dm thin metadata: fix __udivdi3 undefined on 32-bit
[linux/fpc-iii.git] / fs / nfs / dir.c
blobc690a1c0c4e5fd6c32bf93d3a0bb2cb9d20bcd61
1 /*
2 * linux/fs/nfs/dir.c
4 * Copyright (C) 1992 Rick Sladkey
6 * nfs directory handling functions
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/errno.h>
23 #include <linux/stat.h>
24 #include <linux/fcntl.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/mm.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/nfs_fs.h>
31 #include <linux/nfs_mount.h>
32 #include <linux/pagemap.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/swap.h>
37 #include <linux/sched.h>
38 #include <linux/kmemleak.h>
39 #include <linux/xattr.h>
41 #include "delegation.h"
42 #include "iostat.h"
43 #include "internal.h"
44 #include "fscache.h"
46 #include "nfstrace.h"
48 /* #define NFS_DEBUG_VERBOSE 1 */
50 static int nfs_opendir(struct inode *, struct file *);
51 static int nfs_closedir(struct inode *, struct file *);
52 static int nfs_readdir(struct file *, struct dir_context *);
53 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
54 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
55 static void nfs_readdir_clear_array(struct page*);
57 const struct file_operations nfs_dir_operations = {
58 .llseek = nfs_llseek_dir,
59 .read = generic_read_dir,
60 .iterate = nfs_readdir,
61 .open = nfs_opendir,
62 .release = nfs_closedir,
63 .fsync = nfs_fsync_dir,
66 const struct address_space_operations nfs_dir_aops = {
67 .freepage = nfs_readdir_clear_array,
70 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
72 struct nfs_inode *nfsi = NFS_I(dir);
73 struct nfs_open_dir_context *ctx;
74 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
75 if (ctx != NULL) {
76 ctx->duped = 0;
77 ctx->attr_gencount = nfsi->attr_gencount;
78 ctx->dir_cookie = 0;
79 ctx->dup_cookie = 0;
80 ctx->cred = get_rpccred(cred);
81 spin_lock(&dir->i_lock);
82 list_add(&ctx->list, &nfsi->open_files);
83 spin_unlock(&dir->i_lock);
84 return ctx;
86 return ERR_PTR(-ENOMEM);
89 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
91 spin_lock(&dir->i_lock);
92 list_del(&ctx->list);
93 spin_unlock(&dir->i_lock);
94 put_rpccred(ctx->cred);
95 kfree(ctx);
99 * Open file
101 static int
102 nfs_opendir(struct inode *inode, struct file *filp)
104 int res = 0;
105 struct nfs_open_dir_context *ctx;
106 struct rpc_cred *cred;
108 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
110 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
112 cred = rpc_lookup_cred();
113 if (IS_ERR(cred))
114 return PTR_ERR(cred);
115 ctx = alloc_nfs_open_dir_context(inode, cred);
116 if (IS_ERR(ctx)) {
117 res = PTR_ERR(ctx);
118 goto out;
120 filp->private_data = ctx;
121 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
122 /* This is a mountpoint, so d_revalidate will never
123 * have been called, so we need to refresh the
124 * inode (for close-open consistency) ourselves.
126 __nfs_revalidate_inode(NFS_SERVER(inode), inode);
128 out:
129 put_rpccred(cred);
130 return res;
133 static int
134 nfs_closedir(struct inode *inode, struct file *filp)
136 put_nfs_open_dir_context(file_inode(filp), filp->private_data);
137 return 0;
140 struct nfs_cache_array_entry {
141 u64 cookie;
142 u64 ino;
143 struct qstr string;
144 unsigned char d_type;
147 struct nfs_cache_array {
148 int size;
149 int eof_index;
150 u64 last_cookie;
151 struct nfs_cache_array_entry array[0];
154 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
155 typedef struct {
156 struct file *file;
157 struct page *page;
158 struct dir_context *ctx;
159 unsigned long page_index;
160 u64 *dir_cookie;
161 u64 last_cookie;
162 loff_t current_index;
163 decode_dirent_t decode;
165 unsigned long timestamp;
166 unsigned long gencount;
167 unsigned int cache_entry_index;
168 unsigned int plus:1;
169 unsigned int eof:1;
170 } nfs_readdir_descriptor_t;
173 * The caller is responsible for calling nfs_readdir_release_array(page)
175 static
176 struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
178 void *ptr;
179 if (page == NULL)
180 return ERR_PTR(-EIO);
181 ptr = kmap(page);
182 if (ptr == NULL)
183 return ERR_PTR(-ENOMEM);
184 return ptr;
187 static
188 void nfs_readdir_release_array(struct page *page)
190 kunmap(page);
194 * we are freeing strings created by nfs_add_to_readdir_array()
196 static
197 void nfs_readdir_clear_array(struct page *page)
199 struct nfs_cache_array *array;
200 int i;
202 array = kmap_atomic(page);
203 for (i = 0; i < array->size; i++)
204 kfree(array->array[i].string.name);
205 kunmap_atomic(array);
209 * the caller is responsible for freeing qstr.name
210 * when called by nfs_readdir_add_to_array, the strings will be freed in
211 * nfs_clear_readdir_array()
213 static
214 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
216 string->len = len;
217 string->name = kmemdup(name, len, GFP_KERNEL);
218 if (string->name == NULL)
219 return -ENOMEM;
221 * Avoid a kmemleak false positive. The pointer to the name is stored
222 * in a page cache page which kmemleak does not scan.
224 kmemleak_not_leak(string->name);
225 string->hash = full_name_hash(name, len);
226 return 0;
229 static
230 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
232 struct nfs_cache_array *array = nfs_readdir_get_array(page);
233 struct nfs_cache_array_entry *cache_entry;
234 int ret;
236 if (IS_ERR(array))
237 return PTR_ERR(array);
239 cache_entry = &array->array[array->size];
241 /* Check that this entry lies within the page bounds */
242 ret = -ENOSPC;
243 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
244 goto out;
246 cache_entry->cookie = entry->prev_cookie;
247 cache_entry->ino = entry->ino;
248 cache_entry->d_type = entry->d_type;
249 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
250 if (ret)
251 goto out;
252 array->last_cookie = entry->cookie;
253 array->size++;
254 if (entry->eof != 0)
255 array->eof_index = array->size;
256 out:
257 nfs_readdir_release_array(page);
258 return ret;
261 static
262 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
264 loff_t diff = desc->ctx->pos - desc->current_index;
265 unsigned int index;
267 if (diff < 0)
268 goto out_eof;
269 if (diff >= array->size) {
270 if (array->eof_index >= 0)
271 goto out_eof;
272 return -EAGAIN;
275 index = (unsigned int)diff;
276 *desc->dir_cookie = array->array[index].cookie;
277 desc->cache_entry_index = index;
278 return 0;
279 out_eof:
280 desc->eof = 1;
281 return -EBADCOOKIE;
284 static bool
285 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
287 if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
288 return false;
289 smp_rmb();
290 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
293 static
294 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
296 int i;
297 loff_t new_pos;
298 int status = -EAGAIN;
300 for (i = 0; i < array->size; i++) {
301 if (array->array[i].cookie == *desc->dir_cookie) {
302 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
303 struct nfs_open_dir_context *ctx = desc->file->private_data;
305 new_pos = desc->current_index + i;
306 if (ctx->attr_gencount != nfsi->attr_gencount ||
307 !nfs_readdir_inode_mapping_valid(nfsi)) {
308 ctx->duped = 0;
309 ctx->attr_gencount = nfsi->attr_gencount;
310 } else if (new_pos < desc->ctx->pos) {
311 if (ctx->duped > 0
312 && ctx->dup_cookie == *desc->dir_cookie) {
313 if (printk_ratelimit()) {
314 pr_notice("NFS: directory %pD2 contains a readdir loop."
315 "Please contact your server vendor. "
316 "The file: %.*s has duplicate cookie %llu\n",
317 desc->file, array->array[i].string.len,
318 array->array[i].string.name, *desc->dir_cookie);
320 status = -ELOOP;
321 goto out;
323 ctx->dup_cookie = *desc->dir_cookie;
324 ctx->duped = -1;
326 desc->ctx->pos = new_pos;
327 desc->cache_entry_index = i;
328 return 0;
331 if (array->eof_index >= 0) {
332 status = -EBADCOOKIE;
333 if (*desc->dir_cookie == array->last_cookie)
334 desc->eof = 1;
336 out:
337 return status;
340 static
341 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
343 struct nfs_cache_array *array;
344 int status;
346 array = nfs_readdir_get_array(desc->page);
347 if (IS_ERR(array)) {
348 status = PTR_ERR(array);
349 goto out;
352 if (*desc->dir_cookie == 0)
353 status = nfs_readdir_search_for_pos(array, desc);
354 else
355 status = nfs_readdir_search_for_cookie(array, desc);
357 if (status == -EAGAIN) {
358 desc->last_cookie = array->last_cookie;
359 desc->current_index += array->size;
360 desc->page_index++;
362 nfs_readdir_release_array(desc->page);
363 out:
364 return status;
367 /* Fill a page with xdr information before transferring to the cache page */
368 static
369 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
370 struct nfs_entry *entry, struct file *file, struct inode *inode)
372 struct nfs_open_dir_context *ctx = file->private_data;
373 struct rpc_cred *cred = ctx->cred;
374 unsigned long timestamp, gencount;
375 int error;
377 again:
378 timestamp = jiffies;
379 gencount = nfs_inc_attr_generation_counter();
380 error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
381 NFS_SERVER(inode)->dtsize, desc->plus);
382 if (error < 0) {
383 /* We requested READDIRPLUS, but the server doesn't grok it */
384 if (error == -ENOTSUPP && desc->plus) {
385 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
386 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
387 desc->plus = 0;
388 goto again;
390 goto error;
392 desc->timestamp = timestamp;
393 desc->gencount = gencount;
394 error:
395 return error;
398 static int xdr_decode(nfs_readdir_descriptor_t *desc,
399 struct nfs_entry *entry, struct xdr_stream *xdr)
401 int error;
403 error = desc->decode(xdr, entry, desc->plus);
404 if (error)
405 return error;
406 entry->fattr->time_start = desc->timestamp;
407 entry->fattr->gencount = desc->gencount;
408 return 0;
411 /* Match file and dirent using either filehandle or fileid
412 * Note: caller is responsible for checking the fsid
414 static
415 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
417 struct nfs_inode *nfsi;
419 if (d_really_is_negative(dentry))
420 return 0;
422 nfsi = NFS_I(d_inode(dentry));
423 if (entry->fattr->fileid == nfsi->fileid)
424 return 1;
425 if (nfs_compare_fh(entry->fh, &nfsi->fh) == 0)
426 return 1;
427 return 0;
430 static
431 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
433 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
434 return false;
435 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
436 return true;
437 if (ctx->pos == 0)
438 return true;
439 return false;
443 * This function is called by the lookup code to request the use of
444 * readdirplus to accelerate any future lookups in the same
445 * directory.
447 static
448 void nfs_advise_use_readdirplus(struct inode *dir)
450 set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags);
454 * This function is mainly for use by nfs_getattr().
456 * If this is an 'ls -l', we want to force use of readdirplus.
457 * Do this by checking if there is an active file descriptor
458 * and calling nfs_advise_use_readdirplus, then forcing a
459 * cache flush.
461 void nfs_force_use_readdirplus(struct inode *dir)
463 if (!list_empty(&NFS_I(dir)->open_files)) {
464 nfs_advise_use_readdirplus(dir);
465 invalidate_mapping_pages(dir->i_mapping, 0, -1);
469 static
470 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
472 struct qstr filename = QSTR_INIT(entry->name, entry->len);
473 struct dentry *dentry;
474 struct dentry *alias;
475 struct inode *dir = d_inode(parent);
476 struct inode *inode;
477 int status;
479 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
480 return;
481 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
482 return;
483 if (filename.name[0] == '.') {
484 if (filename.len == 1)
485 return;
486 if (filename.len == 2 && filename.name[1] == '.')
487 return;
489 filename.hash = full_name_hash(filename.name, filename.len);
491 dentry = d_lookup(parent, &filename);
492 if (dentry != NULL) {
493 /* Is there a mountpoint here? If so, just exit */
494 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
495 &entry->fattr->fsid))
496 goto out;
497 if (nfs_same_file(dentry, entry)) {
498 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
499 status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
500 if (!status)
501 nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
502 goto out;
503 } else {
504 d_invalidate(dentry);
505 dput(dentry);
509 dentry = d_alloc(parent, &filename);
510 if (dentry == NULL)
511 return;
513 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
514 if (IS_ERR(inode))
515 goto out;
517 alias = d_splice_alias(inode, dentry);
518 if (IS_ERR(alias))
519 goto out;
520 else if (alias) {
521 nfs_set_verifier(alias, nfs_save_change_attribute(dir));
522 dput(alias);
523 } else
524 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
526 out:
527 dput(dentry);
530 /* Perform conversion from xdr to cache array */
531 static
532 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
533 struct page **xdr_pages, struct page *page, unsigned int buflen)
535 struct xdr_stream stream;
536 struct xdr_buf buf;
537 struct page *scratch;
538 struct nfs_cache_array *array;
539 unsigned int count = 0;
540 int status;
542 scratch = alloc_page(GFP_KERNEL);
543 if (scratch == NULL)
544 return -ENOMEM;
546 if (buflen == 0)
547 goto out_nopages;
549 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
550 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
552 do {
553 status = xdr_decode(desc, entry, &stream);
554 if (status != 0) {
555 if (status == -EAGAIN)
556 status = 0;
557 break;
560 count++;
562 if (desc->plus != 0)
563 nfs_prime_dcache(file_dentry(desc->file), entry);
565 status = nfs_readdir_add_to_array(entry, page);
566 if (status != 0)
567 break;
568 } while (!entry->eof);
570 out_nopages:
571 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
572 array = nfs_readdir_get_array(page);
573 if (!IS_ERR(array)) {
574 array->eof_index = array->size;
575 status = 0;
576 nfs_readdir_release_array(page);
577 } else
578 status = PTR_ERR(array);
581 put_page(scratch);
582 return status;
585 static
586 void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
588 unsigned int i;
589 for (i = 0; i < npages; i++)
590 put_page(pages[i]);
594 * nfs_readdir_large_page will allocate pages that must be freed with a call
595 * to nfs_readdir_free_pagearray
597 static
598 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
600 unsigned int i;
602 for (i = 0; i < npages; i++) {
603 struct page *page = alloc_page(GFP_KERNEL);
604 if (page == NULL)
605 goto out_freepages;
606 pages[i] = page;
608 return 0;
610 out_freepages:
611 nfs_readdir_free_pages(pages, i);
612 return -ENOMEM;
615 static
616 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
618 struct page *pages[NFS_MAX_READDIR_PAGES];
619 struct nfs_entry entry;
620 struct file *file = desc->file;
621 struct nfs_cache_array *array;
622 int status = -ENOMEM;
623 unsigned int array_size = ARRAY_SIZE(pages);
625 entry.prev_cookie = 0;
626 entry.cookie = desc->last_cookie;
627 entry.eof = 0;
628 entry.fh = nfs_alloc_fhandle();
629 entry.fattr = nfs_alloc_fattr();
630 entry.server = NFS_SERVER(inode);
631 if (entry.fh == NULL || entry.fattr == NULL)
632 goto out;
634 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
635 if (IS_ERR(entry.label)) {
636 status = PTR_ERR(entry.label);
637 goto out;
640 array = nfs_readdir_get_array(page);
641 if (IS_ERR(array)) {
642 status = PTR_ERR(array);
643 goto out_label_free;
645 memset(array, 0, sizeof(struct nfs_cache_array));
646 array->eof_index = -1;
648 status = nfs_readdir_alloc_pages(pages, array_size);
649 if (status < 0)
650 goto out_release_array;
651 do {
652 unsigned int pglen;
653 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
655 if (status < 0)
656 break;
657 pglen = status;
658 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
659 if (status < 0) {
660 if (status == -ENOSPC)
661 status = 0;
662 break;
664 } while (array->eof_index < 0);
666 nfs_readdir_free_pages(pages, array_size);
667 out_release_array:
668 nfs_readdir_release_array(page);
669 out_label_free:
670 nfs4_label_free(entry.label);
671 out:
672 nfs_free_fattr(entry.fattr);
673 nfs_free_fhandle(entry.fh);
674 return status;
678 * Now we cache directories properly, by converting xdr information
679 * to an array that can be used for lookups later. This results in
680 * fewer cache pages, since we can store more information on each page.
681 * We only need to convert from xdr once so future lookups are much simpler
683 static
684 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
686 struct inode *inode = file_inode(desc->file);
687 int ret;
689 ret = nfs_readdir_xdr_to_array(desc, page, inode);
690 if (ret < 0)
691 goto error;
692 SetPageUptodate(page);
694 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
695 /* Should never happen */
696 nfs_zap_mapping(inode, inode->i_mapping);
698 unlock_page(page);
699 return 0;
700 error:
701 unlock_page(page);
702 return ret;
705 static
706 void cache_page_release(nfs_readdir_descriptor_t *desc)
708 if (!desc->page->mapping)
709 nfs_readdir_clear_array(desc->page);
710 page_cache_release(desc->page);
711 desc->page = NULL;
714 static
715 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
717 return read_cache_page(file_inode(desc->file)->i_mapping,
718 desc->page_index, (filler_t *)nfs_readdir_filler, desc);
722 * Returns 0 if desc->dir_cookie was found on page desc->page_index
724 static
725 int find_cache_page(nfs_readdir_descriptor_t *desc)
727 int res;
729 desc->page = get_cache_page(desc);
730 if (IS_ERR(desc->page))
731 return PTR_ERR(desc->page);
733 res = nfs_readdir_search_array(desc);
734 if (res != 0)
735 cache_page_release(desc);
736 return res;
739 /* Search for desc->dir_cookie from the beginning of the page cache */
740 static inline
741 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
743 int res;
745 if (desc->page_index == 0) {
746 desc->current_index = 0;
747 desc->last_cookie = 0;
749 do {
750 res = find_cache_page(desc);
751 } while (res == -EAGAIN);
752 return res;
756 * Once we've found the start of the dirent within a page: fill 'er up...
758 static
759 int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
761 struct file *file = desc->file;
762 int i = 0;
763 int res = 0;
764 struct nfs_cache_array *array = NULL;
765 struct nfs_open_dir_context *ctx = file->private_data;
767 array = nfs_readdir_get_array(desc->page);
768 if (IS_ERR(array)) {
769 res = PTR_ERR(array);
770 goto out;
773 for (i = desc->cache_entry_index; i < array->size; i++) {
774 struct nfs_cache_array_entry *ent;
776 ent = &array->array[i];
777 if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
778 nfs_compat_user_ino64(ent->ino), ent->d_type)) {
779 desc->eof = 1;
780 break;
782 desc->ctx->pos++;
783 if (i < (array->size-1))
784 *desc->dir_cookie = array->array[i+1].cookie;
785 else
786 *desc->dir_cookie = array->last_cookie;
787 if (ctx->duped != 0)
788 ctx->duped = 1;
790 if (array->eof_index >= 0)
791 desc->eof = 1;
793 nfs_readdir_release_array(desc->page);
794 out:
795 cache_page_release(desc);
796 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
797 (unsigned long long)*desc->dir_cookie, res);
798 return res;
802 * If we cannot find a cookie in our cache, we suspect that this is
803 * because it points to a deleted file, so we ask the server to return
804 * whatever it thinks is the next entry. We then feed this to filldir.
805 * If all goes well, we should then be able to find our way round the
806 * cache on the next call to readdir_search_pagecache();
808 * NOTE: we cannot add the anonymous page to the pagecache because
809 * the data it contains might not be page aligned. Besides,
810 * we should already have a complete representation of the
811 * directory in the page cache by the time we get here.
813 static inline
814 int uncached_readdir(nfs_readdir_descriptor_t *desc)
816 struct page *page = NULL;
817 int status;
818 struct inode *inode = file_inode(desc->file);
819 struct nfs_open_dir_context *ctx = desc->file->private_data;
821 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
822 (unsigned long long)*desc->dir_cookie);
824 page = alloc_page(GFP_HIGHUSER);
825 if (!page) {
826 status = -ENOMEM;
827 goto out;
830 desc->page_index = 0;
831 desc->last_cookie = *desc->dir_cookie;
832 desc->page = page;
833 ctx->duped = 0;
835 status = nfs_readdir_xdr_to_array(desc, page, inode);
836 if (status < 0)
837 goto out_release;
839 status = nfs_do_filldir(desc);
841 out:
842 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
843 __func__, status);
844 return status;
845 out_release:
846 cache_page_release(desc);
847 goto out;
850 /* The file offset position represents the dirent entry number. A
851 last cookie cache takes care of the common case of reading the
852 whole directory.
854 static int nfs_readdir(struct file *file, struct dir_context *ctx)
856 struct dentry *dentry = file_dentry(file);
857 struct inode *inode = d_inode(dentry);
858 nfs_readdir_descriptor_t my_desc,
859 *desc = &my_desc;
860 struct nfs_open_dir_context *dir_ctx = file->private_data;
861 int res = 0;
863 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
864 file, (long long)ctx->pos);
865 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
868 * ctx->pos points to the dirent entry number.
869 * *desc->dir_cookie has the cookie for the next entry. We have
870 * to either find the entry with the appropriate number or
871 * revalidate the cookie.
873 memset(desc, 0, sizeof(*desc));
875 desc->file = file;
876 desc->ctx = ctx;
877 desc->dir_cookie = &dir_ctx->dir_cookie;
878 desc->decode = NFS_PROTO(inode)->decode_dirent;
879 desc->plus = nfs_use_readdirplus(inode, ctx) ? 1 : 0;
881 nfs_block_sillyrename(dentry);
882 if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
883 res = nfs_revalidate_mapping(inode, file->f_mapping);
884 if (res < 0)
885 goto out;
887 do {
888 res = readdir_search_pagecache(desc);
890 if (res == -EBADCOOKIE) {
891 res = 0;
892 /* This means either end of directory */
893 if (*desc->dir_cookie && desc->eof == 0) {
894 /* Or that the server has 'lost' a cookie */
895 res = uncached_readdir(desc);
896 if (res == 0)
897 continue;
899 break;
901 if (res == -ETOOSMALL && desc->plus) {
902 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
903 nfs_zap_caches(inode);
904 desc->page_index = 0;
905 desc->plus = 0;
906 desc->eof = 0;
907 continue;
909 if (res < 0)
910 break;
912 res = nfs_do_filldir(desc);
913 if (res < 0)
914 break;
915 } while (!desc->eof);
916 out:
917 nfs_unblock_sillyrename(dentry);
918 if (res > 0)
919 res = 0;
920 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
921 return res;
924 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
926 struct inode *inode = file_inode(filp);
927 struct nfs_open_dir_context *dir_ctx = filp->private_data;
929 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
930 filp, offset, whence);
932 mutex_lock(&inode->i_mutex);
933 switch (whence) {
934 case 1:
935 offset += filp->f_pos;
936 case 0:
937 if (offset >= 0)
938 break;
939 default:
940 offset = -EINVAL;
941 goto out;
943 if (offset != filp->f_pos) {
944 filp->f_pos = offset;
945 dir_ctx->dir_cookie = 0;
946 dir_ctx->duped = 0;
948 out:
949 mutex_unlock(&inode->i_mutex);
950 return offset;
954 * All directory operations under NFS are synchronous, so fsync()
955 * is a dummy operation.
957 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
958 int datasync)
960 struct inode *inode = file_inode(filp);
962 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
964 mutex_lock(&inode->i_mutex);
965 nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
966 mutex_unlock(&inode->i_mutex);
967 return 0;
971 * nfs_force_lookup_revalidate - Mark the directory as having changed
972 * @dir - pointer to directory inode
974 * This forces the revalidation code in nfs_lookup_revalidate() to do a
975 * full lookup on all child dentries of 'dir' whenever a change occurs
976 * on the server that might have invalidated our dcache.
978 * The caller should be holding dir->i_lock
980 void nfs_force_lookup_revalidate(struct inode *dir)
982 NFS_I(dir)->cache_change_attribute++;
984 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
987 * A check for whether or not the parent directory has changed.
988 * In the case it has, we assume that the dentries are untrustworthy
989 * and may need to be looked up again.
990 * If rcu_walk prevents us from performing a full check, return 0.
992 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
993 int rcu_walk)
995 int ret;
997 if (IS_ROOT(dentry))
998 return 1;
999 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1000 return 0;
1001 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1002 return 0;
1003 /* Revalidate nfsi->cache_change_attribute before we declare a match */
1004 if (rcu_walk)
1005 ret = nfs_revalidate_inode_rcu(NFS_SERVER(dir), dir);
1006 else
1007 ret = nfs_revalidate_inode(NFS_SERVER(dir), dir);
1008 if (ret < 0)
1009 return 0;
1010 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1011 return 0;
1012 return 1;
1016 * Use intent information to check whether or not we're going to do
1017 * an O_EXCL create using this path component.
1019 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1021 if (NFS_PROTO(dir)->version == 2)
1022 return 0;
1023 return flags & LOOKUP_EXCL;
1027 * Inode and filehandle revalidation for lookups.
1029 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1030 * or if the intent information indicates that we're about to open this
1031 * particular file and the "nocto" mount flag is not set.
1034 static
1035 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1037 struct nfs_server *server = NFS_SERVER(inode);
1038 int ret;
1040 if (IS_AUTOMOUNT(inode))
1041 return 0;
1042 /* VFS wants an on-the-wire revalidation */
1043 if (flags & LOOKUP_REVAL)
1044 goto out_force;
1045 /* This is an open(2) */
1046 if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
1047 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
1048 goto out_force;
1049 out:
1050 return (inode->i_nlink == 0) ? -ENOENT : 0;
1051 out_force:
1052 if (flags & LOOKUP_RCU)
1053 return -ECHILD;
1054 ret = __nfs_revalidate_inode(server, inode);
1055 if (ret != 0)
1056 return ret;
1057 goto out;
1061 * We judge how long we want to trust negative
1062 * dentries by looking at the parent inode mtime.
1064 * If parent mtime has changed, we revalidate, else we wait for a
1065 * period corresponding to the parent's attribute cache timeout value.
1067 * If LOOKUP_RCU prevents us from performing a full check, return 1
1068 * suggesting a reval is needed.
1070 static inline
1071 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1072 unsigned int flags)
1074 /* Don't revalidate a negative dentry if we're creating a new file */
1075 if (flags & LOOKUP_CREATE)
1076 return 0;
1077 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1078 return 1;
1079 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1083 * This is called every time the dcache has a lookup hit,
1084 * and we should check whether we can really trust that
1085 * lookup.
1087 * NOTE! The hit can be a negative hit too, don't assume
1088 * we have an inode!
1090 * If the parent directory is seen to have changed, we throw out the
1091 * cached dentry and do a new lookup.
1093 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1095 struct inode *dir;
1096 struct inode *inode;
1097 struct dentry *parent;
1098 struct nfs_fh *fhandle = NULL;
1099 struct nfs_fattr *fattr = NULL;
1100 struct nfs4_label *label = NULL;
1101 int error;
1103 if (flags & LOOKUP_RCU) {
1104 parent = ACCESS_ONCE(dentry->d_parent);
1105 dir = d_inode_rcu(parent);
1106 if (!dir)
1107 return -ECHILD;
1108 } else {
1109 parent = dget_parent(dentry);
1110 dir = d_inode(parent);
1112 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1113 inode = d_inode(dentry);
1115 if (!inode) {
1116 if (nfs_neg_need_reval(dir, dentry, flags)) {
1117 if (flags & LOOKUP_RCU)
1118 return -ECHILD;
1119 goto out_bad;
1121 goto out_valid_noent;
1124 if (is_bad_inode(inode)) {
1125 if (flags & LOOKUP_RCU)
1126 return -ECHILD;
1127 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1128 __func__, dentry);
1129 goto out_bad;
1132 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1133 goto out_set_verifier;
1135 /* Force a full look up iff the parent directory has changed */
1136 if (!nfs_is_exclusive_create(dir, flags) &&
1137 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1138 error = nfs_lookup_verify_inode(inode, flags);
1139 if (error) {
1140 if (flags & LOOKUP_RCU)
1141 return -ECHILD;
1142 if (error == -ESTALE)
1143 goto out_zap_parent;
1144 goto out_error;
1146 goto out_valid;
1149 if (flags & LOOKUP_RCU)
1150 return -ECHILD;
1152 if (NFS_STALE(inode))
1153 goto out_bad;
1155 error = -ENOMEM;
1156 fhandle = nfs_alloc_fhandle();
1157 fattr = nfs_alloc_fattr();
1158 if (fhandle == NULL || fattr == NULL)
1159 goto out_error;
1161 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
1162 if (IS_ERR(label))
1163 goto out_error;
1165 trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1166 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1167 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1168 if (error == -ESTALE || error == -ENOENT)
1169 goto out_bad;
1170 if (error)
1171 goto out_error;
1172 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1173 goto out_bad;
1174 if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1175 goto out_bad;
1177 nfs_setsecurity(inode, fattr, label);
1179 nfs_free_fattr(fattr);
1180 nfs_free_fhandle(fhandle);
1181 nfs4_label_free(label);
1183 out_set_verifier:
1184 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1185 out_valid:
1186 /* Success: notify readdir to use READDIRPLUS */
1187 nfs_advise_use_readdirplus(dir);
1188 out_valid_noent:
1189 if (flags & LOOKUP_RCU) {
1190 if (parent != ACCESS_ONCE(dentry->d_parent))
1191 return -ECHILD;
1192 } else
1193 dput(parent);
1194 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1195 __func__, dentry);
1196 return 1;
1197 out_zap_parent:
1198 nfs_zap_caches(dir);
1199 out_bad:
1200 WARN_ON(flags & LOOKUP_RCU);
1201 nfs_free_fattr(fattr);
1202 nfs_free_fhandle(fhandle);
1203 nfs4_label_free(label);
1204 nfs_mark_for_revalidate(dir);
1205 if (inode && S_ISDIR(inode->i_mode)) {
1206 /* Purge readdir caches. */
1207 nfs_zap_caches(inode);
1209 * We can't d_drop the root of a disconnected tree:
1210 * its d_hash is on the s_anon list and d_drop() would hide
1211 * it from shrink_dcache_for_unmount(), leading to busy
1212 * inodes on unmount and further oopses.
1214 if (IS_ROOT(dentry))
1215 goto out_valid;
1217 dput(parent);
1218 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1219 __func__, dentry);
1220 return 0;
1221 out_error:
1222 WARN_ON(flags & LOOKUP_RCU);
1223 nfs_free_fattr(fattr);
1224 nfs_free_fhandle(fhandle);
1225 nfs4_label_free(label);
1226 dput(parent);
1227 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1228 __func__, dentry, error);
1229 return error;
1233 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1234 * when we don't really care about the dentry name. This is called when a
1235 * pathwalk ends on a dentry that was not found via a normal lookup in the
1236 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1238 * In this situation, we just want to verify that the inode itself is OK
1239 * since the dentry might have changed on the server.
1241 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1243 int error;
1244 struct inode *inode = d_inode(dentry);
1247 * I believe we can only get a negative dentry here in the case of a
1248 * procfs-style symlink. Just assume it's correct for now, but we may
1249 * eventually need to do something more here.
1251 if (!inode) {
1252 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1253 __func__, dentry);
1254 return 1;
1257 if (is_bad_inode(inode)) {
1258 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1259 __func__, dentry);
1260 return 0;
1263 error = nfs_lookup_verify_inode(inode, flags);
1264 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1265 __func__, inode->i_ino, error ? "invalid" : "valid");
1266 return !error;
1270 * This is called from dput() when d_count is going to 0.
1272 static int nfs_dentry_delete(const struct dentry *dentry)
1274 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1275 dentry, dentry->d_flags);
1277 /* Unhash any dentry with a stale inode */
1278 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1279 return 1;
1281 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1282 /* Unhash it, so that ->d_iput() would be called */
1283 return 1;
1285 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1286 /* Unhash it, so that ancestors of killed async unlink
1287 * files will be cleaned up during umount */
1288 return 1;
1290 return 0;
1294 /* Ensure that we revalidate inode->i_nlink */
1295 static void nfs_drop_nlink(struct inode *inode)
1297 spin_lock(&inode->i_lock);
1298 /* drop the inode if we're reasonably sure this is the last link */
1299 if (inode->i_nlink == 1)
1300 clear_nlink(inode);
1301 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR;
1302 spin_unlock(&inode->i_lock);
1306 * Called when the dentry loses inode.
1307 * We use it to clean up silly-renamed files.
1309 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1311 if (S_ISDIR(inode->i_mode))
1312 /* drop any readdir cache as it could easily be old */
1313 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1315 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1316 nfs_complete_unlink(dentry, inode);
1317 nfs_drop_nlink(inode);
1319 iput(inode);
1322 static void nfs_d_release(struct dentry *dentry)
1324 /* free cached devname value, if it survived that far */
1325 if (unlikely(dentry->d_fsdata)) {
1326 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1327 WARN_ON(1);
1328 else
1329 kfree(dentry->d_fsdata);
1333 const struct dentry_operations nfs_dentry_operations = {
1334 .d_revalidate = nfs_lookup_revalidate,
1335 .d_weak_revalidate = nfs_weak_revalidate,
1336 .d_delete = nfs_dentry_delete,
1337 .d_iput = nfs_dentry_iput,
1338 .d_automount = nfs_d_automount,
1339 .d_release = nfs_d_release,
1341 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1343 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1345 struct dentry *res;
1346 struct dentry *parent;
1347 struct inode *inode = NULL;
1348 struct nfs_fh *fhandle = NULL;
1349 struct nfs_fattr *fattr = NULL;
1350 struct nfs4_label *label = NULL;
1351 int error;
1353 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1354 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1356 res = ERR_PTR(-ENAMETOOLONG);
1357 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1358 goto out;
1361 * If we're doing an exclusive create, optimize away the lookup
1362 * but don't hash the dentry.
1364 if (nfs_is_exclusive_create(dir, flags)) {
1365 d_instantiate(dentry, NULL);
1366 res = NULL;
1367 goto out;
1370 res = ERR_PTR(-ENOMEM);
1371 fhandle = nfs_alloc_fhandle();
1372 fattr = nfs_alloc_fattr();
1373 if (fhandle == NULL || fattr == NULL)
1374 goto out;
1376 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1377 if (IS_ERR(label))
1378 goto out;
1380 parent = dentry->d_parent;
1381 /* Protect against concurrent sillydeletes */
1382 trace_nfs_lookup_enter(dir, dentry, flags);
1383 nfs_block_sillyrename(parent);
1384 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1385 if (error == -ENOENT)
1386 goto no_entry;
1387 if (error < 0) {
1388 res = ERR_PTR(error);
1389 goto out_unblock_sillyrename;
1391 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1392 res = ERR_CAST(inode);
1393 if (IS_ERR(res))
1394 goto out_unblock_sillyrename;
1396 /* Success: notify readdir to use READDIRPLUS */
1397 nfs_advise_use_readdirplus(dir);
1399 no_entry:
1400 res = d_splice_alias(inode, dentry);
1401 if (res != NULL) {
1402 if (IS_ERR(res))
1403 goto out_unblock_sillyrename;
1404 dentry = res;
1406 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1407 out_unblock_sillyrename:
1408 nfs_unblock_sillyrename(parent);
1409 trace_nfs_lookup_exit(dir, dentry, flags, error);
1410 nfs4_label_free(label);
1411 out:
1412 nfs_free_fattr(fattr);
1413 nfs_free_fhandle(fhandle);
1414 return res;
1416 EXPORT_SYMBOL_GPL(nfs_lookup);
1418 #if IS_ENABLED(CONFIG_NFS_V4)
1419 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1421 const struct dentry_operations nfs4_dentry_operations = {
1422 .d_revalidate = nfs4_lookup_revalidate,
1423 .d_weak_revalidate = nfs_weak_revalidate,
1424 .d_delete = nfs_dentry_delete,
1425 .d_iput = nfs_dentry_iput,
1426 .d_automount = nfs_d_automount,
1427 .d_release = nfs_d_release,
1429 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1431 static fmode_t flags_to_mode(int flags)
1433 fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1434 if ((flags & O_ACCMODE) != O_WRONLY)
1435 res |= FMODE_READ;
1436 if ((flags & O_ACCMODE) != O_RDONLY)
1437 res |= FMODE_WRITE;
1438 return res;
1441 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags)
1443 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags));
1446 static int do_open(struct inode *inode, struct file *filp)
1448 nfs_fscache_open_file(inode, filp);
1449 return 0;
1452 static int nfs_finish_open(struct nfs_open_context *ctx,
1453 struct dentry *dentry,
1454 struct file *file, unsigned open_flags,
1455 int *opened)
1457 int err;
1459 err = finish_open(file, dentry, do_open, opened);
1460 if (err)
1461 goto out;
1462 nfs_file_set_open_context(file, ctx);
1464 out:
1465 return err;
1468 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1469 struct file *file, unsigned open_flags,
1470 umode_t mode, int *opened)
1472 struct nfs_open_context *ctx;
1473 struct dentry *res;
1474 struct iattr attr = { .ia_valid = ATTR_OPEN };
1475 struct inode *inode;
1476 unsigned int lookup_flags = 0;
1477 int err;
1479 /* Expect a negative dentry */
1480 BUG_ON(d_inode(dentry));
1482 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1483 dir->i_sb->s_id, dir->i_ino, dentry);
1485 err = nfs_check_flags(open_flags);
1486 if (err)
1487 return err;
1489 /* NFS only supports OPEN on regular files */
1490 if ((open_flags & O_DIRECTORY)) {
1491 if (!d_unhashed(dentry)) {
1493 * Hashed negative dentry with O_DIRECTORY: dentry was
1494 * revalidated and is fine, no need to perform lookup
1495 * again
1497 return -ENOENT;
1499 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1500 goto no_open;
1503 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1504 return -ENAMETOOLONG;
1506 if (open_flags & O_CREAT) {
1507 attr.ia_valid |= ATTR_MODE;
1508 attr.ia_mode = mode & ~current_umask();
1510 if (open_flags & O_TRUNC) {
1511 attr.ia_valid |= ATTR_SIZE;
1512 attr.ia_size = 0;
1515 ctx = create_nfs_open_context(dentry, open_flags);
1516 err = PTR_ERR(ctx);
1517 if (IS_ERR(ctx))
1518 goto out;
1520 trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1521 nfs_block_sillyrename(dentry->d_parent);
1522 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, opened);
1523 nfs_unblock_sillyrename(dentry->d_parent);
1524 if (IS_ERR(inode)) {
1525 err = PTR_ERR(inode);
1526 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1527 put_nfs_open_context(ctx);
1528 d_drop(dentry);
1529 switch (err) {
1530 case -ENOENT:
1531 d_add(dentry, NULL);
1532 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1533 break;
1534 case -EISDIR:
1535 case -ENOTDIR:
1536 goto no_open;
1537 case -ELOOP:
1538 if (!(open_flags & O_NOFOLLOW))
1539 goto no_open;
1540 break;
1541 /* case -EINVAL: */
1542 default:
1543 break;
1545 goto out;
1548 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened);
1549 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1550 put_nfs_open_context(ctx);
1551 out:
1552 return err;
1554 no_open:
1555 res = nfs_lookup(dir, dentry, lookup_flags);
1556 err = PTR_ERR(res);
1557 if (IS_ERR(res))
1558 goto out;
1560 return finish_no_open(file, res);
1562 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1564 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1566 struct inode *inode;
1567 int ret = 0;
1569 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1570 goto no_open;
1571 if (d_mountpoint(dentry))
1572 goto no_open;
1573 if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1)
1574 goto no_open;
1576 inode = d_inode(dentry);
1578 /* We can't create new files in nfs_open_revalidate(), so we
1579 * optimize away revalidation of negative dentries.
1581 if (inode == NULL) {
1582 struct dentry *parent;
1583 struct inode *dir;
1585 if (flags & LOOKUP_RCU) {
1586 parent = ACCESS_ONCE(dentry->d_parent);
1587 dir = d_inode_rcu(parent);
1588 if (!dir)
1589 return -ECHILD;
1590 } else {
1591 parent = dget_parent(dentry);
1592 dir = d_inode(parent);
1594 if (!nfs_neg_need_reval(dir, dentry, flags))
1595 ret = 1;
1596 else if (flags & LOOKUP_RCU)
1597 ret = -ECHILD;
1598 if (!(flags & LOOKUP_RCU))
1599 dput(parent);
1600 else if (parent != ACCESS_ONCE(dentry->d_parent))
1601 return -ECHILD;
1602 goto out;
1605 /* NFS only supports OPEN on regular files */
1606 if (!S_ISREG(inode->i_mode))
1607 goto no_open;
1608 /* We cannot do exclusive creation on a positive dentry */
1609 if (flags & LOOKUP_EXCL)
1610 goto no_open;
1612 /* Let f_op->open() actually open (and revalidate) the file */
1613 ret = 1;
1615 out:
1616 return ret;
1618 no_open:
1619 return nfs_lookup_revalidate(dentry, flags);
1622 #endif /* CONFIG_NFSV4 */
1625 * Code common to create, mkdir, and mknod.
1627 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1628 struct nfs_fattr *fattr,
1629 struct nfs4_label *label)
1631 struct dentry *parent = dget_parent(dentry);
1632 struct inode *dir = d_inode(parent);
1633 struct inode *inode;
1634 int error = -EACCES;
1636 d_drop(dentry);
1638 /* We may have been initialized further down */
1639 if (d_really_is_positive(dentry))
1640 goto out;
1641 if (fhandle->size == 0) {
1642 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1643 if (error)
1644 goto out_error;
1646 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1647 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1648 struct nfs_server *server = NFS_SB(dentry->d_sb);
1649 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL);
1650 if (error < 0)
1651 goto out_error;
1653 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1654 error = PTR_ERR(inode);
1655 if (IS_ERR(inode))
1656 goto out_error;
1657 d_add(dentry, inode);
1658 out:
1659 dput(parent);
1660 return 0;
1661 out_error:
1662 nfs_mark_for_revalidate(dir);
1663 dput(parent);
1664 return error;
1666 EXPORT_SYMBOL_GPL(nfs_instantiate);
1669 * Following a failed create operation, we drop the dentry rather
1670 * than retain a negative dentry. This avoids a problem in the event
1671 * that the operation succeeded on the server, but an error in the
1672 * reply path made it appear to have failed.
1674 int nfs_create(struct inode *dir, struct dentry *dentry,
1675 umode_t mode, bool excl)
1677 struct iattr attr;
1678 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1679 int error;
1681 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1682 dir->i_sb->s_id, dir->i_ino, dentry);
1684 attr.ia_mode = mode;
1685 attr.ia_valid = ATTR_MODE;
1687 trace_nfs_create_enter(dir, dentry, open_flags);
1688 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1689 trace_nfs_create_exit(dir, dentry, open_flags, error);
1690 if (error != 0)
1691 goto out_err;
1692 return 0;
1693 out_err:
1694 d_drop(dentry);
1695 return error;
1697 EXPORT_SYMBOL_GPL(nfs_create);
1700 * See comments for nfs_proc_create regarding failed operations.
1703 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1705 struct iattr attr;
1706 int status;
1708 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1709 dir->i_sb->s_id, dir->i_ino, dentry);
1711 attr.ia_mode = mode;
1712 attr.ia_valid = ATTR_MODE;
1714 trace_nfs_mknod_enter(dir, dentry);
1715 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1716 trace_nfs_mknod_exit(dir, dentry, status);
1717 if (status != 0)
1718 goto out_err;
1719 return 0;
1720 out_err:
1721 d_drop(dentry);
1722 return status;
1724 EXPORT_SYMBOL_GPL(nfs_mknod);
1727 * See comments for nfs_proc_create regarding failed operations.
1729 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1731 struct iattr attr;
1732 int error;
1734 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1735 dir->i_sb->s_id, dir->i_ino, dentry);
1737 attr.ia_valid = ATTR_MODE;
1738 attr.ia_mode = mode | S_IFDIR;
1740 trace_nfs_mkdir_enter(dir, dentry);
1741 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1742 trace_nfs_mkdir_exit(dir, dentry, error);
1743 if (error != 0)
1744 goto out_err;
1745 return 0;
1746 out_err:
1747 d_drop(dentry);
1748 return error;
1750 EXPORT_SYMBOL_GPL(nfs_mkdir);
1752 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1754 if (simple_positive(dentry))
1755 d_delete(dentry);
1758 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1760 int error;
1762 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1763 dir->i_sb->s_id, dir->i_ino, dentry);
1765 trace_nfs_rmdir_enter(dir, dentry);
1766 if (d_really_is_positive(dentry)) {
1767 nfs_wait_on_sillyrename(dentry);
1768 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1769 /* Ensure the VFS deletes this inode */
1770 switch (error) {
1771 case 0:
1772 clear_nlink(d_inode(dentry));
1773 break;
1774 case -ENOENT:
1775 nfs_dentry_handle_enoent(dentry);
1777 } else
1778 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1779 trace_nfs_rmdir_exit(dir, dentry, error);
1781 return error;
1783 EXPORT_SYMBOL_GPL(nfs_rmdir);
1786 * Remove a file after making sure there are no pending writes,
1787 * and after checking that the file has only one user.
1789 * We invalidate the attribute cache and free the inode prior to the operation
1790 * to avoid possible races if the server reuses the inode.
1792 static int nfs_safe_remove(struct dentry *dentry)
1794 struct inode *dir = d_inode(dentry->d_parent);
1795 struct inode *inode = d_inode(dentry);
1796 int error = -EBUSY;
1798 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1800 /* If the dentry was sillyrenamed, we simply call d_delete() */
1801 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1802 error = 0;
1803 goto out;
1806 trace_nfs_remove_enter(dir, dentry);
1807 if (inode != NULL) {
1808 NFS_PROTO(inode)->return_delegation(inode);
1809 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1810 if (error == 0)
1811 nfs_drop_nlink(inode);
1812 } else
1813 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1814 if (error == -ENOENT)
1815 nfs_dentry_handle_enoent(dentry);
1816 trace_nfs_remove_exit(dir, dentry, error);
1817 out:
1818 return error;
1821 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1822 * belongs to an active ".nfs..." file and we return -EBUSY.
1824 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1826 int nfs_unlink(struct inode *dir, struct dentry *dentry)
1828 int error;
1829 int need_rehash = 0;
1831 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1832 dir->i_ino, dentry);
1834 trace_nfs_unlink_enter(dir, dentry);
1835 spin_lock(&dentry->d_lock);
1836 if (d_count(dentry) > 1) {
1837 spin_unlock(&dentry->d_lock);
1838 /* Start asynchronous writeout of the inode */
1839 write_inode_now(d_inode(dentry), 0);
1840 error = nfs_sillyrename(dir, dentry);
1841 goto out;
1843 if (!d_unhashed(dentry)) {
1844 __d_drop(dentry);
1845 need_rehash = 1;
1847 spin_unlock(&dentry->d_lock);
1848 error = nfs_safe_remove(dentry);
1849 if (!error || error == -ENOENT) {
1850 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1851 } else if (need_rehash)
1852 d_rehash(dentry);
1853 out:
1854 trace_nfs_unlink_exit(dir, dentry, error);
1855 return error;
1857 EXPORT_SYMBOL_GPL(nfs_unlink);
1860 * To create a symbolic link, most file systems instantiate a new inode,
1861 * add a page to it containing the path, then write it out to the disk
1862 * using prepare_write/commit_write.
1864 * Unfortunately the NFS client can't create the in-core inode first
1865 * because it needs a file handle to create an in-core inode (see
1866 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1867 * symlink request has completed on the server.
1869 * So instead we allocate a raw page, copy the symname into it, then do
1870 * the SYMLINK request with the page as the buffer. If it succeeds, we
1871 * now have a new file handle and can instantiate an in-core NFS inode
1872 * and move the raw page into its mapping.
1874 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1876 struct page *page;
1877 char *kaddr;
1878 struct iattr attr;
1879 unsigned int pathlen = strlen(symname);
1880 int error;
1882 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
1883 dir->i_ino, dentry, symname);
1885 if (pathlen > PAGE_SIZE)
1886 return -ENAMETOOLONG;
1888 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1889 attr.ia_valid = ATTR_MODE;
1891 page = alloc_page(GFP_HIGHUSER);
1892 if (!page)
1893 return -ENOMEM;
1895 kaddr = kmap_atomic(page);
1896 memcpy(kaddr, symname, pathlen);
1897 if (pathlen < PAGE_SIZE)
1898 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1899 kunmap_atomic(kaddr);
1901 trace_nfs_symlink_enter(dir, dentry);
1902 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1903 trace_nfs_symlink_exit(dir, dentry, error);
1904 if (error != 0) {
1905 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1906 dir->i_sb->s_id, dir->i_ino,
1907 dentry, symname, error);
1908 d_drop(dentry);
1909 __free_page(page);
1910 return error;
1914 * No big deal if we can't add this page to the page cache here.
1915 * READLINK will get the missing page from the server if needed.
1917 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
1918 GFP_KERNEL)) {
1919 SetPageUptodate(page);
1920 unlock_page(page);
1922 * add_to_page_cache_lru() grabs an extra page refcount.
1923 * Drop it here to avoid leaking this page later.
1925 page_cache_release(page);
1926 } else
1927 __free_page(page);
1929 return 0;
1931 EXPORT_SYMBOL_GPL(nfs_symlink);
1934 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1936 struct inode *inode = d_inode(old_dentry);
1937 int error;
1939 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
1940 old_dentry, dentry);
1942 trace_nfs_link_enter(inode, dir, dentry);
1943 NFS_PROTO(inode)->return_delegation(inode);
1945 d_drop(dentry);
1946 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1947 if (error == 0) {
1948 ihold(inode);
1949 d_add(dentry, inode);
1951 trace_nfs_link_exit(inode, dir, dentry, error);
1952 return error;
1954 EXPORT_SYMBOL_GPL(nfs_link);
1957 * RENAME
1958 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1959 * different file handle for the same inode after a rename (e.g. when
1960 * moving to a different directory). A fail-safe method to do so would
1961 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1962 * rename the old file using the sillyrename stuff. This way, the original
1963 * file in old_dir will go away when the last process iput()s the inode.
1965 * FIXED.
1967 * It actually works quite well. One needs to have the possibility for
1968 * at least one ".nfs..." file in each directory the file ever gets
1969 * moved or linked to which happens automagically with the new
1970 * implementation that only depends on the dcache stuff instead of
1971 * using the inode layer
1973 * Unfortunately, things are a little more complicated than indicated
1974 * above. For a cross-directory move, we want to make sure we can get
1975 * rid of the old inode after the operation. This means there must be
1976 * no pending writes (if it's a file), and the use count must be 1.
1977 * If these conditions are met, we can drop the dentries before doing
1978 * the rename.
1980 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1981 struct inode *new_dir, struct dentry *new_dentry)
1983 struct inode *old_inode = d_inode(old_dentry);
1984 struct inode *new_inode = d_inode(new_dentry);
1985 struct dentry *dentry = NULL, *rehash = NULL;
1986 struct rpc_task *task;
1987 int error = -EBUSY;
1989 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
1990 old_dentry, new_dentry,
1991 d_count(new_dentry));
1993 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
1995 * For non-directories, check whether the target is busy and if so,
1996 * make a copy of the dentry and then do a silly-rename. If the
1997 * silly-rename succeeds, the copied dentry is hashed and becomes
1998 * the new target.
2000 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2002 * To prevent any new references to the target during the
2003 * rename, we unhash the dentry in advance.
2005 if (!d_unhashed(new_dentry)) {
2006 d_drop(new_dentry);
2007 rehash = new_dentry;
2010 if (d_count(new_dentry) > 2) {
2011 int err;
2013 /* copy the target dentry's name */
2014 dentry = d_alloc(new_dentry->d_parent,
2015 &new_dentry->d_name);
2016 if (!dentry)
2017 goto out;
2019 /* silly-rename the existing target ... */
2020 err = nfs_sillyrename(new_dir, new_dentry);
2021 if (err)
2022 goto out;
2024 new_dentry = dentry;
2025 rehash = NULL;
2026 new_inode = NULL;
2030 NFS_PROTO(old_inode)->return_delegation(old_inode);
2031 if (new_inode != NULL)
2032 NFS_PROTO(new_inode)->return_delegation(new_inode);
2034 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2035 if (IS_ERR(task)) {
2036 error = PTR_ERR(task);
2037 goto out;
2040 error = rpc_wait_for_completion_task(task);
2041 if (error == 0)
2042 error = task->tk_status;
2043 rpc_put_task(task);
2044 nfs_mark_for_revalidate(old_inode);
2045 out:
2046 if (rehash)
2047 d_rehash(rehash);
2048 trace_nfs_rename_exit(old_dir, old_dentry,
2049 new_dir, new_dentry, error);
2050 if (!error) {
2051 if (new_inode != NULL)
2052 nfs_drop_nlink(new_inode);
2053 d_move(old_dentry, new_dentry);
2054 nfs_set_verifier(old_dentry,
2055 nfs_save_change_attribute(new_dir));
2056 } else if (error == -ENOENT)
2057 nfs_dentry_handle_enoent(old_dentry);
2059 /* new dentry created? */
2060 if (dentry)
2061 dput(dentry);
2062 return error;
2064 EXPORT_SYMBOL_GPL(nfs_rename);
2066 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2067 static LIST_HEAD(nfs_access_lru_list);
2068 static atomic_long_t nfs_access_nr_entries;
2070 static unsigned long nfs_access_max_cachesize = ULONG_MAX;
2071 module_param(nfs_access_max_cachesize, ulong, 0644);
2072 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2074 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2076 put_rpccred(entry->cred);
2077 kfree_rcu(entry, rcu_head);
2078 smp_mb__before_atomic();
2079 atomic_long_dec(&nfs_access_nr_entries);
2080 smp_mb__after_atomic();
2083 static void nfs_access_free_list(struct list_head *head)
2085 struct nfs_access_entry *cache;
2087 while (!list_empty(head)) {
2088 cache = list_entry(head->next, struct nfs_access_entry, lru);
2089 list_del(&cache->lru);
2090 nfs_access_free_entry(cache);
2094 static unsigned long
2095 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2097 LIST_HEAD(head);
2098 struct nfs_inode *nfsi, *next;
2099 struct nfs_access_entry *cache;
2100 long freed = 0;
2102 spin_lock(&nfs_access_lru_lock);
2103 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2104 struct inode *inode;
2106 if (nr_to_scan-- == 0)
2107 break;
2108 inode = &nfsi->vfs_inode;
2109 spin_lock(&inode->i_lock);
2110 if (list_empty(&nfsi->access_cache_entry_lru))
2111 goto remove_lru_entry;
2112 cache = list_entry(nfsi->access_cache_entry_lru.next,
2113 struct nfs_access_entry, lru);
2114 list_move(&cache->lru, &head);
2115 rb_erase(&cache->rb_node, &nfsi->access_cache);
2116 freed++;
2117 if (!list_empty(&nfsi->access_cache_entry_lru))
2118 list_move_tail(&nfsi->access_cache_inode_lru,
2119 &nfs_access_lru_list);
2120 else {
2121 remove_lru_entry:
2122 list_del_init(&nfsi->access_cache_inode_lru);
2123 smp_mb__before_atomic();
2124 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2125 smp_mb__after_atomic();
2127 spin_unlock(&inode->i_lock);
2129 spin_unlock(&nfs_access_lru_lock);
2130 nfs_access_free_list(&head);
2131 return freed;
2134 unsigned long
2135 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2137 int nr_to_scan = sc->nr_to_scan;
2138 gfp_t gfp_mask = sc->gfp_mask;
2140 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2141 return SHRINK_STOP;
2142 return nfs_do_access_cache_scan(nr_to_scan);
2146 unsigned long
2147 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2149 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2152 static void
2153 nfs_access_cache_enforce_limit(void)
2155 long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2156 unsigned long diff;
2157 unsigned int nr_to_scan;
2159 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2160 return;
2161 nr_to_scan = 100;
2162 diff = nr_entries - nfs_access_max_cachesize;
2163 if (diff < nr_to_scan)
2164 nr_to_scan = diff;
2165 nfs_do_access_cache_scan(nr_to_scan);
2168 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2170 struct rb_root *root_node = &nfsi->access_cache;
2171 struct rb_node *n;
2172 struct nfs_access_entry *entry;
2174 /* Unhook entries from the cache */
2175 while ((n = rb_first(root_node)) != NULL) {
2176 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2177 rb_erase(n, root_node);
2178 list_move(&entry->lru, head);
2180 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2183 void nfs_access_zap_cache(struct inode *inode)
2185 LIST_HEAD(head);
2187 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2188 return;
2189 /* Remove from global LRU init */
2190 spin_lock(&nfs_access_lru_lock);
2191 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2192 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2194 spin_lock(&inode->i_lock);
2195 __nfs_access_zap_cache(NFS_I(inode), &head);
2196 spin_unlock(&inode->i_lock);
2197 spin_unlock(&nfs_access_lru_lock);
2198 nfs_access_free_list(&head);
2200 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2202 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2204 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2205 struct nfs_access_entry *entry;
2207 while (n != NULL) {
2208 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2210 if (cred < entry->cred)
2211 n = n->rb_left;
2212 else if (cred > entry->cred)
2213 n = n->rb_right;
2214 else
2215 return entry;
2217 return NULL;
2220 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2222 struct nfs_inode *nfsi = NFS_I(inode);
2223 struct nfs_access_entry *cache;
2224 int err = -ENOENT;
2226 spin_lock(&inode->i_lock);
2227 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2228 goto out_zap;
2229 cache = nfs_access_search_rbtree(inode, cred);
2230 if (cache == NULL)
2231 goto out;
2232 if (!nfs_have_delegated_attributes(inode) &&
2233 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2234 goto out_stale;
2235 res->jiffies = cache->jiffies;
2236 res->cred = cache->cred;
2237 res->mask = cache->mask;
2238 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2239 err = 0;
2240 out:
2241 spin_unlock(&inode->i_lock);
2242 return err;
2243 out_stale:
2244 rb_erase(&cache->rb_node, &nfsi->access_cache);
2245 list_del(&cache->lru);
2246 spin_unlock(&inode->i_lock);
2247 nfs_access_free_entry(cache);
2248 return -ENOENT;
2249 out_zap:
2250 spin_unlock(&inode->i_lock);
2251 nfs_access_zap_cache(inode);
2252 return -ENOENT;
2255 static int nfs_access_get_cached_rcu(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2257 /* Only check the most recently returned cache entry,
2258 * but do it without locking.
2260 struct nfs_inode *nfsi = NFS_I(inode);
2261 struct nfs_access_entry *cache;
2262 int err = -ECHILD;
2263 struct list_head *lh;
2265 rcu_read_lock();
2266 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2267 goto out;
2268 lh = rcu_dereference(nfsi->access_cache_entry_lru.prev);
2269 cache = list_entry(lh, struct nfs_access_entry, lru);
2270 if (lh == &nfsi->access_cache_entry_lru ||
2271 cred != cache->cred)
2272 cache = NULL;
2273 if (cache == NULL)
2274 goto out;
2275 if (!nfs_have_delegated_attributes(inode) &&
2276 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2277 goto out;
2278 res->jiffies = cache->jiffies;
2279 res->cred = cache->cred;
2280 res->mask = cache->mask;
2281 err = 0;
2282 out:
2283 rcu_read_unlock();
2284 return err;
2287 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2289 struct nfs_inode *nfsi = NFS_I(inode);
2290 struct rb_root *root_node = &nfsi->access_cache;
2291 struct rb_node **p = &root_node->rb_node;
2292 struct rb_node *parent = NULL;
2293 struct nfs_access_entry *entry;
2295 spin_lock(&inode->i_lock);
2296 while (*p != NULL) {
2297 parent = *p;
2298 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2300 if (set->cred < entry->cred)
2301 p = &parent->rb_left;
2302 else if (set->cred > entry->cred)
2303 p = &parent->rb_right;
2304 else
2305 goto found;
2307 rb_link_node(&set->rb_node, parent, p);
2308 rb_insert_color(&set->rb_node, root_node);
2309 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2310 spin_unlock(&inode->i_lock);
2311 return;
2312 found:
2313 rb_replace_node(parent, &set->rb_node, root_node);
2314 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2315 list_del(&entry->lru);
2316 spin_unlock(&inode->i_lock);
2317 nfs_access_free_entry(entry);
2320 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2322 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2323 if (cache == NULL)
2324 return;
2325 RB_CLEAR_NODE(&cache->rb_node);
2326 cache->jiffies = set->jiffies;
2327 cache->cred = get_rpccred(set->cred);
2328 cache->mask = set->mask;
2330 /* The above field assignments must be visible
2331 * before this item appears on the lru. We cannot easily
2332 * use rcu_assign_pointer, so just force the memory barrier.
2334 smp_wmb();
2335 nfs_access_add_rbtree(inode, cache);
2337 /* Update accounting */
2338 smp_mb__before_atomic();
2339 atomic_long_inc(&nfs_access_nr_entries);
2340 smp_mb__after_atomic();
2342 /* Add inode to global LRU list */
2343 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2344 spin_lock(&nfs_access_lru_lock);
2345 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2346 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2347 &nfs_access_lru_list);
2348 spin_unlock(&nfs_access_lru_lock);
2350 nfs_access_cache_enforce_limit();
2352 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2354 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2356 entry->mask = 0;
2357 if (access_result & NFS4_ACCESS_READ)
2358 entry->mask |= MAY_READ;
2359 if (access_result &
2360 (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
2361 entry->mask |= MAY_WRITE;
2362 if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
2363 entry->mask |= MAY_EXEC;
2365 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2367 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2369 struct nfs_access_entry cache;
2370 int status;
2372 trace_nfs_access_enter(inode);
2374 status = nfs_access_get_cached_rcu(inode, cred, &cache);
2375 if (status != 0)
2376 status = nfs_access_get_cached(inode, cred, &cache);
2377 if (status == 0)
2378 goto out_cached;
2380 status = -ECHILD;
2381 if (mask & MAY_NOT_BLOCK)
2382 goto out;
2384 /* Be clever: ask server to check for all possible rights */
2385 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2386 cache.cred = cred;
2387 cache.jiffies = jiffies;
2388 status = NFS_PROTO(inode)->access(inode, &cache);
2389 if (status != 0) {
2390 if (status == -ESTALE) {
2391 nfs_zap_caches(inode);
2392 if (!S_ISDIR(inode->i_mode))
2393 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2395 goto out;
2397 nfs_access_add_cache(inode, &cache);
2398 out_cached:
2399 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2400 status = -EACCES;
2401 out:
2402 trace_nfs_access_exit(inode, status);
2403 return status;
2406 static int nfs_open_permission_mask(int openflags)
2408 int mask = 0;
2410 if (openflags & __FMODE_EXEC) {
2411 /* ONLY check exec rights */
2412 mask = MAY_EXEC;
2413 } else {
2414 if ((openflags & O_ACCMODE) != O_WRONLY)
2415 mask |= MAY_READ;
2416 if ((openflags & O_ACCMODE) != O_RDONLY)
2417 mask |= MAY_WRITE;
2420 return mask;
2423 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2425 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2427 EXPORT_SYMBOL_GPL(nfs_may_open);
2429 static int nfs_execute_ok(struct inode *inode, int mask)
2431 struct nfs_server *server = NFS_SERVER(inode);
2432 int ret;
2434 if (mask & MAY_NOT_BLOCK)
2435 ret = nfs_revalidate_inode_rcu(server, inode);
2436 else
2437 ret = nfs_revalidate_inode(server, inode);
2438 if (ret == 0 && !execute_ok(inode))
2439 ret = -EACCES;
2440 return ret;
2443 int nfs_permission(struct inode *inode, int mask)
2445 struct rpc_cred *cred;
2446 int res = 0;
2448 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2450 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2451 goto out;
2452 /* Is this sys_access() ? */
2453 if (mask & (MAY_ACCESS | MAY_CHDIR))
2454 goto force_lookup;
2456 switch (inode->i_mode & S_IFMT) {
2457 case S_IFLNK:
2458 goto out;
2459 case S_IFREG:
2460 if ((mask & MAY_OPEN) &&
2461 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2462 return 0;
2463 break;
2464 case S_IFDIR:
2466 * Optimize away all write operations, since the server
2467 * will check permissions when we perform the op.
2469 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2470 goto out;
2473 force_lookup:
2474 if (!NFS_PROTO(inode)->access)
2475 goto out_notsup;
2477 /* Always try fast lookups first */
2478 rcu_read_lock();
2479 cred = rpc_lookup_cred_nonblock();
2480 if (!IS_ERR(cred))
2481 res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK);
2482 else
2483 res = PTR_ERR(cred);
2484 rcu_read_unlock();
2485 if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) {
2486 /* Fast lookup failed, try the slow way */
2487 cred = rpc_lookup_cred();
2488 if (!IS_ERR(cred)) {
2489 res = nfs_do_access(inode, cred, mask);
2490 put_rpccred(cred);
2491 } else
2492 res = PTR_ERR(cred);
2494 out:
2495 if (!res && (mask & MAY_EXEC))
2496 res = nfs_execute_ok(inode, mask);
2498 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2499 inode->i_sb->s_id, inode->i_ino, mask, res);
2500 return res;
2501 out_notsup:
2502 if (mask & MAY_NOT_BLOCK)
2503 return -ECHILD;
2505 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2506 if (res == 0)
2507 res = generic_permission(inode, mask);
2508 goto out;
2510 EXPORT_SYMBOL_GPL(nfs_permission);
2513 * Local variables:
2514 * version-control: t
2515 * kept-new-versions: 5
2516 * End: