dm thin metadata: fix __udivdi3 undefined on 32-bit
[linux/fpc-iii.git] / fs / namespace.c
blobb56b50e3da11bef4319b5ad04316f36cf7e328c6
1 /*
2 * linux/fs/namespace.c
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/init.h> /* init_rootfs */
20 #include <linux/fs_struct.h> /* get_fs_root et.al. */
21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include <linux/proc_ns.h>
24 #include <linux/magic.h>
25 #include <linux/bootmem.h>
26 #include <linux/task_work.h>
27 #include "pnode.h"
28 #include "internal.h"
30 /* Maximum number of mounts in a mount namespace */
31 unsigned int sysctl_mount_max __read_mostly = 100000;
33 static unsigned int m_hash_mask __read_mostly;
34 static unsigned int m_hash_shift __read_mostly;
35 static unsigned int mp_hash_mask __read_mostly;
36 static unsigned int mp_hash_shift __read_mostly;
38 static __initdata unsigned long mhash_entries;
39 static int __init set_mhash_entries(char *str)
41 if (!str)
42 return 0;
43 mhash_entries = simple_strtoul(str, &str, 0);
44 return 1;
46 __setup("mhash_entries=", set_mhash_entries);
48 static __initdata unsigned long mphash_entries;
49 static int __init set_mphash_entries(char *str)
51 if (!str)
52 return 0;
53 mphash_entries = simple_strtoul(str, &str, 0);
54 return 1;
56 __setup("mphash_entries=", set_mphash_entries);
58 static u64 event;
59 static DEFINE_IDA(mnt_id_ida);
60 static DEFINE_IDA(mnt_group_ida);
61 static DEFINE_SPINLOCK(mnt_id_lock);
62 static int mnt_id_start = 0;
63 static int mnt_group_start = 1;
65 static struct hlist_head *mount_hashtable __read_mostly;
66 static struct hlist_head *mountpoint_hashtable __read_mostly;
67 static struct kmem_cache *mnt_cache __read_mostly;
68 static DECLARE_RWSEM(namespace_sem);
70 /* /sys/fs */
71 struct kobject *fs_kobj;
72 EXPORT_SYMBOL_GPL(fs_kobj);
75 * vfsmount lock may be taken for read to prevent changes to the
76 * vfsmount hash, ie. during mountpoint lookups or walking back
77 * up the tree.
79 * It should be taken for write in all cases where the vfsmount
80 * tree or hash is modified or when a vfsmount structure is modified.
82 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
84 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
86 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
87 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
88 tmp = tmp + (tmp >> m_hash_shift);
89 return &mount_hashtable[tmp & m_hash_mask];
92 static inline struct hlist_head *mp_hash(struct dentry *dentry)
94 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
95 tmp = tmp + (tmp >> mp_hash_shift);
96 return &mountpoint_hashtable[tmp & mp_hash_mask];
100 * allocation is serialized by namespace_sem, but we need the spinlock to
101 * serialize with freeing.
103 static int mnt_alloc_id(struct mount *mnt)
105 int res;
107 retry:
108 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
109 spin_lock(&mnt_id_lock);
110 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
111 if (!res)
112 mnt_id_start = mnt->mnt_id + 1;
113 spin_unlock(&mnt_id_lock);
114 if (res == -EAGAIN)
115 goto retry;
117 return res;
120 static void mnt_free_id(struct mount *mnt)
122 int id = mnt->mnt_id;
123 spin_lock(&mnt_id_lock);
124 ida_remove(&mnt_id_ida, id);
125 if (mnt_id_start > id)
126 mnt_id_start = id;
127 spin_unlock(&mnt_id_lock);
131 * Allocate a new peer group ID
133 * mnt_group_ida is protected by namespace_sem
135 static int mnt_alloc_group_id(struct mount *mnt)
137 int res;
139 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
140 return -ENOMEM;
142 res = ida_get_new_above(&mnt_group_ida,
143 mnt_group_start,
144 &mnt->mnt_group_id);
145 if (!res)
146 mnt_group_start = mnt->mnt_group_id + 1;
148 return res;
152 * Release a peer group ID
154 void mnt_release_group_id(struct mount *mnt)
156 int id = mnt->mnt_group_id;
157 ida_remove(&mnt_group_ida, id);
158 if (mnt_group_start > id)
159 mnt_group_start = id;
160 mnt->mnt_group_id = 0;
164 * vfsmount lock must be held for read
166 static inline void mnt_add_count(struct mount *mnt, int n)
168 #ifdef CONFIG_SMP
169 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
170 #else
171 preempt_disable();
172 mnt->mnt_count += n;
173 preempt_enable();
174 #endif
178 * vfsmount lock must be held for write
180 unsigned int mnt_get_count(struct mount *mnt)
182 #ifdef CONFIG_SMP
183 unsigned int count = 0;
184 int cpu;
186 for_each_possible_cpu(cpu) {
187 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
190 return count;
191 #else
192 return mnt->mnt_count;
193 #endif
196 static void drop_mountpoint(struct fs_pin *p)
198 struct mount *m = container_of(p, struct mount, mnt_umount);
199 dput(m->mnt_ex_mountpoint);
200 pin_remove(p);
201 mntput(&m->mnt);
204 static struct mount *alloc_vfsmnt(const char *name)
206 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
207 if (mnt) {
208 int err;
210 err = mnt_alloc_id(mnt);
211 if (err)
212 goto out_free_cache;
214 if (name) {
215 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
216 if (!mnt->mnt_devname)
217 goto out_free_id;
220 #ifdef CONFIG_SMP
221 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
222 if (!mnt->mnt_pcp)
223 goto out_free_devname;
225 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
226 #else
227 mnt->mnt_count = 1;
228 mnt->mnt_writers = 0;
229 #endif
231 INIT_HLIST_NODE(&mnt->mnt_hash);
232 INIT_LIST_HEAD(&mnt->mnt_child);
233 INIT_LIST_HEAD(&mnt->mnt_mounts);
234 INIT_LIST_HEAD(&mnt->mnt_list);
235 INIT_LIST_HEAD(&mnt->mnt_expire);
236 INIT_LIST_HEAD(&mnt->mnt_share);
237 INIT_LIST_HEAD(&mnt->mnt_slave_list);
238 INIT_LIST_HEAD(&mnt->mnt_slave);
239 INIT_HLIST_NODE(&mnt->mnt_mp_list);
240 INIT_LIST_HEAD(&mnt->mnt_umounting);
241 #ifdef CONFIG_FSNOTIFY
242 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
243 #endif
244 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
246 return mnt;
248 #ifdef CONFIG_SMP
249 out_free_devname:
250 kfree_const(mnt->mnt_devname);
251 #endif
252 out_free_id:
253 mnt_free_id(mnt);
254 out_free_cache:
255 kmem_cache_free(mnt_cache, mnt);
256 return NULL;
260 * Most r/o checks on a fs are for operations that take
261 * discrete amounts of time, like a write() or unlink().
262 * We must keep track of when those operations start
263 * (for permission checks) and when they end, so that
264 * we can determine when writes are able to occur to
265 * a filesystem.
268 * __mnt_is_readonly: check whether a mount is read-only
269 * @mnt: the mount to check for its write status
271 * This shouldn't be used directly ouside of the VFS.
272 * It does not guarantee that the filesystem will stay
273 * r/w, just that it is right *now*. This can not and
274 * should not be used in place of IS_RDONLY(inode).
275 * mnt_want/drop_write() will _keep_ the filesystem
276 * r/w.
278 int __mnt_is_readonly(struct vfsmount *mnt)
280 if (mnt->mnt_flags & MNT_READONLY)
281 return 1;
282 if (mnt->mnt_sb->s_flags & MS_RDONLY)
283 return 1;
284 return 0;
286 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
288 static inline void mnt_inc_writers(struct mount *mnt)
290 #ifdef CONFIG_SMP
291 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
292 #else
293 mnt->mnt_writers++;
294 #endif
297 static inline void mnt_dec_writers(struct mount *mnt)
299 #ifdef CONFIG_SMP
300 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
301 #else
302 mnt->mnt_writers--;
303 #endif
306 static unsigned int mnt_get_writers(struct mount *mnt)
308 #ifdef CONFIG_SMP
309 unsigned int count = 0;
310 int cpu;
312 for_each_possible_cpu(cpu) {
313 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
316 return count;
317 #else
318 return mnt->mnt_writers;
319 #endif
322 static int mnt_is_readonly(struct vfsmount *mnt)
324 if (mnt->mnt_sb->s_readonly_remount)
325 return 1;
326 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
327 smp_rmb();
328 return __mnt_is_readonly(mnt);
332 * Most r/o & frozen checks on a fs are for operations that take discrete
333 * amounts of time, like a write() or unlink(). We must keep track of when
334 * those operations start (for permission checks) and when they end, so that we
335 * can determine when writes are able to occur to a filesystem.
338 * __mnt_want_write - get write access to a mount without freeze protection
339 * @m: the mount on which to take a write
341 * This tells the low-level filesystem that a write is about to be performed to
342 * it, and makes sure that writes are allowed (mnt it read-write) before
343 * returning success. This operation does not protect against filesystem being
344 * frozen. When the write operation is finished, __mnt_drop_write() must be
345 * called. This is effectively a refcount.
347 int __mnt_want_write(struct vfsmount *m)
349 struct mount *mnt = real_mount(m);
350 int ret = 0;
352 preempt_disable();
353 mnt_inc_writers(mnt);
355 * The store to mnt_inc_writers must be visible before we pass
356 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
357 * incremented count after it has set MNT_WRITE_HOLD.
359 smp_mb();
360 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
361 cpu_relax();
363 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
364 * be set to match its requirements. So we must not load that until
365 * MNT_WRITE_HOLD is cleared.
367 smp_rmb();
368 if (mnt_is_readonly(m)) {
369 mnt_dec_writers(mnt);
370 ret = -EROFS;
372 preempt_enable();
374 return ret;
378 * mnt_want_write - get write access to a mount
379 * @m: the mount on which to take a write
381 * This tells the low-level filesystem that a write is about to be performed to
382 * it, and makes sure that writes are allowed (mount is read-write, filesystem
383 * is not frozen) before returning success. When the write operation is
384 * finished, mnt_drop_write() must be called. This is effectively a refcount.
386 int mnt_want_write(struct vfsmount *m)
388 int ret;
390 sb_start_write(m->mnt_sb);
391 ret = __mnt_want_write(m);
392 if (ret)
393 sb_end_write(m->mnt_sb);
394 return ret;
396 EXPORT_SYMBOL_GPL(mnt_want_write);
399 * mnt_clone_write - get write access to a mount
400 * @mnt: the mount on which to take a write
402 * This is effectively like mnt_want_write, except
403 * it must only be used to take an extra write reference
404 * on a mountpoint that we already know has a write reference
405 * on it. This allows some optimisation.
407 * After finished, mnt_drop_write must be called as usual to
408 * drop the reference.
410 int mnt_clone_write(struct vfsmount *mnt)
412 /* superblock may be r/o */
413 if (__mnt_is_readonly(mnt))
414 return -EROFS;
415 preempt_disable();
416 mnt_inc_writers(real_mount(mnt));
417 preempt_enable();
418 return 0;
420 EXPORT_SYMBOL_GPL(mnt_clone_write);
423 * __mnt_want_write_file - get write access to a file's mount
424 * @file: the file who's mount on which to take a write
426 * This is like __mnt_want_write, but it takes a file and can
427 * do some optimisations if the file is open for write already
429 int __mnt_want_write_file(struct file *file)
431 if (!(file->f_mode & FMODE_WRITER))
432 return __mnt_want_write(file->f_path.mnt);
433 else
434 return mnt_clone_write(file->f_path.mnt);
438 * mnt_want_write_file - get write access to a file's mount
439 * @file: the file who's mount on which to take a write
441 * This is like mnt_want_write, but it takes a file and can
442 * do some optimisations if the file is open for write already
444 int mnt_want_write_file(struct file *file)
446 int ret;
448 sb_start_write(file->f_path.mnt->mnt_sb);
449 ret = __mnt_want_write_file(file);
450 if (ret)
451 sb_end_write(file->f_path.mnt->mnt_sb);
452 return ret;
454 EXPORT_SYMBOL_GPL(mnt_want_write_file);
457 * __mnt_drop_write - give up write access to a mount
458 * @mnt: the mount on which to give up write access
460 * Tells the low-level filesystem that we are done
461 * performing writes to it. Must be matched with
462 * __mnt_want_write() call above.
464 void __mnt_drop_write(struct vfsmount *mnt)
466 preempt_disable();
467 mnt_dec_writers(real_mount(mnt));
468 preempt_enable();
472 * mnt_drop_write - give up write access to a mount
473 * @mnt: the mount on which to give up write access
475 * Tells the low-level filesystem that we are done performing writes to it and
476 * also allows filesystem to be frozen again. Must be matched with
477 * mnt_want_write() call above.
479 void mnt_drop_write(struct vfsmount *mnt)
481 __mnt_drop_write(mnt);
482 sb_end_write(mnt->mnt_sb);
484 EXPORT_SYMBOL_GPL(mnt_drop_write);
486 void __mnt_drop_write_file(struct file *file)
488 __mnt_drop_write(file->f_path.mnt);
491 void mnt_drop_write_file(struct file *file)
493 mnt_drop_write(file->f_path.mnt);
495 EXPORT_SYMBOL(mnt_drop_write_file);
497 static int mnt_make_readonly(struct mount *mnt)
499 int ret = 0;
501 lock_mount_hash();
502 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
504 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
505 * should be visible before we do.
507 smp_mb();
510 * With writers on hold, if this value is zero, then there are
511 * definitely no active writers (although held writers may subsequently
512 * increment the count, they'll have to wait, and decrement it after
513 * seeing MNT_READONLY).
515 * It is OK to have counter incremented on one CPU and decremented on
516 * another: the sum will add up correctly. The danger would be when we
517 * sum up each counter, if we read a counter before it is incremented,
518 * but then read another CPU's count which it has been subsequently
519 * decremented from -- we would see more decrements than we should.
520 * MNT_WRITE_HOLD protects against this scenario, because
521 * mnt_want_write first increments count, then smp_mb, then spins on
522 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
523 * we're counting up here.
525 if (mnt_get_writers(mnt) > 0)
526 ret = -EBUSY;
527 else
528 mnt->mnt.mnt_flags |= MNT_READONLY;
530 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
531 * that become unheld will see MNT_READONLY.
533 smp_wmb();
534 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
535 unlock_mount_hash();
536 return ret;
539 static void __mnt_unmake_readonly(struct mount *mnt)
541 lock_mount_hash();
542 mnt->mnt.mnt_flags &= ~MNT_READONLY;
543 unlock_mount_hash();
546 int sb_prepare_remount_readonly(struct super_block *sb)
548 struct mount *mnt;
549 int err = 0;
551 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
552 if (atomic_long_read(&sb->s_remove_count))
553 return -EBUSY;
555 lock_mount_hash();
556 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
557 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
558 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
559 smp_mb();
560 if (mnt_get_writers(mnt) > 0) {
561 err = -EBUSY;
562 break;
566 if (!err && atomic_long_read(&sb->s_remove_count))
567 err = -EBUSY;
569 if (!err) {
570 sb->s_readonly_remount = 1;
571 smp_wmb();
573 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
574 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
575 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
577 unlock_mount_hash();
579 return err;
582 static void free_vfsmnt(struct mount *mnt)
584 kfree_const(mnt->mnt_devname);
585 #ifdef CONFIG_SMP
586 free_percpu(mnt->mnt_pcp);
587 #endif
588 kmem_cache_free(mnt_cache, mnt);
591 static void delayed_free_vfsmnt(struct rcu_head *head)
593 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
596 /* call under rcu_read_lock */
597 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
599 struct mount *mnt;
600 if (read_seqretry(&mount_lock, seq))
601 return 1;
602 if (bastard == NULL)
603 return 0;
604 mnt = real_mount(bastard);
605 mnt_add_count(mnt, 1);
606 smp_mb(); // see mntput_no_expire()
607 if (likely(!read_seqretry(&mount_lock, seq)))
608 return 0;
609 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
610 mnt_add_count(mnt, -1);
611 return 1;
613 lock_mount_hash();
614 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
615 mnt_add_count(mnt, -1);
616 unlock_mount_hash();
617 return 1;
619 unlock_mount_hash();
620 /* caller will mntput() */
621 return -1;
624 /* call under rcu_read_lock */
625 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
627 int res = __legitimize_mnt(bastard, seq);
628 if (likely(!res))
629 return true;
630 if (unlikely(res < 0)) {
631 rcu_read_unlock();
632 mntput(bastard);
633 rcu_read_lock();
635 return false;
639 * find the first mount at @dentry on vfsmount @mnt.
640 * call under rcu_read_lock()
642 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
644 struct hlist_head *head = m_hash(mnt, dentry);
645 struct mount *p;
647 hlist_for_each_entry_rcu(p, head, mnt_hash)
648 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
649 return p;
650 return NULL;
654 * lookup_mnt - Return the first child mount mounted at path
656 * "First" means first mounted chronologically. If you create the
657 * following mounts:
659 * mount /dev/sda1 /mnt
660 * mount /dev/sda2 /mnt
661 * mount /dev/sda3 /mnt
663 * Then lookup_mnt() on the base /mnt dentry in the root mount will
664 * return successively the root dentry and vfsmount of /dev/sda1, then
665 * /dev/sda2, then /dev/sda3, then NULL.
667 * lookup_mnt takes a reference to the found vfsmount.
669 struct vfsmount *lookup_mnt(struct path *path)
671 struct mount *child_mnt;
672 struct vfsmount *m;
673 unsigned seq;
675 rcu_read_lock();
676 do {
677 seq = read_seqbegin(&mount_lock);
678 child_mnt = __lookup_mnt(path->mnt, path->dentry);
679 m = child_mnt ? &child_mnt->mnt : NULL;
680 } while (!legitimize_mnt(m, seq));
681 rcu_read_unlock();
682 return m;
686 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
687 * current mount namespace.
689 * The common case is dentries are not mountpoints at all and that
690 * test is handled inline. For the slow case when we are actually
691 * dealing with a mountpoint of some kind, walk through all of the
692 * mounts in the current mount namespace and test to see if the dentry
693 * is a mountpoint.
695 * The mount_hashtable is not usable in the context because we
696 * need to identify all mounts that may be in the current mount
697 * namespace not just a mount that happens to have some specified
698 * parent mount.
700 bool __is_local_mountpoint(struct dentry *dentry)
702 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
703 struct mount *mnt;
704 bool is_covered = false;
706 if (!d_mountpoint(dentry))
707 goto out;
709 down_read(&namespace_sem);
710 list_for_each_entry(mnt, &ns->list, mnt_list) {
711 is_covered = (mnt->mnt_mountpoint == dentry);
712 if (is_covered)
713 break;
715 up_read(&namespace_sem);
716 out:
717 return is_covered;
720 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
722 struct hlist_head *chain = mp_hash(dentry);
723 struct mountpoint *mp;
725 hlist_for_each_entry(mp, chain, m_hash) {
726 if (mp->m_dentry == dentry) {
727 /* might be worth a WARN_ON() */
728 if (d_unlinked(dentry))
729 return ERR_PTR(-ENOENT);
730 mp->m_count++;
731 return mp;
734 return NULL;
737 static struct mountpoint *get_mountpoint(struct dentry *dentry)
739 struct mountpoint *mp, *new = NULL;
740 int ret;
742 if (d_mountpoint(dentry)) {
743 mountpoint:
744 read_seqlock_excl(&mount_lock);
745 mp = lookup_mountpoint(dentry);
746 read_sequnlock_excl(&mount_lock);
747 if (mp)
748 goto done;
751 if (!new)
752 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
753 if (!new)
754 return ERR_PTR(-ENOMEM);
757 /* Exactly one processes may set d_mounted */
758 ret = d_set_mounted(dentry);
760 /* Someone else set d_mounted? */
761 if (ret == -EBUSY)
762 goto mountpoint;
764 /* The dentry is not available as a mountpoint? */
765 mp = ERR_PTR(ret);
766 if (ret)
767 goto done;
769 /* Add the new mountpoint to the hash table */
770 read_seqlock_excl(&mount_lock);
771 new->m_dentry = dentry;
772 new->m_count = 1;
773 hlist_add_head(&new->m_hash, mp_hash(dentry));
774 INIT_HLIST_HEAD(&new->m_list);
775 read_sequnlock_excl(&mount_lock);
777 mp = new;
778 new = NULL;
779 done:
780 kfree(new);
781 return mp;
784 static void put_mountpoint(struct mountpoint *mp)
786 if (!--mp->m_count) {
787 struct dentry *dentry = mp->m_dentry;
788 BUG_ON(!hlist_empty(&mp->m_list));
789 spin_lock(&dentry->d_lock);
790 dentry->d_flags &= ~DCACHE_MOUNTED;
791 spin_unlock(&dentry->d_lock);
792 hlist_del(&mp->m_hash);
793 kfree(mp);
797 static inline int check_mnt(struct mount *mnt)
799 return mnt->mnt_ns == current->nsproxy->mnt_ns;
803 * vfsmount lock must be held for write
805 static void touch_mnt_namespace(struct mnt_namespace *ns)
807 if (ns) {
808 ns->event = ++event;
809 wake_up_interruptible(&ns->poll);
814 * vfsmount lock must be held for write
816 static void __touch_mnt_namespace(struct mnt_namespace *ns)
818 if (ns && ns->event != event) {
819 ns->event = event;
820 wake_up_interruptible(&ns->poll);
825 * vfsmount lock must be held for write
827 static void unhash_mnt(struct mount *mnt)
829 mnt->mnt_parent = mnt;
830 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
831 list_del_init(&mnt->mnt_child);
832 hlist_del_init_rcu(&mnt->mnt_hash);
833 hlist_del_init(&mnt->mnt_mp_list);
834 put_mountpoint(mnt->mnt_mp);
835 mnt->mnt_mp = NULL;
839 * vfsmount lock must be held for write
841 static void detach_mnt(struct mount *mnt, struct path *old_path)
843 old_path->dentry = mnt->mnt_mountpoint;
844 old_path->mnt = &mnt->mnt_parent->mnt;
845 unhash_mnt(mnt);
849 * vfsmount lock must be held for write
851 static void umount_mnt(struct mount *mnt)
853 /* old mountpoint will be dropped when we can do that */
854 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
855 unhash_mnt(mnt);
859 * vfsmount lock must be held for write
861 void mnt_set_mountpoint(struct mount *mnt,
862 struct mountpoint *mp,
863 struct mount *child_mnt)
865 mp->m_count++;
866 mnt_add_count(mnt, 1); /* essentially, that's mntget */
867 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
868 child_mnt->mnt_parent = mnt;
869 child_mnt->mnt_mp = mp;
870 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
873 static void __attach_mnt(struct mount *mnt, struct mount *parent)
875 hlist_add_head_rcu(&mnt->mnt_hash,
876 m_hash(&parent->mnt, mnt->mnt_mountpoint));
877 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
881 * vfsmount lock must be held for write
883 static void attach_mnt(struct mount *mnt,
884 struct mount *parent,
885 struct mountpoint *mp)
887 mnt_set_mountpoint(parent, mp, mnt);
888 __attach_mnt(mnt, parent);
891 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
893 struct mountpoint *old_mp = mnt->mnt_mp;
894 struct dentry *old_mountpoint = mnt->mnt_mountpoint;
895 struct mount *old_parent = mnt->mnt_parent;
897 list_del_init(&mnt->mnt_child);
898 hlist_del_init(&mnt->mnt_mp_list);
899 hlist_del_init_rcu(&mnt->mnt_hash);
901 attach_mnt(mnt, parent, mp);
903 put_mountpoint(old_mp);
906 * Safely avoid even the suggestion this code might sleep or
907 * lock the mount hash by taking advantage of the knowledge that
908 * mnt_change_mountpoint will not release the final reference
909 * to a mountpoint.
911 * During mounting, the mount passed in as the parent mount will
912 * continue to use the old mountpoint and during unmounting, the
913 * old mountpoint will continue to exist until namespace_unlock,
914 * which happens well after mnt_change_mountpoint.
916 spin_lock(&old_mountpoint->d_lock);
917 old_mountpoint->d_lockref.count--;
918 spin_unlock(&old_mountpoint->d_lock);
920 mnt_add_count(old_parent, -1);
924 * vfsmount lock must be held for write
926 static void commit_tree(struct mount *mnt)
928 struct mount *parent = mnt->mnt_parent;
929 struct mount *m;
930 LIST_HEAD(head);
931 struct mnt_namespace *n = parent->mnt_ns;
933 BUG_ON(parent == mnt);
935 list_add_tail(&head, &mnt->mnt_list);
936 list_for_each_entry(m, &head, mnt_list)
937 m->mnt_ns = n;
939 list_splice(&head, n->list.prev);
941 n->mounts += n->pending_mounts;
942 n->pending_mounts = 0;
944 __attach_mnt(mnt, parent);
945 touch_mnt_namespace(n);
948 static struct mount *next_mnt(struct mount *p, struct mount *root)
950 struct list_head *next = p->mnt_mounts.next;
951 if (next == &p->mnt_mounts) {
952 while (1) {
953 if (p == root)
954 return NULL;
955 next = p->mnt_child.next;
956 if (next != &p->mnt_parent->mnt_mounts)
957 break;
958 p = p->mnt_parent;
961 return list_entry(next, struct mount, mnt_child);
964 static struct mount *skip_mnt_tree(struct mount *p)
966 struct list_head *prev = p->mnt_mounts.prev;
967 while (prev != &p->mnt_mounts) {
968 p = list_entry(prev, struct mount, mnt_child);
969 prev = p->mnt_mounts.prev;
971 return p;
974 struct vfsmount *
975 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
977 struct mount *mnt;
978 struct dentry *root;
980 if (!type)
981 return ERR_PTR(-ENODEV);
983 mnt = alloc_vfsmnt(name);
984 if (!mnt)
985 return ERR_PTR(-ENOMEM);
987 if (flags & MS_KERNMOUNT)
988 mnt->mnt.mnt_flags = MNT_INTERNAL;
990 root = mount_fs(type, flags, name, data);
991 if (IS_ERR(root)) {
992 mnt_free_id(mnt);
993 free_vfsmnt(mnt);
994 return ERR_CAST(root);
997 mnt->mnt.mnt_root = root;
998 mnt->mnt.mnt_sb = root->d_sb;
999 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1000 mnt->mnt_parent = mnt;
1001 lock_mount_hash();
1002 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
1003 unlock_mount_hash();
1004 return &mnt->mnt;
1006 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1008 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1009 int flag)
1011 struct super_block *sb = old->mnt.mnt_sb;
1012 struct mount *mnt;
1013 int err;
1015 mnt = alloc_vfsmnt(old->mnt_devname);
1016 if (!mnt)
1017 return ERR_PTR(-ENOMEM);
1019 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1020 mnt->mnt_group_id = 0; /* not a peer of original */
1021 else
1022 mnt->mnt_group_id = old->mnt_group_id;
1024 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1025 err = mnt_alloc_group_id(mnt);
1026 if (err)
1027 goto out_free;
1030 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1031 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1032 /* Don't allow unprivileged users to change mount flags */
1033 if (flag & CL_UNPRIVILEGED) {
1034 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1036 if (mnt->mnt.mnt_flags & MNT_READONLY)
1037 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1039 if (mnt->mnt.mnt_flags & MNT_NODEV)
1040 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1042 if (mnt->mnt.mnt_flags & MNT_NOSUID)
1043 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1045 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1046 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1049 /* Don't allow unprivileged users to reveal what is under a mount */
1050 if ((flag & CL_UNPRIVILEGED) &&
1051 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
1052 mnt->mnt.mnt_flags |= MNT_LOCKED;
1054 atomic_inc(&sb->s_active);
1055 mnt->mnt.mnt_sb = sb;
1056 mnt->mnt.mnt_root = dget(root);
1057 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1058 mnt->mnt_parent = mnt;
1059 lock_mount_hash();
1060 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1061 unlock_mount_hash();
1063 if ((flag & CL_SLAVE) ||
1064 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1065 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1066 mnt->mnt_master = old;
1067 CLEAR_MNT_SHARED(mnt);
1068 } else if (!(flag & CL_PRIVATE)) {
1069 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1070 list_add(&mnt->mnt_share, &old->mnt_share);
1071 if (IS_MNT_SLAVE(old))
1072 list_add(&mnt->mnt_slave, &old->mnt_slave);
1073 mnt->mnt_master = old->mnt_master;
1075 if (flag & CL_MAKE_SHARED)
1076 set_mnt_shared(mnt);
1078 /* stick the duplicate mount on the same expiry list
1079 * as the original if that was on one */
1080 if (flag & CL_EXPIRE) {
1081 if (!list_empty(&old->mnt_expire))
1082 list_add(&mnt->mnt_expire, &old->mnt_expire);
1085 return mnt;
1087 out_free:
1088 mnt_free_id(mnt);
1089 free_vfsmnt(mnt);
1090 return ERR_PTR(err);
1093 static void cleanup_mnt(struct mount *mnt)
1096 * This probably indicates that somebody messed
1097 * up a mnt_want/drop_write() pair. If this
1098 * happens, the filesystem was probably unable
1099 * to make r/w->r/o transitions.
1102 * The locking used to deal with mnt_count decrement provides barriers,
1103 * so mnt_get_writers() below is safe.
1105 WARN_ON(mnt_get_writers(mnt));
1106 if (unlikely(mnt->mnt_pins.first))
1107 mnt_pin_kill(mnt);
1108 fsnotify_vfsmount_delete(&mnt->mnt);
1109 dput(mnt->mnt.mnt_root);
1110 deactivate_super(mnt->mnt.mnt_sb);
1111 mnt_free_id(mnt);
1112 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1115 static void __cleanup_mnt(struct rcu_head *head)
1117 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1120 static LLIST_HEAD(delayed_mntput_list);
1121 static void delayed_mntput(struct work_struct *unused)
1123 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1124 struct llist_node *next;
1126 for (; node; node = next) {
1127 next = llist_next(node);
1128 cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1131 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1133 static void mntput_no_expire(struct mount *mnt)
1135 rcu_read_lock();
1136 if (likely(READ_ONCE(mnt->mnt_ns))) {
1138 * Since we don't do lock_mount_hash() here,
1139 * ->mnt_ns can change under us. However, if it's
1140 * non-NULL, then there's a reference that won't
1141 * be dropped until after an RCU delay done after
1142 * turning ->mnt_ns NULL. So if we observe it
1143 * non-NULL under rcu_read_lock(), the reference
1144 * we are dropping is not the final one.
1146 mnt_add_count(mnt, -1);
1147 rcu_read_unlock();
1148 return;
1150 lock_mount_hash();
1152 * make sure that if __legitimize_mnt() has not seen us grab
1153 * mount_lock, we'll see their refcount increment here.
1155 smp_mb();
1156 mnt_add_count(mnt, -1);
1157 if (mnt_get_count(mnt)) {
1158 rcu_read_unlock();
1159 unlock_mount_hash();
1160 return;
1162 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1163 rcu_read_unlock();
1164 unlock_mount_hash();
1165 return;
1167 mnt->mnt.mnt_flags |= MNT_DOOMED;
1168 rcu_read_unlock();
1170 list_del(&mnt->mnt_instance);
1172 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1173 struct mount *p, *tmp;
1174 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1175 umount_mnt(p);
1178 unlock_mount_hash();
1180 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1181 struct task_struct *task = current;
1182 if (likely(!(task->flags & PF_KTHREAD))) {
1183 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1184 if (!task_work_add(task, &mnt->mnt_rcu, true))
1185 return;
1187 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1188 schedule_delayed_work(&delayed_mntput_work, 1);
1189 return;
1191 cleanup_mnt(mnt);
1194 void mntput(struct vfsmount *mnt)
1196 if (mnt) {
1197 struct mount *m = real_mount(mnt);
1198 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1199 if (unlikely(m->mnt_expiry_mark))
1200 m->mnt_expiry_mark = 0;
1201 mntput_no_expire(m);
1204 EXPORT_SYMBOL(mntput);
1206 struct vfsmount *mntget(struct vfsmount *mnt)
1208 if (mnt)
1209 mnt_add_count(real_mount(mnt), 1);
1210 return mnt;
1212 EXPORT_SYMBOL(mntget);
1214 struct vfsmount *mnt_clone_internal(struct path *path)
1216 struct mount *p;
1217 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1218 if (IS_ERR(p))
1219 return ERR_CAST(p);
1220 p->mnt.mnt_flags |= MNT_INTERNAL;
1221 return &p->mnt;
1224 static inline void mangle(struct seq_file *m, const char *s)
1226 seq_escape(m, s, " \t\n\\");
1230 * Simple .show_options callback for filesystems which don't want to
1231 * implement more complex mount option showing.
1233 * See also save_mount_options().
1235 int generic_show_options(struct seq_file *m, struct dentry *root)
1237 const char *options;
1239 rcu_read_lock();
1240 options = rcu_dereference(root->d_sb->s_options);
1242 if (options != NULL && options[0]) {
1243 seq_putc(m, ',');
1244 mangle(m, options);
1246 rcu_read_unlock();
1248 return 0;
1250 EXPORT_SYMBOL(generic_show_options);
1253 * If filesystem uses generic_show_options(), this function should be
1254 * called from the fill_super() callback.
1256 * The .remount_fs callback usually needs to be handled in a special
1257 * way, to make sure, that previous options are not overwritten if the
1258 * remount fails.
1260 * Also note, that if the filesystem's .remount_fs function doesn't
1261 * reset all options to their default value, but changes only newly
1262 * given options, then the displayed options will not reflect reality
1263 * any more.
1265 void save_mount_options(struct super_block *sb, char *options)
1267 BUG_ON(sb->s_options);
1268 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1270 EXPORT_SYMBOL(save_mount_options);
1272 void replace_mount_options(struct super_block *sb, char *options)
1274 char *old = sb->s_options;
1275 rcu_assign_pointer(sb->s_options, options);
1276 if (old) {
1277 synchronize_rcu();
1278 kfree(old);
1281 EXPORT_SYMBOL(replace_mount_options);
1283 #ifdef CONFIG_PROC_FS
1284 /* iterator; we want it to have access to namespace_sem, thus here... */
1285 static void *m_start(struct seq_file *m, loff_t *pos)
1287 struct proc_mounts *p = m->private;
1289 down_read(&namespace_sem);
1290 if (p->cached_event == p->ns->event) {
1291 void *v = p->cached_mount;
1292 if (*pos == p->cached_index)
1293 return v;
1294 if (*pos == p->cached_index + 1) {
1295 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1296 return p->cached_mount = v;
1300 p->cached_event = p->ns->event;
1301 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1302 p->cached_index = *pos;
1303 return p->cached_mount;
1306 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1308 struct proc_mounts *p = m->private;
1310 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1311 p->cached_index = *pos;
1312 return p->cached_mount;
1315 static void m_stop(struct seq_file *m, void *v)
1317 up_read(&namespace_sem);
1320 static int m_show(struct seq_file *m, void *v)
1322 struct proc_mounts *p = m->private;
1323 struct mount *r = list_entry(v, struct mount, mnt_list);
1324 return p->show(m, &r->mnt);
1327 const struct seq_operations mounts_op = {
1328 .start = m_start,
1329 .next = m_next,
1330 .stop = m_stop,
1331 .show = m_show,
1333 #endif /* CONFIG_PROC_FS */
1336 * may_umount_tree - check if a mount tree is busy
1337 * @mnt: root of mount tree
1339 * This is called to check if a tree of mounts has any
1340 * open files, pwds, chroots or sub mounts that are
1341 * busy.
1343 int may_umount_tree(struct vfsmount *m)
1345 struct mount *mnt = real_mount(m);
1346 int actual_refs = 0;
1347 int minimum_refs = 0;
1348 struct mount *p;
1349 BUG_ON(!m);
1351 /* write lock needed for mnt_get_count */
1352 lock_mount_hash();
1353 for (p = mnt; p; p = next_mnt(p, mnt)) {
1354 actual_refs += mnt_get_count(p);
1355 minimum_refs += 2;
1357 unlock_mount_hash();
1359 if (actual_refs > minimum_refs)
1360 return 0;
1362 return 1;
1365 EXPORT_SYMBOL(may_umount_tree);
1368 * may_umount - check if a mount point is busy
1369 * @mnt: root of mount
1371 * This is called to check if a mount point has any
1372 * open files, pwds, chroots or sub mounts. If the
1373 * mount has sub mounts this will return busy
1374 * regardless of whether the sub mounts are busy.
1376 * Doesn't take quota and stuff into account. IOW, in some cases it will
1377 * give false negatives. The main reason why it's here is that we need
1378 * a non-destructive way to look for easily umountable filesystems.
1380 int may_umount(struct vfsmount *mnt)
1382 int ret = 1;
1383 down_read(&namespace_sem);
1384 lock_mount_hash();
1385 if (propagate_mount_busy(real_mount(mnt), 2))
1386 ret = 0;
1387 unlock_mount_hash();
1388 up_read(&namespace_sem);
1389 return ret;
1392 EXPORT_SYMBOL(may_umount);
1394 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
1396 static void namespace_unlock(void)
1398 struct hlist_head head;
1400 hlist_move_list(&unmounted, &head);
1402 up_write(&namespace_sem);
1404 if (likely(hlist_empty(&head)))
1405 return;
1407 synchronize_rcu();
1409 group_pin_kill(&head);
1412 static inline void namespace_lock(void)
1414 down_write(&namespace_sem);
1417 enum umount_tree_flags {
1418 UMOUNT_SYNC = 1,
1419 UMOUNT_PROPAGATE = 2,
1420 UMOUNT_CONNECTED = 4,
1423 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1425 /* Leaving mounts connected is only valid for lazy umounts */
1426 if (how & UMOUNT_SYNC)
1427 return true;
1429 /* A mount without a parent has nothing to be connected to */
1430 if (!mnt_has_parent(mnt))
1431 return true;
1433 /* Because the reference counting rules change when mounts are
1434 * unmounted and connected, umounted mounts may not be
1435 * connected to mounted mounts.
1437 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1438 return true;
1440 /* Has it been requested that the mount remain connected? */
1441 if (how & UMOUNT_CONNECTED)
1442 return false;
1444 /* Is the mount locked such that it needs to remain connected? */
1445 if (IS_MNT_LOCKED(mnt))
1446 return false;
1448 /* By default disconnect the mount */
1449 return true;
1453 * mount_lock must be held
1454 * namespace_sem must be held for write
1456 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1458 LIST_HEAD(tmp_list);
1459 struct mount *p;
1461 if (how & UMOUNT_PROPAGATE)
1462 propagate_mount_unlock(mnt);
1464 /* Gather the mounts to umount */
1465 for (p = mnt; p; p = next_mnt(p, mnt)) {
1466 p->mnt.mnt_flags |= MNT_UMOUNT;
1467 list_move(&p->mnt_list, &tmp_list);
1470 /* Hide the mounts from mnt_mounts */
1471 list_for_each_entry(p, &tmp_list, mnt_list) {
1472 list_del_init(&p->mnt_child);
1475 /* Add propogated mounts to the tmp_list */
1476 if (how & UMOUNT_PROPAGATE)
1477 propagate_umount(&tmp_list);
1479 while (!list_empty(&tmp_list)) {
1480 struct mnt_namespace *ns;
1481 bool disconnect;
1482 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1483 list_del_init(&p->mnt_expire);
1484 list_del_init(&p->mnt_list);
1485 ns = p->mnt_ns;
1486 if (ns) {
1487 ns->mounts--;
1488 __touch_mnt_namespace(ns);
1490 p->mnt_ns = NULL;
1491 if (how & UMOUNT_SYNC)
1492 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1494 disconnect = disconnect_mount(p, how);
1496 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1497 disconnect ? &unmounted : NULL);
1498 if (mnt_has_parent(p)) {
1499 mnt_add_count(p->mnt_parent, -1);
1500 if (!disconnect) {
1501 /* Don't forget about p */
1502 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1503 } else {
1504 umount_mnt(p);
1507 change_mnt_propagation(p, MS_PRIVATE);
1511 static void shrink_submounts(struct mount *mnt);
1513 static int do_umount(struct mount *mnt, int flags)
1515 struct super_block *sb = mnt->mnt.mnt_sb;
1516 int retval;
1518 retval = security_sb_umount(&mnt->mnt, flags);
1519 if (retval)
1520 return retval;
1523 * Allow userspace to request a mountpoint be expired rather than
1524 * unmounting unconditionally. Unmount only happens if:
1525 * (1) the mark is already set (the mark is cleared by mntput())
1526 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1528 if (flags & MNT_EXPIRE) {
1529 if (&mnt->mnt == current->fs->root.mnt ||
1530 flags & (MNT_FORCE | MNT_DETACH))
1531 return -EINVAL;
1534 * probably don't strictly need the lock here if we examined
1535 * all race cases, but it's a slowpath.
1537 lock_mount_hash();
1538 if (mnt_get_count(mnt) != 2) {
1539 unlock_mount_hash();
1540 return -EBUSY;
1542 unlock_mount_hash();
1544 if (!xchg(&mnt->mnt_expiry_mark, 1))
1545 return -EAGAIN;
1549 * If we may have to abort operations to get out of this
1550 * mount, and they will themselves hold resources we must
1551 * allow the fs to do things. In the Unix tradition of
1552 * 'Gee thats tricky lets do it in userspace' the umount_begin
1553 * might fail to complete on the first run through as other tasks
1554 * must return, and the like. Thats for the mount program to worry
1555 * about for the moment.
1558 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1559 sb->s_op->umount_begin(sb);
1563 * No sense to grab the lock for this test, but test itself looks
1564 * somewhat bogus. Suggestions for better replacement?
1565 * Ho-hum... In principle, we might treat that as umount + switch
1566 * to rootfs. GC would eventually take care of the old vfsmount.
1567 * Actually it makes sense, especially if rootfs would contain a
1568 * /reboot - static binary that would close all descriptors and
1569 * call reboot(9). Then init(8) could umount root and exec /reboot.
1571 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1573 * Special case for "unmounting" root ...
1574 * we just try to remount it readonly.
1576 if (!capable(CAP_SYS_ADMIN))
1577 return -EPERM;
1578 down_write(&sb->s_umount);
1579 if (!(sb->s_flags & MS_RDONLY))
1580 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1581 up_write(&sb->s_umount);
1582 return retval;
1585 namespace_lock();
1586 lock_mount_hash();
1587 event++;
1589 if (flags & MNT_DETACH) {
1590 if (!list_empty(&mnt->mnt_list))
1591 umount_tree(mnt, UMOUNT_PROPAGATE);
1592 retval = 0;
1593 } else {
1594 shrink_submounts(mnt);
1595 retval = -EBUSY;
1596 if (!propagate_mount_busy(mnt, 2)) {
1597 if (!list_empty(&mnt->mnt_list))
1598 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1599 retval = 0;
1602 unlock_mount_hash();
1603 namespace_unlock();
1604 return retval;
1608 * __detach_mounts - lazily unmount all mounts on the specified dentry
1610 * During unlink, rmdir, and d_drop it is possible to loose the path
1611 * to an existing mountpoint, and wind up leaking the mount.
1612 * detach_mounts allows lazily unmounting those mounts instead of
1613 * leaking them.
1615 * The caller may hold dentry->d_inode->i_mutex.
1617 void __detach_mounts(struct dentry *dentry)
1619 struct mountpoint *mp;
1620 struct mount *mnt;
1622 namespace_lock();
1623 lock_mount_hash();
1624 mp = lookup_mountpoint(dentry);
1625 if (IS_ERR_OR_NULL(mp))
1626 goto out_unlock;
1628 event++;
1629 while (!hlist_empty(&mp->m_list)) {
1630 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1631 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1632 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1633 umount_mnt(mnt);
1635 else umount_tree(mnt, UMOUNT_CONNECTED);
1637 put_mountpoint(mp);
1638 out_unlock:
1639 unlock_mount_hash();
1640 namespace_unlock();
1644 * Is the caller allowed to modify his namespace?
1646 static inline bool may_mount(void)
1648 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1652 * Now umount can handle mount points as well as block devices.
1653 * This is important for filesystems which use unnamed block devices.
1655 * We now support a flag for forced unmount like the other 'big iron'
1656 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1659 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1661 struct path path;
1662 struct mount *mnt;
1663 int retval;
1664 int lookup_flags = 0;
1666 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1667 return -EINVAL;
1669 if (!may_mount())
1670 return -EPERM;
1672 if (!(flags & UMOUNT_NOFOLLOW))
1673 lookup_flags |= LOOKUP_FOLLOW;
1675 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1676 if (retval)
1677 goto out;
1678 mnt = real_mount(path.mnt);
1679 retval = -EINVAL;
1680 if (path.dentry != path.mnt->mnt_root)
1681 goto dput_and_out;
1682 if (!check_mnt(mnt))
1683 goto dput_and_out;
1684 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1685 goto dput_and_out;
1686 retval = -EPERM;
1687 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1688 goto dput_and_out;
1690 retval = do_umount(mnt, flags);
1691 dput_and_out:
1692 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1693 dput(path.dentry);
1694 mntput_no_expire(mnt);
1695 out:
1696 return retval;
1699 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1702 * The 2.0 compatible umount. No flags.
1704 SYSCALL_DEFINE1(oldumount, char __user *, name)
1706 return sys_umount(name, 0);
1709 #endif
1711 static bool is_mnt_ns_file(struct dentry *dentry)
1713 /* Is this a proxy for a mount namespace? */
1714 return dentry->d_op == &ns_dentry_operations &&
1715 dentry->d_fsdata == &mntns_operations;
1718 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1720 return container_of(ns, struct mnt_namespace, ns);
1723 static bool mnt_ns_loop(struct dentry *dentry)
1725 /* Could bind mounting the mount namespace inode cause a
1726 * mount namespace loop?
1728 struct mnt_namespace *mnt_ns;
1729 if (!is_mnt_ns_file(dentry))
1730 return false;
1732 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1733 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1736 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1737 int flag)
1739 struct mount *res, *p, *q, *r, *parent;
1741 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1742 return ERR_PTR(-EINVAL);
1744 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1745 return ERR_PTR(-EINVAL);
1747 res = q = clone_mnt(mnt, dentry, flag);
1748 if (IS_ERR(q))
1749 return q;
1751 q->mnt_mountpoint = mnt->mnt_mountpoint;
1753 p = mnt;
1754 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1755 struct mount *s;
1756 if (!is_subdir(r->mnt_mountpoint, dentry))
1757 continue;
1759 for (s = r; s; s = next_mnt(s, r)) {
1760 if (!(flag & CL_COPY_UNBINDABLE) &&
1761 IS_MNT_UNBINDABLE(s)) {
1762 s = skip_mnt_tree(s);
1763 continue;
1765 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1766 is_mnt_ns_file(s->mnt.mnt_root)) {
1767 s = skip_mnt_tree(s);
1768 continue;
1770 while (p != s->mnt_parent) {
1771 p = p->mnt_parent;
1772 q = q->mnt_parent;
1774 p = s;
1775 parent = q;
1776 q = clone_mnt(p, p->mnt.mnt_root, flag);
1777 if (IS_ERR(q))
1778 goto out;
1779 lock_mount_hash();
1780 list_add_tail(&q->mnt_list, &res->mnt_list);
1781 attach_mnt(q, parent, p->mnt_mp);
1782 unlock_mount_hash();
1785 return res;
1786 out:
1787 if (res) {
1788 lock_mount_hash();
1789 umount_tree(res, UMOUNT_SYNC);
1790 unlock_mount_hash();
1792 return q;
1795 /* Caller should check returned pointer for errors */
1797 struct vfsmount *collect_mounts(struct path *path)
1799 struct mount *tree;
1800 namespace_lock();
1801 if (!check_mnt(real_mount(path->mnt)))
1802 tree = ERR_PTR(-EINVAL);
1803 else
1804 tree = copy_tree(real_mount(path->mnt), path->dentry,
1805 CL_COPY_ALL | CL_PRIVATE);
1806 namespace_unlock();
1807 if (IS_ERR(tree))
1808 return ERR_CAST(tree);
1809 return &tree->mnt;
1812 void drop_collected_mounts(struct vfsmount *mnt)
1814 namespace_lock();
1815 lock_mount_hash();
1816 umount_tree(real_mount(mnt), UMOUNT_SYNC);
1817 unlock_mount_hash();
1818 namespace_unlock();
1822 * clone_private_mount - create a private clone of a path
1824 * This creates a new vfsmount, which will be the clone of @path. The new will
1825 * not be attached anywhere in the namespace and will be private (i.e. changes
1826 * to the originating mount won't be propagated into this).
1828 * Release with mntput().
1830 struct vfsmount *clone_private_mount(struct path *path)
1832 struct mount *old_mnt = real_mount(path->mnt);
1833 struct mount *new_mnt;
1835 if (IS_MNT_UNBINDABLE(old_mnt))
1836 return ERR_PTR(-EINVAL);
1838 down_read(&namespace_sem);
1839 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1840 up_read(&namespace_sem);
1841 if (IS_ERR(new_mnt))
1842 return ERR_CAST(new_mnt);
1844 return &new_mnt->mnt;
1846 EXPORT_SYMBOL_GPL(clone_private_mount);
1848 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1849 struct vfsmount *root)
1851 struct mount *mnt;
1852 int res = f(root, arg);
1853 if (res)
1854 return res;
1855 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1856 res = f(&mnt->mnt, arg);
1857 if (res)
1858 return res;
1860 return 0;
1863 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1865 struct mount *p;
1867 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1868 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1869 mnt_release_group_id(p);
1873 static int invent_group_ids(struct mount *mnt, bool recurse)
1875 struct mount *p;
1877 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1878 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1879 int err = mnt_alloc_group_id(p);
1880 if (err) {
1881 cleanup_group_ids(mnt, p);
1882 return err;
1887 return 0;
1890 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1892 unsigned int max = READ_ONCE(sysctl_mount_max);
1893 unsigned int mounts = 0, old, pending, sum;
1894 struct mount *p;
1896 for (p = mnt; p; p = next_mnt(p, mnt))
1897 mounts++;
1899 old = ns->mounts;
1900 pending = ns->pending_mounts;
1901 sum = old + pending;
1902 if ((old > sum) ||
1903 (pending > sum) ||
1904 (max < sum) ||
1905 (mounts > (max - sum)))
1906 return -ENOSPC;
1908 ns->pending_mounts = pending + mounts;
1909 return 0;
1913 * @source_mnt : mount tree to be attached
1914 * @nd : place the mount tree @source_mnt is attached
1915 * @parent_nd : if non-null, detach the source_mnt from its parent and
1916 * store the parent mount and mountpoint dentry.
1917 * (done when source_mnt is moved)
1919 * NOTE: in the table below explains the semantics when a source mount
1920 * of a given type is attached to a destination mount of a given type.
1921 * ---------------------------------------------------------------------------
1922 * | BIND MOUNT OPERATION |
1923 * |**************************************************************************
1924 * | source-->| shared | private | slave | unbindable |
1925 * | dest | | | | |
1926 * | | | | | | |
1927 * | v | | | | |
1928 * |**************************************************************************
1929 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1930 * | | | | | |
1931 * |non-shared| shared (+) | private | slave (*) | invalid |
1932 * ***************************************************************************
1933 * A bind operation clones the source mount and mounts the clone on the
1934 * destination mount.
1936 * (++) the cloned mount is propagated to all the mounts in the propagation
1937 * tree of the destination mount and the cloned mount is added to
1938 * the peer group of the source mount.
1939 * (+) the cloned mount is created under the destination mount and is marked
1940 * as shared. The cloned mount is added to the peer group of the source
1941 * mount.
1942 * (+++) the mount is propagated to all the mounts in the propagation tree
1943 * of the destination mount and the cloned mount is made slave
1944 * of the same master as that of the source mount. The cloned mount
1945 * is marked as 'shared and slave'.
1946 * (*) the cloned mount is made a slave of the same master as that of the
1947 * source mount.
1949 * ---------------------------------------------------------------------------
1950 * | MOVE MOUNT OPERATION |
1951 * |**************************************************************************
1952 * | source-->| shared | private | slave | unbindable |
1953 * | dest | | | | |
1954 * | | | | | | |
1955 * | v | | | | |
1956 * |**************************************************************************
1957 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1958 * | | | | | |
1959 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1960 * ***************************************************************************
1962 * (+) the mount is moved to the destination. And is then propagated to
1963 * all the mounts in the propagation tree of the destination mount.
1964 * (+*) the mount is moved to the destination.
1965 * (+++) the mount is moved to the destination and is then propagated to
1966 * all the mounts belonging to the destination mount's propagation tree.
1967 * the mount is marked as 'shared and slave'.
1968 * (*) the mount continues to be a slave at the new location.
1970 * if the source mount is a tree, the operations explained above is
1971 * applied to each mount in the tree.
1972 * Must be called without spinlocks held, since this function can sleep
1973 * in allocations.
1975 static int attach_recursive_mnt(struct mount *source_mnt,
1976 struct mount *dest_mnt,
1977 struct mountpoint *dest_mp,
1978 struct path *parent_path)
1980 HLIST_HEAD(tree_list);
1981 struct mnt_namespace *ns = dest_mnt->mnt_ns;
1982 struct mountpoint *smp;
1983 struct mount *child, *p;
1984 struct hlist_node *n;
1985 int err;
1987 /* Preallocate a mountpoint in case the new mounts need
1988 * to be tucked under other mounts.
1990 smp = get_mountpoint(source_mnt->mnt.mnt_root);
1991 if (IS_ERR(smp))
1992 return PTR_ERR(smp);
1994 /* Is there space to add these mounts to the mount namespace? */
1995 if (!parent_path) {
1996 err = count_mounts(ns, source_mnt);
1997 if (err)
1998 goto out;
2001 if (IS_MNT_SHARED(dest_mnt)) {
2002 err = invent_group_ids(source_mnt, true);
2003 if (err)
2004 goto out;
2005 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2006 lock_mount_hash();
2007 if (err)
2008 goto out_cleanup_ids;
2009 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2010 set_mnt_shared(p);
2011 } else {
2012 lock_mount_hash();
2014 if (parent_path) {
2015 detach_mnt(source_mnt, parent_path);
2016 attach_mnt(source_mnt, dest_mnt, dest_mp);
2017 touch_mnt_namespace(source_mnt->mnt_ns);
2018 } else {
2019 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2020 commit_tree(source_mnt);
2023 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2024 struct mount *q;
2025 hlist_del_init(&child->mnt_hash);
2026 q = __lookup_mnt(&child->mnt_parent->mnt,
2027 child->mnt_mountpoint);
2028 if (q)
2029 mnt_change_mountpoint(child, smp, q);
2030 commit_tree(child);
2032 put_mountpoint(smp);
2033 unlock_mount_hash();
2035 return 0;
2037 out_cleanup_ids:
2038 while (!hlist_empty(&tree_list)) {
2039 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2040 child->mnt_parent->mnt_ns->pending_mounts = 0;
2041 umount_tree(child, UMOUNT_SYNC);
2043 unlock_mount_hash();
2044 cleanup_group_ids(source_mnt, NULL);
2045 out:
2046 ns->pending_mounts = 0;
2048 read_seqlock_excl(&mount_lock);
2049 put_mountpoint(smp);
2050 read_sequnlock_excl(&mount_lock);
2052 return err;
2055 static struct mountpoint *lock_mount(struct path *path)
2057 struct vfsmount *mnt;
2058 struct dentry *dentry = path->dentry;
2059 retry:
2060 mutex_lock(&dentry->d_inode->i_mutex);
2061 if (unlikely(cant_mount(dentry))) {
2062 mutex_unlock(&dentry->d_inode->i_mutex);
2063 return ERR_PTR(-ENOENT);
2065 namespace_lock();
2066 mnt = lookup_mnt(path);
2067 if (likely(!mnt)) {
2068 struct mountpoint *mp = get_mountpoint(dentry);
2069 if (IS_ERR(mp)) {
2070 namespace_unlock();
2071 mutex_unlock(&dentry->d_inode->i_mutex);
2072 return mp;
2074 return mp;
2076 namespace_unlock();
2077 mutex_unlock(&path->dentry->d_inode->i_mutex);
2078 path_put(path);
2079 path->mnt = mnt;
2080 dentry = path->dentry = dget(mnt->mnt_root);
2081 goto retry;
2084 static void unlock_mount(struct mountpoint *where)
2086 struct dentry *dentry = where->m_dentry;
2088 read_seqlock_excl(&mount_lock);
2089 put_mountpoint(where);
2090 read_sequnlock_excl(&mount_lock);
2092 namespace_unlock();
2093 mutex_unlock(&dentry->d_inode->i_mutex);
2096 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2098 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
2099 return -EINVAL;
2101 if (d_is_dir(mp->m_dentry) !=
2102 d_is_dir(mnt->mnt.mnt_root))
2103 return -ENOTDIR;
2105 return attach_recursive_mnt(mnt, p, mp, NULL);
2109 * Sanity check the flags to change_mnt_propagation.
2112 static int flags_to_propagation_type(int flags)
2114 int type = flags & ~(MS_REC | MS_SILENT);
2116 /* Fail if any non-propagation flags are set */
2117 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2118 return 0;
2119 /* Only one propagation flag should be set */
2120 if (!is_power_of_2(type))
2121 return 0;
2122 return type;
2126 * recursively change the type of the mountpoint.
2128 static int do_change_type(struct path *path, int flag)
2130 struct mount *m;
2131 struct mount *mnt = real_mount(path->mnt);
2132 int recurse = flag & MS_REC;
2133 int type;
2134 int err = 0;
2136 if (path->dentry != path->mnt->mnt_root)
2137 return -EINVAL;
2139 type = flags_to_propagation_type(flag);
2140 if (!type)
2141 return -EINVAL;
2143 namespace_lock();
2144 if (type == MS_SHARED) {
2145 err = invent_group_ids(mnt, recurse);
2146 if (err)
2147 goto out_unlock;
2150 lock_mount_hash();
2151 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2152 change_mnt_propagation(m, type);
2153 unlock_mount_hash();
2155 out_unlock:
2156 namespace_unlock();
2157 return err;
2160 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2162 struct mount *child;
2163 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2164 if (!is_subdir(child->mnt_mountpoint, dentry))
2165 continue;
2167 if (child->mnt.mnt_flags & MNT_LOCKED)
2168 return true;
2170 return false;
2174 * do loopback mount.
2176 static int do_loopback(struct path *path, const char *old_name,
2177 int recurse)
2179 struct path old_path;
2180 struct mount *mnt = NULL, *old, *parent;
2181 struct mountpoint *mp;
2182 int err;
2183 if (!old_name || !*old_name)
2184 return -EINVAL;
2185 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2186 if (err)
2187 return err;
2189 err = -EINVAL;
2190 if (mnt_ns_loop(old_path.dentry))
2191 goto out;
2193 mp = lock_mount(path);
2194 err = PTR_ERR(mp);
2195 if (IS_ERR(mp))
2196 goto out;
2198 old = real_mount(old_path.mnt);
2199 parent = real_mount(path->mnt);
2201 err = -EINVAL;
2202 if (IS_MNT_UNBINDABLE(old))
2203 goto out2;
2205 if (!check_mnt(parent))
2206 goto out2;
2208 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2209 goto out2;
2211 if (!recurse && has_locked_children(old, old_path.dentry))
2212 goto out2;
2214 if (recurse)
2215 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2216 else
2217 mnt = clone_mnt(old, old_path.dentry, 0);
2219 if (IS_ERR(mnt)) {
2220 err = PTR_ERR(mnt);
2221 goto out2;
2224 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2226 err = graft_tree(mnt, parent, mp);
2227 if (err) {
2228 lock_mount_hash();
2229 umount_tree(mnt, UMOUNT_SYNC);
2230 unlock_mount_hash();
2232 out2:
2233 unlock_mount(mp);
2234 out:
2235 path_put(&old_path);
2236 return err;
2239 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2241 int error = 0;
2242 int readonly_request = 0;
2244 if (ms_flags & MS_RDONLY)
2245 readonly_request = 1;
2246 if (readonly_request == __mnt_is_readonly(mnt))
2247 return 0;
2249 if (readonly_request)
2250 error = mnt_make_readonly(real_mount(mnt));
2251 else
2252 __mnt_unmake_readonly(real_mount(mnt));
2253 return error;
2257 * change filesystem flags. dir should be a physical root of filesystem.
2258 * If you've mounted a non-root directory somewhere and want to do remount
2259 * on it - tough luck.
2261 static int do_remount(struct path *path, int flags, int mnt_flags,
2262 void *data)
2264 int err;
2265 struct super_block *sb = path->mnt->mnt_sb;
2266 struct mount *mnt = real_mount(path->mnt);
2268 if (!check_mnt(mnt))
2269 return -EINVAL;
2271 if (path->dentry != path->mnt->mnt_root)
2272 return -EINVAL;
2274 /* Don't allow changing of locked mnt flags.
2276 * No locks need to be held here while testing the various
2277 * MNT_LOCK flags because those flags can never be cleared
2278 * once they are set.
2280 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2281 !(mnt_flags & MNT_READONLY)) {
2282 return -EPERM;
2284 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2285 !(mnt_flags & MNT_NODEV)) {
2286 /* Was the nodev implicitly added in mount? */
2287 if ((mnt->mnt_ns->user_ns != &init_user_ns) &&
2288 !(sb->s_type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2289 mnt_flags |= MNT_NODEV;
2290 } else {
2291 return -EPERM;
2294 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2295 !(mnt_flags & MNT_NOSUID)) {
2296 return -EPERM;
2298 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2299 !(mnt_flags & MNT_NOEXEC)) {
2300 return -EPERM;
2302 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2303 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2304 return -EPERM;
2307 err = security_sb_remount(sb, data);
2308 if (err)
2309 return err;
2311 down_write(&sb->s_umount);
2312 if (flags & MS_BIND)
2313 err = change_mount_flags(path->mnt, flags);
2314 else if (!capable(CAP_SYS_ADMIN))
2315 err = -EPERM;
2316 else
2317 err = do_remount_sb(sb, flags, data, 0);
2318 if (!err) {
2319 lock_mount_hash();
2320 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2321 mnt->mnt.mnt_flags = mnt_flags;
2322 touch_mnt_namespace(mnt->mnt_ns);
2323 unlock_mount_hash();
2325 up_write(&sb->s_umount);
2326 return err;
2329 static inline int tree_contains_unbindable(struct mount *mnt)
2331 struct mount *p;
2332 for (p = mnt; p; p = next_mnt(p, mnt)) {
2333 if (IS_MNT_UNBINDABLE(p))
2334 return 1;
2336 return 0;
2339 static int do_move_mount(struct path *path, const char *old_name)
2341 struct path old_path, parent_path;
2342 struct mount *p;
2343 struct mount *old;
2344 struct mountpoint *mp;
2345 int err;
2346 if (!old_name || !*old_name)
2347 return -EINVAL;
2348 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2349 if (err)
2350 return err;
2352 mp = lock_mount(path);
2353 err = PTR_ERR(mp);
2354 if (IS_ERR(mp))
2355 goto out;
2357 old = real_mount(old_path.mnt);
2358 p = real_mount(path->mnt);
2360 err = -EINVAL;
2361 if (!check_mnt(p) || !check_mnt(old))
2362 goto out1;
2364 if (old->mnt.mnt_flags & MNT_LOCKED)
2365 goto out1;
2367 err = -EINVAL;
2368 if (old_path.dentry != old_path.mnt->mnt_root)
2369 goto out1;
2371 if (!mnt_has_parent(old))
2372 goto out1;
2374 if (d_is_dir(path->dentry) !=
2375 d_is_dir(old_path.dentry))
2376 goto out1;
2378 * Don't move a mount residing in a shared parent.
2380 if (IS_MNT_SHARED(old->mnt_parent))
2381 goto out1;
2383 * Don't move a mount tree containing unbindable mounts to a destination
2384 * mount which is shared.
2386 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2387 goto out1;
2388 err = -ELOOP;
2389 for (; mnt_has_parent(p); p = p->mnt_parent)
2390 if (p == old)
2391 goto out1;
2393 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2394 if (err)
2395 goto out1;
2397 /* if the mount is moved, it should no longer be expire
2398 * automatically */
2399 list_del_init(&old->mnt_expire);
2400 out1:
2401 unlock_mount(mp);
2402 out:
2403 if (!err)
2404 path_put(&parent_path);
2405 path_put(&old_path);
2406 return err;
2409 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2411 int err;
2412 const char *subtype = strchr(fstype, '.');
2413 if (subtype) {
2414 subtype++;
2415 err = -EINVAL;
2416 if (!subtype[0])
2417 goto err;
2418 } else
2419 subtype = "";
2421 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2422 err = -ENOMEM;
2423 if (!mnt->mnt_sb->s_subtype)
2424 goto err;
2425 return mnt;
2427 err:
2428 mntput(mnt);
2429 return ERR_PTR(err);
2433 * add a mount into a namespace's mount tree
2435 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2437 struct mountpoint *mp;
2438 struct mount *parent;
2439 int err;
2441 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2443 mp = lock_mount(path);
2444 if (IS_ERR(mp))
2445 return PTR_ERR(mp);
2447 parent = real_mount(path->mnt);
2448 err = -EINVAL;
2449 if (unlikely(!check_mnt(parent))) {
2450 /* that's acceptable only for automounts done in private ns */
2451 if (!(mnt_flags & MNT_SHRINKABLE))
2452 goto unlock;
2453 /* ... and for those we'd better have mountpoint still alive */
2454 if (!parent->mnt_ns)
2455 goto unlock;
2458 /* Refuse the same filesystem on the same mount point */
2459 err = -EBUSY;
2460 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2461 path->mnt->mnt_root == path->dentry)
2462 goto unlock;
2464 err = -EINVAL;
2465 if (d_is_symlink(newmnt->mnt.mnt_root))
2466 goto unlock;
2468 newmnt->mnt.mnt_flags = mnt_flags;
2469 err = graft_tree(newmnt, parent, mp);
2471 unlock:
2472 unlock_mount(mp);
2473 return err;
2476 static bool fs_fully_visible(struct file_system_type *fs_type, int *new_mnt_flags);
2479 * create a new mount for userspace and request it to be added into the
2480 * namespace's tree
2482 static int do_new_mount(struct path *path, const char *fstype, int flags,
2483 int mnt_flags, const char *name, void *data)
2485 struct file_system_type *type;
2486 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2487 struct vfsmount *mnt;
2488 int err;
2490 if (!fstype)
2491 return -EINVAL;
2493 type = get_fs_type(fstype);
2494 if (!type)
2495 return -ENODEV;
2497 if (user_ns != &init_user_ns) {
2498 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2499 put_filesystem(type);
2500 return -EPERM;
2502 /* Only in special cases allow devices from mounts
2503 * created outside the initial user namespace.
2505 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2506 flags |= MS_NODEV;
2507 mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
2509 if (type->fs_flags & FS_USERNS_VISIBLE) {
2510 if (!fs_fully_visible(type, &mnt_flags)) {
2511 put_filesystem(type);
2512 return -EPERM;
2517 mnt = vfs_kern_mount(type, flags, name, data);
2518 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2519 !mnt->mnt_sb->s_subtype)
2520 mnt = fs_set_subtype(mnt, fstype);
2522 put_filesystem(type);
2523 if (IS_ERR(mnt))
2524 return PTR_ERR(mnt);
2526 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2527 if (err)
2528 mntput(mnt);
2529 return err;
2532 int finish_automount(struct vfsmount *m, struct path *path)
2534 struct mount *mnt = real_mount(m);
2535 int err;
2536 /* The new mount record should have at least 2 refs to prevent it being
2537 * expired before we get a chance to add it
2539 BUG_ON(mnt_get_count(mnt) < 2);
2541 if (m->mnt_sb == path->mnt->mnt_sb &&
2542 m->mnt_root == path->dentry) {
2543 err = -ELOOP;
2544 goto fail;
2547 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2548 if (!err)
2549 return 0;
2550 fail:
2551 /* remove m from any expiration list it may be on */
2552 if (!list_empty(&mnt->mnt_expire)) {
2553 namespace_lock();
2554 list_del_init(&mnt->mnt_expire);
2555 namespace_unlock();
2557 mntput(m);
2558 mntput(m);
2559 return err;
2563 * mnt_set_expiry - Put a mount on an expiration list
2564 * @mnt: The mount to list.
2565 * @expiry_list: The list to add the mount to.
2567 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2569 namespace_lock();
2571 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2573 namespace_unlock();
2575 EXPORT_SYMBOL(mnt_set_expiry);
2578 * process a list of expirable mountpoints with the intent of discarding any
2579 * mountpoints that aren't in use and haven't been touched since last we came
2580 * here
2582 void mark_mounts_for_expiry(struct list_head *mounts)
2584 struct mount *mnt, *next;
2585 LIST_HEAD(graveyard);
2587 if (list_empty(mounts))
2588 return;
2590 namespace_lock();
2591 lock_mount_hash();
2593 /* extract from the expiration list every vfsmount that matches the
2594 * following criteria:
2595 * - only referenced by its parent vfsmount
2596 * - still marked for expiry (marked on the last call here; marks are
2597 * cleared by mntput())
2599 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2600 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2601 propagate_mount_busy(mnt, 1))
2602 continue;
2603 list_move(&mnt->mnt_expire, &graveyard);
2605 while (!list_empty(&graveyard)) {
2606 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2607 touch_mnt_namespace(mnt->mnt_ns);
2608 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2610 unlock_mount_hash();
2611 namespace_unlock();
2614 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2617 * Ripoff of 'select_parent()'
2619 * search the list of submounts for a given mountpoint, and move any
2620 * shrinkable submounts to the 'graveyard' list.
2622 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2624 struct mount *this_parent = parent;
2625 struct list_head *next;
2626 int found = 0;
2628 repeat:
2629 next = this_parent->mnt_mounts.next;
2630 resume:
2631 while (next != &this_parent->mnt_mounts) {
2632 struct list_head *tmp = next;
2633 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2635 next = tmp->next;
2636 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2637 continue;
2639 * Descend a level if the d_mounts list is non-empty.
2641 if (!list_empty(&mnt->mnt_mounts)) {
2642 this_parent = mnt;
2643 goto repeat;
2646 if (!propagate_mount_busy(mnt, 1)) {
2647 list_move_tail(&mnt->mnt_expire, graveyard);
2648 found++;
2652 * All done at this level ... ascend and resume the search
2654 if (this_parent != parent) {
2655 next = this_parent->mnt_child.next;
2656 this_parent = this_parent->mnt_parent;
2657 goto resume;
2659 return found;
2663 * process a list of expirable mountpoints with the intent of discarding any
2664 * submounts of a specific parent mountpoint
2666 * mount_lock must be held for write
2668 static void shrink_submounts(struct mount *mnt)
2670 LIST_HEAD(graveyard);
2671 struct mount *m;
2673 /* extract submounts of 'mountpoint' from the expiration list */
2674 while (select_submounts(mnt, &graveyard)) {
2675 while (!list_empty(&graveyard)) {
2676 m = list_first_entry(&graveyard, struct mount,
2677 mnt_expire);
2678 touch_mnt_namespace(m->mnt_ns);
2679 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2685 * Some copy_from_user() implementations do not return the exact number of
2686 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2687 * Note that this function differs from copy_from_user() in that it will oops
2688 * on bad values of `to', rather than returning a short copy.
2690 static long exact_copy_from_user(void *to, const void __user * from,
2691 unsigned long n)
2693 char *t = to;
2694 const char __user *f = from;
2695 char c;
2697 if (!access_ok(VERIFY_READ, from, n))
2698 return n;
2700 while (n) {
2701 if (__get_user(c, f)) {
2702 memset(t, 0, n);
2703 break;
2705 *t++ = c;
2706 f++;
2707 n--;
2709 return n;
2712 int copy_mount_options(const void __user * data, unsigned long *where)
2714 int i;
2715 unsigned long page;
2716 unsigned long size;
2718 *where = 0;
2719 if (!data)
2720 return 0;
2722 if (!(page = __get_free_page(GFP_KERNEL)))
2723 return -ENOMEM;
2725 /* We only care that *some* data at the address the user
2726 * gave us is valid. Just in case, we'll zero
2727 * the remainder of the page.
2729 /* copy_from_user cannot cross TASK_SIZE ! */
2730 size = TASK_SIZE - (unsigned long)data;
2731 if (size > PAGE_SIZE)
2732 size = PAGE_SIZE;
2734 i = size - exact_copy_from_user((void *)page, data, size);
2735 if (!i) {
2736 free_page(page);
2737 return -EFAULT;
2739 if (i != PAGE_SIZE)
2740 memset((char *)page + i, 0, PAGE_SIZE - i);
2741 *where = page;
2742 return 0;
2745 char *copy_mount_string(const void __user *data)
2747 return data ? strndup_user(data, PAGE_SIZE) : NULL;
2751 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2752 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2754 * data is a (void *) that can point to any structure up to
2755 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2756 * information (or be NULL).
2758 * Pre-0.97 versions of mount() didn't have a flags word.
2759 * When the flags word was introduced its top half was required
2760 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2761 * Therefore, if this magic number is present, it carries no information
2762 * and must be discarded.
2764 long do_mount(const char *dev_name, const char __user *dir_name,
2765 const char *type_page, unsigned long flags, void *data_page)
2767 struct path path;
2768 int retval = 0;
2769 int mnt_flags = 0;
2771 /* Discard magic */
2772 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2773 flags &= ~MS_MGC_MSK;
2775 /* Basic sanity checks */
2776 if (data_page)
2777 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2779 /* ... and get the mountpoint */
2780 retval = user_path(dir_name, &path);
2781 if (retval)
2782 return retval;
2784 retval = security_sb_mount(dev_name, &path,
2785 type_page, flags, data_page);
2786 if (!retval && !may_mount())
2787 retval = -EPERM;
2788 if (retval)
2789 goto dput_out;
2791 /* Default to relatime unless overriden */
2792 if (!(flags & MS_NOATIME))
2793 mnt_flags |= MNT_RELATIME;
2795 /* Separate the per-mountpoint flags */
2796 if (flags & MS_NOSUID)
2797 mnt_flags |= MNT_NOSUID;
2798 if (flags & MS_NODEV)
2799 mnt_flags |= MNT_NODEV;
2800 if (flags & MS_NOEXEC)
2801 mnt_flags |= MNT_NOEXEC;
2802 if (flags & MS_NOATIME)
2803 mnt_flags |= MNT_NOATIME;
2804 if (flags & MS_NODIRATIME)
2805 mnt_flags |= MNT_NODIRATIME;
2806 if (flags & MS_STRICTATIME)
2807 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2808 if (flags & MS_RDONLY)
2809 mnt_flags |= MNT_READONLY;
2811 /* The default atime for remount is preservation */
2812 if ((flags & MS_REMOUNT) &&
2813 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2814 MS_STRICTATIME)) == 0)) {
2815 mnt_flags &= ~MNT_ATIME_MASK;
2816 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2819 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2820 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2821 MS_STRICTATIME);
2823 if (flags & MS_REMOUNT)
2824 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2825 data_page);
2826 else if (flags & MS_BIND)
2827 retval = do_loopback(&path, dev_name, flags & MS_REC);
2828 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2829 retval = do_change_type(&path, flags);
2830 else if (flags & MS_MOVE)
2831 retval = do_move_mount(&path, dev_name);
2832 else
2833 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2834 dev_name, data_page);
2835 dput_out:
2836 path_put(&path);
2837 return retval;
2840 static void free_mnt_ns(struct mnt_namespace *ns)
2842 ns_free_inum(&ns->ns);
2843 put_user_ns(ns->user_ns);
2844 kfree(ns);
2848 * Assign a sequence number so we can detect when we attempt to bind
2849 * mount a reference to an older mount namespace into the current
2850 * mount namespace, preventing reference counting loops. A 64bit
2851 * number incrementing at 10Ghz will take 12,427 years to wrap which
2852 * is effectively never, so we can ignore the possibility.
2854 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2856 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2858 struct mnt_namespace *new_ns;
2859 int ret;
2861 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2862 if (!new_ns)
2863 return ERR_PTR(-ENOMEM);
2864 ret = ns_alloc_inum(&new_ns->ns);
2865 if (ret) {
2866 kfree(new_ns);
2867 return ERR_PTR(ret);
2869 new_ns->ns.ops = &mntns_operations;
2870 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2871 atomic_set(&new_ns->count, 1);
2872 new_ns->root = NULL;
2873 INIT_LIST_HEAD(&new_ns->list);
2874 init_waitqueue_head(&new_ns->poll);
2875 new_ns->event = 0;
2876 new_ns->user_ns = get_user_ns(user_ns);
2877 new_ns->mounts = 0;
2878 new_ns->pending_mounts = 0;
2879 return new_ns;
2882 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2883 struct user_namespace *user_ns, struct fs_struct *new_fs)
2885 struct mnt_namespace *new_ns;
2886 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2887 struct mount *p, *q;
2888 struct mount *old;
2889 struct mount *new;
2890 int copy_flags;
2892 BUG_ON(!ns);
2894 if (likely(!(flags & CLONE_NEWNS))) {
2895 get_mnt_ns(ns);
2896 return ns;
2899 old = ns->root;
2901 new_ns = alloc_mnt_ns(user_ns);
2902 if (IS_ERR(new_ns))
2903 return new_ns;
2905 namespace_lock();
2906 /* First pass: copy the tree topology */
2907 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2908 if (user_ns != ns->user_ns)
2909 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2910 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2911 if (IS_ERR(new)) {
2912 namespace_unlock();
2913 free_mnt_ns(new_ns);
2914 return ERR_CAST(new);
2916 new_ns->root = new;
2917 list_add_tail(&new_ns->list, &new->mnt_list);
2920 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2921 * as belonging to new namespace. We have already acquired a private
2922 * fs_struct, so tsk->fs->lock is not needed.
2924 p = old;
2925 q = new;
2926 while (p) {
2927 q->mnt_ns = new_ns;
2928 new_ns->mounts++;
2929 if (new_fs) {
2930 if (&p->mnt == new_fs->root.mnt) {
2931 new_fs->root.mnt = mntget(&q->mnt);
2932 rootmnt = &p->mnt;
2934 if (&p->mnt == new_fs->pwd.mnt) {
2935 new_fs->pwd.mnt = mntget(&q->mnt);
2936 pwdmnt = &p->mnt;
2939 p = next_mnt(p, old);
2940 q = next_mnt(q, new);
2941 if (!q)
2942 break;
2943 while (p->mnt.mnt_root != q->mnt.mnt_root)
2944 p = next_mnt(p, old);
2946 namespace_unlock();
2948 if (rootmnt)
2949 mntput(rootmnt);
2950 if (pwdmnt)
2951 mntput(pwdmnt);
2953 return new_ns;
2957 * create_mnt_ns - creates a private namespace and adds a root filesystem
2958 * @mnt: pointer to the new root filesystem mountpoint
2960 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2962 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2963 if (!IS_ERR(new_ns)) {
2964 struct mount *mnt = real_mount(m);
2965 mnt->mnt_ns = new_ns;
2966 new_ns->root = mnt;
2967 new_ns->mounts++;
2968 list_add(&mnt->mnt_list, &new_ns->list);
2969 } else {
2970 mntput(m);
2972 return new_ns;
2975 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2977 struct mnt_namespace *ns;
2978 struct super_block *s;
2979 struct path path;
2980 int err;
2982 ns = create_mnt_ns(mnt);
2983 if (IS_ERR(ns))
2984 return ERR_CAST(ns);
2986 err = vfs_path_lookup(mnt->mnt_root, mnt,
2987 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2989 put_mnt_ns(ns);
2991 if (err)
2992 return ERR_PTR(err);
2994 /* trade a vfsmount reference for active sb one */
2995 s = path.mnt->mnt_sb;
2996 atomic_inc(&s->s_active);
2997 mntput(path.mnt);
2998 /* lock the sucker */
2999 down_write(&s->s_umount);
3000 /* ... and return the root of (sub)tree on it */
3001 return path.dentry;
3003 EXPORT_SYMBOL(mount_subtree);
3005 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3006 char __user *, type, unsigned long, flags, void __user *, data)
3008 int ret;
3009 char *kernel_type;
3010 char *kernel_dev;
3011 unsigned long data_page;
3013 kernel_type = copy_mount_string(type);
3014 ret = PTR_ERR(kernel_type);
3015 if (IS_ERR(kernel_type))
3016 goto out_type;
3018 kernel_dev = copy_mount_string(dev_name);
3019 ret = PTR_ERR(kernel_dev);
3020 if (IS_ERR(kernel_dev))
3021 goto out_dev;
3023 ret = copy_mount_options(data, &data_page);
3024 if (ret < 0)
3025 goto out_data;
3027 ret = do_mount(kernel_dev, dir_name, kernel_type, flags,
3028 (void *) data_page);
3030 free_page(data_page);
3031 out_data:
3032 kfree(kernel_dev);
3033 out_dev:
3034 kfree(kernel_type);
3035 out_type:
3036 return ret;
3040 * Return true if path is reachable from root
3042 * namespace_sem or mount_lock is held
3044 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3045 const struct path *root)
3047 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3048 dentry = mnt->mnt_mountpoint;
3049 mnt = mnt->mnt_parent;
3051 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3054 int path_is_under(struct path *path1, struct path *path2)
3056 int res;
3057 read_seqlock_excl(&mount_lock);
3058 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3059 read_sequnlock_excl(&mount_lock);
3060 return res;
3062 EXPORT_SYMBOL(path_is_under);
3065 * pivot_root Semantics:
3066 * Moves the root file system of the current process to the directory put_old,
3067 * makes new_root as the new root file system of the current process, and sets
3068 * root/cwd of all processes which had them on the current root to new_root.
3070 * Restrictions:
3071 * The new_root and put_old must be directories, and must not be on the
3072 * same file system as the current process root. The put_old must be
3073 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3074 * pointed to by put_old must yield the same directory as new_root. No other
3075 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3077 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3078 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3079 * in this situation.
3081 * Notes:
3082 * - we don't move root/cwd if they are not at the root (reason: if something
3083 * cared enough to change them, it's probably wrong to force them elsewhere)
3084 * - it's okay to pick a root that isn't the root of a file system, e.g.
3085 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3086 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3087 * first.
3089 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3090 const char __user *, put_old)
3092 struct path new, old, parent_path, root_parent, root;
3093 struct mount *new_mnt, *root_mnt, *old_mnt;
3094 struct mountpoint *old_mp, *root_mp;
3095 int error;
3097 if (!may_mount())
3098 return -EPERM;
3100 error = user_path_dir(new_root, &new);
3101 if (error)
3102 goto out0;
3104 error = user_path_dir(put_old, &old);
3105 if (error)
3106 goto out1;
3108 error = security_sb_pivotroot(&old, &new);
3109 if (error)
3110 goto out2;
3112 get_fs_root(current->fs, &root);
3113 old_mp = lock_mount(&old);
3114 error = PTR_ERR(old_mp);
3115 if (IS_ERR(old_mp))
3116 goto out3;
3118 error = -EINVAL;
3119 new_mnt = real_mount(new.mnt);
3120 root_mnt = real_mount(root.mnt);
3121 old_mnt = real_mount(old.mnt);
3122 if (IS_MNT_SHARED(old_mnt) ||
3123 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3124 IS_MNT_SHARED(root_mnt->mnt_parent))
3125 goto out4;
3126 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3127 goto out4;
3128 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3129 goto out4;
3130 error = -ENOENT;
3131 if (d_unlinked(new.dentry))
3132 goto out4;
3133 error = -EBUSY;
3134 if (new_mnt == root_mnt || old_mnt == root_mnt)
3135 goto out4; /* loop, on the same file system */
3136 error = -EINVAL;
3137 if (root.mnt->mnt_root != root.dentry)
3138 goto out4; /* not a mountpoint */
3139 if (!mnt_has_parent(root_mnt))
3140 goto out4; /* not attached */
3141 root_mp = root_mnt->mnt_mp;
3142 if (new.mnt->mnt_root != new.dentry)
3143 goto out4; /* not a mountpoint */
3144 if (!mnt_has_parent(new_mnt))
3145 goto out4; /* not attached */
3146 /* make sure we can reach put_old from new_root */
3147 if (!is_path_reachable(old_mnt, old.dentry, &new))
3148 goto out4;
3149 /* make certain new is below the root */
3150 if (!is_path_reachable(new_mnt, new.dentry, &root))
3151 goto out4;
3152 root_mp->m_count++; /* pin it so it won't go away */
3153 lock_mount_hash();
3154 detach_mnt(new_mnt, &parent_path);
3155 detach_mnt(root_mnt, &root_parent);
3156 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3157 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3158 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3160 /* mount old root on put_old */
3161 attach_mnt(root_mnt, old_mnt, old_mp);
3162 /* mount new_root on / */
3163 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3164 touch_mnt_namespace(current->nsproxy->mnt_ns);
3165 /* A moved mount should not expire automatically */
3166 list_del_init(&new_mnt->mnt_expire);
3167 put_mountpoint(root_mp);
3168 unlock_mount_hash();
3169 chroot_fs_refs(&root, &new);
3170 error = 0;
3171 out4:
3172 unlock_mount(old_mp);
3173 if (!error) {
3174 path_put(&root_parent);
3175 path_put(&parent_path);
3177 out3:
3178 path_put(&root);
3179 out2:
3180 path_put(&old);
3181 out1:
3182 path_put(&new);
3183 out0:
3184 return error;
3187 static void __init init_mount_tree(void)
3189 struct vfsmount *mnt;
3190 struct mnt_namespace *ns;
3191 struct path root;
3192 struct file_system_type *type;
3194 type = get_fs_type("rootfs");
3195 if (!type)
3196 panic("Can't find rootfs type");
3197 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3198 put_filesystem(type);
3199 if (IS_ERR(mnt))
3200 panic("Can't create rootfs");
3202 ns = create_mnt_ns(mnt);
3203 if (IS_ERR(ns))
3204 panic("Can't allocate initial namespace");
3206 init_task.nsproxy->mnt_ns = ns;
3207 get_mnt_ns(ns);
3209 root.mnt = mnt;
3210 root.dentry = mnt->mnt_root;
3211 mnt->mnt_flags |= MNT_LOCKED;
3213 set_fs_pwd(current->fs, &root);
3214 set_fs_root(current->fs, &root);
3217 void __init mnt_init(void)
3219 unsigned u;
3220 int err;
3222 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3223 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3225 mount_hashtable = alloc_large_system_hash("Mount-cache",
3226 sizeof(struct hlist_head),
3227 mhash_entries, 19,
3229 &m_hash_shift, &m_hash_mask, 0, 0);
3230 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3231 sizeof(struct hlist_head),
3232 mphash_entries, 19,
3234 &mp_hash_shift, &mp_hash_mask, 0, 0);
3236 if (!mount_hashtable || !mountpoint_hashtable)
3237 panic("Failed to allocate mount hash table\n");
3239 for (u = 0; u <= m_hash_mask; u++)
3240 INIT_HLIST_HEAD(&mount_hashtable[u]);
3241 for (u = 0; u <= mp_hash_mask; u++)
3242 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
3244 kernfs_init();
3246 err = sysfs_init();
3247 if (err)
3248 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3249 __func__, err);
3250 fs_kobj = kobject_create_and_add("fs", NULL);
3251 if (!fs_kobj)
3252 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3253 init_rootfs();
3254 init_mount_tree();
3257 void put_mnt_ns(struct mnt_namespace *ns)
3259 if (!atomic_dec_and_test(&ns->count))
3260 return;
3261 drop_collected_mounts(&ns->root->mnt);
3262 free_mnt_ns(ns);
3265 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3267 struct vfsmount *mnt;
3268 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3269 if (!IS_ERR(mnt)) {
3271 * it is a longterm mount, don't release mnt until
3272 * we unmount before file sys is unregistered
3274 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3276 return mnt;
3278 EXPORT_SYMBOL_GPL(kern_mount_data);
3280 void kern_unmount(struct vfsmount *mnt)
3282 /* release long term mount so mount point can be released */
3283 if (!IS_ERR_OR_NULL(mnt)) {
3284 real_mount(mnt)->mnt_ns = NULL;
3285 synchronize_rcu(); /* yecchhh... */
3286 mntput(mnt);
3289 EXPORT_SYMBOL(kern_unmount);
3291 bool our_mnt(struct vfsmount *mnt)
3293 return check_mnt(real_mount(mnt));
3296 bool current_chrooted(void)
3298 /* Does the current process have a non-standard root */
3299 struct path ns_root;
3300 struct path fs_root;
3301 bool chrooted;
3303 /* Find the namespace root */
3304 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3305 ns_root.dentry = ns_root.mnt->mnt_root;
3306 path_get(&ns_root);
3307 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3310 get_fs_root(current->fs, &fs_root);
3312 chrooted = !path_equal(&fs_root, &ns_root);
3314 path_put(&fs_root);
3315 path_put(&ns_root);
3317 return chrooted;
3320 static bool fs_fully_visible(struct file_system_type *type, int *new_mnt_flags)
3322 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3323 int new_flags = *new_mnt_flags;
3324 struct mount *mnt;
3325 bool visible = false;
3327 if (unlikely(!ns))
3328 return false;
3330 down_read(&namespace_sem);
3331 list_for_each_entry(mnt, &ns->list, mnt_list) {
3332 struct mount *child;
3333 int mnt_flags;
3335 if (mnt->mnt.mnt_sb->s_type != type)
3336 continue;
3338 /* This mount is not fully visible if it's root directory
3339 * is not the root directory of the filesystem.
3341 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3342 continue;
3344 /* Read the mount flags and filter out flags that
3345 * may safely be ignored.
3347 mnt_flags = mnt->mnt.mnt_flags;
3348 if (mnt->mnt.mnt_sb->s_iflags & SB_I_NOEXEC)
3349 mnt_flags &= ~(MNT_LOCK_NOSUID | MNT_LOCK_NOEXEC);
3351 /* Don't miss readonly hidden in the superblock flags */
3352 if (mnt->mnt.mnt_sb->s_flags & MS_RDONLY)
3353 mnt_flags |= MNT_LOCK_READONLY;
3355 /* Verify the mount flags are equal to or more permissive
3356 * than the proposed new mount.
3358 if ((mnt_flags & MNT_LOCK_READONLY) &&
3359 !(new_flags & MNT_READONLY))
3360 continue;
3361 if ((mnt_flags & MNT_LOCK_NODEV) &&
3362 !(new_flags & MNT_NODEV))
3363 continue;
3364 if ((mnt_flags & MNT_LOCK_NOSUID) &&
3365 !(new_flags & MNT_NOSUID))
3366 continue;
3367 if ((mnt_flags & MNT_LOCK_NOEXEC) &&
3368 !(new_flags & MNT_NOEXEC))
3369 continue;
3370 if ((mnt_flags & MNT_LOCK_ATIME) &&
3371 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3372 continue;
3374 /* This mount is not fully visible if there are any
3375 * locked child mounts that cover anything except for
3376 * empty directories.
3378 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3379 struct inode *inode = child->mnt_mountpoint->d_inode;
3380 /* Only worry about locked mounts */
3381 if (!(child->mnt.mnt_flags & MNT_LOCKED))
3382 continue;
3383 /* Is the directory permanetly empty? */
3384 if (!is_empty_dir_inode(inode))
3385 goto next;
3387 /* Preserve the locked attributes */
3388 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3389 MNT_LOCK_NODEV | \
3390 MNT_LOCK_NOSUID | \
3391 MNT_LOCK_NOEXEC | \
3392 MNT_LOCK_ATIME);
3393 visible = true;
3394 goto found;
3395 next: ;
3397 found:
3398 up_read(&namespace_sem);
3399 return visible;
3402 static struct ns_common *mntns_get(struct task_struct *task)
3404 struct ns_common *ns = NULL;
3405 struct nsproxy *nsproxy;
3407 task_lock(task);
3408 nsproxy = task->nsproxy;
3409 if (nsproxy) {
3410 ns = &nsproxy->mnt_ns->ns;
3411 get_mnt_ns(to_mnt_ns(ns));
3413 task_unlock(task);
3415 return ns;
3418 static void mntns_put(struct ns_common *ns)
3420 put_mnt_ns(to_mnt_ns(ns));
3423 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3425 struct fs_struct *fs = current->fs;
3426 struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
3427 struct path root;
3429 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3430 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3431 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3432 return -EPERM;
3434 if (fs->users != 1)
3435 return -EINVAL;
3437 get_mnt_ns(mnt_ns);
3438 put_mnt_ns(nsproxy->mnt_ns);
3439 nsproxy->mnt_ns = mnt_ns;
3441 /* Find the root */
3442 root.mnt = &mnt_ns->root->mnt;
3443 root.dentry = mnt_ns->root->mnt.mnt_root;
3444 path_get(&root);
3445 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3448 /* Update the pwd and root */
3449 set_fs_pwd(fs, &root);
3450 set_fs_root(fs, &root);
3452 path_put(&root);
3453 return 0;
3456 const struct proc_ns_operations mntns_operations = {
3457 .name = "mnt",
3458 .type = CLONE_NEWNS,
3459 .get = mntns_get,
3460 .put = mntns_put,
3461 .install = mntns_install,