(free_i
->free_secmap
,
919 f2fs_bug_on(sbi
, left_start
>= MAIN_SECS(sbi
));
925 segno
= secno
* sbi
->segs_per_sec
;
926 zoneno
= secno
/ sbi
->secs_per_zone
;
928 /* give up on finding another zone */
931 if (sbi
->secs_per_zone
== 1)
933 if (zoneno
== old_zoneno
)
935 if (dir
== ALLOC_LEFT
) {
936 if (!go_left
&& zoneno
+ 1 >= total_zones
)
938 if (go_left
&& zoneno
== 0)
941 for (i
= 0; i
< NR_CURSEG_TYPE
; i
++)
942 if (CURSEG_I(sbi
, i
)->zone
== zoneno
)
945 if (i
< NR_CURSEG_TYPE
) {
946 /* zone is in user, try another */
948 hint
= zoneno
* sbi
->secs_per_zone
- 1;
949 else if (zoneno
+ 1 >= total_zones
)
952 hint
= (zoneno
+ 1) * sbi
->secs_per_zone
;
954 goto find_other_zone
;
957 /* set it as dirty segment in free segmap */
958 f2fs_bug_on(sbi
, test_bit(segno
, free_i
->free_segmap
));
959 __set_inuse(sbi
, segno
);
961 spin_unlock(&free_i
->segmap_lock
);
964 static void reset_curseg(struct f2fs_sb_info
*sbi
, int type
, int modified
)
966 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
967 struct summary_footer
*sum_footer
;
969 curseg
->segno
= curseg
->next_segno
;
970 curseg
->zone
= GET_ZONENO_FROM_SEGNO(sbi
, curseg
->segno
);
971 curseg
->next_blkoff
= 0;
972 curseg
->next_segno
= NULL_SEGNO
;
974 sum_footer
= &(curseg
->sum_blk
->footer
);
975 memset(sum_footer
, 0, sizeof(struct summary_footer
));
976 if (IS_DATASEG(type
))
977 SET_SUM_TYPE(sum_footer
, SUM_TYPE_DATA
);
978 if (IS_NODESEG(type
))
979 SET_SUM_TYPE(sum_footer
, SUM_TYPE_NODE
);
980 __set_sit_entry_type(sbi
, type
, curseg
->segno
, modified
);
984 * Allocate a current working segment.
985 * This function always allocates a free segment in LFS manner.
987 static void new_curseg(struct f2fs_sb_info
*sbi
, int type
, bool new_sec
)
989 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
990 unsigned int segno
= curseg
->segno
;
991 int dir
= ALLOC_LEFT
;
993 write_sum_page(sbi
, curseg
->sum_blk
,
994 GET_SUM_BLOCK(sbi
, segno
));
995 if (type
== CURSEG_WARM_DATA
|| type
== CURSEG_COLD_DATA
)
998 if (test_opt(sbi
, NOHEAP
))
1001 get_new_segment(sbi
, &segno
, new_sec
, dir
);
1002 curseg
->next_segno
= segno
;
1003 reset_curseg(sbi
, type
, 1);
1004 curseg
->alloc_type
= LFS
;
1007 static void __next_free_blkoff(struct f2fs_sb_info
*sbi
,
1008 struct curseg_info
*seg
, block_t start
)
1010 struct seg_entry
*se
= get_seg_entry(sbi
, seg
->segno
);
1011 int entries
= SIT_VBLOCK_MAP_SIZE
/ sizeof(unsigned long);
1012 unsigned long *target_map
= SIT_I(sbi
)->tmp_map
;
1013 unsigned long *ckpt_map
= (unsigned long *)se
->ckpt_valid_map
;
1014 unsigned long *cur_map
= (unsigned long *)se
->cur_valid_map
;
1017 for (i
= 0; i
< entries
; i
++)
1018 target_map
[i
] = ckpt_map
[i
] | cur_map
[i
];
1020 pos
= __find_rev_next_zero_bit(target_map
, sbi
->blocks_per_seg
, start
);
1022 seg
->next_blkoff
= pos
;
1026 * If a segment is written by LFS manner, next block offset is just obtained
1027 * by increasing the current block offset. However, if a segment is written by
1028 * SSR manner, next block offset obtained by calling __next_free_blkoff
1030 static void __refresh_next_blkoff(struct f2fs_sb_info
*sbi
,
1031 struct curseg_info
*seg
)
1033 if (seg
->alloc_type
== SSR
)
1034 __next_free_blkoff(sbi
, seg
, seg
->next_blkoff
+ 1);
1040 * This function always allocates a used segment(from dirty seglist) by SSR
1041 * manner, so it should recover the existing segment information of valid blocks
1043 static void change_curseg(struct f2fs_sb_info
*sbi
, int type
, bool reuse
)
1045 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
1046 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1047 unsigned int new_segno
= curseg
->next_segno
;
1048 struct f2fs_summary_block
*sum_node
;
1049 struct page
*sum_page
;
1051 write_sum_page(sbi
, curseg
->sum_blk
,
1052 GET_SUM_BLOCK(sbi
, curseg
->segno
));
1053 __set_test_and_inuse(sbi
, new_segno
);
1055 mutex_lock(&dirty_i
->seglist_lock
);
1056 __remove_dirty_segment(sbi
, new_segno
, PRE
);
1057 __remove_dirty_segment(sbi
, new_segno
, DIRTY
);
1058 mutex_unlock(&dirty_i
->seglist_lock
);
1060 reset_curseg(sbi
, type
, 1);
1061 curseg
->alloc_type
= SSR
;
1062 __next_free_blkoff(sbi
, curseg
, 0);
1065 sum_page
= get_sum_page(sbi
, new_segno
);
1066 sum_node
= (struct f2fs_summary_block
*)page_address(sum_page
);
1067 memcpy(curseg
->sum_blk
, sum_node
, SUM_ENTRY_SIZE
);
1068 f2fs_put_page(sum_page
, 1);
1072 static int get_ssr_segment(struct f2fs_sb_info
*sbi
, int type
)
1074 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1075 const struct victim_selection
*v_ops
= DIRTY_I(sbi
)->v_ops
;
1077 if (IS_NODESEG(type
) || !has_not_enough_free_secs(sbi
, 0))
1078 return v_ops
->get_victim(sbi
,
1079 &(curseg
)->next_segno
, BG_GC
, type
, SSR
);
1081 /* For data segments, let's do SSR more intensively */
1082 for (; type
>= CURSEG_HOT_DATA
; type
--)
1083 if (v_ops
->get_victim(sbi
, &(curseg
)->next_segno
,
1090 * flush out current segment and replace it with new segment
1091 * This function should be returned with success, otherwise BUG
1093 static void allocate_segment_by_default(struct f2fs_sb_info
*sbi
,
1094 int type
, bool force
)
1096 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1099 new_curseg(sbi
, type
, true);
1100 else if (type
== CURSEG_WARM_NODE
)
1101 new_curseg(sbi
, type
, false);
1102 else if (curseg
->alloc_type
== LFS
&& is_next_segment_free(sbi
, type
))
1103 new_curseg(sbi
, type
, false);
1104 else if (need_SSR(sbi
) && get_ssr_segment(sbi
, type
))
1105 change_curseg(sbi
, type
, true);
1107 new_curseg(sbi
, type
, false);
1109 stat_inc_seg_type(sbi
, curseg
);
1112 static void __allocate_new_segments(struct f2fs_sb_info
*sbi
, int type
)
1114 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1115 unsigned int old_segno
;
1117 old_segno
= curseg
->segno
;
1118 SIT_I(sbi
)->s_ops
->allocate_segment(sbi
, type
, true);
1119 locate_dirty_segment(sbi
, old_segno
);
1122 void allocate_new_segments(struct f2fs_sb_info
*sbi
)
1126 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++)
1127 __allocate_new_segments(sbi
, i
);
1130 static const struct segment_allocation default_salloc_ops
= {
1131 .allocate_segment
= allocate_segment_by_default
,
1134 int f2fs_trim_fs(struct f2fs_sb_info
*sbi
, struct fstrim_range
*range
)
1136 __u64 start
= F2FS_BYTES_TO_BLK(range
->start
);
1137 __u64 end
= start
+ F2FS_BYTES_TO_BLK(range
->len
) - 1;
1138 unsigned int start_segno
, end_segno
;
1139 struct cp_control cpc
;
1141 if (start
>= MAX_BLKADDR(sbi
) || range
->len
< sbi
->blocksize
)
1145 if (end
<= MAIN_BLKADDR(sbi
))
1148 /* start/end segment number in main_area */
1149 start_segno
= (start
<= MAIN_BLKADDR(sbi
)) ? 0 : GET_SEGNO(sbi
, start
);
1150 end_segno
= (end
>= MAX_BLKADDR(sbi
)) ? MAIN_SEGS(sbi
) - 1 :
1151 GET_SEGNO(sbi
, end
);
1152 cpc
.reason
= CP_DISCARD
;
1153 cpc
.trim_minlen
= max_t(__u64
, 1, F2FS_BYTES_TO_BLK(range
->minlen
));
1155 /* do checkpoint to issue discard commands safely */
1156 for (; start_segno
<= end_segno
; start_segno
= cpc
.trim_end
+ 1) {
1157 cpc
.trim_start
= start_segno
;
1159 if (sbi
->discard_blks
== 0)
1161 else if (sbi
->discard_blks
< BATCHED_TRIM_BLOCKS(sbi
))
1162 cpc
.trim_end
= end_segno
;
1164 cpc
.trim_end
= min_t(unsigned int,
1165 rounddown(start_segno
+
1166 BATCHED_TRIM_SEGMENTS(sbi
),
1167 sbi
->segs_per_sec
) - 1, end_segno
);
1169 mutex_lock(&sbi
->gc_mutex
);
1170 write_checkpoint(sbi
, &cpc
);
1171 mutex_unlock(&sbi
->gc_mutex
);
1174 range
->len
= F2FS_BLK_TO_BYTES(cpc
.trimmed
);
1178 static bool __has_curseg_space(struct f2fs_sb_info
*sbi
, int type
)
1180 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1181 if (curseg
->next_blkoff
< sbi
->blocks_per_seg
)
1186 static int __get_segment_type_2(struct page
*page
, enum page_type p_type
)
1189 return CURSEG_HOT_DATA
;
1191 return CURSEG_HOT_NODE
;
1194 static int __get_segment_type_4(struct page
*page
, enum page_type p_type
)
1196 if (p_type
== DATA
) {
1197 struct inode
*inode
= page
->mapping
->host
;
1199 if (S_ISDIR(inode
->i_mode
))
1200 return CURSEG_HOT_DATA
;
1202 return CURSEG_COLD_DATA
;
1204 if (IS_DNODE(page
) && is_cold_node(page
))
1205 return CURSEG_WARM_NODE
;
1207 return CURSEG_COLD_NODE
;
1211 static int __get_segment_type_6(struct page
*page
, enum page_type p_type
)
1213 if (p_type
== DATA
) {
1214 struct inode
*inode
= page
->mapping
->host
;
1216 if (S_ISDIR(inode
->i_mode
))
1217 return CURSEG_HOT_DATA
;
1218 else if (is_cold_data(page
) || file_is_cold(inode
))
1219 return CURSEG_COLD_DATA
;
1221 return CURSEG_WARM_DATA
;
1224 return is_cold_node(page
) ? CURSEG_WARM_NODE
:
1227 return CURSEG_COLD_NODE
;
1231 static int __get_segment_type(struct page
*page
, enum page_type p_type
)
1233 switch (F2FS_P_SB(page
)->active_logs
) {
1235 return __get_segment_type_2(page
, p_type
);
1237 return __get_segment_type_4(page
, p_type
);
1239 /* NR_CURSEG_TYPE(6) logs by default */
1240 f2fs_bug_on(F2FS_P_SB(page
),
1241 F2FS_P_SB(page
)->active_logs
!= NR_CURSEG_TYPE
);
1242 return __get_segment_type_6(page
, p_type
);
1245 void allocate_data_block(struct f2fs_sb_info
*sbi
, struct page
*page
,
1246 block_t old_blkaddr
, block_t
*new_blkaddr
,
1247 struct f2fs_summary
*sum
, int type
)
1249 struct sit_info
*sit_i
= SIT_I(sbi
);
1250 struct curseg_info
*curseg
;
1251 bool direct_io
= (type
== CURSEG_DIRECT_IO
);
1253 type
= direct_io
? CURSEG_WARM_DATA
: type
;
1255 curseg
= CURSEG_I(sbi
, type
);
1257 mutex_lock(&curseg
->curseg_mutex
);
1258 mutex_lock(&sit_i
->sentry_lock
);
1260 /* direct_io'ed data is aligned to the segment for better performance */
1261 if (direct_io
&& curseg
->next_blkoff
&&
1262 !has_not_enough_free_secs(sbi
, 0))
1263 __allocate_new_segments(sbi
, type
);
1265 *new_blkaddr
= NEXT_FREE_BLKADDR(sbi
, curseg
);
1268 * __add_sum_entry should be resided under the curseg_mutex
1269 * because, this function updates a summary entry in the
1270 * current summary block.
1272 __add_sum_entry(sbi
, type
, sum
);
1274 __refresh_next_blkoff(sbi
, curseg
);
1276 stat_inc_block_count(sbi
, curseg
);
1278 if (!__has_curseg_space(sbi
, type
))
1279 sit_i
->s_ops
->allocate_segment(sbi
, type
, false);
1281 * SIT information should be updated before segment allocation,
1282 * since SSR needs latest valid block information.
1284 refresh_sit_entry(sbi
, old_blkaddr
, *new_blkaddr
);
1286 mutex_unlock(&sit_i
->sentry_lock
);
1288 if (page
&& IS_NODESEG(type
))
1289 fill_node_footer_blkaddr(page
, NEXT_FREE_BLKADDR(sbi
, curseg
));
1291 mutex_unlock(&curseg
->curseg_mutex
);
1294 static void do_write_page(struct f2fs_summary
*sum
, struct f2fs_io_info
*fio
)
1296 int type
= __get_segment_type(fio
->page
, fio
->type
);
1298 allocate_data_block(fio
->sbi
, fio
->page
, fio
->blk_addr
,
1299 &fio
->blk_addr
, sum
, type
);
1301 /* writeout dirty page into bdev */
1302 f2fs_submit_page_mbio(fio
);
1305 void write_meta_page(struct f2fs_sb_info
*sbi
, struct page
*page
)
1307 struct f2fs_io_info fio
= {
1310 .rw
= WRITE_SYNC
| REQ_META
| REQ_PRIO
,
1311 .blk_addr
= page
->index
,
1313 .encrypted_page
= NULL
,
1316 if (unlikely(page
->index
>= MAIN_BLKADDR(sbi
)))
1317 fio
.rw
&= ~REQ_META
;
1319 set_page_writeback(page
);
1320 f2fs_submit_page_mbio(&fio
);
1323 void write_node_page(unsigned int nid
, struct f2fs_io_info
*fio
)
1325 struct f2fs_summary sum
;
1327 set_summary(&sum
, nid
, 0, 0);
1328 do_write_page(&sum
, fio
);
1331 void write_data_page(struct dnode_of_data
*dn
, struct f2fs_io_info
*fio
)
1333 struct f2fs_sb_info
*sbi
= fio
->sbi
;
1334 struct f2fs_summary sum
;
1335 struct node_info ni
;
1337 f2fs_bug_on(sbi
, dn
->data_blkaddr
== NULL_ADDR
);
1338 get_node_info(sbi
, dn
->nid
, &ni
);
1339 set_summary(&sum
, dn
->nid
, dn
->ofs_in_node
, ni
.version
);
1340 do_write_page(&sum
, fio
);
1341 dn
->data_blkaddr
= fio
->blk_addr
;
1344 void rewrite_data_page(struct f2fs_io_info
*fio
)
1346 stat_inc_inplace_blocks(fio
->sbi
);
1347 f2fs_submit_page_mbio(fio
);
1350 static void __f2fs_replace_block(struct f2fs_sb_info
*sbi
,
1351 struct f2fs_summary
*sum
,
1352 block_t old_blkaddr
, block_t new_blkaddr
,
1353 bool recover_curseg
)
1355 struct sit_info
*sit_i
= SIT_I(sbi
);
1356 struct curseg_info
*curseg
;
1357 unsigned int segno
, old_cursegno
;
1358 struct seg_entry
*se
;
1360 unsigned short old_blkoff
;
1362 segno
= GET_SEGNO(sbi
, new_blkaddr
);
1363 se
= get_seg_entry(sbi
, segno
);
1366 if (!recover_curseg
) {
1367 /* for recovery flow */
1368 if (se
->valid_blocks
== 0 && !IS_CURSEG(sbi
, segno
)) {
1369 if (old_blkaddr
== NULL_ADDR
)
1370 type
= CURSEG_COLD_DATA
;
1372 type
= CURSEG_WARM_DATA
;
1375 if (!IS_CURSEG(sbi
, segno
))
1376 type
= CURSEG_WARM_DATA
;
1379 curseg
= CURSEG_I(sbi
, type
);
1381 mutex_lock(&curseg
->curseg_mutex
);
1382 mutex_lock(&sit_i
->sentry_lock
);
1384 old_cursegno
= curseg
->segno
;
1385 old_blkoff
= curseg
->next_blkoff
;
1387 /* change the current segment */
1388 if (segno
!= curseg
->segno
) {
1389 curseg
->next_segno
= segno
;
1390 change_curseg(sbi
, type
, true);
1393 curseg
->next_blkoff
= GET_BLKOFF_FROM_SEG0(sbi
, new_blkaddr
);
1394 __add_sum_entry(sbi
, type
, sum
);
1396 if (!recover_curseg
)
1397 update_sit_entry(sbi
, new_blkaddr
, 1);
1398 if (GET_SEGNO(sbi
, old_blkaddr
) != NULL_SEGNO
)
1399 update_sit_entry(sbi
, old_blkaddr
, -1);
1401 locate_dirty_segment(sbi
, GET_SEGNO(sbi
, old_blkaddr
));
1402 locate_dirty_segment(sbi
, GET_SEGNO(sbi
, new_blkaddr
));
1404 locate_dirty_segment(sbi
, old_cursegno
);
1406 if (recover_curseg
) {
1407 if (old_cursegno
!= curseg
->segno
) {
1408 curseg
->next_segno
= old_cursegno
;
1409 change_curseg(sbi
, type
, true);
1411 curseg
->next_blkoff
= old_blkoff
;
1414 mutex_unlock(&sit_i
->sentry_lock
);
1415 mutex_unlock(&curseg
->curseg_mutex
);
1418 void f2fs_replace_block(struct f2fs_sb_info
*sbi
, struct dnode_of_data
*dn
,
1419 block_t old_addr
, block_t new_addr
,
1420 unsigned char version
, bool recover_curseg
)
1422 struct f2fs_summary sum
;
1424 set_summary(&sum
, dn
->nid
, dn
->ofs_in_node
, version
);
1426 __f2fs_replace_block(sbi
, &sum
, old_addr
, new_addr
, recover_curseg
);
1428 dn
->data_blkaddr
= new_addr
;
1429 set_data_blkaddr(dn
);
1430 f2fs_update_extent_cache(dn
);
1433 static inline bool is_merged_page(struct f2fs_sb_info
*sbi
,
1434 struct page
*page
, enum page_type type
)
1436 enum page_type btype
= PAGE_TYPE_OF_BIO(type
);
1437 struct f2fs_bio_info
*io
= &sbi
->write_io
[btype
];
1438 struct bio_vec
*bvec
;
1439 struct page
*target
;
1442 down_read(&io
->io_rwsem
);
1444 up_read(&io
->io_rwsem
);
1448 bio_for_each_segment_all(bvec
, io
->bio
, i
) {
1450 if (bvec
->bv_page
->mapping
) {
1451 target
= bvec
->bv_page
;
1453 struct f2fs_crypto_ctx
*ctx
;
1455 /* encrypted page */
1456 ctx
= (struct f2fs_crypto_ctx
*)page_private(
1458 target
= ctx
->w
.control_page
;
1461 if (page
== target
) {
1462 up_read(&io
->io_rwsem
);
1467 up_read(&io
->io_rwsem
);
1471 void f2fs_wait_on_page_writeback(struct page
*page
,
1472 enum page_type type
)
1474 if (PageWriteback(page
)) {
1475 struct f2fs_sb_info
*sbi
= F2FS_P_SB(page
);
1477 if (is_merged_page(sbi
, page
, type
))
1478 f2fs_submit_merged_bio(sbi
, type
, WRITE
);
1479 wait_on_page_writeback(page
);
1483 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info
*sbi
,
1488 if (blkaddr
== NEW_ADDR
)
1491 f2fs_bug_on(sbi
, blkaddr
== NULL_ADDR
);
1493 cpage
= find_lock_page(META_MAPPING(sbi
), blkaddr
);
1495 f2fs_wait_on_page_writeback(cpage
, DATA
);
1496 f2fs_put_page(cpage
, 1);
1500 static int read_compacted_summaries(struct f2fs_sb_info
*sbi
)
1502 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1503 struct curseg_info
*seg_i
;
1504 unsigned char *kaddr
;
1509 start
= start_sum_block(sbi
);
1511 page
= get_meta_page(sbi
, start
++);
1512 kaddr
= (unsigned char *)page_address(page
);
1514 /* Step 1: restore nat cache */
1515 seg_i
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
1516 memcpy(&seg_i
->sum_blk
->n_nats
, kaddr
, SUM_JOURNAL_SIZE
);
1518 /* Step 2: restore sit cache */
1519 seg_i
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
1520 memcpy(&seg_i
->sum_blk
->n_sits
, kaddr
+ SUM_JOURNAL_SIZE
,
1522 offset
= 2 * SUM_JOURNAL_SIZE
;
1524 /* Step 3: restore summary entries */
1525 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++) {
1526 unsigned short blk_off
;
1529 seg_i
= CURSEG_I(sbi
, i
);
1530 segno
= le32_to_cpu(ckpt
->cur_data_segno
[i
]);
1531 blk_off
= le16_to_cpu(ckpt
->cur_data_blkoff
[i
]);
1532 seg_i
->next_segno
= segno
;
1533 reset_curseg(sbi
, i
, 0);
1534 seg_i
->alloc_type
= ckpt
->alloc_type
[i
];
1535 seg_i
->next_blkoff
= blk_off
;
1537 if (seg_i
->alloc_type
== SSR
)
1538 blk_off
= sbi
->blocks_per_seg
;
1540 for (j
= 0; j
< blk_off
; j
++) {
1541 struct f2fs_summary
*s
;
1542 s
= (struct f2fs_summary
*)(kaddr
+ offset
);
1543 seg_i
->sum_blk
->entries
[j
] = *s
;
1544 offset
+= SUMMARY_SIZE
;
1545 if (offset
+ SUMMARY_SIZE
<= PAGE_CACHE_SIZE
-
1549 f2fs_put_page(page
, 1);
1552 page
= get_meta_page(sbi
, start
++);
1553 kaddr
= (unsigned char *)page_address(page
);
1557 f2fs_put_page(page
, 1);
1561 static int read_normal_summaries(struct f2fs_sb_info
*sbi
, int type
)
1563 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1564 struct f2fs_summary_block
*sum
;
1565 struct curseg_info
*curseg
;
1567 unsigned short blk_off
;
1568 unsigned int segno
= 0;
1569 block_t blk_addr
= 0;
1571 /* get segment number and block addr */
1572 if (IS_DATASEG(type
)) {
1573 segno
= le32_to_cpu(ckpt
->cur_data_segno
[type
]);
1574 blk_off
= le16_to_cpu(ckpt
->cur_data_blkoff
[type
-
1576 if (__exist_node_summaries(sbi
))
1577 blk_addr
= sum_blk_addr(sbi
, NR_CURSEG_TYPE
, type
);
1579 blk_addr
= sum_blk_addr(sbi
, NR_CURSEG_DATA_TYPE
, type
);
1581 segno
= le32_to_cpu(ckpt
->cur_node_segno
[type
-
1583 blk_off
= le16_to_cpu(ckpt
->cur_node_blkoff
[type
-
1585 if (__exist_node_summaries(sbi
))
1586 blk_addr
= sum_blk_addr(sbi
, NR_CURSEG_NODE_TYPE
,
1587 type
- CURSEG_HOT_NODE
);
1589 blk_addr
= GET_SUM_BLOCK(sbi
, segno
);
1592 new = get_meta_page(sbi
, blk_addr
);
1593 sum
= (struct f2fs_summary_block
*)page_address(new);
1595 if (IS_NODESEG(type
)) {
1596 if (__exist_node_summaries(sbi
)) {
1597 struct f2fs_summary
*ns
= &sum
->entries
[0];
1599 for (i
= 0; i
< sbi
->blocks_per_seg
; i
++, ns
++) {
1601 ns
->ofs_in_node
= 0;
1606 err
= restore_node_summary(sbi
, segno
, sum
);
1608 f2fs_put_page(new, 1);
1614 /* set uncompleted segment to curseg */
1615 curseg
= CURSEG_I(sbi
, type
);
1616 mutex_lock(&curseg
->curseg_mutex
);
1617 memcpy(curseg
->sum_blk
, sum
, PAGE_CACHE_SIZE
);
1618 curseg
->next_segno
= segno
;
1619 reset_curseg(sbi
, type
, 0);
1620 curseg
->alloc_type
= ckpt
->alloc_type
[type
];
1621 curseg
->next_blkoff
= blk_off
;
1622 mutex_unlock(&curseg
->curseg_mutex
);
1623 f2fs_put_page(new, 1);
1627 static int restore_curseg_summaries(struct f2fs_sb_info
*sbi
)
1629 int type
= CURSEG_HOT_DATA
;
1632 if (is_set_ckpt_flags(F2FS_CKPT(sbi
), CP_COMPACT_SUM_FLAG
)) {
1633 int npages
= npages_for_summary_flush(sbi
, true);
1636 ra_meta_pages(sbi
, start_sum_block(sbi
), npages
,
1639 /* restore for compacted data summary */
1640 if (read_compacted_summaries(sbi
))
1642 type
= CURSEG_HOT_NODE
;
1645 if (__exist_node_summaries(sbi
))
1646 ra_meta_pages(sbi
, sum_blk_addr(sbi
, NR_CURSEG_TYPE
, type
),
1647 NR_CURSEG_TYPE
- type
, META_CP
, true);
1649 for (; type
<= CURSEG_COLD_NODE
; type
++) {
1650 err
= read_normal_summaries(sbi
, type
);
1658 static void write_compacted_summaries(struct f2fs_sb_info
*sbi
, block_t blkaddr
)
1661 unsigned char *kaddr
;
1662 struct f2fs_summary
*summary
;
1663 struct curseg_info
*seg_i
;
1664 int written_size
= 0;
1667 page
= grab_meta_page(sbi
, blkaddr
++);
1668 kaddr
= (unsigned char *)page_address(page
);
1670 /* Step 1: write nat cache */
1671 seg_i
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
1672 memcpy(kaddr
, &seg_i
->sum_blk
->n_nats
, SUM_JOURNAL_SIZE
);
1673 written_size
+= SUM_JOURNAL_SIZE
;
1675 /* Step 2: write sit cache */
1676 seg_i
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
1677 memcpy(kaddr
+ written_size
, &seg_i
->sum_blk
->n_sits
,
1679 written_size
+= SUM_JOURNAL_SIZE
;
1681 /* Step 3: write summary entries */
1682 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++) {
1683 unsigned short blkoff
;
1684 seg_i
= CURSEG_I(sbi
, i
);
1685 if (sbi
->ckpt
->alloc_type
[i
] == SSR
)
1686 blkoff
= sbi
->blocks_per_seg
;
1688 blkoff
= curseg_blkoff(sbi
, i
);
1690 for (j
= 0; j
< blkoff
; j
++) {
1692 page
= grab_meta_page(sbi
, blkaddr
++);
1693 kaddr
= (unsigned char *)page_address(page
);
1696 summary
= (struct f2fs_summary
*)(kaddr
+ written_size
);
1697 *summary
= seg_i
->sum_blk
->entries
[j
];
1698 written_size
+= SUMMARY_SIZE
;
1700 if (written_size
+ SUMMARY_SIZE
<= PAGE_CACHE_SIZE
-
1704 set_page_dirty(page
);
1705 f2fs_put_page(page
, 1);
1710 set_page_dirty(page
);
1711 f2fs_put_page(page
, 1);
1715 static void write_normal_summaries(struct f2fs_sb_info
*sbi
,
1716 block_t blkaddr
, int type
)
1719 if (IS_DATASEG(type
))
1720 end
= type
+ NR_CURSEG_DATA_TYPE
;
1722 end
= type
+ NR_CURSEG_NODE_TYPE
;
1724 for (i
= type
; i
< end
; i
++) {
1725 struct curseg_info
*sum
= CURSEG_I(sbi
, i
);
1726 mutex_lock(&sum
->curseg_mutex
);
1727 write_sum_page(sbi
, sum
->sum_blk
, blkaddr
+ (i
- type
));
1728 mutex_unlock(&sum
->curseg_mutex
);
1732 void write_data_summaries(struct f2fs_sb_info
*sbi
, block_t start_blk
)
1734 if (is_set_ckpt_flags(F2FS_CKPT(sbi
), CP_COMPACT_SUM_FLAG
))
1735 write_compacted_summaries(sbi
, start_blk
);
1737 write_normal_summaries(sbi
, start_blk
, CURSEG_HOT_DATA
);
1740 void write_node_summaries(struct f2fs_sb_info
*sbi
, block_t start_blk
)
1742 write_normal_summaries(sbi
, start_blk
, CURSEG_HOT_NODE
);
1745 int lookup_journal_in_cursum(struct f2fs_summary_block
*sum
, int type
,
1746 unsigned int val
, int alloc
)
1750 if (type
== NAT_JOURNAL
) {
1751 for (i
= 0; i
< nats_in_cursum(sum
); i
++) {
1752 if (le32_to_cpu(nid_in_journal(sum
, i
)) == val
)
1755 if (alloc
&& nats_in_cursum(sum
) < NAT_JOURNAL_ENTRIES
)
1756 return update_nats_in_cursum(sum
, 1);
1757 } else if (type
== SIT_JOURNAL
) {
1758 for (i
= 0; i
< sits_in_cursum(sum
); i
++)
1759 if (le32_to_cpu(segno_in_journal(sum
, i
)) == val
)
1761 if (alloc
&& sits_in_cursum(sum
) < SIT_JOURNAL_ENTRIES
)
1762 return update_sits_in_cursum(sum
, 1);
1767 static struct page
*get_current_sit_page(struct f2fs_sb_info
*sbi
,
1770 return get_meta_page(sbi
, current_sit_addr(sbi
, segno
));
1773 static struct page
*get_next_sit_page(struct f2fs_sb_info
*sbi
,
1776 struct sit_info
*sit_i
= SIT_I(sbi
);
1777 struct page
*src_page
, *dst_page
;
1778 pgoff_t src_off
, dst_off
;
1779 void *src_addr
, *dst_addr
;
1781 src_off
= current_sit_addr(sbi
, start
);
1782 dst_off
= next_sit_addr(sbi
, src_off
);
1784 /* get current sit block page without lock */
1785 src_page
= get_meta_page(sbi
, src_off
);
1786 dst_page
= grab_meta_page(sbi
, dst_off
);
1787 f2fs_bug_on(sbi
, PageDirty(src_page
));
1789 src_addr
= page_address(src_page
);
1790 dst_addr
= page_address(dst_page
);
1791 memcpy(dst_addr
, src_addr
, PAGE_CACHE_SIZE
);
1793 set_page_dirty(dst_page
);
1794 f2fs_put_page(src_page
, 1);
1796 set_to_next_sit(sit_i
, start
);
1801 static struct sit_entry_set
*grab_sit_entry_set(void)
1803 struct sit_entry_set
*ses
=
1804 f2fs_kmem_cache_alloc(sit_entry_set_slab
, GFP_NOFS
);
1807 INIT_LIST_HEAD(&ses
->set_list
);
1811 static void release_sit_entry_set(struct sit_entry_set
*ses
)
1813 list_del(&ses
->set_list
);
1814 kmem_cache_free(sit_entry_set_slab
, ses
);
1817 static void adjust_sit_entry_set(struct sit_entry_set
*ses
,
1818 struct list_head
*head
)
1820 struct sit_entry_set
*next
= ses
;
1822 if (list_is_last(&ses
->set_list
, head
))
1825 list_for_each_entry_continue(next
, head
, set_list
)
1826 if (ses
->entry_cnt
<= next
->entry_cnt
)
1829 list_move_tail(&ses
->set_list
, &next
->set_list
);
1832 static void add_sit_entry(unsigned int segno
, struct list_head
*head
)
1834 struct sit_entry_set
*ses
;
1835 unsigned int start_segno
= START_SEGNO(segno
);
1837 list_for_each_entry(ses
, head
, set_list
) {
1838 if (ses
->start_segno
== start_segno
) {
1840 adjust_sit_entry_set(ses
, head
);
1845 ses
= grab_sit_entry_set();
1847 ses
->start_segno
= start_segno
;
1849 list_add(&ses
->set_list
, head
);
1852 static void add_sits_in_set(struct f2fs_sb_info
*sbi
)
1854 struct f2fs_sm_info
*sm_info
= SM_I(sbi
);
1855 struct list_head
*set_list
= &sm_info
->sit_entry_set
;
1856 unsigned long *bitmap
= SIT_I(sbi
)->dirty_sentries_bitmap
;
1859 for_each_set_bit(segno
, bitmap
, MAIN_SEGS(sbi
))
1860 add_sit_entry(segno
, set_list
);
1863 static void remove_sits_in_journal(struct f2fs_sb_info
*sbi
)
1865 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
1866 struct f2fs_summary_block
*sum
= curseg
->sum_blk
;
1869 for (i
= sits_in_cursum(sum
) - 1; i
>= 0; i
--) {
1873 segno
= le32_to_cpu(segno_in_journal(sum
, i
));
1874 dirtied
= __mark_sit_entry_dirty(sbi
, segno
);
1877 add_sit_entry(segno
, &SM_I(sbi
)->sit_entry_set
);
1879 update_sits_in_cursum(sum
, -sits_in_cursum(sum
));
1883 * CP calls this function, which flushes SIT entries including sit_journal,
1884 * and moves prefree segs to free segs.
1886 void flush_sit_entries(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
1888 struct sit_info
*sit_i
= SIT_I(sbi
);
1889 unsigned long *bitmap
= sit_i
->dirty_sentries_bitmap
;
1890 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
1891 struct f2fs_summary_block
*sum
= curseg
->sum_blk
;
1892 struct sit_entry_set
*ses
, *tmp
;
1893 struct list_head
*head
= &SM_I(sbi
)->sit_entry_set
;
1894 bool to_journal
= true;
1895 struct seg_entry
*se
;
1897 mutex_lock(&curseg
->curseg_mutex
);
1898 mutex_lock(&sit_i
->sentry_lock
);
1900 if (!sit_i
->dirty_sentries
)
1904 * add and account sit entries of dirty bitmap in sit entry
1907 add_sits_in_set(sbi
);
1910 * if there are no enough space in journal to store dirty sit
1911 * entries, remove all entries from journal and add and account
1912 * them in sit entry set.
1914 if (!__has_cursum_space(sum
, sit_i
->dirty_sentries
, SIT_JOURNAL
))
1915 remove_sits_in_journal(sbi
);
1918 * there are two steps to flush sit entries:
1919 * #1, flush sit entries to journal in current cold data summary block.
1920 * #2, flush sit entries to sit page.
1922 list_for_each_entry_safe(ses
, tmp
, head
, set_list
) {
1923 struct page
*page
= NULL
;
1924 struct f2fs_sit_block
*raw_sit
= NULL
;
1925 unsigned int start_segno
= ses
->start_segno
;
1926 unsigned int end
= min(start_segno
+ SIT_ENTRY_PER_BLOCK
,
1927 (unsigned long)MAIN_SEGS(sbi
));
1928 unsigned int segno
= start_segno
;
1931 !__has_cursum_space(sum
, ses
->entry_cnt
, SIT_JOURNAL
))
1935 page
= get_next_sit_page(sbi
, start_segno
);
1936 raw_sit
= page_address(page
);
1939 /* flush dirty sit entries in region of current sit set */
1940 for_each_set_bit_from(segno
, bitmap
, end
) {
1941 int offset
, sit_offset
;
1943 se
= get_seg_entry(sbi
, segno
);
1945 /* add discard candidates */
1946 if (cpc
->reason
!= CP_DISCARD
) {
1947 cpc
->trim_start
= segno
;
1948 add_discard_addrs(sbi
, cpc
);
1952 offset
= lookup_journal_in_cursum(sum
,
1953 SIT_JOURNAL
, segno
, 1);
1954 f2fs_bug_on(sbi
, offset
< 0);
1955 segno_in_journal(sum
, offset
) =
1957 seg_info_to_raw_sit(se
,
1958 &sit_in_journal(sum
, offset
));
1960 sit_offset
= SIT_ENTRY_OFFSET(sit_i
, segno
);
1961 seg_info_to_raw_sit(se
,
1962 &raw_sit
->entries
[sit_offset
]);
1965 __clear_bit(segno
, bitmap
);
1966 sit_i
->dirty_sentries
--;
1971 f2fs_put_page(page
, 1);
1973 f2fs_bug_on(sbi
, ses
->entry_cnt
);
1974 release_sit_entry_set(ses
);
1977 f2fs_bug_on(sbi
, !list_empty(head
));
1978 f2fs_bug_on(sbi
, sit_i
->dirty_sentries
);
1980 if (cpc
->reason
== CP_DISCARD
) {
1981 for (; cpc
->trim_start
<= cpc
->trim_end
; cpc
->trim_start
++)
1982 add_discard_addrs(sbi
, cpc
);
1984 mutex_unlock(&sit_i
->sentry_lock
);
1985 mutex_unlock(&curseg
->curseg_mutex
);
1987 set_prefree_as_free_segments(sbi
);
1990 static int build_sit_info(struct f2fs_sb_info
*sbi
)
1992 struct f2fs_super_block
*raw_super
= F2FS_RAW_SUPER(sbi
);
1993 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1994 struct sit_info
*sit_i
;
1995 unsigned int sit_segs
, start
;
1996 char *src_bitmap
, *dst_bitmap
;
1997 unsigned int bitmap_size
;
1999 /* allocate memory for SIT information */
2000 sit_i
= kzalloc(sizeof(struct sit_info
), GFP_KERNEL
);
2004 SM_I(sbi
)->sit_info
= sit_i
;
2006 sit_i
->sentries
= f2fs_kvzalloc(MAIN_SEGS(sbi
) *
2007 sizeof(struct seg_entry
), GFP_KERNEL
);
2008 if (!sit_i
->sentries
)
2011 bitmap_size
= f2fs_bitmap_size(MAIN_SEGS(sbi
));
2012 sit_i
->dirty_sentries_bitmap
= f2fs_kvzalloc(bitmap_size
, GFP_KERNEL
);
2013 if (!sit_i
->dirty_sentries_bitmap
)
2016 for (start
= 0; start
< MAIN_SEGS(sbi
); start
++) {
2017 sit_i
->sentries
[start
].cur_valid_map
2018 = kzalloc(SIT_VBLOCK_MAP_SIZE
, GFP_KERNEL
);
2019 sit_i
->sentries
[start
].ckpt_valid_map
2020 = kzalloc(SIT_VBLOCK_MAP_SIZE
, GFP_KERNEL
);
2021 sit_i
->sentries
[start
].discard_map
2022 = kzalloc(SIT_VBLOCK_MAP_SIZE
, GFP_KERNEL
);
2023 if (!sit_i
->sentries
[start
].cur_valid_map
||
2024 !sit_i
->sentries
[start
].ckpt_valid_map
||
2025 !sit_i
->sentries
[start
].discard_map
)
2029 sit_i
->tmp_map
= kzalloc(SIT_VBLOCK_MAP_SIZE
, GFP_KERNEL
);
2030 if (!sit_i
->tmp_map
)
2033 if (sbi
->segs_per_sec
> 1) {
2034 sit_i
->sec_entries
= f2fs_kvzalloc(MAIN_SECS(sbi
) *
2035 sizeof(struct sec_entry
), GFP_KERNEL
);
2036 if (!sit_i
->sec_entries
)
2040 /* get information related with SIT */
2041 sit_segs
= le32_to_cpu(raw_super
->segment_count_sit
) >> 1;
2043 /* setup SIT bitmap from ckeckpoint pack */
2044 bitmap_size
= __bitmap_size(sbi
, SIT_BITMAP
);
2045 src_bitmap
= __bitmap_ptr(sbi
, SIT_BITMAP
);
2047 dst_bitmap
= kmemdup(src_bitmap
, bitmap_size
, GFP_KERNEL
);
2051 /* init SIT information */
2052 sit_i
->s_ops
= &default_salloc_ops
;
2054 sit_i
->sit_base_addr
= le32_to_cpu(raw_super
->sit_blkaddr
);
2055 sit_i
->sit_blocks
= sit_segs
<< sbi
->log_blocks_per_seg
;
2056 sit_i
->written_valid_blocks
= le64_to_cpu(ckpt
->valid_block_count
);
2057 sit_i
->sit_bitmap
= dst_bitmap
;
2058 sit_i
->bitmap_size
= bitmap_size
;
2059 sit_i
->dirty_sentries
= 0;
2060 sit_i
->sents_per_block
= SIT_ENTRY_PER_BLOCK
;
2061 sit_i
->elapsed_time
= le64_to_cpu(sbi
->ckpt
->elapsed_time
);
2062 sit_i
->mounted_time
= CURRENT_TIME_SEC
.tv_sec
;
2063 mutex_init(&sit_i
->sentry_lock
);
2067 static int build_free_segmap(struct f2fs_sb_info
*sbi
)
2069 struct free_segmap_info
*free_i
;
2070 unsigned int bitmap_size
, sec_bitmap_size
;
2072 /* allocate memory for free segmap information */
2073 free_i
= kzalloc(sizeof(struct free_segmap_info
), GFP_KERNEL
);
2077 SM_I(sbi
)->free_info
= free_i
;
2079 bitmap_size
= f2fs_bitmap_size(MAIN_SEGS(sbi
));
2080 free_i
->free_segmap
= f2fs_kvmalloc(bitmap_size
, GFP_KERNEL
);
2081 if (!free_i
->free_segmap
)
2084 sec_bitmap_size
= f2fs_bitmap_size(MAIN_SECS(sbi
));
2085 free_i
->free_secmap
= f2fs_kvmalloc(sec_bitmap_size
, GFP_KERNEL
);
2086 if (!free_i
->free_secmap
)
2089 /* set all segments as dirty temporarily */
2090 memset(free_i
->free_segmap
, 0xff, bitmap_size
);
2091 memset(free_i
->free_secmap
, 0xff, sec_bitmap_size
);
2093 /* init free segmap information */
2094 free_i
->start_segno
= GET_SEGNO_FROM_SEG0(sbi
, MAIN_BLKADDR(sbi
));
2095 free_i
->free_segments
= 0;
2096 free_i
->free_sections
= 0;
2097 spin_lock_init(&free_i
->segmap_lock
);
2101 static int build_curseg(struct f2fs_sb_info
*sbi
)
2103 struct curseg_info
*array
;
2106 array
= kcalloc(NR_CURSEG_TYPE
, sizeof(*array
), GFP_KERNEL
);
2110 SM_I(sbi
)->curseg_array
= array
;
2112 for (i
= 0; i
< NR_CURSEG_TYPE
; i
++) {
2113 mutex_init(&array
[i
].curseg_mutex
);
2114 array
[i
].sum_blk
= kzalloc(PAGE_CACHE_SIZE
, GFP_KERNEL
);
2115 if (!array
[i
].sum_blk
)
2117 array
[i
].segno
= NULL_SEGNO
;
2118 array
[i
].next_blkoff
= 0;
2120 return restore_curseg_summaries(sbi
);
2123 static void build_sit_entries(struct f2fs_sb_info
*sbi
)
2125 struct sit_info
*sit_i
= SIT_I(sbi
);
2126 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
2127 struct f2fs_summary_block
*sum
= curseg
->sum_blk
;
2128 int sit_blk_cnt
= SIT_BLK_CNT(sbi
);
2129 unsigned int i
, start
, end
;
2130 unsigned int readed
, start_blk
= 0;
2131 int nrpages
= MAX_BIO_BLOCKS(sbi
);
2134 readed
= ra_meta_pages(sbi
, start_blk
, nrpages
, META_SIT
, true);
2136 start
= start_blk
* sit_i
->sents_per_block
;
2137 end
= (start_blk
+ readed
) * sit_i
->sents_per_block
;
2139 for (; start
< end
&& start
< MAIN_SEGS(sbi
); start
++) {
2140 struct seg_entry
*se
= &sit_i
->sentries
[start
];
2141 struct f2fs_sit_block
*sit_blk
;
2142 struct f2fs_sit_entry sit
;
2145 mutex_lock(&curseg
->curseg_mutex
);
2146 for (i
= 0; i
< sits_in_cursum(sum
); i
++) {
2147 if (le32_to_cpu(segno_in_journal(sum
, i
))
2149 sit
= sit_in_journal(sum
, i
);
2150 mutex_unlock(&curseg
->curseg_mutex
);
2154 mutex_unlock(&curseg
->curseg_mutex
);
2156 page
= get_current_sit_page(sbi
, start
);
2157 sit_blk
= (struct f2fs_sit_block
*)page_address(page
);
2158 sit
= sit_blk
->entries
[SIT_ENTRY_OFFSET(sit_i
, start
)];
2159 f2fs_put_page(page
, 1);
2161 check_block_count(sbi
, start
, &sit
);
2162 seg_info_from_raw_sit(se
, &sit
);
2164 /* build discard map only one time */
2165 memcpy(se
->discard_map
, se
->cur_valid_map
, SIT_VBLOCK_MAP_SIZE
);
2166 sbi
->discard_blks
+= sbi
->blocks_per_seg
- se
->valid_blocks
;
2168 if (sbi
->segs_per_sec
> 1) {
2169 struct sec_entry
*e
= get_sec_entry(sbi
, start
);
2170 e
->valid_blocks
+= se
->valid_blocks
;
2173 start_blk
+= readed
;
2174 } while (start_blk
< sit_blk_cnt
);
2177 static void init_free_segmap(struct f2fs_sb_info
*sbi
)
2182 for (start
= 0; start
< MAIN_SEGS(sbi
); start
++) {
2183 struct seg_entry
*sentry
= get_seg_entry(sbi
, start
);
2184 if (!sentry
->valid_blocks
)
2185 __set_free(sbi
, start
);
2188 /* set use the current segments */
2189 for (type
= CURSEG_HOT_DATA
; type
<= CURSEG_COLD_NODE
; type
++) {
2190 struct curseg_info
*curseg_t
= CURSEG_I(sbi
, type
);
2191 __set_test_and_inuse(sbi
, curseg_t
->segno
);
2195 static void init_dirty_segmap(struct f2fs_sb_info
*sbi
)
2197 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
2198 struct free_segmap_info
*free_i
= FREE_I(sbi
);
2199 unsigned int segno
= 0, offset
= 0;
2200 unsigned short valid_blocks
;
2203 /* find dirty segment based on free segmap */
2204 segno
= find_next_inuse(free_i
, MAIN_SEGS(sbi
), offset
);
2205 if (segno
>= MAIN_SEGS(sbi
))
2208 valid_blocks
= get_valid_blocks(sbi
, segno
, 0);
2209 if (valid_blocks
== sbi
->blocks_per_seg
|| !valid_blocks
)
2211 if (valid_blocks
> sbi
->blocks_per_seg
) {
2212 f2fs_bug_on(sbi
, 1);
2215 mutex_lock(&dirty_i
->seglist_lock
);
2216 __locate_dirty_segment(sbi
, segno
, DIRTY
);
2217 mutex_unlock(&dirty_i
->seglist_lock
);
2221 static int init_victim_secmap(struct f2fs_sb_info
*sbi
)
2223 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
2224 unsigned int bitmap_size
= f2fs_bitmap_size(MAIN_SECS(sbi
));
2226 dirty_i
->victim_secmap
= f2fs_kvzalloc(bitmap_size
, GFP_KERNEL
);
2227 if (!dirty_i
->victim_secmap
)
2232 static int build_dirty_segmap(struct f2fs_sb_info
*sbi
)
2234 struct dirty_seglist_info
*dirty_i
;
2235 unsigned int bitmap_size
, i
;
2237 /* allocate memory for dirty segments list information */
2238 dirty_i
= kzalloc(sizeof(struct dirty_seglist_info
), GFP_KERNEL
);
2242 SM_I(sbi
)->dirty_info
= dirty_i
;
2243 mutex_init(&dirty_i
->seglist_lock
);
2245 bitmap_size
= f2fs_bitmap_size(MAIN_SEGS(sbi
));
2247 for (i
= 0; i
< NR_DIRTY_TYPE
; i
++) {
2248 dirty_i
->dirty_segmap
[i
] = f2fs_kvzalloc(bitmap_size
, GFP_KERNEL
);
2249 if (!dirty_i
->dirty_segmap
[i
])
2253 init_dirty_segmap(sbi
);
2254 return init_victim_secmap(sbi
);
2258 * Update min, max modified time for cost-benefit GC algorithm
2260 static void init_min_max_mtime(struct f2fs_sb_info
*sbi
)
2262 struct sit_info
*sit_i
= SIT_I(sbi
);
2265 mutex_lock(&sit_i
->sentry_lock
);
2267 sit_i
->min_mtime
= LLONG_MAX
;
2269 for (segno
= 0; segno
< MAIN_SEGS(sbi
); segno
+= sbi
->segs_per_sec
) {
2271 unsigned long long mtime
= 0;
2273 for (i
= 0; i
< sbi
->segs_per_sec
; i
++)
2274 mtime
+= get_seg_entry(sbi
, segno
+ i
)->mtime
;
2276 mtime
= div_u64(mtime
, sbi
->segs_per_sec
);
2278 if (sit_i
->min_mtime
> mtime
)
2279 sit_i
->min_mtime
= mtime
;
2281 sit_i
->max_mtime
= get_mtime(sbi
);
2282 mutex_unlock(&sit_i
->sentry_lock
);
2285 int build_segment_manager(struct f2fs_sb_info
*sbi
)
2287 struct f2fs_super_block
*raw_super
= F2FS_RAW_SUPER(sbi
);
2288 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
2289 struct f2fs_sm_info
*sm_info
;
2292 sm_info
= kzalloc(sizeof(struct f2fs_sm_info
), GFP_KERNEL
);
2297 sbi
->sm_info
= sm_info
;
2298 sm_info
->seg0_blkaddr
= le32_to_cpu(raw_super
->segment0_blkaddr
);
2299 sm_info
->main_blkaddr
= le32_to_cpu(raw_super
->main_blkaddr
);
2300 sm_info
->segment_count
= le32_to_cpu(raw_super
->segment_count
);
2301 sm_info
->reserved_segments
= le32_to_cpu(ckpt
->rsvd_segment_count
);
2302 sm_info
->ovp_segments
= le32_to_cpu(ckpt
->overprov_segment_count
);
2303 sm_info
->main_segments
= le32_to_cpu(raw_super
->segment_count_main
);
2304 sm_info
->ssa_blkaddr
= le32_to_cpu(raw_super
->ssa_blkaddr
);
2305 sm_info
->rec_prefree_segments
= sm_info
->main_segments
*
2306 DEF_RECLAIM_PREFREE_SEGMENTS
/ 100;
2307 sm_info
->ipu_policy
= 1 << F2FS_IPU_FSYNC
;
2308 sm_info
->min_ipu_util
= DEF_MIN_IPU_UTIL
;
2309 sm_info
->min_fsync_blocks
= DEF_MIN_FSYNC_BLOCKS
;
2311 INIT_LIST_HEAD(&sm_info
->discard_list
);
2312 sm_info
->nr_discards
= 0;
2313 sm_info
->max_discards
= 0;
2315 sm_info
->trim_sections
= DEF_BATCHED_TRIM_SECTIONS
;
2317 INIT_LIST_HEAD(&sm_info
->sit_entry_set
);
2319 if (test_opt(sbi
, FLUSH_MERGE
) && !f2fs_readonly(sbi
->sb
)) {
2320 err
= create_flush_cmd_control(sbi
);
2325 err
= build_sit_info(sbi
);
2328 err
= build_free_segmap(sbi
);
2331 err
= build_curseg(sbi
);
2335 /* reinit free segmap based on SIT */
2336 build_sit_entries(sbi
);
2338 init_free_segmap(sbi
);
2339 err
= build_dirty_segmap(sbi
);
2343 init_min_max_mtime(sbi
);
2347 static void discard_dirty_segmap(struct f2fs_sb_info
*sbi
,
2348 enum dirty_type dirty_type
)
2350 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
2352 mutex_lock(&dirty_i
->seglist_lock
);
2353 kvfree(dirty_i
->dirty_segmap
[dirty_type
]);
2354 dirty_i
->nr_dirty
[dirty_type
] = 0;
2355 mutex_unlock(&dirty_i
->seglist_lock
);
2358 static void destroy_victim_secmap(struct f2fs_sb_info
*sbi
)
2360 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
2361 kvfree(dirty_i
->victim_secmap
);
2364 static void destroy_dirty_segmap(struct f2fs_sb_info
*sbi
)
2366 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
2372 /* discard pre-free/dirty segments list */
2373 for (i
= 0; i
< NR_DIRTY_TYPE
; i
++)
2374 discard_dirty_segmap(sbi
, i
);
2376 destroy_victim_secmap(sbi
);
2377 SM_I(sbi
)->dirty_info
= NULL
;
2381 static void destroy_curseg(struct f2fs_sb_info
*sbi
)
2383 struct curseg_info
*array
= SM_I(sbi
)->curseg_array
;
2388 SM_I(sbi
)->curseg_array
= NULL
;
2389 for (i
= 0; i
< NR_CURSEG_TYPE
; i
++)
2390 kfree(array
[i
].sum_blk
);
2394 static void destroy_free_segmap(struct f2fs_sb_info
*sbi
)
2396 struct free_segmap_info
*free_i
= SM_I(sbi
)->free_info
;
2399 SM_I(sbi
)->free_info
= NULL
;
2400 kvfree(free_i
->free_segmap
);
2401 kvfree(free_i
->free_secmap
);
2405 static void destroy_sit_info(struct f2fs_sb_info
*sbi
)
2407 struct sit_info
*sit_i
= SIT_I(sbi
);
2413 if (sit_i
->sentries
) {
2414 for (start
= 0; start
< MAIN_SEGS(sbi
); start
++) {
2415 kfree(sit_i
->sentries
[start
].cur_valid_map
);
2416 kfree(sit_i
->sentries
[start
].ckpt_valid_map
);
2417 kfree(sit_i
->sentries
[start
].discard_map
);
2420 kfree(sit_i
->tmp_map
);
2422 kvfree(sit_i
->sentries
);
2423 kvfree(sit_i
->sec_entries
);
2424 kvfree(sit_i
->dirty_sentries_bitmap
);
2426 SM_I(sbi
)->sit_info
= NULL
;
2427 kfree(sit_i
->sit_bitmap
);
2431 void destroy_segment_manager(struct f2fs_sb_info
*sbi
)
2433 struct f2fs_sm_info
*sm_info
= SM_I(sbi
);
2437 destroy_flush_cmd_control(sbi
);
2438 destroy_dirty_segmap(sbi
);
2439 destroy_curseg(sbi
);
2440 destroy_free_segmap(sbi
);
2441 destroy_sit_info(sbi
);
2442 sbi
->sm_info
= NULL
;
2446 int __init
create_segment_manager_caches(void)
2448 discard_entry_slab
= f2fs_kmem_cache_create("discard_entry",
2449 sizeof(struct discard_entry
));
2450 if (!discard_entry_slab
)
2453 sit_entry_set_slab
= f2fs_kmem_cache_create("sit_entry_set",
2454 sizeof(struct sit_entry_set
));
2455 if (!sit_entry_set_slab
)
2456 goto destory_discard_entry
;
2458 inmem_entry_slab
= f2fs_kmem_cache_create("inmem_page_entry",
2459 sizeof(struct inmem_pages
));
2460 if (!inmem_entry_slab
)
2461 goto destroy_sit_entry_set
;
2464 destroy_sit_entry_set
:
2465 kmem_cache_destroy(sit_entry_set_slab
);
2466 destory_discard_entry
:
2467 kmem_cache_destroy(discard_entry_slab
);
2472 void destroy_segment_manager_caches(void)
2474 kmem_cache_destroy(sit_entry_set_slab
);
2475 kmem_cache_destroy(discard_entry_slab
);
2476 kmem_cache_destroy(inmem_entry_slab
);